
HAL Id: hal-03129324
https://hal.archives-ouvertes.fr/hal-03129324

Submitted on 2 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Matching for Expert Systems with Uncertain
Task Types

Virag Shah, Lennart Gulikers, Laurent Massoulié, Milan Vojnović

To cite this version:
Virag Shah, Lennart Gulikers, Laurent Massoulié, Milan Vojnović. Adaptive Matching for Expert
Systems with Uncertain Task Types. Operations Research, INFORMS, 2020, 68 (5), pp.1403-1424.
�10.1287/opre.2019.1954�. �hal-03129324�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395677045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-03129324
https://hal.archives-ouvertes.fr

Adaptive Matching for Expert Systems with Uncertain Task

Types

Virag Shah1, Lennart Gulikers2, Laurent Massoulié2, and Milan Vojnović3

1Stanford University
2Microsoft Research-INRIA Joint Centre

3London School of Economics

October 30, 2018

Abstract

A matching in a two-sided market often incurs an externality: a matched resource may
become unavailable to the other side of the market, at least for a while. This is especially
an issue in online platforms involving human experts as the expert resources are often scarce.
The efficient utilization of experts in these platforms is made challenging by the fact that the
information available about the parties involved is usually limited.

To address this challenge, we develop a model of a task-expert matching system where a
task is matched to an expert using not only the prior information about the task but also
the feedback obtained from the past matches. In our model the tasks arrive online while the
experts are fixed and constrained by a finite service capacity. For this model, we characterize
the maximum task resolution throughput a platform can achieve. We show that the natural
greedy approaches where each expert is assigned a task most suitable to her skill is suboptimal,
as it does not internalize the above externality. We develop a throughput optimal backpressure
algorithm which does so by accounting for the ‘congestion’ among different task types. Finally,
we validate our model and confirm our theoretical findings with data-driven simulations via
logs of Math.StackExchange, a StackOverflow forum dedicated to mathematics.

1 Introduction

Online platforms that enable matches between trading partners in two-sided markets have recently
blossomed in many areas: LinkedIn and Upwork facilitate matches between employers and employ-
ees; Uber allows matches between passengers and car drivers; Airbnb and Booking.com connect
travelers and housing facilities; Quora and Stack Exchange facilitate matches between questions
and either answers, or experts able to provide them.

These platforms often propose matches based on imperfect knowledge of the characteristics of
the two parties to be matched. Such uncertainty may result into inferior matches and may incur
negative externalities of the following kind: If a constrained resource is matched sub-optimally then
it becomes unavailable to a more suitable match for a while. For example, in online labour platforms
and Q&A platforms if an expert is matched to a task which does not meet her expertise then

1

ar
X

iv
:1

70
3.

00
67

4v
3

 [
cs

.A
I]

 2
6

O
ct

 2
01

8

the tasks which meet her expertise may suffer. Similarly, in hospitality platforms an economical
accommodation becomes unavailable to a financially constrained customer if it is matched to a
flexible customer.

This naturally leads to the following questions:

• How to quantify the loss in efficiency resulting from such uncertainty?

• Which matching recommendation algorithms can lead to the most efficient platform operation
in presence of such uncertainty?

A natural measure of efficiency is the throughput that the platform achieves, i.e. the rate of
successful matches it allows.

In this paper, we progress towards answering these questions as follows. In what follows, we
will anchor our discussion to task-expert systems but the insights developed are more generally
applicable.

First, we propose a simple model of such platforms, which features a static collection of servers,
or experts on the one hand, and a continuous stream of arrivals of tasks, or jobs, on the other
hand. In our model, the platform’s operation consists of servers iteratively attempting to solve
tasks. After being processed by some server, a task leaves the system if solved; otherwise it remains
till successfully treated by some server. To model uncertainty about task types, we assume that for
each incoming task we are given the prior distribution of this task’s “true type”. Servers’ abilities
are then represented via the probability that each server has to solve a task of given type after one
attempt at it.

In a Q&A platform scenario, tasks are questions, and servers are experts; a server processing a
task corresponds to an expert providing an answer to a question. A task being solved corresponds
to an answer being accepted. In an online labour platform, tasks could be job offers, and a server
may be a pool of workers with similar abilities. A server processing a task then corresponds to a
worker being interviewed for a job, and the task is solved if the interview leads to a hire. We could
also consider the dual interpretation when the labour market is constrained by workers rather than
job offers. Then a task is a worker seeking work, while a server is a pool of employers looking for
hires.

An important feature of our model consists in the fact that when a task’s processing does not
lead to success, it does however affect uncertainty about the task’s type. Indeed, the a posteriori
distribution of the task’s type after a failed attempt on it by some server differs from its prior
distribution. For instance in a Q&A scenario, a question which an expert in Calculus failed to
answer either is not about Calculus, or is very hard. Further, the feedback from the expert may
reveal some information about the task’s type.

For our model, we then determine necessary and sufficient conditions for an incoming stream of
task arrivals to be manageable by the servers, or in other words, determine achievable throughputs
of the system. In the process we introduce candidate policies, in particular the greedy policy
according to which a server choses to serve tasks for which its chance of success is highest. This
scheduling strategy is both easy to implement and is based on a natural motivation. Surprisingly
perhaps, we show that it is not optimal in the throughput it can handle. In contrast, we introduce
a so-called backpressure policy inspired from the wireless networking literature [42], which we prove
to be throughput-optimal.

We summarize contributions of this paper as follows:
• We propose a new model of a generic task-expert system that allows for uncertainty of task

types, heterogeneity of skills, and recurring attempts of experts in solving tasks.

2

• We provide a full characterization of the stability region, or sustainable throughputs, of the
task-expert system under consideration. We establish that a particular backpressure policy
is throughput-optimal, in the sense that it supports maximum task arrival rate under which
the system is stable.

• We show that there exist instances of task-expert systems under which simple matching
policies such as a natural greedy policy and a random policy can only support a much smaller
maximum task arrival rate, than the backpressure policy.

• We report the results of empirical analysis of the popular Math.StackExchange Q&A platform
which establish heterogeneity of skills of experts, with experts knowledgeable across different
types of tasks and others specialized in particular types of tasks. We also show numerical
evaluation results that confirm the benefits of the backpressure policy on greedy and random
matchmaking policies.

The remainder of the paper is structured as follows. In Section 2 we present our system model.
In Section 3 we present the throughput optimal algorithm as well as the characterization of task
arrival rates that can be supported by the system. In Section 4, we present a case study where
we compare performance of our algorithm with other baseline algorithms. In Section 5, we present
our experimental results. In Section 6 we generalize our results to arbitrary feedback structure.
Related work is discussed in Section 7. We conclude in Section 8. Proofs of the results are provided
in Section 9.

2 Problem Setting

Let C = {c1, . . . , ck} be the set of task types. Each task in the system is of a particular type in C.
Let S = {s1, . . . , sm} be the set of servers (or experts) present in the system. When a server s ∈ S
attempts to resolve a task of type c ∈ C, the outcome is 1 (a success) with probability ps,c and
it is 0 (a failure) with probability 1 − ps,c. Upon success we say that the task is resolved. In the
context of online hiring platform, this is equivalent to successful hiring of an employee for a job. In
the context of Q&A platform, this is equivalent to an answer by an expert being accepted by the
asker of the question.

We consider a Bayesian setting where we have a prior distribution z = (zc)c∈C ∈ C for a
task’s type, where C is the set of all distributions. Note, different tasks may have different prior
distributions. Clearly, if server s processes a task with prior distribution z then the probability that
it fails is given by

ψs(z) =
∑
c∈C

zc(1− ps,c). (1)

Further, upon failure, the posterior distribution of task’s type is given by

φs(z) =

(
zc(1− ps,c)
ψs(z)

)
c∈C

. (2)

Note that the posterior distribution of a task’s type upon failure by a subset of servers does
not depend on the sequence in which these servers resolve the task, i.e., for each s, s′ ∈ S we have
φs ◦ φs′ = φs′ ◦ φs. At any point in time a task is associated with a ‘mixed-type’ which is defined
as the posterior distribution of its type given the past attempts.

We allow a task to be attempted sequentially by multiple servers until it is resolved. We would
like to resolve the tasks as quickly as possible. The matching algorithm may use the past feedback

3

from the servers. In the setting described above the feedback is binary, namely, in the form of
success and failure. More generally, the servers may provide a more detailed feedback. Although
in several cases such a feedback is not reliable and often biased, e.g., see [13]. For now, we will
stick with the binary feedback structure. We will generalize our results to an arbitrary feedback
structure in Section 6.

2.1 Single Task Scenario

Before considering the setting of online task arrivals, for ease of exposition we first consider a
toy scenario with single task for which greedy algorithms are known to be approximately optimal.
Suppose that time t ∈ Z+ is discrete. A task arrives at time t = 0. Let the prior distribution of
its type upon arrival (equivalently, its mixed-type at time t = 0) be z. At a time, only one server
attempts to resolve a task. Consider the problem of designing a sequence of servers (s(t) : 0 ≤ t ≤ τ)
such that the probability that the task is resolved within a fixed time τ is maximized. Let z(0) = z,
and for each t ≥ 1 let z(t) = φs(t−1)(z(t− 1)), i.e., z(t) is the mixed-type of the task at time t given
that it was not resolved upon previous attempts. Then the probability that the task is resolved by
time τ is given as g

(
(s(t) : 0 ≤ t ≤ τ)

)
= 1−

∏τ
t=0 ψs(t)(z(t)).

Contrast this with the Bayesian active learning setting in [18, 21] where the goal is to reduce
uncertainty in true hypothesis via outcome from several experiments. Using a diminishing returns
property called adaptive submodularity the authors in [18] obtain a policy which is competitive
with the optimal. In our setting, g is a submodular function. Thus a greedy policy where s(t) for
each t is chosen to be from arg mins ψs(z(t)) is 1− 1/e-competitive, see [36].

Further, in this paper we add an extra dimension to the problem which was not considered in the
[18, 21], namely, we consider the setting of online task arrivals where tasks of different mixed-types
may compete for the servers resources before they leave upon being resolved. We design throughput
optimal policies under such a setting.

2.2 Online Task Arrivals

We consider a continuous time setting, i.e., t ∈ R+. Tasks arrive at a rate of λ per time unit
on average. The mixed types of incoming tasks upon arrival are assumed i.i.d., taking values in
a countable subset Z of C. For each z ∈ Z, let πz denote the probability that a new arrival is
of mixed type z. Finally, the time for server s ∈ S to complete an attempt on a task takes on
average 1/µs time units, and such attempt durations are i.i.d.. All involved sources of randomness
are independent.

We assume that Z is closed under φs(·), i.e., for each z ∈ Z, φs(z) ∈ Z. This loses no generality,
as the closure of a countable set with respect to a finite number of maps φs remains countable.

We assume that a given task may be inspected several times by a given server and assume that
the outcomes success / failure are independent at each inspection. This can be justified if a label
s in fact represents a collection of experts with similar abilities, in which case multiple processings
by s correspond to processing by distinct individual experts.

For such a setting we would like to minimize the expected sojourn time of a typical task, i.e.,
the expected time between the arrival and the resolving of a typical task. Recall that the success
probabilities ps,c are assumed to be arbitrary. Under such a heterogeneous setting minimizing
expected sojourn time is a hard problem. In fact, this is true even when there is no uncertainty
in task types. As a proxy to sojourn time optimal policies, we will strive for throughput optimal

4

policies. In particular, we will characterize the arrival rates λ for which the system can be stabilized,
i.e. for which there exists a scheduling policy which induces a time-stationary regime of the system’s
behavior. Indeed for a stable system the long term task resolution rate coincides with the task arrival
rate λ, and thus throughput-optimal policies must make the system stable whenever this is possible.
Note that for an unstable system the number of outstanding tasks accumulate over time and the
expected sojourn time tends to infinity.

Finally, for simplicity we assume more specifically that the tasks arrive at the instants of a
Poisson process with intensity λ, and that the time for server s to complete an attempt at a task
follows an Exponential distribution with parameter µs. These are continuous time analog of i.i.d.
arrivals and independent departures per time slot in discrete time setting. These assumptions
will imply that the system state at any given time t can be represented as a Markov process,
which simplifies throughput analysis. The system throughput is often insensitive to such statistical
assumptions on arrival and service times, e.g., see [44].

We close the section with some additional assumptions and notations which will aid our analysis.
For each time t let Nz(t) represent the number of tasks of mixed-type z present in the system

and N(t) = (Nz(t))z∈Z . We also let z(s, t) denote the mixed type of the task that server s works
on at time t. For strategies such that the servers select which task to handle based uniquely on the
vector N(t), the process (N(t))t≥0 forms a continuous-time Markov chain (CTMC) ([7, 27]). The
policies considered in this paper are studied by analyzing the associated CTMC.

We allow a task to be assigned to multiple experts at a given time. Further, we allow both
preemptive as well as non-preemptive policies. Recall, in a preemptive policy an expert may drop
a task under service if a task of a new mixed-type becomes available, whereas in a non-preemptive
policy an expert must wait for his task to be serviced before taking up a new one.

3 Optimal Stability

Main goal of this section is to provide necessary and sufficient conditions for stability of the system,
and to provide explicit policies which stabilize the system when the sufficient conditions are satisfied.

We obtain stability conditions via capacity constraints and flow conservation constraints which
capture the flow of tasks from one type to another upon service by an expert. For instance, if νs,z
represents the flow of tasks of mixed-type z served by expert s, a fraction 1−ψs(z) of it leaves the
system due to success while the rest gets converted into a flow of type φs(z). The total arrival rate
of flow of mixed-type z, i.e., λπz +

∑
s∈S,z′∈φ−1

s (z) νs,z′ψs(z
′), must match the total service rate,

i.e.,
∑
s∈S νs,z. Further, the total flow service rate expert s, i.e.,

∑
z∈Z νs,z, must be less than its

service capacity µs. The following is the main result of this section.

Theorem 1. Suppose there exists s such that minc ps,c > 0. If there exist non-negative real numbers
νs,z for each s ∈ S and each z ∈ Z, and positive real numbers δs for each s ∈ S such that the
following hold:

∀z ∈ Z, λπz +
∑

s∈S,z′∈φ−1
s (z)

νs,z′ψs(z
′) =

∑
s∈S

νs,z, (3)

∀s ∈ S,
∑
z∈Z

νs,z + δs ≤ µs, (4)

5

then there exists a policy under which the system is stable. If there does not exist non-negative real
numbers νs,z, for s ∈ S, z ∈ Z and non-negative real numbers δs for s ∈ S such that the above
constraints hold, then the system cannot be stable.

We use the condition of existence of an expert s such that minc ps,c > 0 only for a technical
reason to simplify our proof. We believe that the result holds even when this condition is not true.

One may envisage obtaining a throughput optimal static randomized policy from a solution to
(3) and (4) which, for example, maximizes the minimum δs. It is not clear if this policy would result
into a stable solution. Consider the following plausible scenario. While the total slack available
at each server is finite, the total number of queues is infinite since we have one queue for each
mixed-type. Depending on the system parameters, the optimal solution may assign a positive slack
to each queue. Then, the infimum over the slacks at different queues would be zero. This would
make the system unstable.

To avoid this pitfall, we find a finite set of mixed-types Y such that the overall arrival rate into
queues corresponding to mixed-types Z\Y is sufficiently small. We then group the infinite number
of queues corresponding to Z\Y into a virtual queue. We thus obtain a system with finite number
of queues which consists of the virtual queue and the queues corresponding to the mixed-types in
Y. For this system we use a dynamic policy, provided below, which is motivated by the literature
on backpressure policies for constrained queueing systems, e.g., see [42, 16].

One may also envisage a static randomized policy obtained via a solution to a modified version
of the constraints (3) and (4) which would stabilize the above finite queueing system. Indeed, such
a policy exists and we use its existence to show throughput optimality of our backpressure policy.
Such a static policy, however, suffers from a severe practical limitation. By randomly selecting a
queue for each server, the policy splits its capacity across several queues In contrast, in our policy
each server serves only one queue with a high backlog. It is well known that pooling of a server’s
capacity, as against fragmenting its capacity across several queues, achieves better performance
due to gains from statistical multiplexing. In fact, the performance improvement scales with the
number of queues.

Further, an agile backlog based dynamic policy may offer several practical advantages over
solving a high-dimensional optimization problem in real systems where the parameters used may
change over time. Thus, we believe it is natural to consider a backpressure approach over a static
approach.

We now describe the our dynamic policy which achieves optimal stability. We need some more
notation to describe the policy. Consider a set Y ⊂ Z. Let X(t) be the number of tasks in the
system at time t which have mixed-type z ∈ Z\Y or have had a mixed-type z ∈ Z\Y in the past.
Further, for each z ∈ Y let X̃z(t) be the number of tasks with mixed-type z which have had a
mixed-type in Z\Y in the past. Also, for convenience, for each z ∈ Z\Y, let X̃z(t) be the number
of tasks with mixed-type z, i.e., X̃z(t) = Nz(t) for each z ∈ Z\Y. Thus, we have X(t) =

∑
z X̃z(t).

Finally, for each z ∈ Y let Ñz(t) be the number of tasks of mixed-type z which have not had a
mixed-type in Z\Y in the past. Thus, for each z ∈ Y we have Nz(t) = X̃z(t) + Ñz(t). For the rest
of this section we suppress the dependence on t for brevity in notation.

Our policy operates in two modes, Random mode and Backpressure mode. During Random
mode, each server is assigned a task from X at random. During Backpressure mode, a server s is
assigned a task of a mixed type in Y with the highest ‘expected backlog’, where the expected backlog
at mixed-type z accounts for the congestion at z as well as at φs(z). Further, it also accounts for
the fact that with probability (1− ψs(z)) the task may get resolved and leave the system without

6

seeing the congestion at φs(z). The decision regarding which mode to operate in is based on the
relative congestions at X and Y.

Definition 1 (Backpressure(Y) policy). For a given Y, let X and (Ñz)z∈Y be as defined above.
For each s ∈ S, z ∈ Y let

ws,z(Ñ ,X) =

{
Ñz − ψs(z)Ñφs(z), if φs(z) ∈ Y
Ñz − ψs(z)X, if φs(z) ∈ Z\Y

.

For a given (Ñ ,X), let
Bs(Ñ ,X) = arg max

z′∈Y:Ñz′>0
ws,z(Ñ ,X).

If ∑
s

µs max
z∈Y:Ñz>0

ws,z(Ñ ,X) ≥ X min
c∈C

∑
s

µsps,c

then each expert is assigned a task in Ñz where z ∈ Bs(Ñ ,X) ⊂ Y with ties broken arbitrarily.
Else, each expert serves a task in X chosen uniformly at random.

Note that, under Backpressure(Y) policy,
(

(Ñz)z∈Y , (X̃z)z∈Z

)
is a CTMC. The following the-

orem establishes throughput optimality of the Backpressure(Y) policy.

Theorem 2. Suppose there exists a server s such that minc ps,c > 0. If the sufficient conditions
for stability as given in the statement of Theorem 1 are satisfied, then there exists a finite subset Y
of Z such that the policy Backpressure(Y) stabilizes the system.

In particular, the Backpressure(Z) policy is optimally stable for Asymmetric(a) system as de-
fined in Definition 3.

To prove Theorem 2, we use Lyapunov-Forster theorem to show stability. We use the following
Lyapunov function:

L(Ñ , X̃) =
∑
z∈Y

Ñ2
z +

(∑
z∈Z

X̃z

)2

=
∑
z∈Y

Ñ2
z +X2.

As such, proving this result requires significantly different approach as compared to stability
proofs via quadratic Lyapunov functions of classical constrained queueing networks with finite
number of queues. In particular, the flow equations do not directly give a stabilizing static policy.
In fact, there does not exist a static policy which stabilizes the system at all feasible loads. To avoid
this pitfall, we find a finite set Y such that the overall arrival rate into Z\Y is small, and ‘pool’ the
slack capacity at the servers to serve the infinite number of queues in Z\Y.

The stability part of Theorem 1 follows from Theorem 2. For the converse statement in Theo-
rem 1, we use system ergodicity.

We now provide an alternative policy which achieves stability under a more restrictive condition
that ps,c are bounded away from 0 and 1, but with the advantage that it does not rely on the precise
numbers of jobs Nz sharing the same mixed type z, but rather on ‘local averages’. As such it may
remain optimally stable even when the distribution of mixed types of incoming jobs is no longer
assumed to be discrete.

7

Definition 2 (Backpressure(ε) policy). Partition set C into finitely many subsets Ai, i = 1, . . . , l,
such that each Ai has diameter at most ε, that is for all z, z′ ∈ Ai we have |z−z′| =

∑
c |zc−z′c| ≤ ε.

We then define N(Ai) :=
∑
z∈Ai Nz, and the backpressure with respect to server s of a given z as

ws,z(N) := N(Ai)− ψs(z)N(Aj),

where i and j are such that z ∈ Ai and φs(z) ∈ Aj. Then, each expert is assigned a task with
mixed-type in

As(N) = arg max
z∈Z:Nz>0

ws,z(N),

with ties broken uniformly at random

We then have the following:

Theorem 3. Suppose that there exists α > 0 such that for each s, c we have

ps,c ∈ [α, 1− α]. (5)

Suppose further that the sufficient conditions for stability as given in the statement of Theorem 1
are satisfied. Then, there exists an ε > 0 sufficiently small such that the Backpressure(ε) policy
stabilizes the system.

For its proof, we use the Lyapunov function L(N) =
∑
iN(Ai)

2. Again, the proof involves a
significantly different approach as compared to stability proofs for standard constrained queuing
networks with finite number of queues. In particular, we develop and use new flow equations which
account for not only the sets Ai associated with the mixed-types of the tasks but also the lengths
of the history of the tasks.

Unlike backpressure policy proposed in [42] under a different setting, which was agnostic to sys-
tem arrival rates, a set Y (or the ε) such that the policy Backpressure(Y) (or policy Backpressure(ε))
stabilizes the system may depend on the value of λ. While the policies as stated may be complex to
implement, it allows us to develop implementable heuristics which significantly outperform greedy
policy. We demonstrate this in Section 5.

4 Asymmetric(a) Systems: A Case Study

In this section we study a class of task-expert systems, namely Asymmetric(a) systems, defined
below. These systems resemble the N -system considered in the literature of queueing systems
where the tasks types are assumed to be known, see [19, 5, 43]. In particular, we study the loss
in throughput due to uncertainty in task type, and also compare the performance of the optimal
algorithm with some baseline policies, namely the Random policy and the Greedy policies.

Definition 3 (Asymmetric(a) System). Fix 0 < a < 1. In the Asymmetric(a) system there are
two task types C = {c1, c2} and two experts S = {s1, s2}. Each arrival is equally likely to be of both
types, i.e., πz′ = 1 where z′ satisfies z′c = 1/2 for each c ∈ C, and πz = 0 if z 6= z′. Both experts
provide responses at unit rate, i.e., µs = 1 for each s. Further, for class c1 we have ps,c1 = 1 for
each s ∈ S, and for class c2 we have ps1,c2 = a, and ps2,c2 = 0.

For the Asymmetric(a) system, if a task of mixed-type z′ receives a failure from either of the
experts then its mixed type becomes z′′ where z′′c1 = 0 and z′′c2 = 1. Thus, it is sufficient to assume
that Z = {z′, z′′} where z′c = 1

2 for each c ∈ C, and z′′c = 1{c = c2}, where 1{A} = 1 if A is true and
0 otherwise. Further, it is easy to check that ψs1(z′) = (1 − a)/2, ψs1(z′′) = 1 − a, ψs2(z′) = 1/2,
and ψs2(z′′) = 1.

8

4.1 Loss in throughput due to uncertainty in task types

To understand the source of loss in throughput due to uncertainty, we first provide throughput
of the Asymmetric(a) system, and then compare it with an analogous system where true type is
known. The following proposition uses the flow equations from Theorem 1. Its detailed proof is
provided in the Appendix.

Proposition 1. There exists a policy which stabilizes the Asymmetric(a) system if we have λ <
min {3a/(a+ 1), 2a}. Further, if λ > min {3a/(a+ 1), 2a} then no policy can stabilize the system.

Now suppose that the true type of each task is revealed upon arrival. Throughput of such
systems can be computed using the well-known stability conditions for the flexible-server systems,
e.g., see [30]; in particular, the throughput of the Asymmetric(a) system if true types are known is
equal to 2a.

Thus, for a > 1/2 there is a loss in efficiency of the system. In particular, for a = 1 the
throughput reduces by 25%. This can be reasoned as follows. For small values of a, the main
system bottleneck is servicing of tasks of true type c2 by server s1 since this is the only server which
can serve such tasks. Since server s2 is not bottlenecked, in case of uncertain task types its extra
capacity may be used to identify tasks of true type c2. However, if the a is large, then both the
servers are bottlenecked and thus the wasteful use of s2 in servicing tasks of true type c2 results in
loss of throughput.

4.2 Throughput under Random Policy:

Let us first define the Random policy and then provide an expression for the throughput.

Definition 4 (Random Policy). In the Random policy each expert s is assigned a task chosen
uniformly at random from the pool of outstanding tasks.

The following proposition provides throughput under Random policy for task expert systems in
general, and the Asymmetric(a) system in particular. Its proof is provided in the Appendix.

Proposition 2. Under Random policy, a task-expert system is stable if and only if it satisfies the
following:

λ <

(∑
c∈C

∑
z∈Z zcπz∑
s∈S µsps,c

)−1

.

In particular, the Random policy stabilizes the Asymmetric(a) system if and only if λ < 4a/(2 +a).

As expected, for the Asymmetric(a) system the throughput under the Random policy is signif-
icantly lower than the optimal throughput.

To prove the above result we use fluid limit approach developed in [38, 12, 31]. Let Xc(t) be the
number of tasks in the system of pure-type c. Let X(t) = (Xc(t))c. Roughly, given initial condition
X(0) = x, we let limk→∞

1
kX(0) = x, and study limk→∞

1
kX(kt). We use the following Lyapunov

function:

L(X) =
∑
c

Xc log

(
Xc

γc
∑
c′ Xc′

)
,

where γc , λ
∑
z∈Z zcπz∑
s∈S µsps,c

.

9

4.3 Throughput under Greedy Policies

Following the discussion in Section 2.1, a question arises: does a greedy approach work well even
under the online setting? From throughput perspective, a natural greedy approach is one where
each expert is assigned a task which best suits its skills.

We will consider two greedy policies, a Preemptive Greedy policy and a Non-Preemptive Greedy
policy. As we will see below, both the greedy policies are throughput suboptimal for the Asymmetric(a)
system. Intuitively, the reason for their suboptimality can be explained as follows. Note that for
a > 0 we have ψs(z̃

′) < ψs(z̃
′′) for each s. Thus, under the greedy policies each expert gives

priority to the tasks of mixed-type z′. However, since only one expert can successfully serve the
tasks of mixed-type z′′, servicing of these tasks may become a bottleneck, especially for the small
and moderate values of a. In such a scenario, a policy in which the expert s1 would prioritize queue
z′′, especially when its length is relatively large, as done by the Backpressure policy, would achieve
a better throughput.

We first discuss the Preemptive Greedy policy and then the Non-Preemptive Greedy policy.

Definition 5 (Preemptive Greedy Policy). In the Preemptive Greedy policy, at each time an expert
is assigned an outstanding task which maximizes its success probability, i.e., for each time t such
that |N(t)| > 0 we have

z(s, t) ∈ As(N(t)) , arg min
z:Nz(t)>0

ψs(z),

where ties are broken uniformly at random.

The following proposition provides throughput achieved by the Preemptive Greedy policy for
the Asymmetric(a) system. The main idea behind its throughput derivation can be intuitively
explained as follows. Since both the servers give priority to the tasks of mixed-type z′ at each time,
the corresponding queue acts as an M/M/1 queue with service rate 2 and arrival rate λ. Since the
fraction of time this queue is empty is 1−λ/2, the capacity available at server s2 to server tasks of
mixed-type z′′ is 1− λ/2. Thus, maximum rate of service for tasks of mixed-type z′′ is a(1− λ/2).
Similarly, the arrival rate for tasks of mixed type z′′ can be shown to be λ(2− a)/4. The stability
condition follows by comparing these two. The formal proof of the proposition can be found in the
Appendix.

Proposition 3. The Preemptive Greedy policy stabilizes the Asymmetric(a) system if and only if
we have λ < 4a/(2 + a).

A surprising implication of the above theorem is that, for a = 1/2, the Preemptive Greedy
policy as well as the Random Policy achieve throughput equal to 4/5. The optimal throughput is
25% higher. This shows the importance of designing a matching policy which is cognizant of the
system bottlenecks, such as the Backpressure policies designed in Section 3. For the N-systems
where the task types are known, it was first observed in [19] that a greedy policy is suboptimal.

In the Preemptive Greedy policy, the process (N(t))t≥0 is a CTMC. In particular, the order in
which the tasks of a given mixed-type are served does not matter to the evolution of N(t). However,
this is not the case in the Non-preemptive Greedy policy. For simplicity, in the Non-preemptive
Greedy policy, we will view each mixed-type as queue and assume that the tasks of a given mixed-
type are served in the FCFS discipline. In other words, if at time t for a given server s we have
z(s, t) = z, then it serves the task which became of mixed type z the earliest. Note that, in our
general model, upon leaving a queue z, a task may re-enter the queue at a later point in time. In

10

such a case we consider the arrival time into the queue to be the one corresponding to the latest
entry.

Definition 6 (Non-preemptive Greedy Policy). In the Non-preemptive Greedy policy, upon com-
pletion of an attempt at a task each expert s serving it is assigned an outstanding task such that
its success probability 1 − ψs(z̃) is non-zero. If multiple such tasks exists for a server then it is
assigned one which maximizes its success probability. In other words, if an attempt on a task with
mixed-type z is completed at time t, then for each s such that z(s, t−) = z we set

z(s, t) ∈ A′s(N(t)) , arg min
z̃:Nz̃(t)>0,ψs(z̃)<1

ψs(z̃),

where ties are broken uniformly at random. If no such task exists, i.e., if A′s(N(t)) is empty, then
the server stays idle till such a task arrives and starts serving it upon arrival. Further, the tasks
with a given mixed-type are served in the FCFS discipline as described above.

For the Non-preemptive Greedy policy, owing to the complexity of the underlying Markov chain,
we provide below a rather weak condition for instability which is nonetheless sufficient to establish
its sub-optimality. See the Appendix for its proof.

Proposition 4. Suppose that the Asymmetric(a) system is stabilizable, i.e., λ < min {3a/(a+ 1), 2a}.
Then, under the Non-preemptive Greedy policy, the Asymmetric(a) system is unstable if we have
λ2(8a−1 + 1) + λ(8a−1 − 14)− 16 > 0.

In particular, the above proposition implies that for a = 1/2 the throughput of the Asymmetric(a)
system under the Non-preemptive Greedy policy is less than 0.914, which is sub-optimal. Recall
that the optimal throughput for this value of a is 1.

5 Experimental Results

In this section, we present our empirical results obtained by using data from Math.Stack-Exchange
Q&A platform. In this platform, users post tagged questions that are answered by other users.
Upon resolution of the question, the asker may reveal which of the submitted answers resolved
the question. We will use this data to estimate the success probabilities of experts in answering
questions, and use these parameters in simulations to compare the throughputs that can be achieved
by greedy, random, and backpressure policies. As we will see, a substantially larger throughput can
be achieved by backpressure policy than greedy and random.

Dataset The dataset consists of around 702, 286 questions and 994, 138 answers. It was retrieved
on February 2nd, 2017. The top 11 most common tags are given in Table 1 in decreasing order of
popularity. Among these tags, the most common is calculus which covers 61, 184 questions, and
the least common is complex analysis which covers 22, 813 questions. In our analysis, we used only
questions that are tagged with at least one of the 11 most popular tags, which amounts to a total
of 381, 239 questions and 544, 267 answers.

Estimated skill sets The success probabilities of answering questions are estimated as follows.
For a given user-tag pair, the success probability is estimated by the empirical frequency of the
accepted answers by this user for questions of given tag, conditional on that the user had at least 5

11

Table 1: Skills of experts estimated by using data from the Math.Stack-Exchange Q&A platform.
The success probabilities with values larger than 35% are highlighted in bold.

Expert Clusters
Tags 1 2 3 4 5 6 7 8 9 10

calculus .32 .39 .30 .35 .37 .47 .28 .16 .26 .41
real-analysis .17 .41 .25 .32 .23 .49 .40 .10 .10 .44

linear-algebra .46 .29 .05 .36 .14 .48 .26 .31 .07 .43
probability .07 .49 .02 .33 .02 .50 .06 .02 .46 .04

abstract-algebra .02 .05 .03 .32 .02 .38 .23 .50 .01 .27
integration .09 .43 .05 .19 .44 .45 .03 .01 .06 .37

sequences-and-series .05 .32 .16 .31 .20 .45 .09 .04 .06 .33
general-topology .02 .10 .03 .16 .02 .43 .50 .07 .02 .31

combinatorics .03 .14 .06 .43 .04 .37 .02 .06 .19 .05
matrices .27 .15 .02 .31 .02 .44 .06 .11 .02 .34

complex-analysis .02 .19 .08 .16 .14 .50 .09 .05 .01 .44

Size 165 188 313 200 179 183 231 187 178 176

accepted answers for questions of the given tag, and otherwise we estimate the success probability
is set to be equal to zero. These success probabilities are estimated for 2, 000 users with the most
accepted answers. Among these users, the user with the most accepted answers had 4, 665 accepted
answers, and the user with the least number of accepted answers had 13 accepted answers. There
were 712 users which had more than 50 answers accepted. In order to form clusters of users with
similar success probabilities for different tags, we ran the k-means clustering algorithm.

The estimated success probabilities are shown in Table 1. The columns correspond to different
centroids of the clusters and give average success probabilities for different tags. In the bottom row,
we give the sizes of the corresponding clusters. For instance, the 165 persons in cluster 1 have on
average 32% of their calculus, and 46% of their linear algebra answers accepted.

There is a pronounced heterogeneity in user expertise. We highlighted in bold the success
probabilities with values larger than 35%. A subset of users, namely cluster 6, have high success
probabilities at all topics whereas the users in the other clusters have high success rate at a subsets
of topics.

Estimating πz There is a prevalence of questions with different combinations of tags, that is,
mixed types. When a question arrives with multiple tags, we associated with it a mixed-type which
is the uniform distribution across the associated tags. We kept only those combinations of tags
that occur for at least 1% of the total number of questions. This results in 16 tag combinations
among which 11 are singletons and 5 are a combinations of 2 tags. These are the mixed types z
with positive πz, we set πz = 0 for all other mixed types. From among the questions with these 16
mixed-types, the fraction of questions which belong the mixed-type z is the estimated for πz. We
observed that roughly 19% of the questions are tagged with multiple tags, showing the relevance of
our model.

Simulation setup We assumed that the experts have unit service rates. We make this approxi-
mation as we do not have the information about times at which experts begin to respond a question.

12

Figure 1: Total number of tasks in the system over time for the greedy and backpressure policy.
The task arrival rates are as indicated in the figures.

We examined the system for increasing values of task arrival rates. We simulate our CTMC via a
custom discrete event simulator.

We implement the Backpressure(Y) policy where the set Y consists of all 11 pure types, the
5 most frequently seen mixed types upon arrival as described above, and the mixed types which
result from an attempt by an expert exactly once. Note that a task belonging to a pure type can be
attempted upon multiple times without changing its type. We thus have |Y| = 16+5 ·10 = 66. Our
choice of Y is a result of a compromise between performance and complexity. Choosing a larger
set of Y may increase the stability region by a small fraction, but may significantly increase the
complexity of the Backpressure(Y) policy.

Further, while serving the tasks in X, instead of choosing tasks at random, we choose tasks
greedily, i.e., each server is assigned a task in X which maximizes its probability of success. Em-
pirically, this improves the performance over random selection of tasks in X.

In the following, we will use the short hand ‘greedy policy’ for the Preemptive Greedy policy,
and ‘backpressure policy’ for the Backpressure(Y) policy.

Performance comparison of different policies In the following, we will use the short hand
‘greedy policy’ for the Preemptive Greedy policy, and ‘backpressure policy’ for the Backpressure(Y)
policy. In Figure 1 we plot the time-evolution of the total number of active tasks in the system for
the greedy policy and the backpressure policy at the respective arrival rates 3.78 and 3.83 (Figure 1
left), and also at the arrival rates 3.83 and 4.08 (Figure 1 right). In Figure 1 left, both the policies
are stable. Yet, the sample path under the backpressure policy is more steady than that under
greedy policy, which is an added advantage to its throughput optimality. In Figure 1 right, while
the greedy policy is unstable at λ = 3.83, the backpressure policy is stable even at λ = 4.08 and
thus significantly outperforms the greedy policy.

In Figure 2 we plot the average delay (sojourn time) of tasks in the system against the task
arrival rates. The average delay is computed by first computing the time-averaged number of tasks
in the system and then applying Little’s law. We observe that the task arrival rates at which random

13

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
Arrival rate

0

50

100

150

200

Av
er

ag
e

de
la

y

Backpressure
Greedy

Figure 2: Comparison of performance under greedy and backpressure policies.

(not shown in the plot), greedy, and backpressure policies become unstable are approximately equal
to 2.2, 3.82, and 4.10, respectively. Thus, the backpressure policy achieves throughput improvement
of about 8% over the greedy policy.

The backpressure policies marginally outperforms greedy in terms of average delay at the low
loads, and significantly at high loads. However, observe that at the moderate loads the greedy policy
outperforms the backpressure policy. The reason for this is as follows. The backpressure policy
achieves throughput optimality by building gradients (in the form of weights) at the large loads
which guide system operation. At moderate loads the queue lengths are small and the associated
gradients are not very meaningful. This is similar in principle to the well known poor performance
of backpressure policy at lower loads in multihop wireless networks, see [45]. Designing policies
which perform well at all loads is an interesting avenue for future research.

6 General Feedback Structure

The model described in Section 2 allows for only binary feedback, in the form of success and failure.
Upon success a task leaves the system, whereas upon failure, the fact of failure is used to reduce
uncertainty in the true-type of the task. In this section we generalize the feedback structure as
follows. Upon success a task leaves the system, as in the earlier model. However, upon failure, a
server may additionally provide a feedback f from a countable set of possible feedbacks F . Let the
βs,c(f) be the probability that for a task of true type c ∈ C, server s provides a feedback f upon
failure. Thus, for each s and c, βs,c = (βs,c(f) : f ∈ F) is a probability mass function. We assume
that βs,c for each s and c is known. In practice, it needs to be learned.

In this setting, if an attempt by a server s on a task of mixed type z results into a failure and
if the feedback provided by the server is f then the task’s new mixed-type, denoted by φs(z, f), is

14

the resulting posterior distribution, namely,

φs(z, f) =

(
zc(1− ps,c)βs,c(f)

ξs(z, f)

)
c∈C

,

where ξs(z, f) is the probability that the task for mixed type z results into failure upon an attempt
by server s and receives feedback f , i.e.,

ξs(z, f) = ψs(z)
∑
c

zcβs,c(f).

We again assume that, for each s and f , Z is closed under φs(·, f).
Along the lines of the development of stability conditions in Section 3, we obtain below the

necessary and sufficient conditions for stability. Again, we let νs,z represent the flow of tasks of
mixed-type z served by expert s. In developing the new flow conservation constraints we now
account for the more general feedback structure. The capacity constraints remain identical.

Theorem 4. Suppose there exists s such that minc ps,c > 0. If there exist non-negative real numbers
νs,z for each s ∈ S and each z ∈ Z, and positive real numbers δs for each s ∈ S such that the
following hold:

∀z ∈ Z, λπz +
∑

s∈S,f∈F,
z′∈φ−1

s (z,f)

νs,z′ξs(z
′, f) =

∑
s∈S

νs,z, (6)

∀s ∈ S,
∑
z∈Z

νs,z + δs ≤ µs, (7)

then there exists a policy under which the system is stable. If there does not exist non-negative real
numbers νs,z for s ∈ S, z ∈ Z and non-negative real numbers δs for s ∈ S such that the above
constraints hold, then the system cannot be stable.

A stabilizing policy is again obtained by finding a finite set Y such that the overall arrival rate
into Z\Y is small, and using a backpressure policy policy for congestion control. More formally,
recall the definitions of (X̃z)z∈Z , X, and (Ñz)z∈Y from Section 3. Consider the following policy.

Definition 7 (Modified Backpressure(Y) policy). For each s ∈ S, z ∈ Y let

ws,z(Ñ ,X) = Ñz −
∑

f :φs(z,f)∈Y

ξs(z, f)Ñφs(z,f) − X
∑

f :φs(z,f)/∈Y

ξs(z, f).

For a given (Ñ ,X), let
Bs(Ñ ,X) = arg max

z′∈Y:Ñz′>0
ws,z(Ñ ,X).

If ∑
s

µs max
z∈Y:Ñz>0

ws,z(Ñ ,X) ≥ X min
c∈C

∑
s

µsps,c

then each expert chooses a task in Ñz where z ∈ Bs(Ñ ,X) ⊂ Y with ties broken arbitrarily. Else,
each expert serves a task in X chosen uniformly at random.

15

Again, using the Lyapunov function L(Ñ , X̃) =
∑
z∈Y Ñ

2
z + X2, and the arguments identical

to the proof of Theorems 1 and 2 in the Appendix but with appropriate changes, it follows that
there exists a finite subset Y of Z such that the policy Backpressure(Y) stabilizes the system if
the necessary conditions are satisfied. Further, the converse statement of the theorem follows from
system ergodicity. We omit details for brevity.

7 Related Work

Bayesian Active Learning (see [18, 21, 10, 14]) aims at learning true hypothesis by adaptively
selecting sequence of experiments. In [10] labels are obtained for a batch of items at a time. In [14]
a stream based budgeted setting is considered where a finite number of items arrive in a random
order. In contrast we allow infinite stream of tasks and are interested in maximizing the task
resolution throughput under capacity constraints at the servers. The crowdsourcing works such as
[24, 39, 46, 15] consider task assignment problems for classification with unknown ground truths,
however they consider a static model. In [32] the labeling tasks arrive dynamically and their exit
is tied to the expert allocation decisions, in that a task leaves once the probability of error in the
label estimate falls below a threshold.

Our work is also broadly related to that of multi-arm bandits, e.g., see [28, 4, 17, 8, 1] and
citations therein, in the sense of optimizing the trade-off between exploration, to learn job types,
and exploitation, to optimize task performance. It also has some relation with collaborative filtering
systems such as those studied in [25, 26, 41], which can be interpreted as expert-task systems where
success probabilities admit a low-rank matrix structure. Unlike our work, there good matches are
inferred from observed assignments of tasks to experts, which are according to a given statistical
model, and there are no resources constraints imposed on the experts.

A related line of work is that on stochastic online matching, e.g., see [33, 34, 20]. The stochastic
online matching can be interpreted as a task-expert system where each expert is associated with a
budget constraint that allows to solve at most one task. Unlike our work where the task types are
uncertain, uncertainty in these models come from the arbitrariness of the future task arrivals and
the monotonically decreasing available resource budgets.

Another related literature is that of constrained queueing systems, where arriving tasks are to
be served by heterogeneous servers subject to resource constraints, e.g., see [42, 35, 30, 16, 45, 9, 2,
22, 11, 29, 40]. The goal is to efficiently utilize server resources while providing good performance
in servicing tasks, e.g., optimizing task delays. Our matching policy is of a flavor similar to the
stability-optimal backpressure policy first proposed in [42]. A setting close to ours is the one studied
in [40] for routing queries in peer-to-peer networks. Here, the types of the queries are known but the
locations of nodes where the queries may by successfully resolved are uncertain. More technically,
we associate queues with each prior distribution which may be infinite in number. This makes
the stability analysis much more challenging. Another related work is that on scheduling flexible
servers, e.g., see [30, 29], which allows for tasks of different types and servers of different skills. It
has been established that a so called max-weight policy is optimal in a heavy traffic regime. The
main difference from our work is that all these works assume that the task types are known.

In [6], the authors considered a task-expert system where task types are of two difficulty levels
(hard or easy) and expert skills are of two levels (senior or junior). Seniors may serve any task,
but juniors may only serve easy tasks. The hardness of each task is unknown upon arrival. In
comparison, we allow for much more generality with respect to the heterogeneity of skills of experts.

16

In their model, a task upon service can only become progressively harder, which amounts to a feed-
forward system, unlike our model.

The work in [23] considers a model where the job types are known but the expert types are
unknown. They consider the problem of matching while simultaneously learning the expert types.
A key idea is to use a shadow price which simultaneously accounts for resource utilization and type
uncertainties. They consider an asymptotic regime where each expert is allowed to work on a large
number of tasks, a vanishingly small amount of which could be used to accurately learn the expert
types, and the rest can be served optimally. In the limit, the learning aspect is decoupled form the
expert utilization, and it is thus different from our work.

8 Conclusion

We studied matching of tasks and experts in a system with uncertain task types. We established
a complete characterization of the stability region of the system, i.e. the set of task arrival rates
that can be supported by a matching policy such that the expected number of tasks waiting to
be served is finite. We showed that any task arrival rate in the stability region can be supported
by a back-pressure matching policy. We also compared with two baseline matching polices, and
identified instances under which there is a substantial gap between the maximum task arrival rates
that can be supported by these policies and that of the optimum back-pressure matching policy.

There are several interesting directions for future research. First, for the case when task types are
unknown, it is of interest to consider matching policies that optimize different kinds of performance
objectives, such as, for example, minimizing the long-run average of a function of task waiting
times. Second, much remains to be said about matching policies for the case when both task types
and the skills of experts are unknown.

9 Proofs

9.1 Proof of Theorem 1 and Theorem 2

We first show stability under sufficient conditions provided in the statement of Theorem 1. In the
process, we prove Theorem 2.

In constrained queueing systems, e.g., see [42, 16], a standard approach towards proving stability
of a backpressure type policy is to design a ‘static’ policy using flow variables (νsz)s,z and the slacks
(δs)s which provides a fixed service rate to each queue Nz such that its drift is sufficiently negative
for each. However, in our setup the total number of queues (Nz)z∈Z could be countable, while the
total available slack is finite. Thus, it is not possible to design a static policy such that the drift in
each individual queue is bounded from above by a negative constant. This is unlike any finite-server
queueing system considered in the previous literature.

We thus take a different approach, which can be explained roughly as follows. Since the total
exogenous arrival rate λ, and the total endogenous arrival rate, i.e. arrival into a queue due to
failure at another queue, are both finite (they are bounded from above by

∑
s µs), there exists a

finite set Y ⊂ Z such that the total arrival rate into Z\Y is less than minc∈C
∑
s∈S

δs
4 ps,c. Each

task which enters a queue Nz where z ∈ Z\Y is instead sent to a virtual queue X, and stays there
until there is a success. If X is ‘large’ compared to the other queues then all the servers focus on

17

X. The finite number of remaining queues are operated via a backpressure policy which accounts
for the ‘expected backlog’ seen in these queues.

More formally, consider (νs,z)s,z and positive constants (δs)s as postulated in the theorem.
Without loss of generality, assume that there exists a constant 0 < ε < 1 such that δs = εµs for
each s ∈ S. Let Y be a finite subset of Z such that

∑
z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

νs,z′ψs(z
′)

 ≤ min
c∈C

∑
s∈S

δs
4
ps,c. (8)

Since λ+
∑
s∈S,z∈Z νs,z ≤ 2

∑
s µs, such a Y exists.

Let X be the number of tasks in the system which are or have been in past of type z ∈ Z\Y.
Once a task enters queue X it does not leave it until success. There may be tasks in it with mixed-
type in Y. Note, our policy will depend on X and thus (z(s, t))s will not be N(t) measurable. In
turn, N(t) will not be a CTMC. For z ∈ Y, let X̃z and Ñz be the tasks of mixed-type z which have
and have not had mixed-type in Z\Y. Also, for convenience for each z ∈ Z\Y, let X̃z be the tasks

of mixed-type z, i.e., Nz = X̃z for each z ∈ Z\Y. We now formally define σ
(

(X̃z)z∈Z , (Ñz)z∈Y

)
-

measurable backpressure policy. Thus,
(

(Ñz)z∈Y , (X̃z)z∈Z

)
is a CTMC.

We now show stability of the system under this policy for Backpressure(Y) as given in Defi-
nition 1. Below we will assume that the ties in selecting z from Bs(Ñ ,X) are broken uniformly
at random for simplicity of exposition. The proof can be easily extend to any other tie breaking
approach. Consider the following Lyapunov function.

L(Ñ , X̃) =
∑
z∈Y

Ñ2
z +

(∑
z∈Z

Xz

)2

=
∑
z∈Y

Ñ2
z +X2.

For each t, let t+ τ(t) be the time at which the first event (arrival or completion of a response)
occurs after time t. Clearly, τ(t) is a stopping time. Further, let τñ,x̃(t) = E[τ(t)|(Ñ(t), X̃(t)) =
(ñ, x̃)].

Let

D(ñ, x̃) ,
1

τñ,x̃
E
[
L(Ñ(t+ τ), X̃(t+ τ))− L(Ñ(t), X̃(t))

∣∣Ñ(t) = ñ, X̃(t) = x̃
]
.

D(ñ, x̃) is called drift in state n. We would like to show that there exists a positive integer K and
positive constant ε such that

D(ñ, x̃) ≤ −ε ∀(ñ, x̃) s.t. max(|ñ|∞, x) ≥ K.

Let for each s ∈ S and z ∈ Y let

ν∗s,z = 1

{
xmin
c∈C

∑
s

µsps,c >
∑
s

µs max
z∈Y:ñz>0

ws,z(ñ, x)

}
1{z ∈ Bs(n)} 1

|Bs(n)|
.

18

Then, one can check that

1
τñ,x̃

E[Ñz(t+ τ)2 − Ñz(t)2
∣∣Ñ(t) = ñ, X̃(t) = x̃]

= (2ñz + 1)

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗sz′ψs(z
′)

+ (−2ñz + 1)
∑
s

ν∗s,z.

Further, let

ν∗ = 1

{
xmin
c∈C

∑
s

µsps,c >
∑
s

µs max
z∈Y:ñz>0

ws,z(ñ, x)

}
.

Then, we have that

1

τñ,x̃
E[X(t+ τ)2 −X(t)2

∣∣Ñ(t) = ñ, X̃(t) = x̃]

≤ (2x+ 1)
∑

z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗s,z′ψs(z
′)

+ (−2x+ 1)ν∗min
c

∑
s

µsps,c.

Thus, we get

D(ñ, x̃) ≤
∑
z∈Y

(2ñz + 1)

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗s,z′ψs(z
′)

+ (−2ñz + 1)
∑
s

µsν
∗
s,z

+ (2x+ 1)
∑

z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗s,z′ψs(z
′)

+ (−2x+ 1)ν∗min
c

∑
s

µsps,c.

Upon arranging terms, we obtain

D(ñ, x̃) ≤
∑
z∈Y

2ñz

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗sz′ψs(z
′)−

∑
s

ν∗s,z


+ 2x

 ∑
z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗sz′ψs(z
′)

− ν∗min
c

∑
s

µsps,c


+

λ+
∑
zZ

∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗s,z′ψs(z
′) +

∑
z∈Y

∑
s

ν∗s,z + ν∗min
c

∑
s

µsps,c

 .

The last of the above three terms can be bounded by a constant, say α1 = 10
∑
s µs. For each

s ∈ S and z ∈ Y let ν̂∗s,z = (µs − 3δs/4)ν∗s,z and ν̃∗sz = (δs/4)ν∗s,z. Further, let ν̂∗ = minc
∑
s(µs −

19

3δs/4)ps,cν
∗ and ν̃∗ = minc

∑
s(δs/4)pscν

∗. Then,

D(ñ, x̃) ≤
∑
z∈Y

2ñz

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̂∗sz′ψs(z
′)−

∑
s

ν̂∗s,z


+ 2x

 ∑
z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̂∗s,z′ψs(z
′)

− ν̂∗
+ α1

+
∑
z∈Y

2ñz

∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̃∗s,zψs(z
′)−

∑
s

ν̃∗sz

+ 2x

∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̃∗s,z′ψs(z
′)− ν̃∗

 . (9)

Consider the following lemma. Its proof is given in Section 9.2.

Lemma 1. Recall the (νs,z)s,z as postulated by the theorem. For Θ = (θs,z)s∈S,z∈Y ∪ (θ), where θ
and θs,z for each s, z are reals, let

f(Θ) =
∑
z∈Y

2ñz

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

θsz′ψs(z
′)−

∑
s

θs,z


+ 2x

 ∑
z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

θsz′ψs(z
′)

− θ
 .

Then,

f
(
(ν̂∗s,z)s∈S,z∈Y ∪ ν̂∗

)
≤ f

(
(νs,z)s∈S,z∈Y ∪ {min

c

∑
s∈S

(δs/4)psc}

)
.

From definition of νs,z, we get that the first term in f(Θ) for Θ = (νs,z)s∈S,z∈Y∪(minc
∑
s∈S(δs/4)psc)

is equal to 0, and, from (8) we have that the second term in it is less than or equal to 0.
Thus, we have that f

(
(ν̂∗s,z)s∈S,z∈Y ∪ ν̂∗

)
≤ 0. From (9) we in turn obtain

D(ñ, x̃) ≤ α1+
∑
z∈Y

2ñz

∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̃∗s,zψs(z
′)−

∑
s

ν̃∗s,z

+2x

∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̃∗s,z′ψs(z
′)− ν̃∗

 .

Fix ε > 0. We now show that there exists a positive integer K such that if x > K or if |ñ|∞ > K
then D(ñ, x̃) ≤ −ε. Upon rearranging terms, we obtain

D(ñ, x̃) ≤ α1 − 2
∑
s∈S

∑
z∈Y:φs(z)∈Y

ν̃∗s,z(ñz − ψs(z)ñφs(z))− 2
∑
s∈S

∑
z∈Y:φs(z)∈Z\Y

ν̃∗s,z(ñz − ψs(z)X)− 2xν̃∗

= α1 − 2
∑
s∈S

∑
z∈Y

ν̃∗s,zws,z(ñ, x)− 2ν̃∗x,

= α1 −max

(
2
∑
s∈S

∑
z∈Y

ν̃∗s,zws,z(ñ, x), 2ν̃∗x

)
.

20

From the definition of the algorithm we get that

D(ñ, x̃) ≤ α1 − xmin
c∈C

∑
s∈S

δs
4
ps,c.

Hence, for any (ñ, x) such that x > (α1 + ε) minc∈C
∑
s∈S

δs
4 ps,c, we have D(ñ, x̃) ≤ −ε.

We also have that

D(ñ, x̃) ≤ α1 − 2
∑
s∈S

δs
4

max
z∈Y

ws,z(ñ, x).

Thus,

D(ñ, x̃) ≤ α1 − 2

(
min
s∈S

δs
4

)∑
s∈S

max
z∈Y

ws,z(ñ, x) ≤ α1 − 2

(
min
s∈S

δs
4

)
max
z∈Y

∑
s∈S

ws,z(ñ, x).

Now suppose that x ≤ α2 , (α1 + ε) minc∈C
∑
s∈S

δs
4 ps,c. Then, if we are able to show that

maxz∈Y
∑
s∈S ws,z(ñ, x)→∞ as |ñ|∞ →∞, then we would have that D(ñ, x̃) ≤ −ε a positive inte-

ger K ′ such that |ñ|∞ > K ′. We now show that, under x ≤ α2, we have
∑
s∈S maxz∈Y ws,z(ñ, x)→

∞ as |ñ|∞ →∞.
Let z∗ ∈ arg maxz∈Y ñz. Then we have∑

s∈S
ws,z∗(ñ, x) ≤

∑
s

(ñz∗ − ψs(z∗) max(α2, ñz∗)

= |S|ñz∗ −max(α2, ñz∗)
∑
s

ψs(z).

which tends to infinity because∑
s

ψs(z
∗) =

∑
s

∑
c

z∗c (1− ps,c) = |S| −
∑
s

∑
c

z∗cps,c

≤ |S| −max
c

∑
s

z∗cps,c ≤ |S| −max
c
z∗c min

c

∑
s

ps,c

≤ |S| − 1

|C|
min
c

∑
s

ps,c < |S|.

Thus, there exist positive constants K and ε such that if x > K or if |ñ|∞ > K then D(ñ, x̃) ≤
−ε.

Let A , {(ñ, x̃) : max(|ñ|∞, x) ≤ K}. Then, using a variant of Lyapunov-Foster theorem,
namely Theorem 8.13 in [37], we obtain that from any state (ñ, x̃) such that |ñ| + x < ∞, the
expected time to return to A, i.e., τA(ñ, x̃) is finite. Further,

T , sup
(ñ,x̃)∈A

τA(ñ, x̃) <∞.

Thus, starting with any state in A, we return to A in a finite expected time. We will be done
if we show that expected time to return to state (0, 0) is also finite. We do this as follows. Fix a
constant β > 0. Since there exists s such that minc ps,c > 0, we have that for any interval of time

21

of size β the probability that no arrival happens in this interval and that a task leaves the system
is finite.

Suppose that system is in a state (ñ, x̃) ∈ A at time t = 0. Now consider renewal times
Ti, i = 0, 1, 2, . . ., where T0 = 0 and for each i > 0, Ti is defined as follows: Ti is equal to Ti−1 + β
if indeed no arrival happens and a task leaves the system in the interval [Ti−1, Ti−1 + β), else Ti is
the first time of return to A after Ti−1. Clearly E[Ti] since T as defined above is finite. Further
probability that a task leaves system in time Ti − Ti−1 is finite, say α. Thus, time for system
emptying after first reaching A can be upper-bounded by sum of K geometric random variables
with rate α. Thus expected time to return to state (0, 0) is finite. Hence, the system is stable.

Now suppose that the system is stable. Then, the necessary conditions can be shown to hold
by the ergodicity of the system, and letting νs,z for each s, z to be the long-term fraction of times
a server s attempts a task in Nz.

9.2 Proof of Lemma 1

Upon rearrangement of terms in the expression of f(Θ) we obtain

f(Θ)/2 = −
∑
s

∑
z∈Y:φs(z)∈Y

θs,z(nz − ψs(z′)nφs(z))−
∑
s

∑
z∈Y:φs(z)∈Z\Y

θs,z(nz − ψs(z′)x)− xθ.

By using the definition of weights ws,z, we obtain

f(Θ)/2 = −
∑
s

∑
z∈Y

θs,zws,z(ñ, x)− xθ ≥ −
∑
s

(
max
z∈Y

ws,z(ñ, x)

)∑
z∈Y

θs,z − xθ.

Thus,

f((νsz)s∈S,z∈Y ∪ {min
c

∑
s∈S

(δs/4)psc})/2

≥ −
∑
s

(
max
z∈Y

ws,z(ñ, x)

)∑
z∈Y

νs,z − xmin
c

∑
s∈S

(δs/4)psc

≥ −
∑
s

(µs − δs/2) max
z∈Y

wsz(ñ, x)− xmin
c

∑
s∈S

(δs/4)ps,c

≥ −1

{∑
s

max
z∈Y

ws,z(ñ, x)(µs − 3δs/4) ≥ x(min
c

∑
s

(µs − 3δs/4)ps,c)

}∑
s

max
z∈Y

ws,z(ñ, x)(µs − 3δs/4)

− 1

{∑
s

max
z∈Y

ws,z(ñ, x)(µs − 3δs/4) < x(min
c

∑
s

(µs − 3δs/4)ps,c)

}
xmin

c

∑
s

(µs − 3δs/4)ps,c

= f ((ν̂∗sz)s∈S,z∈Y ∪ ν̂∗) /2.

Hence, the lemma holds.

9.3 Proof of Theorem 3

Suppose that the sufficient conditions as given in Theorem 1 are satisfied. Then, in the proof of
Theorem 1 we showed existence of a policy such that the system is ergodic. In fact, since we

22

have a strict slack δs > 0 for capacity constraint at each server, using proof of Theorem 1 we can
design a policy for a system which achieves stability even when the server capacities are modified
as µ′s = µs − R, where 0 < R < mins δs. Under such a policy, for each s ∈ S, z ∈ Z, t ≥ 1, let
µs,z(t) represent the long-term fraction of times a server s attempts a task in Nz which has been
attempted t− 1 times in the past. Then, the following hold.

i) λz =
∑
s µs,z(1),

ii)
∑
s µs,z−s (t)ψs(z

−
s) =

∑
s µs,z(t+ 1),

iii)
∑
t≥1

∑
z∈Z µs,z(t) ≤ µs,

iv) ∃s0 :
∑
t≥1

∑
z∈Z µs0,z(t) = µs0 −R, R > 0.

(10)

The inequalities in (10) can be strengthened to achieve positive slack for each server’s capacity,
but (10) as mentioned is sufficient for our purposes. Using existence of (µs,z(t) : s ∈ S, z ∈ Z)
which solves (10), we now show that, for Backpressure(ε) policy, provided ε > 0 has been chosen
small enough, the function L(n) :=

∑
i n(Ai)

2 is a Lyapunov function in the sense that its drift is
negative, bounded away from 0 except for states n with

∑
z nz ≤ N for some threshold N . This

will imply the announced result by the same arguments as in the proof of Theorem 2.
Let n = (nz) be given. For each Ai such that n(Ai) > 0, we pick arbitrarily one point zi in Ai

such that nzi > 0. We then define the projection operator P (z) which maps z to zi if z ∈ Ai. For
z ∈ Ai such that n(Ai) = 0 we say that P (z) is undefined. We shall also consider for each z ∈ Z
the operator

P ts(z) := P (φs(P
t−1
s (z))). (11)

This is defined so long as all the involved projections are defined, i.e. the constructed sequence only
visits sets Ai with n(Ai) > 0. We also let φts denote the application resulting from t applications
of φs.

We now define for each s, z, t, zi the following rates:

νs,zi(1; z) := µs,z(1)1IP (z)=zi ,

νs,zi(t; z) :=

{
µs,φts(z)(t)1IP ts (z)=zi if P ts(z) is defined,
0 otherwise.

(12)

Finally, we define the following rates for all t ≤ T , where ε′ and β are constants to be specified
shortly:

rs,zi(1) :=
∑
z∈Z νs,zi(1; z),

rs,zi(t) :=
∑
z∈Z νs,zi(t; z) + ε′(1 + βt)1Is=s01In(Ai)>0.

(13)

We extend the definition of the rates rs,zi(t) for t > T by induction as follows. First, for s 6= s0 we
let rs,zi(t) = 0. For server s0, we let

rs0,zi(T + 1) :=
∑
s

∑
z:PT+1

s (z)=zi

νs,zi(T + 1; z) + ε′(1 + βT+1) (14)

and for t > T :
rs0,zi(t+ 1) =

∑
j:P 1

s0
(zj)=zi

(1− α)rs0,zj (t). (15)

The functions ψs are all Lipschitz-continuous. Under the assumption (5), it is easily verified that the
functions φs are also Lipschitz-continuous. Let K be such that all these functions are K-Lipschitz-
continuous.

23

It is readily established by induction on t that for all s, so long as P ts(z) is defined, one has

|P ts(z)− φts(z)| ≤ ε
Kt − 1

K − 1
. (16)

Indeed, one has

|P ts(z)− φts(z)| = |P (φs(P
t−1
s (z)))− φts(z)|

≤ |P (φs(P
t−1
s (z)))− φs(P t−1

s (z))|+ |φs(P t−1
s (z))− φts(z)|

≤ ε+K|P t−1
s (z)− φt−1

s (z)|,

and (16) follows by induction.
We now exploit these properties to show that for suitable choices of β, ε′, the previously defined

rates rs,zi(t) verify the following inequalities for all i such that n(Ai) > 0 and thus zi is defined:∑
z∈Ai λz ≤

∑
s rs,zi(1),∑

s

∑
zj :P 1

s (zj)=zi
rs,zj (t)ψs(zj) ≤

∑
s rs,zi(t+ 1)

(17)

The first equation in (17) reads, in view of (12), (13):∑
z∈Ai

λz ≤
∑
z∈Ai

∑
s

µs,z(1),

which holds with equality by (10) i).
The left-hand side of the second equation in (17) reads for t ≤ T :∑

s

∑
zj :P 1

s (zj)=zi

∑
z:P ts (z)=zj

µs,φts(z)(t)ψs(zj) + ε′(1 + βt).

Using the Lipschitz property of ψ, the bound (16) established between P ts(z) and φts(z), and letting
Λ :=

∑
z λz, this is no larger than∑

s

∑
zj :P 1

s (zj)=zi

∑
z:P ts (z)=zj

µs,φts(z)(t)ψs(φ
t
s(z)) + ε′(1 + βt) + Λ(1− α)tεK

Kt − 1

K − 1
.

Indeed, the sum
∑
z µs,z(t) of rates at step t is at most Λ(1 − α)t. This last expression can be

rearranged to give∑
s

∑
z:P t+1

s (z)=zi

µs,φts(z)(t)ψs(φ
t
s(z)) + ε′(1 + βt) + Λ(1− α)tεK

Kt − 1

K − 1
.

In view of (10) ii), the first summation is equal to∑
s

∑
z:P t+1

s (z)=zi

µs,φt+1
s (z) =

∑
s

rs,zi(t+ 1)− ε′(1 + βt+1).

The difference between the right-hand side and the left-hand side of the second equation in (17) is
therefore lower-bounded by

ε′(1 + βt+1)− ε′(1 + βt)− Λ(1− α)tεK
Kt − 1

K − 1
= ε′βt(β − 1)− Λ(1− α)tεK

Kt − 1

K − 1
.

24

Assuming K ≥ 2, β = K + 1, and ε′ = Λε, this difference is at least

Λε(K + 1)tK − ΛεK(Kt − 1) ≥ KΛε[(K + 1)t −Kt + 1] ≥ KΛε.

Letting δ := KΛε, we have in fact shown a strengthening of the second equation in (17), namely:

t ∈ 2, . . . , T and n(Ai) > 0⇒
∑
s

∑
zj :P 1

s (zj)=zi

rs,zj (t)ψs(zj) ≤ δ +
∑
s

rs,zi(t+ 1) (18)

Consider now t ≥ T + 1. The left-hand side of the second equation in (17) verifies∑
zj :P 1

s0
(zj)=zi

rs0,zj (t)ψs(zj) ≤
∑

zj :P 1
s0

(zj)=zi

rs0,zj (t)(1− α),

by the lower-bound of α on the psc. This implies that the announced inequality also holds for t > T .
We now verify that, provided ε was chosen small enough, the constructed rates rs,zi(t) satisfy

the capacity constraints of the servers. For s 6= s0, this is easily verified, as by (10) iii),∑
t

∑
i

rs,zi(t) ≤
∑
z

∑
t

µs,z(t) ≤ µs.

Consider now server s0. We then have

∑
t

∑
i

rs0,zi(t) ≤
∑
z

∑
t

µs0,z(t) +

T+1∑
t=1

ε′(1 + βt) +
Λ(1− α)T+1 + ε′(1 + βT+1)

α
·

Thus by (10) iv) this meets the capacity constraint of server s0 provided

T+1∑
t=1

ε′(1 + βt) +
Λ(1− α)T+1 + ε′(1 + βT+1)

α
≤ R.

This can clearly be achieved by first choosing T such that Λ(1 − α)T+1 ≤ Rα/2, and then ε such
that

T+1∑
t=1

ε′(1 + βt) +
ε′(1 + βT+1)

α
≤ R/2.

It finally remains to prove that the Foster-Lyapunov stability criterion holds for our proposed
backpressure policy. Assume that each server s dedicates capacity

∑
t≥1 rs,zi(t) to jobs of type zi.

This does not exceed servers’ capacities as we just showed. Moreover, in view of (17) and (18),
under this allocation the drift of any n(Ai) such that n(Ai) > 0 reads∑

z∈Ai

λz −
∑
t≥1

∑
s

rs,zi(t) +
∑
t≥1

∑
s

∑
j:P 1

s (zj)=zi

rs,zj (t)ψs(zj) ≤ −Tδ1In(Ai)>0.

For an arbitrary policy, let µi denote the service rate it devotes to those z in Ai, and λ′i denote
the overall arrival rate of jobs with type z in Ai whether from external arrivals or unsuccessful
treatments. The drift for our candidate Lyapunov function L(n) =

∑
i n(Ai)

2 then reads∑
i

(λ′i + µi) + 2n(Ai)[λ
′
i − µi] ≤ Λ + 2

∑
s

µs + 2
∑
i

n(Ai)[λ
′
i − µi],

25

where we used the fact that the overall arrival rate cannot be larger than the exogeneous arrival
rate plus the overall service rate.

Under the allocations
∑
t≥1 rs,zi(t) we just considered, the summation in the right-hand side is at

most −2δT
∑
i n(Ai). Since the backpressure policy we have introduced minimizes this summation

among all feasible policies, it guarantees a drift for the Lyapunov function L of at most Λ+2
∑
s µs−

2δT
∑
i n(Ai). We can therefore rely on Foster’s criterion to deduce that the return time to the

set A = {n :
∑
i n(Ai) ≤ (Λ + 2

∑
s µs)/(δT)} has bounded expectation. We will be done if we

show that the system empties infinitely often. For this, we use the argument similar to that used
in Theorem 2.

Fix a constant β > 0. Since α > 0, we have that for any interval of time of size β the probability
that no arrival happens in this interval and that a task leaves the system is finite.

Suppose that system is in a state n ∈ A at time t = 0. Now consider renewal times Ti, i =
0, 1, 2, . . . ,, where T0 = 0 and for each i > 0, Ti is defined as follows: Ti is equal to Ti−1 +β if indeed
no arrival happens and a task leaves the system in the interval [Ti−1, Ti−1 + β), else Ti is the first
time of return to A after Ti−1. Clearly E[Ti] since T as defined above is finite. Further probability
that a task leaves system in time Ti − Ti−1 is finite, say α̃. Thus, time for system emptying after
first reaching A can be upper-bounded by sum of K geometric random variables with rate α̃. Thus
expected time to return to state 0 is finite. Hence, the system is stable.

9.4 Proof of Proposition 1

We use Theorem 1 to prove this result. We first establish the sufficient condition and then the
necessary condition. For Asymmetric(a) system we have Z = {z′, z′′} where z′c = 1

2 for each c ∈ C,
and z′′c = 1{c = c2}. The flow conservation constraints in Theorem 1 can be given as follows:

λ =
∑
s

νs,z′ , and
∑
s

νs,z′ψs(z
′) +

∑
s

νs,z′′ψs(z
′′) =

∑
s

νs,z′′

Suppose a ≥ 1
2 . There exists an ε > 0 such that λ = 3a(1−ε)

a+1 . It can be checked that (νsz)s,z
where

νs2,z′ = 1− ε, νs2,z′′ = 0, νs1,z′ =
2a− 1

a+ 1
(1− ε), νs1,z′′ =

2− a
a+ 1

(1− ε)

and (δs)s∈S where δs = ε for each s satisfy sufficient conditions of Theorem 1.
Now suppose a < 1

2 . There exists an ε > 0 such that λ = 2a(1 − ε). It can be checked that
(νs,z)s,z where

νs2,z′ = 2a(1− ε), νs2,z′′ = 0, νs1,z′ = 0, νs1,z′′ = (1− ε)

and (δs)s∈S where δs = ε for each s satisfies sufficient conditions of Theorem 1.
The sufficient condition then follows from the proof of Theorem 1 by taking Y as Z.
We now show the necessary condition. From the necessary conditions in Theorem 1, we have

the following:

26

λ =
∑
s

νs,z′ , (19)

(1− a)

2
νs1,z′ +

1

2
νs2,z′ + (1− a)νs1,z′′ = νs1,z′′ , (20)

νs1,z′ + νs1,z′′ ≤ 1, (21)

νs2,z′ + νs2,z′′ ≤ 1. (22)

From (20) we get:

νs1,z′′ =
1

a

(
(1− a)

2
νs1,z′ +

1

2
νs2,z′

)
.

By substituting in (21) this the above expression for νs1,z′′ , we get

νs1,z′ +
1

a

(
(1− a)

2
νs1,z′ +

1

2
νs2,z′

)
≤ 1

Upon simplifying, we get

νs1,z′ ≤
2a

1 + a

(
1− 1

2a
νs2,z′

)
. (23)

Further, we need νs1,z′ to be non-negative. Thus, we need νs2,z′ ≤ 2a.
Substituting (23) in (19) we get

λ ≤ max

(
2a

1 + a

(
1− 1

2a
νs2,z′

)
, 0

)
+ νs2,z′ .

Suppose a ≥ 1
2 . Then, subject to (22) and νs2,z′ ≤ 2a, the right hand side of the above is

maximized when νs2,z′ = 1 and νs2,z′′ = 0. We thus obtain λ ≤ 3a
a+1 . Similarly, if a < 1

2 , then
subject to (22) and νs2,z′ ≤ 2a, the right hand side of the above is maximized when νs2,z′ = 2a
and νs2,z′′ = 0, from which we obtain λ ≤ 2a. Thus, overall, we have λ ≤ min(3a

a+1 , 2a). Hence the
result follows.

9.5 Proof of Proposition 2

We show the result for a general a task-expert system. The result for Asymmetric(a) system then
follows immediately.

Note that the system under random policy is equivalent to the one where pure-type of a task
is revealed upon arrival, i.e., there is no uncertainty in task types. This is true since the random
policy does not use the information of type (pure or mixed). We thus let the pure-type of each
task be revealed upon arrival. Let Xc(t) be the number of tasks in the system of pure-type c. Let
X(t) = (Xc(t))c. For each c ∈ C, the arrival rate into queue Xc(t) is equal to

λc ,
∑
z∈Z

λzcπz.

We first show the if part of the result. Suppose that we have
∑
c∈C

λc∑
s∈S µsps,c

< 1. We use the

fluid limit approach developed in [38, 12, 31]. Roughly, given initial condition X(0) = x, the fluid

27

trajectories of the state processX(t) can be obtained by scaling initial conditions, speeding time, and
then studying the rescaled process; i.e., letting limk→∞

1
kX(0) = x, and studying limk→∞

1
kX(kt).

Using arguments similar to those used in [31], the fluid limits for the number of tasks in each
class can be shown to satisfy the following at almost all times t: for each c ∈ C and Xc > 0 we have

d

dt
Xc = λc −

∑
s∈S

µsps,c
Xc∑
c′ Xc′

. (24)

Define a function L on RC as

L(X) =
∑
c

Xc log

(
Xc

γc
∑
c′ Xc′

)
, (25)

where γc ,
λc∑

s∈S µsps,c
.

Further, by following the arguments similar to [31], if we have that L(X)→∞ and d
dtL(X) ≤ −ε

for all X such that |X| = 1 under fluid limits then the stability of the original system follows. We
show below that both these limits hold.

Using (24) and (25), we obtain

d

dt
L(X) =

∑
c

(
d

dt
Xc

)
log

(
Xc

γc
∑
c′ Xc′

)
, (26)

=
∑
c

(
λc −

∑
s∈S

µsps,c
Xc∑
c′ Xc′

)(
log

Xc∑
c′ Xc′

− log γc

)
, (27)

=
∑
c

(∑
s

µsps,c

)(
λc∑

s∈S µsps,c
− Xc∑

c′ Xc′

)(
log

Xc∑
c′ Xc′

− log γc

)
, (28)

=
∑
c

(∑
s

µsps,c

)
(γc − Yc) log(Yc/γc), (29)

where Yc := Xc∑
c′ Xc′

. Now, (29) is negative and strictly bounded away from zero. This can be

seen as follows. Firstly, all terms in the sum are non-positive. Therefore, it suffices to show that
there exists a δ > 0 such that there always exists a c for which (γc − Yc) log(Yc/γc) ≤ −δ. Since,∑
c Yc = 1 and, for some fixed ε > 0,

∑
c γc = 1− ε, it follows that there exists c such that γc−Yc ≤

−ε. For this c, we thus also have Yc/γc ≥ 1 + ε. Consequently, (γc − Yc) log(Yc/γc) ≤ −ε log(1 + ε).
Let θ = 1/

∑
c γc and γ̂c = θγc for each c ∈ C. Since

∑
c γc < 1, we have θ > 1. Let D(p||q) be

the Kullback-Leibler divergence between two Bernoulli distributions with parameters p and q, i.e.,
D(p||q) = p log(pq) + (1− p) log(1−p

1−q). Now, we can write

L(X) =
∑
c

Xc log

(
θXc

γ̂c
∑
c′ Xc′

)
(30)

=
∑
c

Xc log θ +
∑
c

Xc log

(
Xc∑
c′ Xc′

.
1

γ̂c

)
(31)

=
∑
c

Xc log θ +

(∑
c

Xc

)
D

((
Xc∑
c′ Xc′

)
c∈C

∣∣∣∣∣
∣∣∣∣∣(γ̂c)c∈C

)
(32)

28

which converges to ∞ as |X| grows large.
Hence, the if part of the result follows.
We now show that the system is unstable if

∑
c∈C

λc∑
s∈S µsps,c

≥ 1. We consider the original

system instead of the fluid limits. Consider the following function:

K(X) =
∑
c

1∑
s µsps,c

Xc.

Clearly, K(X)→∞ as X →∞. Define D(.) as in (33), but for K instead of L. Then, we have

1

τ0̄
D(0̄) =

∑
c

λc∑
s µsps,c

,

and for X 6= 0̄, we have

1

τX
D(X) =

∑
c

1∑
s µsps,c

(
λc −

∑
s∈S

µsps,c
Xc∑
c′ Xc′

)
,

=
∑
c

λc∑
s µsps,c

−
∑
c

Xc∑
c′ Xc′

=
∑
c

λc∑
s µsps,c

− 1,

≥ 0.

Thus, the drift is non-negative for all but finite number of states. Further, sinceK(X) is bounded
from below, the maximum change in K(X) upon an arrival or a departure is also bounded, using
Proposition I.5.4 on page 22 in [3], we get the only if part.

9.6 Proof of Proposition 3

We first show the if part. For each t let t + τ(t) be the time at which the first event (arrival or
completion of a response) occurs after time t. Let τn = E[τ(t)|N(t) = n], i.e., given that N(t) = n
at time t, τn is the expected time at which the first event occurs after time t. For example, for
n = 0 we have τn = 1/λ.

Now suppose that λ < 4a/(2 +a). Then, it can be checked that 2−a
2(2−λ)λ < a. Thus, there exists

δ > 0 such (1 + δ) 2−a
2(2−λ)λ < a. Now, consider the following candidate Lyapunov function: for each

n, we have
1

τn
L(n) = (1 + δ)

2− a
2(2− λ)

nz′ + nz′′ ,

where δ is a constant obtained as above.
Let

D(n) = E
[
L(N(t+ τ(t)))− L(N(t))

∣∣N(t) = n
]

(33)

Consider the states n such that nz′ > 0. For these states, we obtain

29

1

τn
D(n) = (1 + δ)

2− a
2(2− λ)

(λ− µs1 − µs2) + (µs1ψs1(z′) + µs2ψs2(z′))

= (1 + δ)
2− a

2(2− λ)
(λ− 2) +

1− a
2

+
1

2
= −δ 2− a

2
< 0.

Now, consider states n such that nz′ = 0 and nz′′ > 0. For these states we have

1

τn
D(n) = (1 + δ)

2− a
2(2− λ)

λ− µs1a < 0.

Since the drift outside of the state (0, 0) is less than or equal to −min(δ(2− a)/2), µs1a− (1 +
δ) 2−a

2(2−λ)λ) < 0, from the Lyapunov-Foster Theorem we obtain that N(t) is positive recurrent if

λ < 4a/(2 + a).
We now show the only if part. Suppose that λ ≥ 4a/(2 + a). Then, there exists δ ≤ 0 such

(1 + δ) 2−a
2(2−λ)λ ≥ a. Thus, drift is non-negative for all but finite values of n. Further, since L(·)

is bounded from below, and since the maximum change in L(·) upon an arrival or a departure is
bounded, using Proposition I.5.4 on page 22 in [3], we establish the only if part.

9.7 Proof of Proposition 4

First, consider the following lemma.

Lemma 2. Under Non-preemptive Greedy policy, the fraction of time server s1 spends in serving

tasks of true type c1 is bounded from below by 1
16
λ(2+λ)

1+λ .

Thus, the maximum capacity available to serve tasks of true type c2 is 1− 1
16
λ(2+λ)

1+λ . In turn, the

system is unstable if λ
2 > a

(
1− 1

16
λ(2+λ)

1+λ

)
. From this the result follows via some simplifications.

We prove the lemma below.
In what follows we assume that queue z′′ is saturated, since forcing z′′ to be saturated only

reduces the time the server s1 spends on queue z′ under Non-preemptive Greedy policy. Further,
note that the quantity of interest is twice the fraction of time server s1 spends in serving tasks of
true type c1. To obtain a bound on this quantity, we separately obtain an upper bound on the
expected length of a busy-idle cycle at queue z′ and a lower bound bound on the expected time s1

spends in serving queue z′ within a busy-idle cycle, and use the renewal reward theorem.
The expected length of a busy-idle cycle at queue z′ can be bounded from above by that of an

alternate system in which server s2 is forced to stay idle while server s1 is serving queue z′′. In
this modified system, the idle time for queue z′ is upper bounded by 1

λ + 1 since the inter-arrival
times are Exponential(λ) and the time server s2 is forced to stay idle is Exponential(1). Further,
the number of arrivals into queue z′ in an Exponential(1) time period is Geometric(λ) distributed.
Thus, at the end of idle period, when both the servers start serving the queue, the backlog in the
queue is 1 + Y where Y is Geometric(λ) distributed. In turn, the expected busy period for queue
z′ is bounded from above by 1+λ

2−λ .

Thus, the expected length of a busy-idle cycle at queue z′ is bounded from above by 1
λ +1+ 1+λ

2−λ .
We now provide a lower bound on the expected time server s1 spends on serving queue z′ within

its busy-idle cycle. At the beginning of the busy period of queue z′, with probability 1 the server

30

s2 is serving queue z′ and server s1 is serving queue z′′. The time it takes for one of the servers to
complete the current service is Exponential(2) distributed. Let Y ′ be the number of arrivals into
queue in this period. Then, Y ′ is Geometric(λ/2) distributed. With probability half, server s1 is
the one who completed first, and the two servers are now working to drain a backlog of 1 +Y . The

average duration for this to terminate is 1+λ/2
2−λ . Thus, 1+λ/2

2(2−λ) is a lower bound on the expected time

server s1 spends on serving queue z′ within its busy-idle cycle.

Thus, the fraction of time s1 spends in serving queue z′ is
1+λ/2
2(2−λ)

1
λ+1+ 1+λ

2−λ
. From this the lemma

follows upon some simplifications, and thus the proposition follows as well.
Some details of simplifications:
To obtain the fraction of time...

1
2

1+λ/2
2(2−λ)

1
λ + 1 + 1+λ

2−λ
=

1
8

2+λ
(2−λ)

2−λ+λ(2−λ)+λ(1+λ)
λ(2−λ)

=
1

8

λ(2 + λ)

2− λ+ λ(2− λ) + λ(1 + λ)
=

1

8

λ(2 + λ)

2 + 2λ
=

1

16

λ(2 + λ)

1 + λ

To obtain stability conditions

λ

2
> a

(
1− 1

16

λ(2 + λ)

1 + λ

)
⇐⇒ λ

2a
−1+

1

16

λ(2 + λ)

1 + λ
> 0 ⇐⇒ 8a−1λ(1+λ)−16(1+λ)+λ(2+λ) > 0

⇐⇒ λ2(8a−1 + 1) + λ(8a−1 − 16 + 2)− 16 > 0 ⇐⇒ λ2(8a−1 + 1) + λ(8a−1 − 14)− 16 > 0

References

[1] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit
problem. In Proceedings of the 25th Conference on Learning Theory, 2012.

[2] M. Alresaini, M. Sathiamoorthy, B. Krishnamachari, and M.J. Neely. Backpressure with adap-
tive redundancy (bwar). In Proc. IEEE INFOCOM, pages 2300–2308, March 2012.

[3] Søren Asmussen. Applied probability and queues. Springer Science & Business Media, 2nd
edition, 2003.

[4] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2):235–256, 2002.

[5] S. L. Bell and R. J. Williams. Dynamic scheduling of a system with two parallel servers in
heavy traffic with resource pooling: asymptotic optimality of a threshold policy. Ann. Appl.
Probab., 11(3):608–649, 08 2001.

[6] Kostas Bimpikis and Mihalis G Markakis. Learning and hierarchies in service systems. Un-
published manuscript, 2015.

[7] Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, volume 31.
Springer Science & Business Media, 2013.

31

[8] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1), 2012.

[9] L.X. Bui, R. Srikant, and A. Stolyar. A novel architecture for reduction of delay and queueing
structure complexity in the back-pressure algorithm. IEEE/ACM Transactions on Networking,
19(6):1597–1609, Dec 2011.

[10] Yuxin Chen and Andreas Krause. Near-optimal batch mode active learning and adaptive
submodular optimization. In ICML’13, pages 160–168, 2013.

[11] Y. Cui, E.M. Yeh, and R. Liu. Enhancing the delay performance of dynamic backpressure
algorithms. IEEE/ACM Transactions on Networking, 2015.

[12] J. G. Dai. On positive harris recurrence of multiclass queueing networks: A unified approach
via fluid limit models. The Annals of Applied Probability, 5(1):49–77, 1995.

[13] M Daltayanni, L De Alfaro, and P Papadimitriou. Workerrank: Using employer implicit
judgements to infer worker reputation. In WSDM, 2015.

[14] Kaito Fujii and Hisashi Kashima. Budgeted stream-based active learning via adaptive sub-
modular maximization. In NIPS’16, pages 514–522, 2016.

[15] Chao Gao, Yu Lu, and Dengyong Zhou. Exact exponent in optimal rates for crowdsourcing.
In ICML’16, pages 603–611, 2016.

[16] Leonidas Georgiadis, Michael J. Neely, and Leandros Tassiulas. Resource allocation and cross-
layer control in wireless networks. Foundations and Trends in Networking, 1(1):1–144, 2006.

[17] John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit allocation indices.
John Wiley & Sons, 2011.

[18] Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-optimal bayesian active learning
with noisy observations. In NIPS’10, pages 766–774, 2010.

[19] J. Michael Harrison. Heavy traffic analysis of a system with parallel servers: asymptotic
optimality of discrete-review policies. Ann. Appl. Probab., 8(3):822–848, 08 1998.

[20] Chien-Ju Ho and Jennifer Wortman Vaughan. Online task assignment in crowdsourcing mar-
kets. In AAAI’12, pages 45–51, 2012.

[21] Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, Drew Bagnell, and Siddhartha S
Srinivasa. Near optimal bayesian active learning for decision making. In AISTATS’14, pages
430–438, 2014.

[22] Bo Ji, Changhee Joo, and N.B. Shroff. Delay-based back-pressure scheduling in multihop
wireless networks. IEEE/ACM Transactions on Networking, 21(5):1539–1552, Oct 2013.

[23] Ramesh Johari, Vijay Kamble, and Yash Kanoria. Matching while learning. CoRR,
abs/1603.04549, 2017.

[24] David R. Karger, Sewoong Oh, and Devavrat Shah. Budget-optimal task allocation for reliable
crowdsourcing systems. Operations Research, 62(1):1–24, 2014.

32

[25] Jon Kleinberg and Mark Sandler. Convergent algorithms for collaborative filtering. In Pro-
ceedings of the 4th ACM Conference on Electronic Commerce, 2003.

[26] Jon Kleinberg and Mark Sandler. Using mixture models for collaborative filtering. In Proceed-
ings of the 36th annual ACM Symposium on Theory of Computing, 2004.

[27] Anurag Kumar. Discrete event stochastic processes: Lecture notes for an engineering curricu-
lum. 2014.

[28] T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6(1):4 – 22, 1985.

[29] Siva Theja Maguluri, Sai Kiran Burle, and R. Srikant. Optimal heavy-traffic queue length
scaling in an incompletely saturated switch. SIGMETRICS Perform. Eval. Rev., 44(1):13–24,
June 2016.

[30] Avishai Mandelbaum and Alexander L. Stolyar. Scheduling flexible servers with convex delay
costs: Heavy-traffic optimality of the generalized cµ-rule. Operations Research, 52(6):836–855,
2004.

[31] Laurent Massoulié. Structural properties of proportional fairness: Stability and insensitivity.
Annals of Applied Probability, 17(3):809–839, 2007.

[32] Laurent Massoulié and Kuang Xu. On the capacity of information processing systems. In 29th
Annual Conference on Learning Theory, New York, United States, June 2016.

[33] A. Mehta and D. Panigrahi. Online matching with stochastic rewards. In IEEE 53rd Annual
Symposium on Foundations of Computer Science, pages 728–737, Oct 2012.

[34] Aranyak Mehta, Bo Waggoner, and Morteza Zadimoghaddam. Online Stochastic Matching
with Unequal Probabilities, pages 1388–1404. 2015.

[35] M. J. Neely, E. Modiano, and C. E. Rohrs. Dynamic power allocation and routing for time
varying wireless networks. In Proc. IEEE INFOCOM, 2003.

[36] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial optimization, vol-
ume 18. Wiley, 1988.

[37] Philippe Robert. Stochastic networks and queues, stochastic modelling and applied probability
series, vol. 52, 2003.

[38] Aleksandr Nikolaevich Rybko and Alexander L Stolyar. Ergodicity of stochastic processes
describing the operation of open queueing networks. Problemy Peredachi Informatsii, 28(3):3–
26, 1992.

[39] Nihar B. Shah, Dengyong Zhou, and Yuval Peres. Approval voting and incentives in crowd-
sourcing. In ICML’15, pages 10–19, 2015.

[40] Virag Shah, Gustavo de Veciana, and George Kesidis. A stable approach for routing queries in
unstructured p2p networks. IEEE/ACM Transactions on Networking, 24(5):3136–3147, Oct
2016.

33

[41] David H. Stern, Ralf Herbrich, and Thore Graepel. Matchbox: Large scale online bayesian
recommendations. In Proceedings of the 18th International Conference on World Wide Web,
2009.

[42] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions
on Automatic Control, 37:1936–1948, 1992.

[43] Tolga Tezcan and J. G. Dai. Dynamic control of n-systems with many servers: Asymptotic
optimality of a static priority policy in heavy traffic. Operations Research, 58(1):94–110, 2010.

[44] Heng-Qing Ye, Jihong Ou, and Xue-Ming Yuan. Stability of data networks: Stationary and
bursty models. Operations Research, 53(1):107–125, 2005.

[45] Lei Ying, Sanjay Shakkottai, Aneesh Reddy, and Shihuan Liu. On combining shortest-path
and back-pressure routing over multihop wireless networks. IEEE/ACM Transactions on Net-
working, 19(3):841–854, June 2011.

[46] Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I. Jordan. Spectral methods meet
em: A provably optimal algorithm for crowdsourcing. J. Mach. Learn. Res., 17(1):3537–3580,
January 2016.

34

	1 Introduction
	2 Problem Setting
	2.1 Single Task Scenario
	2.2 Online Task Arrivals

	3 Optimal Stability
	4 Asymmetric(a) Systems: A Case Study
	4.1 Loss in throughput due to uncertainty in task types
	4.2 Throughput under Random Policy:
	4.3 Throughput under Greedy Policies

	5 Experimental Results
	6 General Feedback Structure
	7 Related Work
	8 Conclusion
	9 Proofs
	9.1 Proof of Theorem ?? and Theorem ??
	9.2 Proof of Lemma ??
	9.3 Proof of Theorem ??
	9.4 Proof of Proposition ??
	9.5 Proof of Proposition ??
	9.6 Proof of Proposition ??
	9.7 Proof of Proposition ??

