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Abstract. Current mobile cloud database systems are widespread and
require special considerations for mobile devices. Although many systems
rely on numerous metrics for use and optimization, few systems leverage
metrics for decisional cache replacement on the mobile device. In this pa-
per we introduce the Lowest Scored Replacement (LSR) policy—a novel
cache replacement policy based on a predefined score which leverages
contextual mobile data and user preferences for decisional replacement.
We show an implementation of the policy using our previously proposed
MOCCAD-Cache as our decisional semantic cache and our Normalized
Weighted Sum Algorithm (NWSA) as a score basis. Our score normal-
ization is based on the factors of query response time, energy spent on
mobile device, and monetary cost to be paid to a cloud provider. We then
demonstrate a relevant scenario for LSR, where it excels in comparison
to the Least Recently Used (LRU) and Least Frequently Used (LFU)
cache replacement policies.

Keywords: Big Data - Cloud Computing - Caching

1 Introduction

Since a cache has limited space, it is important to use replacement policies
which keep relevant data on a mobile device. In a mobile cloud database sys-
tem, querying the cloud can often be an expensive operation in regards to time,
money paid to a cloud provider, and mobile device energy. For this reason,
leveraging a cache grants large boosts in efficiency. The rudimentary Least Re-
cently Used (LRU) policy—which discards the least recently accessed entry when
filled—is often implemented in caches. The similar Least Frequently Used (LFU)
policy—which replaces the least frequently used entry when full—is also com-
monly implemented; however, LRU and LFU are not always the most efficient
policies within the context of a relational database system [3,8,12,13]. Instead,
many Database Management Systems (DBMS) implement specific replacement
policies that cater to the system’s needs.
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This paper seeks to describe a cache replacement policy for mobile cloud
database systems that utilizes decisional semantic caching. We propose the Low-
est Scored Replacement policy (LSR), which takes cache relevancy and mobile
constraints into account while maintaining a LRU-like overhead. LSR partitions
cache events into point scoring categories and utilizes a predefined score based
on decisional semantic caching and the Normalized Weighted Sum Algorithm.
LSR defines semantic relevancy within the cache while also taking into account
user preferences on saving time, energy on mobile device, and cost paid to cloud
providers. We then show an implementation of LSR using our existing decisional
semantic cache system and demonstrate a relevant scenario for the algorithm.
We find from our experiment that there exist scenarios where LSR significantly
outperforms the common LRU and LFU cache replacement policies in the mobile
cloud database environment.

2 Related Work

Device status and metadata is imperative in mobile cloud database decision mak-
ing. Metrics such as current battery life, location, and connectivity quality may
be leveraged to contextualize computational tasks. Mobile devices are, by their
very nature, constrained through their short-term battery life and variable con-
nection to wireless networks. Several replacement policies have been developed
to address these issues [1]. These policies make use of metrics such as location,
battery life, and on-device data size [2,7,15]. Other caching systems, such as
semantic caching [11], have also been used to address constraints in a mobile
cloud database environment. In our previous work we developed the decisional
semantic MOCCAD-Cache [10] as well as the Normalized Weighted Sum Algo-
rithm (NWSA) [4] to better meet constraints on a mobile device. However, our
previous work did not propose any solution for a cache replacement policy.

One cache replacement approach that bears some similarities to ours is
frequency-based. This method considers each cache entry’s access frequency
when performing decisional replacement. Examples are found in [6] where three
different methods are proposed—each with its own contextual merits. These
policies—The mean scheme, The window scheme, and The exponentially weighted
moving average scheme—bear some resemblance to ours since they take into ac-
count how recently a cache entry was accessed; however, these cache replacement
strategies do not take into account semantic information or mobile constraints
such as the device’s battery life.

There exist other policies which take data size and cloud retrieval cost into ac-
count. One example is the SATU (Stretch Access-rate Inverse Update-frequency)
replacement policy proposed in [14], as well as a modified version in [5]. The
SATU defines a gain function based on access rate, update frequency, data size,
data retrieval time, and (in the latter paper) consistency. The policy then uses
this weight to determine replacement. A version proposed in [9] uses a more gen-
eralized cost function. By taking the various costs of each query into account,
these methods for cache replacement share some similarity with ours; however,
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these methods do not factor the benefits of semantic caching into their replace-
ment process.
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Fig. 1. Our Mobile Cloud Database Environment

3 Our Mobile Cloud Database System

Figure 1 details our system architecture and illustrates the possible workflows
for query execution. In our mobile cloud database environment, a user sends
queries and constraints (in the form of a weight profile) from the mobile device
for execution. User constraints are defined by their interest in conserving time,
mobile device energy, or monetary cost paid to their cloud provider. Our sys-
tem decides how to best execute queries with respect to user constraints: either
through the cloud or from a local cache if possible. The user’s query and weight
profile is sent through some form of infrastructure (the data owner) to cloud
services for query execution estimations. The data owner then uses these esti-
mations to decisionally optimize query execution on some combination of the
mobile device and the cloud.

3.1 MOCCAD-Cache

Our previously proposed MOCCAD-Cache introduces the concept of decisional
semantic caching [10] to solve issues with semantic caching in mobile contexts.
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In a semantic caching system, both data and the semantic description of that
data are provided to the cache [11]. For instance, the result of a query will be
stored along with what relations, attributes, and predicates the query consisted
of. This means new queries can be compared against semantic descriptions of
stored queries before execution.

Many systems only detect a cache hit event if both the input query and
the cache query match exactly. Semantic caching instead allows recognition of
overlaps in semantic descriptions. If an input query has overlap in the relations,
attributes, and predicates of a cached query, it will be recognized as either a
partial hit (some data in the cache) or an extended hit (all data in cache). If
the query semantics match exactly or do not match at all, a cache hit or miss is
detected. If the parser detects some semantic overlaps, a query trimmer is used
to create two new queries for execution. For example, if only part of the input
query is stored in the cache—a partial hit event—the query trimmer will trans-
form the input query into a mobile device query (probe query) and a cloud query
(remainder query) for execution. If the input query’s semantic description is fully
overlapped with cached semantics, it is recognized as an extended hit event; the
query is then executed on the mobile device using cached data. Semantic caching
is useful in many cases, especially on a device with limitations such as a mobile
phone. However, there are some instances where local query trimming and exe-
cution is considerably worse than a simple cloud execution. After trimming the
query, the MOCCAD-Cache runs estimations to decide whether to execute the
query on the cloud or mobile device—if possible. Despite needing to go through
an entirely new estimation phase, this system can improve query processing time
(albeit with the general caveat of increased monetary cost).

3.2 Normalized Weighted Sum Algorithm

MOCCAD-Cache may outperform semantic caching in terms of time, but there
are many scenarios where time is not the only imperative metric. Our later
proposed Normalized Weighted Sum Algorithm (NWSA) addresses this issue
by taking into account arbitrary metrics and normalizing them to calculate a
score [4]. The NWSA calculates a score based in part on the user’s interest in
saving time, energy, or monetary cost®. These constraints are evaluated against
query execution plans (QEPs) to decide a QEP that best respects the user’s
desires.

QEP, : {M = $0.080; T = 0.5s; E = 0.012mA}
QEP, : {M = $0.050; T = 3.0s; E = 0.300mA}
QEP; : {M = $0.055;T = 0.6s; E = 0.013mA}

Fig. 2. Example Query Execution Plans (QEPs) for a Sample Query

3 Each parameter is given on a scale from 0 to 1, where the sum of all parameters
must total 1
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Fig. 4. Equation for Composite Normalized Weight Factor

The MOCCAD-Cache estimates the efficiency of executing a query on the
cloud versus the mobile device. If the query is performed on the cloud, there
are several QEPs that can be executed—each with its own costs. Some example
QEPs for a given query are shown in Figure 2. The NWSA takes each QEP
and scores how it respects user constraints. The lowest scoring QEP signifies the
most efficient execution respecting user constraints. For instance, a user giving
priority to time and monetary cost would result in QFEP; from Figure 2 being
executed, as it respects those two constraints the most.

The methodology of QEP scoring is shown in Figure 3. The NWSA looks at
each QEP and scores it based on three factors. a;; is the ith QEP’s estimated cost
for the jth constraint (money, time, energy). m; is the maximum accepted value
for the jth constraint. Any QEP with a constraint value higher than m; is not
considered for best score. Figure 4 describes w;, a composite normalized weight
factor derived from the user constraints (uw) as well as a device’s environmental
factors such as battery life or network connectivity (ew).

In summary, the MOCCAD-Cache with the NWSA dictates the structure
of cache entries and how to handle new cache events, but it does not detail
any methods of cache replacement and may assume an infinite cache size. In
section 4 we propose a novel replacement policy leveraging data calculated by
the MOCCAD-Cache using NWSA to efficiently replace entries while respecting
constraints.

4 The Lowest Scored Replacement (LSR) Policy

This section explores our proposed cache replacement policy and its implemen-
tation. The Lowest Scored Replacement Policy (LSR) utilizes the QEP score
calculated by the NWSA as well as cache events defined by the MOCCAD-
Cache. A modified QEP score along with MOCCAD-Cache cache events score
each cache entry for decisional replacement.
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4.1 LSR Score

The initial LSR score of a cache entry is based on the QEP score for each query.
Higher QEP scores indicate that a given query is more difficult to retrieve from
the cloud, and therefore may be more valuable to keep in the cache. For the sake
of precision and arithmetic simplicity, we keep baseline LSR scores close to the
magnitude of 1. This requires the given QEP score to be multiplied by a scaling
factor before being considered as the LSR score.

LSRScore - QEPSCO'r‘g * ScaleFactor

4.2 Scoring System

After being initialized, an entry’s score is updated by cache events. The most
desirable cache event—a cache hit—is rewarded a FULL-POINT whereas the
least desirable outcome is given a ZERO-POINT score. Scores for cache events
involving query trimming fall between these two extremes. The extended hit
cache event (all relevant data in cache) is rewarded a HALF-POINT, as this
event generally does not involve accessing the cloud. The partial hit cache event
(some relevant data in cache) is rewarded a QUARTER-POINT, since some local
data is often more desirable than a cache miss.

Since LSR rewards cache entries based on accessed data, it is worth noting
its similarity to LFU. Unlike LFU, LSR takes into account the constraints of
the mobile device (the QEP score) along with the query’s semantic utility in the
cache (MOCCAD-Cache events). This functionality is crucial for mobile cloud
computing, where devices are constrained by limited resources and user require-
ments. In short, LSR inherently respects the constraints of mobile computing,
unlike LFU.

4.3 Cache Implementation

The cache is implemented as a minimum priority queue. Entries are initialized
with a given score and are updated as cache events occur; the cache entry score
dictates the priority within the queue. When an entry needs to be removed, the
lowest scoring entry is replaced.

5 Experimentation and Results

In this section we discuss our experiments—and the methodology behind them—
as well as their results. We have conducted an experiment to compare the per-
formance of our proposed algorithm, LSR, against the ubiquitous LRU and LFU
policies. We compare these replacement policies in terms of the monetary cost,
query response time, and energy consumption.
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Table 1. Summary of Static Experiment Parameters

Static Parameters Value Reference

LG V10 Memory 2GB Kernel

LG V10 SoC CPU Active Mode|1.728 GHz Kernel

Frequency

LG V10 SoC CPU Active Mode|157.44 mA Power profile

Current

LG V10 SoC CPU Idle Mode Fre-|0 Kernel

quency

LG V10 SoC CPU Idle Mode Cur-|16.4 Power profile

rent

LG V10 SoC Wi-FI Network Low|0.1 mA Power profile

Current

LG V10 SoC Wi-FI Network High|60 mA Power profile

Current

LG V10 Battery Capacity 3000 mAh Power profile

LG V10 Average Bandwidth Up |8.47 Mbps Google
Speedtest

LG V10 Average Bandwidth Down|12.9 Mbps Google
Speedtest

Cloud Node Memory 16 GB Kernel

Cloud CPU Intel i7-8750H @ 2.20|Kernel

GHz

Cloud Node Disk

512 GB Samsung 970
EVO NVMe PCle M.2-
2280 SSD

Kernel

Cloud Node Average Bandwidth|3.28 Mbps Google
Up Speedtest
Cloud Node Average Bandwidth|28.0 Mbps Google
Down Speedtest
Query Cache Maximum Size 100 MB

Query Cache Maximum Entries 10

Query Set Size 20 queries

Dataset TPC-H Benchmark TPC
Number of Relations 8 TPC
Database Size 2 GB

ScaleFactor 102 QEP  Score

Magnitude

7
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5.1 Experimentation Hardware and Software

In order to simulate a cloud environment, a single node was set up using the
Hadoop framework and data warehouse infrastructure. Apache Hive was used as
the database system along with MySql for storing metadata. The node ran the
Arch Linux operating system and featured an Intel Core i7-8750H CPU running
at 2.20GHz as well as 16GB of RAM and a 512 GB Samsung 970 EVO NVMe
PCIe M.2-2280 SSD. A RESTful java web servlet running on Apache Tomcat
8.5 was used to access the cloud infrastructure from mobile devices. This servlet
is able to retrieve tuples, query cost estimations, and relational metadata from
the hive server.* The mobile device ran a development branch of the Java based
MOCCAD-Cache Android prototype that features an LSR implementation and
other small improvements.®

The mobile device used for testing was a LG V10 Android device®, which
featured a hexa-core Qualcomm MSM8992 Snapdragon 808, 2 GB of RAM, and
a battery capacity of 3000 mAh. Table 1 summarizes the experiment parameters.

5.2 Example Scenario

In this section, we outline a relevant scenario for LSR. We envision a business
worker using a mobile device to access company information while away from
the office—where productivity may be affected by mobile constraints. The worker
spends time focusing on one business context before switching to another. They
may execute several queries all related to one product, customer, or region before
suddenly switching to a different one. This means that variations of a complex
query will be executed several times in sequence before completely unrelated
queries are executed. The worker may then return to the original context they
were working in later.

In this scenario, there is a full cache with an entry that is semantically useful
but is difficult to retrieve from the cloud. If the entry has not been used for a
short period (a context switch), LRU and LFU will remove it. These policies
remove the useful entry because they do not respect semantic utility or mobile
constraints but instead only respect recent accesses. If a query from the original
context is then executed, it will be very expensive in terms of time, money, and
energy for the LRU and LFU users. Unlike LRU or LFU, LSR will respect the
constraints of the mobile cloud database environment and retain the entry for
continued use.

4 The source code for the «cloud web service can be found at
https://github.com/ZachArani/CloudWebService

5 The source code of MOCCAD-Cache and the NWSA can be found at
http://cs.ou.edu/ database/MOCCAD /index.php. this experiment was conducted
on the ’dev’ branch.

5 Model LG-H900



A Scored Semantic Cache Replacement Strategy 9

5.3 Experimentation Methodology

In order to simulate the database environment of a business worker, we generated
a 2GB database based on the TPC-H model, which is structured to simulate
business data.”

Before running the experiment, a series of ten warmup queries were executed
to fill the cache with data prior to the experiment. These queries simulate pre-
vious contexts unrelated to the experimental ones in order to encourage cache
replacement. We then ran twenty queries for this experiment, starting with a
costly query:

SELECT DISTINCT I_shipdate FROM lineitem WHERE [_linestatus =
70 7’,

After this, we ran several semantic hits (extended and partial) in the same con-
text before switching to unrelated queries of a different context. After several
queries are run in this context, the original query and semantic hits were then
run again near the end of the workload. The experiment measured total execu-
tion time, energy spent on mobile device, and estimated cost paid to the cloud
provider. The experiment was run three times, with the results being averaged.
The MOCCAD-Cache prototype’s user preference weights for money, energy,
and time were all set to an equal one-third amount.

5.4 Results

Figures 5, 6, and 7 detail the results of our experimentation. As we expected,
LSR significantly outperformed LRU and LFU in the business scenario. LSR
performed over twice as fast, cheap, and energy efficient when compared to
LRU. LFU managed to be somewhat competitive in cost, but still was eclipsed by
LSR in speed and energy efficiency. In terms of all three metrics, LSR was clearly
cheaper, faster, and more efficient in the mobile cloud database environment. Our
policy used valuable metrics to recognize the utility of data as well as respect
the constraints of the mobile device. Even though LFU and LRU may have only
needed to run a handful of additional queries on the cloud—the re-execution of
large or costly queries will not respect the constraints of a mobile device. These
costs may be greatly exacerbated depending on the device’s particular context.
LSR, by comparison, leveraged user constraints and decisional semantic cache
events to intelligently retain valuable data locally.

6 Conclusions

Mobile cloud database systems have become ubiquitous in recent memory. Sev-
eral advancements have been made in the field, such as our previously proposed

" hive-testbench by HortonWorks was used for database creation. It can be accessed
at https://github.com/hortonworks/hive-testbench
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decisional semantic MOCCAD-Cache as well as the Normalized Weighted Sum
Algorithm. LSR attempts to improve on existing cache replacement strategies
in mobile cloud database systems by accounting for mobile device constraints
and semantic utility. When combined with the MOCCAD-Cache and the Nor-
malized Weighted Sum Algorithm, there exist scenarios where LSR significantly
outperforms LFU and LRU in a mobile cloud database environment.

Although LSR’s initial experiments are promising, future work is needed to
better determine its use and applicability in the mobile cloud database setting.
Experiments could be run to see how LSR compares against other common non-
LRU based cache replacement policies. Experiments that vary the size of the
cache would prove insightful on how useful LSR would be in other caching envi-
ronments. On top of this, varying user preference weights for time, money, and
energy for NWSA scoring may provide interesting results. Additional workloads
and scenarios must be analyzed to investigate where LSR is most applicable
to real world applications. Finally, implementing the LSR policy in non-mobile
cloud database systems may also yield promising results in testing the policy’s
utility in other areas.
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