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Abstract

Given the difficulties in predicting human behavior, one may wish to establish
bounds on our ability to accurately perform such predictions. In the case of
mobility-related behavior, there exists a fundamental technique to estimate the
predictability of an individual’s mobility, as expressed in a given dataset. Although
useful in several scenarios, this technique focused on human mobility as a
monolithic entity, which poses challenges to understanding different types of
behavior that may be hard to predict. In this paper, we propose to view human
mobility as consisting of two components, routine and novelty, with distinct
properties. This alternative view of one’s mobility allows us to identify
unpredictable behavior in each of these components. Additionally, we argue that
unpredictable behavior in the novelty component is hard to predict, and we here
focus on analyzing what affects the predictability of one’s routine. To that end,
we propose a technique that allows us to (i) quantify the effect of novelty on
predictability, and (ii) gauge how much one’s routine deviates from a reference
routine that is completely predictable, therefore estimating the amount of
unpredictable behavior in one’s routine. Finally, we rely on previously proposed
metrics, as well as a newly proposed one, to understand what affects the
predictability of a person’s routine. Our experiments show that our metrics are
able to capture most of the variability in one’s routine (adjusted R2 of up to
84.9% and 96.0% on a GPS and CDR datasets, respectively), and that routine
behavior can be largely explained by three types of patterns: (i) stationary
patterns, in which a person stays in her current location for a given time period,
(ii) regular visits, in which people visit a few preferred locations with occasional
visits to other places, and (iii) diversity of trajectories, in which people change
the order in which they visit certain locations.

Keywords: human mobility; predictability; entropy; mobility metrics

1 Introduction
Human mobility prediction has broad and important applications in areas such as

urban planning, traffic engineering, epidemiology, recommender systems, and adver-

tisement, to name a few [1–3]. Many previous studies proposed mobility prediction

strategies that use a myriad of techniques (e.g., Markov chains [4], logistic regres-

sion [5], neural networks [6], and so on), and used different types of data sources

(call detail records from mobile traffic [4, 7], GPS traces [5, 8], and social media

data [3, 9], among others). However, human mobility is hard to predict, as there are

many factors, such as the person’s mood, traffic conditions, and current weather,

that play a role in mobility-related decisions.

Given the difficulties involved in predicting mobility-related behavior, one poses

the question of to which extent such behavior can be predicted. Answering this ques-
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tion was the focus of a seminal paper by Song et al. [7], in which the authors

proposed a fundamental technique that explores the concept of entropy to estimate

how predictable a person’s mobility is, as expressed in a given dataset. Specifically,

given a dataset containing a sequence of locations visited by an individual and

representing a sample of the individual’s mobility, they proposed a technique that

measures the maximum theoretical accuracy that an ideal prediction model could

achieve on that dataset. This maximum is referred to as the predictability of the

person’s mobility. Unlike particular comparisons of alternative prediction models

on different datasets, Song et al.’s approach is much more fundamental: it does not

focus on any specific prediction technique but rather on human behavior, as cap-

tured by the available data. It is thus an invaluable tool in human mobility studies

as it levels the field of mobility prediction, providing a value of prediction accuracy

that prediction strategies should aim for.

However, Song et al.’s work and subsequent studies derived from it [4, 5, 10–12]

focused on a person’s mobility as a single monolithic entity. This paper proposes

a different approach: we argue that one’s mobility can be broken into different

components. Separately studying such components can reveal important insights

into an individual’s mobility patterns. Specifically, we offer an alternative view

of human mobility as having two fundamental components, namely novelty and

routine, with distinct properties. The novelty component consists of locations that

the person visited for the first time, and we refer to all other visits (which may

include the same location multiple times) as the routine component. Note that

this definition is different from our usual definition of routine (places frequently

visited), as it considers every visit except the first one as being part of the routine

component.

The division of human mobility into these components highlights important prop-

erties about them. As we will discuss in Section 3.1, the novelty component is re-

markably unpredictable, mainly because the vast majority of mobility prediction

models [9, 13–15] rely on the history of visited locations, as captured in the input

dataset, to predict future visits. Therefore, those models have a hard time deciding

whether a person will go to a previously unseen location, and an even harder time

trying to guess what location that will be.

In contrast, the routine component is the part of a person’s mobility where there

is more potential for improving prediction accuracy as every location in this compo-

nent has been visited at least twice (that is, there is visitation history to be exploited

by prediction models). However, despite such greater potential, predicting visits in

the routine component is still by itself a challenge, as there can be a high degree of

unpredictability even if we focus only on previously visited locations. For instance,

the mere change in the order in which people visit specific locations, even those

they visit more frequently, poses difficulties for prediction models.

Having defined the routine and novelty components, we set up the goal of isolating

their effects on the predictability of one’s mobility. Specifically, in Section 3, we show

how to isolate the effect of the novelty component on predictability, thus allowing

us to quantify the effect of routine one a person’s mobility predictability. Then in

Section 5, we zoom in on the routine component to try to understand what makes

a person’s routine easier or harder to predict. To do that, we rely on our previously
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proposed metrics [12], namely regularity and stationarity, to try to understand

what affects a person’s routine. We also propose a novel metric, called diversity of

trajectories which, together with regularity and stationarity, paint a clearer picture

of what affects the predictability of the routine component of one’s mobility. We

evaluate these three metrics by building regression models that use them as proxies

to understand the predictability of an individual’s routine. Our study relies on the

analysis of two datasets of different spatial and temporal granularities, as these

properties have been shown to influence predictability [10, 12].

Our contributions can be summarized as follows:

• A new way to look at human mobility that breaks it into two components,

novelty and routine, which have different properties with respect to how pre-

dictable one’s mobility is.

• A strategy to filter out the effects of the novelty component and sequence size

on the estimate of predictability of one’s mobility, thus allowing us to focus on

the component with greater potential for prediction purposes, i.e., the routine

component. This strategy allows us to estimate how the predictability of one’s

mobility deviates from a reference case consisting of a completely predictable

routine component (but similar novelty), thus offering an estimate of the effect

of the routine component on predictability estimates.

• A novel metric, i.e., diversity of trajectories, that, together with previously

proposed metrics, can be used as proxy in the interpretation of the predictabil-

ity of one’s mobility. This new metric enhances the understanding of pre-

dictability by bringing a finer view of the factors that impact predictability.

• A rigorous evaluation of the impact of the diversity of trajectories and the

previously proposed regularity and stationarity on the predictability of one’s

routine, offering valuable insights into understanding and predicting mobility

patterns.

The rest of this paper is organized as follows. In Section 2, we discuss relevant

background to understand predictability as well as related work on the topic of

predictability. In Section 3, we describe our approach to separate human mobil-

ity into novelty and routine, which allows us to assess the effect of novelty on

predictability to measure how much one’s routine deviates from a reference (com-

pletely predictable) routine. In Section 4 we present and briefly analyze the datasets

used in this study. We then discuss, in Section 5, what affects the predictability of

a person’s routine, relying on previously proposed metrics as well as on the new di-

versity of trajectories metric, and making use of regression-based analyses to show

that these metrics can indeed explain reasonably well the entropy (and thus the

predictability) of a person’s routine-related mobility. Finally, Section 6 summarizes

our main results and discusses potential directions for future work.

2 Background and Related Work
In this section, we provide relevant background to understand predictability as well

as discuss previous studies on the topic. Specifically, we start by defining, in Sec-

tion 2.1, the individual human mobility prediction problem as well as two variants of

this problem (next-cell and next-place prediction), as predictability and prediction

are intimately related, i.e.,, predictability is a measure of the maximum prediction
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accuracy achievable on a given dataset. In Section 2.2, we discuss several aspects

of predictability, including its relation to mobility prediction and its dependence

on entropy [7]. Finally, in Section 2.3 we review some prior efforts to analyze pre-

dictability.

2.1 Individual Human Mobility Prediction

The prediction of human mobility has been studied under a number of different

perspectives. For instance, there are studies that focus on aggregate mobility, that

is, at a population level, and aim at predicting the direction in which groups of

people will flow. Examples of studies in this area include the work of Brockman

et al. [16], in which the authors investigated human travelling by analyzing the

circulation of bank notes in the United States, and the study of migration flows

between regions according to the radiation model [17].

On the other hand, in individual mobility prediction, the goal is to provide a fine-

grained approach to human mobility by focusing in forecasting the whereabouts of

particular individuals. Examples of prior efforts in individual mobility prediction are

the efforts of Gonzalez et al. [18] and Mucceli et al. [19], in which the authors showed

that human trajectories exhibit spatio-temporal regularities, and the mobility of

individuals can be characterized by frequent visits to a few preferred locations

interspersed with occasional visits to other locations, previously visited or not. In

this article, we focus on individual human mobility.

A common feature of the vast majority of individual mobility prediction strategies

is that they rely on a person’s history of visited locations to perform predictions.

That is, they extract patterns from an input dataset containing such history and,

by assuming that these patterns will hold in the future, use them to predict future

locations. Thus, we can define the individual human mobility prediction problem as

follows:

Definition 2.1 Individual human mobility prediction: Given an input

dataset consisting of a time-ordered sequence X = (x1, x2, . . . , xn−1) of observa-

tions of a person’s location, where each symbol xi ∈ X identifies the location the

person was at when observation i was made, we wish to predict xn, the next symbol

(location) in the sequence.

The aforementioned mobility prediction problem admits different formulations,

depending on specific constraints, corresponding to different prediction tasks.

In this study, we will focus on two particular prediction tasks, namely next

cell and next place predictions [5, 20]. Again, given a time-ordered sequence

X = (x1, x2, . . . , xn−1) of observations of a person’s location, these prediction tasks

are defined as follows.

Definition 2.2 Next-cell prediction: Predict xn, the next location in sequence

X. Notice that here, location xn can be equal to xn−1 in case the person stays at

her current location for several consecutive observations (stationary period).

Definition 2.3 Next-place prediction: Predict the next location xn ∈ X, where

xn 6= xn−1. Notice that xn must be different from xn−1 by definition, since we want
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to know the next (distinct) location the person will visit. In other words, in this

prediction task we ignore stationary periods.

There are two main options for carrying out these prediction tasks in a given

dataset. The first option is to work with the full dataset and adjust the predictions

accordingly. For instance, in the next-place prediction task, one would ignore ev-

ery next location that is equal to the previous one while performing predictions.

The second option is to filter the dataset so as to eliminate stationary periods

when performing next-place prediction. For instance, consider an example sequence

X = (A,B,A,A,A,D,B,B,B,C, F ). For the next-cell prediction task, X would

remain unchanged, whereas for the next place prediction task, X would become

X ′ = (A,B,A,D,B,C, F ). Throughout the rest of this paper, whenever we refer to

a dataset for the next-cell prediction task, we are using the unchanged dataset, and

when we refer to a next-place dataset, we are considering the original dataset after

every consecutive repetition of the same location is removed.

It is worth to emphasize that the removal of stationary periods has an impact on

prediction and on predictability. While in next-cell prediction, stationary periods

will contribute to improve prediction accuracy (thus raising predictability), in the

next-place prediction, their absence will make predictions more challenging (thus

lowering predictability). Recall that predictability is a measure of the maximum

prediction accuracy achievable on a given dataset, thus, by increasing the potential

for prediction accuracy in a particular task and dataset, we are also increasing

predictability.

2.2 Predictability in Human Mobility

When tackling individual human mobility prediction, one might ask the extent to

which the mobility of one particular individual, captured in a dataset, can be pre-

dicted at all. This question relates much more to the inherent behavior of this

person, that is, to the predictability of her mobility patterns, expressed in an un-

derlying dataset, rather than to the effectiveness of particular prediction methods.

Song et al.’s seminal paper [7] present a technique to estimate the predictability of

an individual given a trace of her mobiltiy. This is the state-of-the-art technique to

estimate one’s mobility predictability and is the foundation of our present effort.

Thus, throughout this paper, whenever we mention predictability, we are referring

to Song et al.’s predictability technique.

Predictability is a number between zero and one, where zero indicates that a

dataset containing a sample of an individual’s mobility is unpredictable and one

that data is completely predictable. A value of x% means that an ideal predictor is

expected to accurately guess the next symbol in the dataset representing the person’s

mobility trace x% of the time. As we will discuss later, there are restrictions both on

the type of process (e.g., stationary ergodic processes) by which the input sequence

is produced as well as the type of predictor (e.g., universal predictors) for which

this holds. For now, it is sufficient to notice that this definition accommodates both

the next cell and next place prediction tasks. Notice also that predictability is a

theoretical upper bound, which is obtained by decoupling the analysis of the data

from the intricacies of a given prediction technique, and is therefore based solely on

the inherent nature of human mobility behavior expressed in the data.
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2.2.1 The Relationship Between Predictability, Entropy, and Compressibility

The technique proposed by Song et al. [7] estimates the predictability of a person’s

sequence of visited locations as a function of the entropy [21] of this sequence,

thereby assuming a connection between entropy and complexity, which in turn is

related to predictability.[1] Specifically, the predictability of a sequence of symbols

(locations visited by someone, in the present case) is related to the complexity

of the sequence (less complex sequences are more predictable), and complexity is

related to entropy. Entropy, which can be defined as the average uncertainty in the

outcomes of a random variable [21], is a good approximation for the complexity of

the sequence because the more uncertainty (higher entropy) in a sequence of events,

the more complex the sequence.

Additionally, the entropy of a sequence of symbols can be seen as a lower bound

on its compressibility [21–24]. The intuition here is that if a sequence of symbols is

highly compressible, it means that there is little uncertainty in the order its symbols

appear. For instance, sequences with many repeated symbols are highly compressible

and, intuitively, if a sequence has many repeated symbols it is relatively easy to

predict its next symbol at a given point. Similarly, in the case of mobility, if a

person visits many repeated locations, the sequence (mobility trace) will have many

repeated symbols, which makes prediction easier.

As a result of this equivalence between entropy and compressibility, one can use

the entropy of a sequence as a measure of how predictable the sequence is: the

lower the entropy the less complex and more predictable the sequence, and vice-

versa. Thus, the problem of estimating the predictability of a sequence reduces to the

problem of estimating the entropy of the sequence.

Song et al. leveraged these theoretical connections, and proposed to use three

estimates for the entropy of a person’s mobility trace: one that assumes the person

visits every location the same number of times, another that takes into account

differences in the frequencies with which locations are visited, and a third, more

precise one, based on compression, that takes into account both frequency and

temporal patterns (that is, dependencies among visits). This third, more robust

entropy estimator had indeed been originally proposed by Kontoyiannis et al. [25].

According to their definition, the entropy Sreal of an input sequence of locations X

of size n can be approximated by:

Sreal ≈
n log2(n)∑
i≤n

Λi
, (1)

where Λi is the length of the shortest time-ordered subsequence starting at position

i which does not appear from 1 to i−1 in sequence X.

The intuition behind this formula is that, given a sequence of size n, its entropy is

inversely proportional to the number and size of repeated substrings in the sequence.

Thus, for example, a sequence with a lot of repeated sub-sequences has a lot of

[1]We note that the theory behind predictability is valid for a sequence of symbols

in general, which, in the case of human mobility, are identifiers of the locations that

someone visited
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redundancy, and therefore has low entropy, i.e., it is more predictable. Throughout

the rest of this article, whenever we mention the approach proposed by Song et al.,

we are indeed referring to the method that exploits the entropy estimator proposed

by Kontoyiannis et al., expressed in Equation 1.

Delving deeper into the literature, we found that there are some caveats with re-

spect to the type of sequence on which we can expect Kontoyiannis et al.’s estimator

to work reliably. It assumes that the input sequence X is produced by a stationary

ergodic process. In the case of human mobility, this implies that statistical properties

of a person’s mobility patterns do not change over time and that these statistical

properties can be inferred from a single, sufficiently long random sample of the per-

son’s mobility trace. In other words, the input sequence has to be representative of

the person’s actual mobility, and there cannot be long-term changes in the patterns.

This seems a reasonable assumption for traces covering daily patterns, though it

might not be adequate if a person’s mobility patterns undergo significant changes

in a given period, e.g.,, the person moves to a different city, as discussed in previous

work [26].

The assumption that individual human mobility is a stationary ergodic process

also has implications on the type of predictor for which Song et al.’s technique is

expected to work. In particular, Song et al.’s predictability estimate holds as an

upper-bound only for universal predictors.

A universal predictor is one that does not depend on the knowledge of the under-

lying process generating the input sequence and, as the sequence grows to infinity, it

still performs essentially as well as if the process were known in advance [23, 24, 27].

In more practical terms, universal predictors are able to generalize to different

datasets, provided that the underlying processes producing these different datasets

belong to the same class (e.g., stationary ergodic processes). Markov-based models

are examples of universal predictors.

In contrast, non-universal predictors must be trained and therefore, are tailored

to a specific dataset, and thus may not generalize to other datasets. One example

includes a predictor based on neural networks that is specialized to a particular

dataset.

2.2.2 Defining Predictability

Using Fano’s Inequality [21], Song et al. derived a formula to compute the pre-

dictability of a given sequence, based on the entropy of the sequence. Such formula

is based on the intuition that, if a user with entropy S moves between N distinct

locations, her predictability will be Π, where Π ≤ Πmax(S,N) and Πmax is an

estimate on predictability, such as:

S = −H(Πmax) + (1−Πmax) log(N − 1), (2)

and H(Πmax) is given by:

H(Πmax) = Πmax log2(Πmax) + (1−Πmax) log2(1−Πmax).



Teixeira et al. Page 8 of 30

A proof that these equations estimate the correct limits of predictability can be

found in related work [7, 10, 28]. In particular, Smith et al. [10] provided a detailed,

thorough derivation of the formula above.

Now, with the necessary background in place, we can more formally define the

problem of estimating predictability in human mobility.

Definition 2.4 Predictability: Given a time-ordered sequence of locations

X = (x1, x2, . . . , xn−1) that a person visited in the past, and assuming that X is a

stationary ergodic process, the predictability task is to estimate Πmax, the maxi-

mum possible accuracy that a universal predictor U could achieve when trying to

predict xn in X.

2.3 Related Work

Song et al.’s technique, which is the state-of-the-art predictability technique, has

been extensively used to assess predictability in human mobility as well as in other

scenarios. In the domain of human mobility, Xin Lu et al. [4] investigate whether the

prediction accuracy obtained via Song et al.’s technique is achievable. They propose

and evaluate several markov models to predict people’s next location and show

that their models achieve Song et al.’s estimated predictability for their dataset.

Later work proposed models that could even surpass the predictability in some

circumstances [26]. Being based on neural networks, those models are not universal

predictors. As argued in the previous section, the predictability estimate is not

guaranteed to hold as an upper-bound in such cases.

Smith et al. [10] evaluate Song et al.’s technique in a GPS dataset, showing that

users’s predictability are sensitive to the temporal and spatial resolution of the data.

Ikanovic et al. [20] use Song et al.’s technique to estimate predictability in differ-

ent prediction tasks, showing that predictability varies according to the particular

prediction task under consideration. Cuttone et al. [5] also show that prediction

accuracy varies depending on other factors in the data, such as contextual informa-

tion (day of the week, hour of the day, the weather, etc.) and suggest that context

could impact predictability.

Song et al.’s predictability technique has also been used in other domains. For

instance, Li et al. [29]. build on Song et al.’s technique to assess spatiotemporal

predictability in location-based social networks. Bagrow et al. [30] use Song et al.’s

technique to measure the predictability of the contents of a person’s tweets based

on the content of her friends’ tweets. Zhao et al. [28] use Song et al.’s technique

to measure the predictability of taxi demand per city block in New York City, and

other work also use it scenarios such as travel time estimates [31], cellular network

traffic [32], and radio spectrum state dynamics [33].

Previous work also focused on providing more refined limits of predictability.

These refined limits usually rely on some sort of external information or assump-

tion about the sequence to adjust the probabilities of the symbols in the input

sequence. For instance, Smith et al. [10] showed that the limits of predictability

can be refined if we exclude from the possible next locations those that are far

away from the user’s current position. Teixeira et al. [12] quantified the impact of

context on predictability estimates, showing that context does not always increase

predictability.
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Previous work also contrasted the limits of predictability for the next-cell and

next-place prediction tasks [5, 20], showing that the predictability for the next-

place prediction problem is lower than that of the next-cell prediction problem, given

the same input sequence. As argued by the authors, this indicates that the next-

place prediction is a harder problem. The reason for that is the lack of stationarity

(an important feature of human mobility) in the next-place prediction problem, as

already argued in Section 2.

Unlike [12] and other predictability studies [4–7, 10] where human mobility is

considered as a whole, here we propose a strategy to separate a person’s mobility

into two components: novelty and routine. By doing so, we aim to simplify the

understanding of the predictability of a person’s mobility, to assess the effects of

novelty on predictability estimates, and consequently, to be able to identify routine-

related behavior that is hard to predict. In order to analyze routine-related mobility,

we rely on previously proposed metrics, namely regularity and stationarity, as well

as a newly proposed one, called diversity. These metrics allow us to understand

what affects the predictability of the routine component of a person’s mobility.

In the next sections, we discuss each of these contributions. We start with our

new perspective to study human mobility according to two distinct and comple-

mentary components. We then investigate the implications of such components on

predictability estimates.

3 Components of Human Mobility
As mentioned, previous studies looked at individual human mobility as one mono-

lithic entity consisting of a collection of locations that a person visited during a

certain period. In this paper, we propose to break one’s mobility into two key com-

ponents – novelty and routine – as follows.

Given an input sequence X = (x1, x2, . . . , xn) of locations visited by an individ-

ual, the novelty component of X consists of all visits to previously unseen locations,

whereas its routine component includes all other visits, that is, visits to locations

that appeared at least once before in X. Figure 1 shows an example input sequence

X representing a person’s history of visited locations (each letter represents a lo-

cation). The figure distinguishes the routine and novelty components by presenting

the latter in gray.

C A B A B A C B D A E   X = 

Figure 1 Novelty (in gray) and routine (in white) components of input sequence X.

The difficulty in predicting a person’s mobility comes, mainly, from one of two

sources: (1) unpredictable behavior due to visits to novel (previously unseen) loca-

tions, and (2) unpredictable behavior in the sequence of visits to previously visited

locations, due to spatio-temporal changes. In this article, we argue that in order to

better understand how predictable an individual’s mobility patterns are, we must

isolate these two sources of unpredictability and study them separately. By doing

so, we can estimate the effect of novelty on predictability, and then zoom in on what

affects the predictability of the routine component alone.
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We argue that novelty visits contribute to reducing the predictability of a per-

son’s mobility. The vast majority of mobility prediction models exploit the history

of visited locations, as captured in the input sequence X, to predict future visits

(e.g., [4, 5, 14, 20]). Thus, the absence of such history in the novelty component

(by definition) challenges prediction. Predicting novelty visits requires different ap-

proaches, that may exploit other types of (external) information such as mobility

patterns of closely related individuals such as friends and family [15, 34], which are

outside our present scope.

The routine component, on the other hand, has a greater potential for prediction

accuracy as previous visitation history is available. However, as mentioned above,

changes in the sequence of visitations, triggered by a plethora of factors (weather,

special events, one’s own will, etc.) can introduce a great deal of unpredictability

to this component as well.

In this paper, we study the predictability of one’s mobility focusing on the routine

component. We do so while still using the state-of-the-art predictability technique.

However, that technique views one’s mobility as a whole, i.e., processes the complete

input sequence X. By doing so it hardens the understanding of what part of the

(un)predictability of a person’s mobility, expressed in X, is due to visits in the

novelty component and what part is due to changes in the sequence of routine-

related visits.

Thus, as a key step towards understanding predictability, we here propose a tech-

nique that filters out the effect of other factors that impact predictability, allowing

us focus on routine-related mobility captured in the input sequence. Specifically,

our approach consists of building a comparable reference sequence, here called sim-

ply baseline sequence, which differs from the original sequence only in the routine

component. Specifically, the routine component of the baseline sequence consists

of the same symbol repeated multiple times, thus having maximum predictability

(for fixed routine size). By measuring the gap between the (real) predictability of

the original sequence to the predictability of this baseline sequence, we are able to

estimate the effect of the routine component on predictability estimates.

In the following, we first discuss the impact of one such effect, notably the visits

in the novelty component (Section 3.1). We then present our proposed approach to

capture the effect of routine-related mobility on the predictability of one’s mobility

(Section 3.2).

3.1 Assessing the Effect of Novelty on Predictability Estimates

Despite the challenges associated with predicting visits in the novelty component,

we here claim that it is possible to estimate the impact of this component on the

predictability of an individual’s mobility. In this section, we explain how to do so.

Recall from Equation 1 that the entropy of a given sequence X of size n is inversely

proportional to the sizes of the distinct subsequences in X. For a given size n the

larger the sizes of the subsequences, the fewer subsequences, and vice-versa. Thus,

the entropy is proportional to the number of distinct subsequences of the original

sequence. Symbols in the novelty component have a direct impact on entropy es-

timates because every time a previously unseen symbol appears in the sequence,

it will generate a previously unseen subsequence, which in turn will contribute to

increase the entropy estimate of the sequence as a whole.
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Specifically, from Equation 1 (reproduced below to facilitate the explanation):

Sreal ≈
n log2(n)∑
i≤n

Λi
,

we notice that, for a sequence of size n, its entropy will be inversely proportional to∑
i≤n Λi, i.e., the sum of the lengths of all subsequences. In the extreme case of a

sequence whose symbols are all unique, every symbol in the sequence will produce

a new (previously unseen) subsequence (of length one). In that case, each Λi will be

equal to 1, and thus the denominator in Equation 1 will be equal to n. In general,

for a sequence of size n with m ≤ n distinct symbols, these symbols, taken together,

will contribute to the denominator of Equation 1 with a value of m.

Consider, as an example, the input sequence X = (H,W,H,W,S,H,W,H,W,R).

The entropy estimate, as explained, has to account for every symbol that appears

in the sequence for the first time. Table 1 illustrates the effect of these symbols

on the entropy by showing the computation of each Λi – the size of the shortest

subsequence Li starting at position i that does not appear in positions 1 to i − 1

in sequence X. To facilitate following the example, the table shows, for increasing

values of i from 1 to n = 10, the subsequence Li as well as its corresponding Λi. Note

that for i = 3, we have Λ3 = 3, which is the size of HWS, the shortest subsequence

starting at position 3 that does not appear before in the input sequence, since S does

not appear in the earlier positions of X. In contrast, for i = 5, we have Λ5 = 1, since

the fifth location visited, S, is novel, it has not appeared before in the sequence.

The same happens for all visits to new locations: Λi = 1 for i = 1,2,5, and 10.

i X[1:i] Li Λi new symbol? new subsequence?

1 HWHWSHWHWR H 1 3 3
2 HWHWSHWHWR W 1 3 3
3 HWHWSHWHWR HWS 3 3 3
4 HWHWSHWHWR WS 2 7 7
5 HWHWSHWHWR S 1 7 7
6 HWHWSHWHWR HWHW 5 3 3
7 HWHWSHWHWR WHW 4 7 7
8 HWHWSHWHWR HW 3 7 7
9 HWHWSHWHWR W 2 7 7

10 HWHWSHWHWR R 1 7 7

Table 1 An example illustrating the innerworkings of Equation 1 on an input sequence
X = (H,W,H,W, S,H,W,H,W,R). The notation X[1:i] denotes the symbols in X from 1 to i− 1,
Li denotes the shortest subsequences that starts at position i and does not appear from 1 to i− 1 in
the original sequence, and Λi is given by | Li |. We note that every time a new (previously unseen)
symbols appears, a new subsequence is generated, as shown in the last two columns of the table.

In more general terms, we note that every time a new (previously unseen) symbol

appears in the sequence, a new (previously unseen) subsequence also appears, each

new symbol contributes the value of 1 to its correspondent Λi. Furthermore, as

shown in the Appendix A, changing the order or positions of the symbols that

consitute the novelty component does not affect their contribution to the entropy

estimate. Thus, we can isolate the symbols in the novelty component, as described

in Section 3, in order to focus on understanding the routine of one’s mobility.
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Given that we are viewing human mobility in terms of two components, and that

we have identified the impact of the symbols in the novelty component on the

denominator of Equation 1, we can rewrite that equation as follows:

Sreal ≈
n log2(n)∑

i≤n−m
Λroutine
i +

∑
i≤m

Λnovelty
i

=
n log2(n)∑

i≤n−m
Λroutine
i +m

, (3)

where n is the size of the sequence, m is the number of symbols in its novelty

component, Λnovelty
i = m is the contribution of the symbols in the novelty compo-

nent to the denominator of Equation 1, and Λroutine
i is the effect of routine on the

denominator of Equation 1.

In the following section, we explore these insights to propose a technique that

allows us to estimate the effect of the routine component on the predictability of

an input sequence X. Our technique relies on the fact that we are able to isolate

the effect of the novelty component on the entropy (Equation 3), thus facilitating

our study of the predictability of the routine component. In isolating the effect of

novelty of predictability, we highlight the role of routine and thus are able to focus

on what affects the predictability of this component.

3.2 Assessing the Effect of Routine on Predictability Estimates

In order to estimate the predictability of a person’s routine, captured in an input

sequence X, using the technique proposed by Song et al., we must be able to filter

out from the computation, the effects of other unrelated factors present in X. One

such factor is the novelty component, which, as argued in the previous section,

contributes to reduce predictability. Another factor is the size of the input sequence,

given by parameter n, which, as shown in Equation 1, also affects the predictability

estimate of X.

Having identified these two factors, we proceed to describe our approach to esti-

mate the effect of the routine component on the predictability of an input sequence

X. In a nutshell, our proposed approach works as follows. Given the input sequence

X, with size n, our technique consists in creating another sequence, named baseline

sequence, based on the original, in such a way that this new sequence:

(i) has the same size n as the original sequence;

(ii) has the same number of visits in the novelty component;

(iii) its routine component is completely predictable, i.e., it consists of a single

location visited as many times as determined by the size of the routine com-

ponent.

We note that steps (i) and (ii) are required so as to filter out the effects due to the

size of the input sequence (notably the size of its routine component) and to isolate

the effects of the novelty component on the predictability estimate.

By doing so, we guarantee that the two sequences, the original one and the baseline

one, created as described, are comparable in terms of the impact of the novelty and

the size of the sequence on the predictability estimate. As such, any difference

between the estimates of the predictability of both sequences must highlight the effect

of the routine in the original sequence. In other words, our approach allows us to
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assess how much a person’s routine deviates from a completely predictable baseline

routine.

Figure 2 exemplifies how the baseline sequence is built. For the sake of clarity, we

refer to the original (input) sequence of visited locations as Xreal and to the baseline

sequence as Xbaseline. Consider the sequence Xreal in Figure 2(a), and assume it

consists of locations (each identified by a letter). The first step to build Xbaseline

is to identify visits that constitute the novelty component, which are highlighted in

gray in Figure 2(b).

C A B A B A C B D A EXreal = 

(a) Original sequence of locations: Xreal

C A B A B A C B D A EX’
real = 

(b) Highlighting symbols in the novelty com-
ponent

Xtemp = C A BA B A C B DA E

(c) Isolating symbols in the novelty compo-
nent: Xtemp

Xbaseline = C A BA A A A A DA E
baseline routine novelty

(d) Baseline sequence of locations: Xbaseline

Figure 2 Example of construction of a baseline sequence of locations.

In order to isolate the novelty component, we first move to the back of the se-

quence all symbols that are part of it. Recall that, as argued in Section 3.1 and

shown in the Appendix A, changing the positions of the symbols that compose

the novelty component does not impact their contribution to the entropy estimate.

Thus, by moving them to the back of the sequence we do not alter its effect on the

predictability of the sequence. The result is a temporary sequence Xtemp shown in

Figure 2(c), where visits that constitute the novelty component are isolated. We

then consider the following question: If the routine component of the original se-

quence were completely predictable, what would be the predictability of the whole

sequence?

In order to answer this question, we change sequence Xtemp by creating a routine

component that is completely predictable, i.e., it consists of only a single symbol

repeated multiple times. The resulting sequence constitutes the baseline sequence

Xbaseline , illustrated in Figure 2(d). Notice that, both Xbaseline and Xreal have the

same size and the same number of symbols in the novelty component, therefore the

effects of size and novelty on predictability are the same for both sequences.

Our goal at this point is to: (i) estimate the entropy Sbaseline of sequence Xbaseline,

and (ii) compare Sbaseline with Sreal, the entropy of the original sequence Xreal so

as to measure how much the routine component of Sreal deviates from the baseline

routine. We take this relative measure as an estimate of the effect of the routine

on the predictability of the original sequence Xreal. The greater the gap between

Sreal and Sbaseline, the less predictable the routine component of Xreal is, and the

greater its effect on the predictability of the complete sequence.

To tackle the problem of estimating the entropy of the baseline sequence, we will

revisit Equation 3. In Section 3.1, we established that the value of
∑

Λnovelty
i is m,

where m is the number of symbols in the novelty component of the sequence. We
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will now explain how to compute
∑

Λroutine
i for our baseline sequence, which has

the distinct property that all of its symbols are the same.

Let’s start with the example shown in Figure 2(d), where the routine component

of Xbaseline is AAAAAA, i.e., has size 6. Table 2 shows the computation of each

Λroutine
i , with i varying from 1 to 6.

i X[1:i] Li Λi

1 AAAAAA A 1
2 AAAAAA AA 2
3 AAAAAA AAA 3
4 AAAAAA AAA 3
5 AAAAAA AA 2
6 AAAAAA A 1

Table 2 An example illustrating the innerworkings of Equation 1 on an example input sequence
X = (A,A,A,A,A,A). The notation X[1:i] denotes the symbols in X from 1 to i− 1, Li denotes
the shortest subsequences that starts at position i and does not appear from 1 to i− 1 in the original
sequence, and Λi is given by | Li |.

Notice that, in line 4, even though the string AAA appears before, Λi is still 3, as

we have reached the end of the sequence, and therefore cannot add more characters

to Li. In practice, this example follows how the Lempel-Ziv compression algorithm

encodes substrings, and Λi is simply the size of the next substring that would be

encoded by the Lempel-Ziv compression algorithm for each i.

From Table 2, we notice that the sum of all Λroutine
i can be written as 1 + 2 + 3

+ 3 + 2 + 1 = 12. More generally, if Xbaseline has a routine component of size k,

we can state that:

∑
Λroutine
i = 1 + 2 + · · ·+ k

2
+
k

2
+
k

2
− 1 +

k

2
− 2 + · · ·+ 1 =

⌈
k2

4
+
k

2

⌉
,

where k is the total number of symbols in the routine component of the sequence.

Thus, we can rewrite Equation 3 to compute the entropy of the baseline sequence

as follows:

Sbaseline ≈
n log2(n)⌈

(k+1)2

4 + k+1
2

⌉
+m

, (4)

where n is the size of original the sequence, m is the number of symbols in its

novelty component, and k is the number of symbols in its baseline routine. In the

equation above, we have to add one to the size of the routine component to account

for the fact that one of the symbols in the sequence appears both in its baseline

routine and in its novelty component, i.e., for practical purposes, it is as if the

routine component had an extra symbol.

It is also important to highlight that applying Equation 4 to an input sequence

X yields the same entropy value as using Equation 1 to compute the entropy of a

sequence Xbaseline such as the one in Figure 2(d), i.e., a baseline sequence obtained

from an input sequence X. In other words, Equation 4 is a closed-formula for the

entropy of a baseline sequence.
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Having determined how to estimate the entropy of the baseline sequence, we can

finally tackle the problem of estimating the effect of the routine component on the

predictability of an individual’s mobility expressed in an input sequence Xreal. To

that end, given the entropy Sreal of the original sequence and the entropy Sbaseline

of the baseline sequence, we can estimate the deviation of routine component on

Sreal from the baseline routine as follows:

∆Sroutine = Sreal − Sbaseline, (5)

In other to better exemplify this perspective, consider as an example the sequence

X = (C,A,B,B,A,D,C,B,A,A,E,D), also shown in Figure 2(a). The entropy

Sreal of this sequence is given by:

Sreal(X) ≈ n log2(n)∑
i≤n

Λi
=

12 log2(12)

19
= 2.00.

In turn, we can calculate the entropy Sbaseline of the corresponding baseline se-

quence Xbaseline = (A,A,A,A,A,A,C,A,B,D,E), which is given by:

Sbaseline(X) ≈ 12 log2(12)(
72

4 + 7
2

)
+ 5

=
12 log2(12)

21
= 1.81.

Here, the effect of routine on the entropy of Xreal can be estimated as

2.00− 1.81 = 0.19. We argue that this entropy gap, i.e.,, deviation from the baseline

routine, concerns behavior in the routine component that is hard to predict.

Having defined our technique to assess the effect of the routine component on the

predictability of one’s mobility, we use it in the following sections to understand

what makes routine-related mobility easier or harder to predict.

4 Overview of our Mobility Datasets
In this section, we offer an overview of the mobility datasets used in our study. We

start by first presenting, in Section 4.1, a brief description of them, discussing their

main characteristics and filtering process adopted. Next, in Section 4.2, we offer a

characterization of the data, focusing on properties that may affect predictability

estimate.

4.1 Datasets

Our analyses are performed on two different mobility datasets, of distinct temporal

and spatial resolutions, which allow us to investigate predictability in varying spa-

tiotemporal contexts. These datasets are representative of two categories of datasets

often used in mobility studies: GPS datasets and Call Detail Record (CDR) datasets.

GPS Dataset: The first dataset is a high temporal and spatial resolution dataset

consisting of GPS traces. This dataset was obtained through an Android mobile

phone application, called MACACOApp[2]. Users who volunteered to install the

[2]http://macaco.inria.fr/macacoapp/

http://macaco.inria.fr/macacoapp/
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app allowed it to collect data such as uplink/downlink traffic, available network

connectivity, and visited GPS locations from their mobile devices. These activities

are logged with a fixed periodicity of 5 minutes, making it a high temporal resolution

dataset, and the precision in the acquisition of GPS coordinates from mobile devices

makes it a high spatial resolution dataset as well. The regular sampling in this

data provides a more comprehensive overview of a user’s movement patterns. The

dataset contains a total of 132 volunteers distributed among six countries located

in two different continents: 67 are from the same country and represent students,

researchers, and administrative staff in two universities where lectures were held.

To filter out potential cross-country effects, we decided to focus on users from the

same country, that is, 67 users, in all of our analyses.

CDR dataset: The second dataset consists of Call Detail Records (CDRs), pro-

vided by a major cellular operator in China. It spans a period of two weeks in 2015

and contains call detail records (CDRs) at the rate of one location per hour during

that period. This dataset is collected from 642K fully anonymized mobile phone

subscribers. Here, a CDR is logged every time a subscriber initiates or receives a

voice call. An entry in the dataset contains the subscriber’s identifier, the call start

time, and the location of the subscriber at this time. Unlike traditionally analyzed

CDR datasets, the locations here represent the users’ centroid of the hour, within

a 200 meter radius, according to the instruction of the data provider, and does

not contain the area covered by each tower. Hence, the accuracy of positioning is

higher than that of traditionally analyzed CDR datasets. As some users do not have

data covering the whole period, we focused on those who have at least one location

registered each 2 hours, on average. This filtering criterion is the same adopted by

Song et al. After this filtering process, we ended up with 3,349 users, which we use

in our study.

Unless otherwise noted, we will use a temporal resolution of one observation every

5 minutes for each user in the GPS dataset, and we ensure that there is at least one

observation per user every 2 hours for the CDR dataset. In both datasets, the size

of the side of each square grid is 200 meters.

4.2 Data Characterization.

In this section, we study general properties of our datasets and discuss how they

may affect predictability estimate.

We start by analyzing the total number of locations visited by users in each

dataset, which corresponds to the total size n of the sequence used as input to

predictability estimates. Figure 3 shows the distributions of the total number of

visited locations in both GPS and CDR datasets. Moreover, for each dataset, we

show distributions for the next-cell and next-place analyses, while the latter is char-

acterized by the removal of stationarity from the data. First of all, we note the great

diversity of available data (visited locations) across users in both datasets, notably

in the GPS dataset. Moreover, we note also that, for the CDR dataset, in which the

temporal resolution is lower (fewer observations per time unit) and the period of

observation (two weeks only) is shorter, the total number of visited locations tends

to be smaller (174.7, on average) when compared to the GPS dataset (2388.8, on
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average). Moreover, for both datasets, the total number of visited locations is much

smaller in the next-place analysis; in other words, the removal of stationarity from

our datasets results in fewer total locations, as expected.

These differences in the distributions of number of locations per user in our two

datasets as well as the differences in temporal and spatial resolutions, noted in the

previous section, build up different relevant scenarios of analysis for our investi-

gation. Furthermore, as predictability estimate is based solely on the underlying

dataset, having datasets with such distinct properties allows us to have a broader

understanding of what affects predictability.
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(b) CDR Dataset

Figure 3 Cumulative distributions of the total number of visited locations for both datasets
(next-cell and next-place predictions).

Next, we analyze the novelty and routine components of a user’s mobility. We do

so by describing how much each of these components represent in terms of the total

mobility trace of each user. Specifically, we compute, for each user in each dataset,

the fractions of n, the total number of visited locations, that correspond to visits

of the routine and novelty components[3], as defined in Section 3. Figure 4 shows

the cumulative distributions of these fractions for both datasets, considering both

next-cell and next-place analyses. Overall, the routine component dominates the

locations visited, as expected. Yet, we can observe some users with a large fraction

of novel visits, especially in the CDR dataset (up to 22% of all visits, in the next-

place analysis). Notice also that the novelty component tends to be smaller in the

next-cell prediction tasks as stationary results in a larger routine component.

Conversely, the size of the novelty component tends to be larger for next-place

analyses. As such, the impact of novelty on the overall predictability will also be

larger in these cases. These results corroborate previous arguments that the next-

place prediction task is harder than next-cell prediction [5, 12]. As shown in the

figure, we can indeed expect the next-place prediction to be harder because (i) there

is no stationarity involved, so prediction is more challenging, and (ii) the size of the

novelty component is larger, which also makes prediction more challenging.

[3]Note that, for a given user, these two fractions sum up to 1.
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Figure 4 Cumulative distributions of the size of the routine and novelty components in our two
datasets.

Focusing on the routine component, our main interest in this paper, we now assess

the extent to which there is unpredictable behavior in people’s routine. To that

end, we apply Equation 5 to the mobility trace of each user to estimate ∆Sroutine
,

that is the gap between the predictability of the user and the predictability of

the corresponding baseline sequence (which has a completely predictable routine

component). In the following we refer to this measure as simply predictability gap.

Figure 5 shows cumulative distributions of the predictability gap for users in

both datasets and both next-cell and next-place prediction tasks. Note that the

predictability gap varies considerably for users in our two datasets, showing once

again great diversity of user behavior, for both prediction tasks.

Moreover, the gap tends to be smaller for next-cell prediction. For example, for

next-cell prediction, the gap is on average only 2.6% and 13% in the GPS and

CDR datasets, respectively. For next-place prediction, in turn, the average gap

reaches 13.5% and 22.2% for the same tasks, respectively. Once again, the stationary

periods make the users’ routine easier to predict, which is reflected by the smaller

difference between the actual predictability of the user and the predictability of the

corresponding baseline sequence. As for the next-place prediction problem, because

the stationary periods are removed from the users’ location trace, the predictability

gap is wider, indicating that the routine component is harder to predict in this case.
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Figure 5 Cumulative distributions predictability gap ∆Sroutine
(Equation 5) for both datasets

(next-cell and next-place predictions).

Figure 5 also shows that the predictability gap is larger in the CDR dataset,

for both prediction tasks. We conjecture that this gap is due to the difference in

size and temporal resolution of the traces in the two datasets. In the GPS dataset,

which spans several months and has a higher temporal resolution, there is more

stationarity. The CDR dataset, on the other hand, has a lower temporal resolution

(i.e., 1 location every two hours, on average), and thus captures less stationarity. As

mentioned, the greater amount of stationarity leads to smaller predictability gaps.

In sum, as the results discussed in this section show, despite great diversity across

datasets, prediction tasks and users, there is still a fair amount of unpredictability

in the routine component of human mobility. Thus, in the following, we delve fur-

ther into this component by analyzing what affects the predictability of a person’s

routine.

5 Investigating the Predictability of a Person’s Routine
In this section, we study the predictability of the routine component of human

mobility. Our study is composed and driven by a series of analyses targeting both

prediction tasks, namely next-cell and next-place. Recall that for the next-cell pre-

diction task we consider the whole dataset, including stationary periods, but in the

next-place prediction task we remove stationarity from the user’s history of visited

locations.

Concretely, we propose to use simple and easy-to-interpret proxy metrics that

capture different factors related to a person’s mobility to help us understand the

predictability of the routine component of human mobility. We employ three met-

rics, two of which were proposed previously [? ] and one is a novel contribution of

this work. We show that these metrics can indeed be used to explain the entropy

(and thus the predictability) of one’s routine-related mobility by building regres-

sion models and showing that they fit reasonably well our data. By doing so, we

offer valuable tools to interpret and understand the predictability of routine-related

mobility.
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In the following, we start by presenting the proposed proxy metrics (Section 5.1).

Next, we discuss our approach to build regression models (Section ??). Finally,

we present our experimental evaluation of the use of these metrics to explain the

predictability associated with routine-related mobility (Section 5.2). Throughout

this section, whenever we refer to a sequence of visited locations, we are indeed

considering the extracted routine component of an original complete sequence (i.e.,

the subsequence with symbols in white background in Figure 2-(c)).

5.1 Proxy Metrics

In this section, we present three proxy metrics that can be used to help us under-

stand the predictability of the routine component of human mobility. Two of these

metrics, namely regularity and stationarity, were previously used to help explain the

predictability of one’s mobility, considering the person’s complete mobility trace [12].

Here, we take a different perspective, narrowing our focus to the routine component

of one’s mobility. Moreover, we also introduce a third metric, which together with

regularity and stationarity, help us to better explain the predictability associated

with that component. We note that all three metrics, though here related to the

predictability associated with one’s routine-related mobility, can be applied to the

more general case of a complete mobility trace (as done in [? ] for regularity and

stationarity.

Before introducing our new metric, we first present the definition of regularity

and stationarity [12]:

Definition 5.1 Regularity: Given a time-ordered sequence X = (x1, x2, . . . , xn)

of locations visited by a person, the regularity of the sequence is given by: reg(X) =

1− nunique/n, where nunique is the number of distinct locations in X.

Definition 5.2 Stationarity: Given a time-ordered sequenceX = (x1, x2, . . . , xn)

of locations visited by a person, the stationarity of the sequence is given by:

st(X) = sttrans/(n − 1), where sttrans is the number of stationary transitions

in X. A stationary transition is one where the previous location is equal to the next

one, i.e., the location xi−1 is the same as xi. Clearly, stationarity is not defined for

the next-place prediction task.

We here argue that, although useful, these metrics alone do not fully explain

the predictability of a person’s routine. Consider, for instance, the following two se-

quencesX1 = (H,W,S,H,W, S,H,W, S,H) andX2 = (H,S,W,H,W, S,H, S,W,H),

which represent the routine components of two original mobility traces. These two

sequences have the same regularity, as the total number of symbols and the number

of unique symbols are the same in both of them. That is, reg(X1) = reg(X2) = 0.7.

They also have the same stationarity st(X1) = st(X2) = 0, as there are no consec-

utive repetitions of symbols – no stationary transitions – in them. However, due to

the recurring pattern HWS in X1, X1 is more predictable than X2, where there

is greater variation in the order of visited locations. Indeed, the entropy of X1,

computed using Equation 1, is 1.50 whereas the entropy of X2 is 2.18.

To capture additional patterns affecting the entropy (and thus predictability)

associated with the routine component of a mobility trace, we introduce another
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metric, called diversity of trajectories. This metric helps us identify the mixture of

patterns within the sequences – such as the pattern HWS in sequence X1 and the

varying patterns in X2 – which can make them easier or harder to predict. We here

define the diversity of trajectories as follows:

Definition 5.3 Diversity of Trajectories: Given a time-ordered sequence

X = (x1, x2, . . . , xn) of locations visited by a person, the diversity of trajectories

associated with X, div(X), is given by the number of distinct trajectories in X.

More specifically, if we see X as a string, the diversity of trajectories is the number

of distinct substrings in X.

Notice that this definition gives us an important measure of a person’s mobility,

and it is also related to how the entropy estimator in Equation 1 works. Accord-

ing to this estimator, the entropy of the sequence is proportional to the number of

distinct subsequences in the original sequence. Thus, it is expected that the more

diverse a person’s routine is, the higher its entropy (and consequently lower pre-

dictability). Indeed, considering the aforementioned sequences X1 and X2, we find

that div(X1) = 0.49, and div(X2) = 0.76.

In order to illustrate that these metrics capture important aspects of the pre-

dictability of one’s routine, we compute the Spearman’s rank correlation coefficient

between each metric and the entropy associated with the routine component of each

mobility trace in our datasets. The results are shown in Table 3, columns 6 and 10.

Note the absence of correlations between stationarity and entropy for the next-place

prediction, since this metric is not defined for that task.

As these results show, there is a strong correlation between each of the metrics and

the entropy of one’s routine: whereas both regularity and stationarity are negatively

correlated with entropy, diversity of trajectories if positively correlated. Moreover,

note that the latter is even more strongly correlated with entropy than regularity

in all scenarios.

We also measured the pairwise correlation between the three metrics. Table 3

shows the Spearman’s correlation coefficient for each pair of metric, for both

datasets and prediction tasks. As we can see, there is a strong correlation between

stationarity and diversity in the next-cell prediction task in both datasets, and addi-

tionally, there is a strong correlation between regularity and stationarity in the CDR

dataset. We also observe some complementarity between the metrics, especially in

the next-place prediction task.

In the next section, we propose to use these metrics as proxies to entropy (and

thus predictability). To that end, we employ regression-based analysis to investigate

the extent to which these metrics are able to explain the entropy of the routine

components of individual mobility traces in our datasets.

5.2 Experimental Results

In this section, we build regression models of increasing complexity, each of which

uses some of the metrics discussed in Section 5.1 as proxies to the entropy of a

person’s routine. We use these models to fit the entropy of a person’s routine using

the proxy metrics described in Section 5.1. We then compare the fitted entropy
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GPS CDR

Regularity Stationarity Diversity Entropy Regularity Stationarity Diversity Entropy

Next-Cell

Regularity 1 0.35 -0.17 -0.46 1 0.58 -0.66 -0.70
Stationarity 0.35 1 -0.74 -0.78 0.58 1 -0.95 -0.94
Diversity -0.17 -0.74 1 0.54 -0.66 -0.95 1 0.98
Entropy -0.46 -0.78 0.54 1 -0.70 -0.94 0.98 1

Next-Place

Regularity 1 — 0.25 -0.41 1 — -0.16 -0.53
Stationarity — — — — — — — —
Diversity 0.25 — 1 0.15 -0.16 — 1 0.84
Entropy -0.41 — 0.15 1 -0.53 — 0.84 1

Table 3 Pairwise Spearman’s correlation coefficient between each proxy metric as well as between
each metric and the entropy, computed for the routine component each user’s mobility trace.

with the actual entropy of a person’s routine and show that our metrics can indeed

explain most of the variability in the entropy associated with it. We also evaluate the

importance of each of the metrics to the entropy (and thus predictability) of one’s

routine. Collectively these results offer a fundamental knowledge to help explain

the predictability associated with a person’s routine and, by doing so, understand

what makes one’s routine more or less predictable.

We present our results first for the next-cell prediction task (Section 5.2.1) and

then for the next-place prediction task (Section 5.2.2).

5.2.1 Proxy Metrics and Entropy: Next-Cell Prediction Task

In this section, we evaluate several regression models that rely on the metrics de-

scribed in Section 5.1 to fit the entropy of a person’s routine in the next-cell pre-

diction problem.

Our first model uses only the two previously proposed metrics, namely, the regu-

larity reg and the stationarity st of the input sequence) to fit the entropy of one’s

routine. The resulting model, called RS model, is given by:

H(X) ≈ α+ β × reg + γ × st + ν × µ+ ε, (6)

where α is the intercept of the regression line and ε is the regression error, and µ

is a variable that accounts for the interaction between highly correlated variables,

according to Table 3, and is given by the produc of those variables.

Our second model, called RSD model, uses, in addition to regularity and station-

arity, s the diversity of trajectories div as third predictor variable, leading to the

following formula:

H(X) ≈ α+ β × reg + γ × st + δ × div + ν × µ+ ε, (7)

We evaluate the quality of each model for each dataset by the adjusted coefficient

of determination (adjusted R2). As shown in Table 4, both models fit the data quite

well, especially for the CDR dataset which is much larger.

Moreover, adding the diversity of trajectories as a predictor in the RSD model does

not improve model accuracy, for neither dataset, as both models have the same R2

for both datasets. This suggests that, at least for the next-cell prediction task, the

diversity of trajectory plays a less important role on entropy (thus predictability),
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GPS dataset CDR dataset

Adjusted R2 Adjusted R2

RS Model 0.786 0.939
RSD Model 0.783 0.960

Table 4 Variation in entropy explained by each of the proposed regression models (adjusted R2) for
both of our datasets, in the next-cell prediction task. The RS model is the model that uses regularity
and stationarity, and the RSD model is the one where diversity of trajectories is also used, along with
regularity and stationarity.

and any impact it may have on it is captured by regularity and stationarity. Indeed,

from Table 3, we observe that the diversity of trajectories is highly correlated with

stationarity in the GPS dataset, and with both regularity and stationarity in the

CDR dataset.

To better understand the role of each metric in explaining the entropy of the

routine-related mobility, we zoom in on our RSD model, and analyze the coefficients

of the regression. We start our investigation with the GPS dataset, for which our

RSD model is shown in Equation 8:

H(X) ≈ 6.87− 8.44× reg + 1.54× st+ 3.98× div ×−3.96µ (8)

From Table 4, we observe that, for the GPS dataset, the model with diversity of

trajectories did not produce better fittings in terms of the adjusted coefficient of

determination (adjusted R2) than the simpler RS model. In fact, the p-value for the

diversity of trajectories indicates that this variable is not significant (p-value = 0.34)

for the model. We conjecture that this behavior is due to the fact that diversity

of trajectories is strongly correlated with stationarity, and thus stationarity alone

might be providing enough information for the model to fit the entropy of one’s

routine.

To illustrate the interplay between stationarity and diversity, consider a station-

ary period Xs = (A,A,A,A,A,A) in one’s routine. The diversity of trajectories

for this period would be 6/21 = 0.28, corresponding to the subsequences A, AA,

AAA, AAAA, AAAAA, and AAAAAA, but all of those trajectories correspond to a

stationary period. As the temporal resolution of our GPS dataset is high (one obser-

vation every five minutes) there are many stationary periods in it, thus highlighting

this overlap in the behavior capture by stationarity and diversity.

Indeed, a simpler model (the RS model which does not use diversity of trajecto-

ries), shown in Equation 9, produced equivalent results:

H(X) ≈ 10.2− 7.80× reg − 2.42× st (9)

We note that the p-value for both coefficients in the model depicted by Equation 9

are significant (p-value < 1e−5). A comparison of the results of models RS and RSD

suggests that, for the next-cell prediction task in the GPS dataset, a simpler model

that uses only regularity and stationarity might be enough.
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The situation is different for our CDR dataset. In Equation 10, we show the

coefficients of our RSD model for the CDR dataset:

H(X) ≈ −14.1− 2.00× reg + 16.0× st+ 19.4× div ×−19.0µ (10)

All of the coefficients of the model in Equation 10 are significant (p-value <

1e−26). Furthermore, we note that our new metric, diversity of trajectories, slightly

improved the performance of the model, compared to our RS model, as shown in

Table 4. We conjecture that our new metric was able to improve the model for

the CDR dataset because, as the period covered by the data is shorter and the

temporal resolution is smaller (fewer observations per time unit), stationarity alone

is not able to capture as much information as it did on the GPS dataset. Thus, our

new metric provides useful information to fit the entropy of people’s routine.

Our discussion so far offers an average view of how the metrics relate to entropy.

We now delve further by looking at this relationship for individual users. To that

end, Figure 6 shows a scatter plot (each dot is a user) of the real entropy versus

the entropy estimated by the model, here called proxy entropy, for both datasets.

These plots were built considering the complete RSD model. The closer to the

diagonal the points are the more accurately the model captures the real entropy of

the corresponding users. As shown in the figure, most dots (users) lie close to the

diagonal in both graphs, suggesting good model fittings, but the results are better

for the CDR dataset, which is consistent with the larger adjusted R2. One possible

reason is the larger sample (i.e., number of users) present in the CDR dataset, which

favors a tighter model fitting.
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(a) GPS Dataset

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
Actual Entropy (bits per symbol)

P
ro

xy
 E

nt
ro

py
 (

bi
ts

 p
er

 s
ym

bo
l)

(b) CDR Dataset

Figure 6 Entropy (in bits per symbol) fitted by the regression model (y-axis) versus actual entropy
(x-axis), for both datasets in the next-cell prediction problem. The green, dashed line shows the
regression line and the gray area shows the confidence interval. The red points are considered
outliers and will be discussed separately. For the GPS dataset, we consider the RS model.

However, for both datasets, there are a few dots that are farther away from the

diagonal, shown in red in Fig. 6. These outliers are examples of users for which the
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regression model was not able to provide very accurate entropy estimates. To better

understand why it happened, we manually inspected our dataset and selected 10

of these outliers from the GPS dataset, and 20 outliers from the CDR dataset for

further investigation.

In the GPS dataset, we observed that most of the cases where model provided

a lower entropy estimate than the actual entropy correspont to users with long

(routine) mobility traces, e.g., more than 1,000 locations. As mentioned, the entropy

estimator shown in Equation 1 is sensitive to the size of the input traces, and

produces better (lower) estimates as the size of the input sequence grows. Thus, for

users with long mobility traces, our model overestimated the entropy.

Similarly, we observed cases where our model underestimated the entropy corre-

spond to highly regular and stationary users whose mobility trace is not long enough

for the entropy estimator in Equation 1 to converge, so there is a gap between the

entropy (computed using Equation 1) and the fitted entropy (computed using the

metrics). The same situation was observed in the CDR dataset. We manually in-

spected twenty users for whom the model did not perform well and found that some

of them had fewer than 40 total observations after our filtering.

In order to validate our hypothesis, we added a variable n to our models and

evaluated their adjusted coefficient of determination. We found that, for the GPS

dataset, the RS model augmented with the size n of the sequence yielded an adjusted

R2 of 0.839. As for the CDR dataset, adding an extra variable n did not increase

the adjusted R2, and the extra variable was less significant than the others (p-value

equal to 0.04).

Finally, we experimented with adding yet another variable, also related to one’s

routine, to our best models: the baseline entropy, given in Equation 4. We found

that this extra variable increased the adjusted R2 of the GPS dataset to 0.849, but

did not improve the model for the CDR dataset.

5.2.2 Proxy Metrics and Entropy: Next-Place Prediction Task

We now turn our attention to the next-place prediction task. We note that the

models used to fit the entropy in this prediction task are the same models discussed

in Section 5.2.1, with a single modification: the only difference is that, by definition,

there is no stationarity in the next-place prediction problem, therefore the station-

arity term is removed from all of our three models. Additionally, we added a variable

n that accounts for the size of the input sequence, as discussed in Section 5.2.1.

Because of the lack of stationarity, this prediction task is harder compared to

next-cell prediction [5]. In the latter, a large portion of the accuracy in prediction

comes from the fact that people tend to stay for long periods of time in the same

location. Thus, models that guess that the user will be at the same location in the

next time bin have a higher chance of making a correct prediction. As there is no

stationarity in the next-place prediction problem, models have to cope with the

difficulty of effectively guessing the next distinct location where the user will go.

This difficulty can be seen when we compare values of the adjusted R2 in Table 4,

in the previous section, to those in Table 5, which summarizes the performance

of our models for the next-place prediction task. Clearly, unlike observed for the

next-cell prediction, our newly proposed measure, diversity of trajectories, slighly
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GPS dataset CDR dataset

Adjusted R2 Adjusted R2

R Model 0.672 0.735
RN Model 0.723 0.801
RND Model 0.739 0.852
RNDB Model 0.750 0.855

Table 5 Variation in entropy explained by each of the proposed regression models (adjusted R2) for
both datasets, in the next-place prediction task. The R model is the model that uses regularity, and
the RD model is the one where diversity of trajectories is also used, along with regularity. We also
include results for the RDN model, which in addition to regularity and diversity also uses the size n of
ones routine, and the RDNB model, which adds information about the baseline entropy of one’s
routine.

improves the performance of the model in the GPS dataset, and produces significant

performance gains in the CDR dataset, in the current scenario. These improvements

suggest that this measure is capturing important aspects of human mobility that

were not captured only by regularity. We also note that the diversity of trajectories

is more important for the CDR dataset, providing greater improvements to model

accuracy in that case.

We further note the importance of our newly proposed metric by analyzing the

coefficients of regression of the models. As shown below, though regularity has

once again the largest effect on the entropy estimate, the effect of diversity of

trajectories is also quite important in this task. We note that all model coefficients

are statistically significant with p-value < 0.05. Additionally, as the correlation

between diversity and regularity is low in the next-place prediction task, we observe

greater complementarity between these metrics, justifying the performance gains.

Our results also suggest that metrics have different importance depending on the

type of dataset (as evidenced by the coefficient of regression of our models). This has

important implications in terms of prediction because it suggests that prediction

strategies have to be tailored not only to the type of prediction task, but also to

the type of dataset.
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Figure 7 Entropy (in bits per symbol) fitted by the regression model (y-axis) versus actual
entropy (x-axis), for both datasets in the next-place prediction problem. The green, dashed line
shows the regression line.
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Figure 7 shows scatter plots of the fitted entropy of our RND model versus the

real entropy for both datasets. Once again, we found that users with few observa-

tions also tend to present poor performance in terms of entropy fitting, as was also

observed for the next-cell prediction in Section 5.2.1.

Thus, for both next-cell and next-place prediction, our regression models were

able to capture most of the variability in people’s routine, as evidenced by the R2

of the models and the entropy fittings shown in Figure 6 and Figure 7. We also note

that, for the next-place prediction problem, which is a harder prediction task than

next-cell prediction, our new metric (diversity of trajectories) improves our ability

of the models to explain the entropy of people’s routine-related mobility (increase in

adjusted R2 values of 7.2% and 9.9%, for the GPS and CDR dataset, respectively).

We also observed that adding information about one’s baseline entropy can improve

the performance of the model, in 1.1% and 0.3% in the GPS and CDR datasets,

respectively.

We end this section by arguing for the importance of using proxy metrics to

understand entropy (and predictability) in human mobility. The state-of-the-art

predictability technique relies on sophisticated entropy estimates, as explained in

Section 2. As previous work [12] argued, these entropy estimates are difficult to

explain, in the sense that it is hard to relate an entropy value to what resulted

in that value, in terms of mobility patterns. By using proxy metrics that capture

specific mobility patterns and relating them to entropy, we can better understand

and explain what affects the entropy of a person’s mobility. In this paper, we have

shown that three such metrics are enough to explain most of the variability in the

entropy of a person’s routine mobility.

6 Conclusions and Future Work
In this paper, we proposed to view human mobility as consisting of two compo-

nents, routine and novelty, with distinct properties. We showed that this alterna-

tive view of one’s mobility allows us to identify unpredictable behavior in each of

these components, and we focused on analyzing and understanding what affects the

predictability of one’s routine. To that end, we proposed a technique to assess how

much one’s routine deviates from a baseline routine which is completely predictable,

therefore estimating the amount of unpredictable behavior in one’s routine.

Furthermore, we relied on previously proposed metrics, as well as a newly pro-

posed one, to understand what affects the predictability of a person’s routine. Our

experiments show that our metrics are able to capture most of the variability in

one’s routine in two different prediction tasks: next-cell and next-place prediction.

Our new metric, diversity of trajectories, in the next-place prediction task, was able

to increase the adjusted R2 of our regression models by 7.2% and 9.9%, on our GPS

and CDR, respectively, compared to the state-of-the-art.

Our results also showed that routine behavior can be largely explained by three

types of patterns: (i) stationary patterns, in which a person stays in her current lo-

cation for a given time period, (ii) regular visits, in which people visit a few preferred

locations with occasional visits to other places, and (iii) diversity of trajectories, in

which people change the order in which they visit certain locations.
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As future work, we envision exploring other metrics that may capture the vari-

ability in one’s mobility patterns as well as to use our new technique to further

understand mobility behavior.

Appendix A
In Section 2, we argued that an entropy estimate is the crux of predictability,

and we also mentioned that the state-of-the-art predictability technique uses an

entropy estimator, defined in Equation 1, according to which the entropy of an

input sequence X is given by:

Sreal(X) ≈ n log2(n)∑n
i=1 Λi

.

The term
∑n

i=1 Λi records the sum of the sizes of the smallest subsequences start-

ing at position i that do not appear before in the input sequence.

In Section 3.1, we argued that every new (previously unseen) symbol will produce

a subsequence that has not appeared before in X. We also argued that that, for

a sequence of size n containing m ≤ n distinct symbols, the contribution of such

symbols to the term
∑n

i=1 Λi will be exactly m.

Recall that, in Section 3.2, when describing our technique to isolate the effect of

novelty on the predictability of a sequence, we moved the symbols in the novelty

component to the back of the sequence. In this section, we argue that it is safe to

do so because the contribution of each new (previously unseen) symbol to the term∑n
i=1 Λi does not depend on the position of such symbols in an input sequence X.

To illustrate that, we will focus on how Λi is computed, for a given i. Let q be the

largest subsequence starting at position i that does appear before in X. In practice,

Λi = |q|+ 1 [25]. Suppose that we want to insert a new (previously unseen) symbol

s into q and that we want to measure the impact of this new symbol on
∑n

i=1 Λi.

There are three cases to consider:

(i) We can prepend s to q;

(ii) We can append s to q;

(iii) We can insert s somewhere inside q.

For case (i), we note that this case is equivalent to case (ii), as prepending s to

q has the same effect as appending s to a subsequence p that appears immediately

before q in X.

For case (ii), given that q is the largest sequence that starts at position i and

appears before in X, appending s to q will result in the smallest subsequence that

starts at position i and does not appear before in X, therefore Λi = |q|+|s| = |q|+1,

i.e., the contribution of s to Λi will be 1.

For case (iii), to see that the contribution s to
∑n

i=1 Λi when we insert this

symbol into q, it helps to break q into two subsequences r and t with q = r + t,

where |q| = |r|+ |t|, and r and q are subsequences of q.

Given that q has appeared before in X, both r and t will also have themselves

appeared before. For instance, if we have q = AABCAEDFBA, and we make

r = AABCA and t = EDFBA, as both of these subsequences are part of q and q
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as a whole appears before in X, both r and t must also have appeared before in the

input sequence X.

The insertion of symbol s into q can be seen as concatenating s to r—prepending

s to t has the same effect. Notice that r is a subsequence that appears before in X.

When we append s to r, as s is a symbol that does not appear before in X, we are

forming a new subsequence which is the smallest subsequence that does not appear

previously in X, resulting in Λi = |r|+ 1.

The subsequence t, which was part of q will still contribute to
∑n

i=1 Λi, but instead

of appearing as part of Λi, it will be incorporated into a sequence u, appearing

immediately after t, and will account to the term Λi+1, instead of Λi.

Thus, we have showed that no matter where the symbols in the novelty compo-

nent appear in the input sequence, their contribution to
∑n

i=1 Λi will be the same,

therefore our strategy to move these symbols to the back of the sequence in order

to focus on the routine component is a valid one.
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