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Abstract—Digital image correlation is a popular method for
estimating object displacement in successive images. At the
pixel level, displacement is estimated by maximizing the cross-
correlation between two images. To achieve subpixel accuracy,
displacement estimation can be refined in the vicinity of the cross-
correlation peak. Among existing refinement methods, quadratic
surface fitting provides a good trade-off between accuracy and
computational burden. The purpose of this paper is to analyze the
quadratic surface fitting method. It is shown that the quadratic
surface fitted to the cross-correlation values in the vicinity of
the cross-correlation peak does not always have a maximum.
Then the conditions ensuring the existence of a maximum are
analyzed. The reported results consolidate the theoretic basis
of the quadratic surface fitting method for subpixel motion
extraction.

Index Terms—Digital image correlation, quadratic surface
fitting, subpixel refinement.

I. INTRODUCTION

Image correlation is widely involved in various techniques
for motion extraction from image sequences [1], [2], including
digital image correlation techniques (DIC), phase-only correla-
tion (POC) and virtual image correlation (VIC) techniques [3].
Correlation-based techniques are known to provide accurate
measurement with high computational efficiency, along with
good robustness against noise. It has been used for a huge
variety of applications in remote sensing, computer vision, and
more generally for image processing purposes.

In this paper, an image correlation technique is investigated
for video-based Structural Health Monitoring (SHM), in order
to survey civil engineering structures at long range [4], [5].
Within this scope of application, it is important to extract
subpixel motion information (displacement and/or velocity)
from video images.

The authors of [1], [2] provide performance comparisons
of different correlation-based techniques to this aim. At the
pixel level, displacement is estimated by maximizing the cross-
correlation between two images. To achieve subpixel accuracy,
displacement estimation is refined in the vicinity of the cross-
correlation peak. Among such refinement methods, quadratic
surface fitting provides a good trade-off between accuracy and
computational burden, particularly suitable for video-based
SHM [6]. The good performance of this method has also been
confirmed by our own experiments.

The purpose of the present paper is to analyze the quadratic
surface fitting method. It will be shown that, contrary to a
widespread intuition, the quadratic surface fitted to the cross-
correlation values within the 3 × 3 pixels vicinity of the
correlation peak does not always have a maximum. Then
the conditions ensuring the existence of a maximum of the
fitted quadratic surface will be analyzed. The reported results
consolidate the theoretic basis of the quadratic surface fitting
method for subpixel motion extraction.

II. PROBLEM STATEMENT

In this paper, it is assumed that a moving object is observed
through a video image time flow with small displacement
amplitude between successive images. Correlation processing
will focus on a rectangular template of M × N pixels, also
known as a region of interest (ROI), which includes either
the whole moving object or some identified edges of the
object. The brightness of each pixel at instant t is denoted by
I(n,m, t) where the integer pair (n,m) indicates the position
of the pixel in an image.

In contrast to the usual convention in image processing, in
this paper the integer pair (n,m) denotes pixel coordinates
in the Cartesian system on the plane of a rectangular image,
with the origin at the lower-left corner of the image, and the
horizontal and vertical axes coinciding respectively with the
bottom and left borders of the image. This notation definition
is more suitable for the surface fitting problem formulated
in the Cartesian coordinate system, in agreement with usual
mathematical notations.

Motion extraction will be carried out by accurately de-
termining the horizontal and vertical shifts of the selected
template between two images captured at instants t and t+∆t,
assuming negligible rotational motion. The horizontal image
shift is decomposed into an integer part ñ and a fractional
(subpixel) part x, so that the total horizontal shift is equal to
ñ+x with |x| < 1. Similarly the vertical shift is decomposed
into m̃+ y with |y| < 1.

Given two images (frames) captured at time instants t and
t + ∆t, as illustrated in Figure 1, template shifts are usually
estimated through a two-step process [6]. The pixel level (inte-
ger) shifts (ñ, m̃) are first estimated by maximizing the cross-
correlation between the two image templates. At the second



Fig. 1. Template shifts between two successive images

step, the cross-correlation is interpolated in the vicinity of the
cross-correlation peak to estimate the subpixel shifts (x, y).

The search for the cross-correlation peak at the pixel level
is formulated as follows:

(ñ∗, m̃∗) = arg max
−M≤ñ≤M
−N≤m̃≤N

ρ(ñ, m̃), (1)

with the cross-correlation defined as

ρ(ñ, m̃) ,∑
(n,m)∈T

I(n,m, t)I(n− ñ,m− m̃, t+ ∆t), (2)

where T denotes the integer pairs (n,m) corresponding to
pixels belonging to the considered template. The dependences
on I(n,m, t) and on I(n,m, t+∆t) are omitted in the notation
ρ(ñ, m̃) for lighter presentations.

It is well known that maximizing the cross-correlation
between two data patterns is equivalent to minimizing the sum
of squared linear matching errors between them. This fact is
stated in [6] as the equivalence of (1) to

(ñ∗, m̃∗) = arg min
−M≤ñ≤M
−N≤m̃≤N

ε(ñ, m̃). (3)

with

ε(ñ, m̃) ,

min
α∈R

∑
(n,m)∈T

[I(n,m, t)− αI(n− ñ,m− m̃, t+ ∆t)]
2
, (4)

where again the dependences on I(n,m, t) and on I(n,m, t+
∆t) are omitted in the notation ε(ñ, m̃). This equivalence
supports the practice of maximizing the cross-correlation, as
formulated in (1).

At the second step, in order to gain subpixel accuracy,
the cross-correlation ρ(ñ, m̃) is somehow interpolated for non
integer shifts so that the correlation maximization (1) can be
generalized to subpixel shifts.

As in [6], this interpolation is considered in the 3 × 3
pixels vicinity of the cross-correlation peak found at the
integer shifts (ñ∗, m̃∗), by fitting, in the least squares sense,
a second degree polynomial (or, geometrically, a quadratic
surface) to the value of ρ(ñ∗, m̃∗) and to the 8 neighboring
cross-correlation values ρ(ñ, m̃), namely ρ(ñ∗ + n, m̃∗ +m)
with n,m ∈ {−1, 0,+1}. Then the maximum of the fitted

polynomial yields the estimated subpixel shifts between the
two templates.

More formally, the integer shifts (ñ∗, m̃∗) being already
estimated, let p(x, y) denote the second degree polynomial
fitted, in the least squares sense, to ρ(ñ∗ + x, m̃∗ + y) for
x, y ∈ {−1, 0,+1}. Then the subpixel shifts are estimated as

(x∗, y∗) = arg max
(x,y)∈R2

p(x, y), (5)

and the estimated total shifts amount to

(ñ∗ + x∗, m̃∗ + y∗). (6)

Satisfactory experimental results of this method have been
reported by different authors, e.g., [1], [2], [6]. Our own sim-
ulation studies confirm also its good performance compared
to other existing methods for subpixel shift estimation. The
purpose of this paper is to consolidate the theoretical basis of
this method.

More precisely, the quadratic surface fitting method, as
described in the aforementioned references, assumes implicitly
that the second degree polynomial p(x, y) fitted to the 9 corre-
lation values ρ(ñ∗+n, m̃∗+m), with n,m ∈ {−1, 0,+1}, al-
ways has a unique global maximum, corresponding to (x∗, y∗)
located in the close vicinity of (x, y) = (0, 0), so that the total
shifts as expressed in (6) do not fall too far from the pixel level
optimal shifts (ñ∗, m̃∗).

This paper will investigate the following issues.

1) Does the second degree polynomial p(x, y) fitted to the
9 cross-correlation values always have a unique global
maximum?

2) If this fitted polynomial does not always have a unique
global maximum, what are the conditions ensuring its
existence?

III. ANALYSIS OF THE POLYNOMIAL FITTED TO
CROSS-CORRELATION VALUES

Let (ñ∗, m̃∗) be resulting from the pixel level maximiza-
tion (1).

The 9 integer pairs (n,m), with n,m ∈ {−1, 0,+1}, form
a 3× 3 grid:

G =

 (−1, 1) (0, 1) (1, 1)
(−1, 0) (0, 0) (1, 0)

(−1,−1) (0,−1) (1,−1)

 . (7)

Accordingly, the 9 cross-correlation values ρ(ñ∗+n, m̃∗+m),
denoted also, for shorter notations, by

γ(n,m) , ρ(ñ∗ + n, m̃∗ +m), (8)

form a matrix

Γ =

 γ(−1, 1) γ(0, 1) γ(1, 1)
γ(−1, 0) γ(0, 0) γ(1, 0)
γ(−1,−1) γ(0,−1) γ(1,−1)

 . (9)



The second degree polynomal

pθ(x, y) = θ1 + [θ2 θ3]

[
x
y

]
+
[
x y
] [ θ4 θ5/2
θ5/2 θ6

] [
x
y

]
, (10)

with the vector θ ∈ R6 collecting the scalar coefficients
θ1, . . . , θ6, is then fitted to the entry values of Γ for (x, y) ∈ G,
by solving the least squares problem

min
θ∈R6

∑
(n,m)∈G

[ pθ(n,m)− γ(n,m)]2. (11)

Does this fitted second degree polynomial pθ(x, y) always
have a unique global maximum?

Because the integer shifts (ñ∗, m̃∗) are the results of the
pixel level optimization (1), the central entry of the matrix Γ,
namely γ(0, 0) = ρ(ñ∗, m̃∗) as defined in (8), is the maximum
value among all the 9 entries of Γ. It then seems reasonable
to expect that the second degree polynomial pθ(x, y) fitted
to the 9 entries of Γ has a maximum somehow close to the
(maximum) central entry of the matrix Γ corresponding to the
origin (x, y) = (0, 0).

Unfortunately, the fact that the central entry γ(0, 0) is the
maximum value among the 9 entries of Γ does not really
ensure that the fitted second degree polynomial pθ(x, y) al-
ways has a global maximum, as demonstrated by the following
counterexample.

Consider the cross-correlations values filling up the Γ matrix
(normalized by the central entry):

Γ =

0.7486 0.1558 0.1253
0.1558 1.0000 0.1558
0.1253 0.1558 0.7486

 .
Fitting the second degree polynomial pθ(x, y) to Γ for (x, y) ∈
G yields

θ =


0.4998
0.0000
0.0000
−0.0940
−0.3117
−0.0940

 .

The corresponding quadratic surface exhibiting a saddle point,
as illustrated in Figure 2, has no global maximum, despite the
fact that the central entry of the matrix Γ is its largest entry.

This counterexample clearly invalidates the intuition that the
fitted second degree polynomial pθ(x, y) always has a global
maximum, thus answering the first question raised at the end
of section II.

The following section will answer the remaining question:
given that the fitted second degree polynomial does not always
have a unique global maximum, what are the conditions
ensuring the existence of such a maximum?

Fig. 2. Example of fitted quadratic surface exhibiting a saddle point (no
global maximum). The vertical red line segments represent the entries of Γ.

IV. CONDITIONS FOR THE EXISTENCE A MAXIMUM

In elementary algebra [7], it is well known that the second
degree polynomial pθ(x, y) as expressed in (10) has a unique
global maximum if its Hessian matrix

H ,

[
θ4 θ5/2
θ5/2 θ6

]
(12)

is negative definite. However, this simply stated fact does not
directly help to understand how the cross-correlation values
γ(n,m) (those filling up the Γ matrix in (9)) should be, so that
pθ(x, y) has a global maximum. Because the polynomial coef-
ficients θ1, . . . , θ6 are determined from the values of γ(n,m)
by solving the least squares problem (11), it is straightforward
to express the negative definiteness condition of H in terms
of γ(n,m). Then, in principle, the condition for the existence
of a global maximum of pθ(x, y) will be directly formulated
in terms of the cross-correlations values γ(n,m). However,
this approach results in a sophisticated condition, notably an
inequality involving the determinant of H expressed in terms
of γ(n,m). For a better understanding, the result presented
below will be formulated with simple and easily interpretable
inequalities about the cross-correlation values γ(n,m) filling
up Γ. For instance, one of these simple inequalities states that
the central entry γ(0, 0) of Γ is its largest entry. As shown
by the previously presented counterexample, this condition
alone is not sufficient. It is then completed by similar simple
inequalities.

Theorem 1: If the cross-correlation values γ(n,m) filling
up the matrix Γ satisfy

γ(0, 0) ≥ γ(n,m) for all n,m ∈ {−1, 0,+1} (13)
γ(0,m) > γ(n,m) for all n,m ∈ {−1,+1} (14)
γ(n, 0) > γ(n,m) for all n,m ∈ {−1,+1}, (15)

then the second degree polynomial pθ(x, y) fitted to the entries
of Γ on the grid G defined in (7), by solving the least squares
problem (11), has a unique global maximum.



Interpretation of the conditions of Theorem 1.

• Inequalities (13): the central entry γ(0, 0) has the largest
value among all the 9 entries of Γ.

• Inequalities (14): the middle entry γ(0,±1) is the largest
entry of the top or the bottom row of Γ.

• Inequalities (15): the middle entry γ(±1, 0) is the largest
entry of the right or the left column of Γ.

Proof of Theorem 1.

In order to shorten lengthy equations and inequalities, let
us introduce more compact notations for the cross-correlation
values γ(m,m) filling up the matrix Γ defined in (9), so that
Γ is rewritten as

Γ =

a e b
f i g
c h d

 . (16)

Remark that the letters a, b, d, . . . , i fill Γ first at the 4 corners,
then the middles of side rows and columns, before finishing
at the central entry.

With these compact notations, the least squares solution (11)
leads to

9θ1 = 2(e+ f + g + h) + 5i− (a+ b+ c+ d) (17a)
6θ2 = (b− a) + (g − f) + (d− c) (17b)
6θ3 = (a− c) + (e− h) + (b− d) (17c)
−6θ4 = (e− a) + (e− b) + (h− c) + (h− d)

+ (i− f) + (i− g) (17d)
4θ5 = (b− a+ c− d) (17e)
−6θ6 = (f − a) + (f − c) + (g − b) + (g − d)

+ (i− e) + (i− h). (17f)

As already mentioned in this paper, the negative definiteness
of the Hessian matrix H defined in (12) ensures that the poly-
nomial pθ(x, y) has a global maximum. Based on Sylvester’s
criterion1, this negative definiteness will be checked through:

θ4 < 0 (18)
det(H) > 0. (19)

According to the inequalities assumed in (14), e (or h, resp.)
is the largest entry of the top (or bottom, resp.) row of Γ, then

e− a > 0, e− b > 0 (20)
h− c > 0, h− d > 0 (21)

and according to (13), i is the largest entry of Γ, then

i− f ≥ 0, i− g ≥ 0. (22)

These inequalities together with (17d) imply immediately (18).

1Usually Sylvester’s criterion [8] is about the positive definiteness of a real
symmetric (or complex Hermitian) matrix. It is trivial to translate this criterion
to the case of negative definiteness.

It is more involved to check (19). The inequalities in (20)
imply (

1 +
3

4

)
(e− a) > 0 >

(
−1 +

3

4

)
(e− b), (23)

then

(e− a) + (e− b) > −3

4
(e− a) +

3

4
(e− b) (24)

= −3

4
(b− a). (25)

Repeat the reasoning from (23) to (25) while interchanging
the positions of (e− a) and (e− b):(

1 +
3

4

)
(e− b) > 0 >

(
−1 +

3

4

)
(e− a), (26)

leading to

(e− a) + (e− b) > 3

4
(b− a). (27)

Combining (25) and (27) yields

(e− a) + (e− b) > 3

4
|b− a|. (28)

This result expresses a relationship between the entries in the
top row of the matrix Γ. A similar reasoning then leads to the
following relationship between the entries in the bottom row
of Γ:

(h− c) + (h− d) >
3

4
|c− d|. (29)

According to the inequalities assumed in (13), i is the largest
entry of Γ, then

i− f ≥ 0, i− g ≥ 0. (30)

Take the sums of the respective sides of the 4 inequalities
in (28), (29) and (30), then

(e− a) + (e− b) + (h− c) + (h− d) + (i− f) + (i− g)

>
3

4
|b− a|+ 3

4
|c− d| (31)

≥ 3

4
|b− a+ c− d|. (32)

This result then implies that −6θ4 and 4θ5, as expressed
respectively in (17d) and (17e), satisfy

−6θ4 >
3

4
|4θ5|, (33)

hence

−θ4 >
1

2
|θ5| ≥ 0. (34)

Following the same approach, it is then similarly shown that

−θ6 >
1

2
|θ5| ≥ 0. (35)

This last inequality can also be deduced from a certain
“symmetry” between the formulae expressing θ4 and θ6 in
(17d) and (17f).



It then follows from (12), (34) and (35) that

det(H) = θ4θ6 −
1

4
θ25 > 0. (36)

Therefore, the two inequalities (18) and (19) ensuring the
negative definiteness of H are successfully checked. It is then
established that the second degree polynomial pθ(x, y) has a
unique global maximum. �

When the fitted polynomial pθ(x, y) has a unique global
maximum, it may happen that this maximum is far away
from the origin (x, y) = (0, 0) corresponding to the optimized
integer shifts (ñ∗, m̃∗), outside the square area corresponding
to the 3× 3 pixels vicinity of the cross-correlation peak. The
following result ensures that the maximum of pθ(x, y) stays
inside this square area, under easily interpretable conditions.

Theorem 2: If, in addition to the conditions of Theorem 1,
the cross-correlation values γ(n,m) filling up the matrix Γ
satisfy, for all n,m ∈ {−1,+1},

γ(0,m)− γ(n,m) >
1

5
[γ(0,m)− γ(−n,m)] (37)

γ(n, 0)− γ(n,m) >
1

5
[γ(n, 0)− γ(n,−m)] , (38)

then the maximum of the fitted polynomial pθ(x, y) is located
at (x∗, y∗) such that |x∗| < 1 and |y∗| < 1.

Interpretation of the conditions of Theorem 2.

The conditions inherited from Theorem 1 ensure that the
middle entry in each row or column of Γ is the largest
entry of the row or column, without imposing any “degree of
symmetry”. For example, among the top row of Γ as expressed
in (9), inequalities formulated in (14) ensure that γ(0, 1) is the
largest entry, but the ratio [γ(0, 1)−γ(−1, 1)/[γ(0, 1)−γ(1, 1)]
can be any positive number. Two of the inequalities in the extra
condition (37) of Theorem 2 constrain this ratio between 1/5
and 5, thus limiting the dissymmetry between γ(−1, 1) and
γ(1, 1).

Due to the page limitation of this conference paper, the
proof of Theorem 2, omitted here, will be presented elsewhere.

V. CONCLUSION

In this paper, within the scope of developing digital image
correlation techniques for SHM, some theoretical aspects of
the quadratic surface fitting method have been investigated.
Compared to the literature, this paper has brought some
theoretic insight for a better understanding of this method, by
providing mathematical conditions ensuring expected results.
As the existence of a maximum of the fitted quadratic surface
can be numerically checked through the Hessian matrix, the
results of this paper are mainly for theoretic purpose. Further
works will include a complementary algorithm addressing the
cases unexpected by the quadratic surface fitting method, and
the performance assessment of the completed method through
applications within the considered scope.
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