
HAL Id: hal-03129396
https://hal.archives-ouvertes.fr/hal-03129396

Submitted on 3 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning Approaches to Early Fault Detection
and Identification in NFV Architectures

Arij Elmajed, Armen Aghasaryan, Eric Fabre

To cite this version:
Arij Elmajed, Armen Aghasaryan, Eric Fabre. Machine Learning Approaches to Early Fault Detec-
tion and Identification in NFV Architectures. NetSoft 2020 - 6th IEEE International Conference on
Network Softwarization, Jun 2020, Ghent, France. pp.200-208, �10.1109/NetSoft48620.2020.9165361�.
�hal-03129396�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395677044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-03129396
https://hal.archives-ouvertes.fr

Machine Learning Approaches to Early Fault
Detection and Identification in NFV Architectures

Arij Elmajed
Nokia Bell Labs
Nozay, France

arij.elmajed@nokia.com

Armen Aghasaryan
Nokia Bell Labs
Nozay, France

armen.aghasaryan@nokia.com

Eric Fabre
Univ Rennes, INRIA

Rennes, France
eric.fabre@inria.fr

Abstract—Virtualization technologies become pervasive in net-
working, as a way to better exploit hardware capabilities and
to quickly deploy tailored networking solutions for customers.
But these new programmability abilities of networks also come
with new management challenges: it is critical to quickly detect
performance degradation, before they impact Quality of Service
(QoS) or produce outages and alarms, as this takes part in
the closed loop that adapts resources to services. This paper
addresses the early detection, localization and identification of
faults, before alarms are produced. We rely on the abundance
of metrics available on virtualized networks, and explore various
data preprocessing and classification techniques. As all Machine
Learning approaches must be fed with large datasets, we turn to
our advantage the softwarization of networks: one can easily
deploy in a cloud the very same software that is used in
production, and analyze its behaviour under stress, by fault
injection.

Index Terms—NFV, virtualization, network management, root
cause analysis, fault identification and localization, Machine
Learning, Max-Likelihood, fault injection, interventional learning

I. INTRODUCTION

By virtualizing the network functions and decoupling them
from hardware appliances and physical locations, the Network
Function Virtualization (NFV) paradigm is a tremendous
opportunity for enhancing networks operation. The possibil-
ity of developing Virtual Network Functions (VNF) using
general-purpose programming languages and running them on
commodity hardware provides a high level of flexibility and
agility, as well as a faster time to market for new services and
upgrades. It enables telecom operators to simplify, rationalize
and develop a sustainable deployment of technical solutions.

In spite of its benefits, NFV also comes with an increase
of complexity at different levels, and raises new challenges,
especially for Network Management, where operators spend a
tremendous amount of their time to ensure the reliability of
the services offered to their customers.

One of the hardest challenges relates to fault and performance
management. The identification of the cause, the location,
and/or the type of network malfunctions that result in a
degraded Quality of Service (QoS) becomes more complex
in these new virtualized environments. For legacy networks,
malfunctions are typically identified by metrics crossing a
threshold configured by some field expert. This generates

alarms which are supposed to pinpoint overload bottlenecks,
faults, and failures. In reality, a malfunction generally results
in cascades of correlated alarms, arising from different network
layers, which renders the identification of the root cause
problematic. Root cause analysis (RCA) and alarm correlation
have been an active research topic for at least two decades.
Virtualized networks make the problem even more difficult
as more resources and additional layers are involved in the
delivery of a service. But they also raise qualitatively new
difficulties. The first one comes from the intrinsic dynamic
architecture of such systems, which are designed to be
constantly reconfigured. This is clearly an obstacle to both
model-based and data-driven (learning-based) approaches to
RCA. The second difficulty relates to the necessity to quickly
identify a malfunction or a service degradation, possibly before
metrics are severely impacted, as a quick detection and isolation
is the key to adaptive resource allocation. Minimizing the
human intervention and reducing the time to recovery are
crucial within the paradigm of dynamic and adaptive networks
realized through network virtualization. While several fault
detection and localization solutions are available when the
service performance and service-level agreement (SLA) are
already jeopardized, here we will focus on early fault detection
before an apparent QoS degradation takes place.

In this paper, we address two central challenges related to
fault management in virtualized networks. One is the early
detection of service degradation, before some metrics are
severely impacted and trigger alarms. Our idea is that the
combination of metrics, and in particular the way they jointly
evolve, can be an early signature of a QoS degradation. The
performance degradation sources we cover are related to typical
resource shortages in virtualized environments, such as CPU
overloads in virtual machines (VM), latency in messages
exchanges, or overloads in disk access. The second challenge
relates to the unavailability of models of the managed systems,
although the (dynamic) topology might be accessible and usable.
In fact, some of the RCA techniques rely on a system model
and develop sophisticated diagnosis algorithms that exploit
the model to infer the hidden fault states from observable
variables. In dynamic virtualized networks such models are
hard to obtain. In contrast, another family of techniques try to
characterize fault situations by adopting a black-box approach,
through a data intensive learning process. These so-called978-1-7281-5684-2/20/$31.00 ©2020 IEEE

Machine Learning (ML) approaches require however labeled
data which are also in general unavailable in sufficient volumes.
ML requires labeled data as a starting point, which is generally
a scarce resource as this means experts need to annotate logs of
failure scenarios. Virtualized networks open a way around this
bottleneck, as the true production software can be deployed in
a controlled environment, where realistic perturbations can be
injected. As we are not interested in severe failures but in yet
"invisible" degradations, one can also imagine injecting such
smooth perturbations in running/production services, which
opens the way to reinforcement learning approaches that would
adapt failure signatures to dynamic changes of architectures.

The contributions of this paper are as follows. We first
propose a methodology based on the deployment of an
experimental platform for virtualized network services enabled
with the automated execution of resource perturbation schemes.
As an example, we deployed ClearWater, a virtualized IP
Multimedia Subsystem (IMS) services over OpenStack, fed
with a traffic generator (SIPp), and executed series of resource
perturbations (CPU, network latency, etc.) at different applica-
tion nodes. Perturbation levels on the platform are carefully
calibrated so that services are not yet impacted, and users do
not yet start disconnecting. We then select the relevant metrics
to collect on this platform, and generate datasets labelled with
the injected perturbations. Raw data are not directly usable as
they exhibit dynamics specific to the current execution, e.g.
they can depend on the current load of the service (the specific
number and activity level of users). We thus examine several
data preprocessing techniques that avoid the model over-fitting
while preserving the signatures of service degradation. Finally,
we compare a family of classical ML approaches, including
a statistical Max-Likelihood estimation, for the detection and
characterization of the injected faults.

The paper is organized as follows. Section II presents the
related work. Section III introduces the experimental setting, the
stress injection approach and the data collection methodology.
Section IV presents our pipeline for data preprocessing and
feature selection. Section V presents the Maximum Likelihood
approach and other ML approaches. Section VI evaluates the
effectiveness of the proposed solutions; we compare our work
to related research using data from different samples and with
different traffic patterns.

II. RELATED WORK

There exist many RCA techniques for fault diagnosis which
can be classified according to different aspects such as problem
requirements, availability of data (size, form, velocity, etc.), or
availability of a formal system representation (model).

Model-based diagnosis approaches take into account the
system behavior and topology to construct an abstraction of
the system in terms of a model on which the fault behaviours
can be explained. Some contributions rely on building fault
propagation models, in [1] authors build a behaviour model
reproduced in different fault scenarios using the tile structure
derived from Viterbi-based diagnosis algorithm. Sanchez et
al. [2] use a self-modelling and multi-layered approach that

captures dependencies between network services in Software
Defined Network (SDN) and NFV context and propose a RCA
module using network topology. Authors in [3] propose an
approach based on Edge-Rank to find the key events that
contribute to a fault and construct a dependency graph with
the correlations among events and metrics, and a detection
graph, to find a path of events that represents a fault. And in
[4], they present a multi-level probabilistic inference model
that captures the dependencies between different services in
enterprise networks and describe an algorithm that uses this
inference graph and service response times measurements for
root cause localization.

Pham et al. [5] use a failure injection approach to construct
a database with failure profiles, then with a Top-K Nearest
Faults query algorithm they recognise a specific fault pattern
and pinpoint the root cause. Authors of [6] use a statistical
fault diagnosis, with Pearson correlation computed pairwise
between neighboring nodes to detect anomalies. It is based on
the fact that the Virtualized Network Functions (VNF) chain
can be seen as a pipeline, where the input of the next network
function of the chain is the output of the one before. These
two works, only provide detection solutions without fault type
identification and localization. One of the non-statistical data
driven approaches uses fault injection techniques to generate
data and applies a Random Forest (RF) algorithm [7] to detect
malfunctions and localize the root cause (one task at a time)
in the context of NFV. Although these two approaches [6]
[7] achieve good level of accuracy, they do not provide any
complexity analysis while using a high number of metrics.
And, they do not address the model parameter optimization
and do not check the robustness of the solution in presence of
different load patterns.

For a joint data-driven diagnosis, authors in [8] combine
ML with Granger causality for temporal correlations between
anomalous values of Key performance indicators (KPIs) in
order to construct a causality graph and localize anomalies
based on a set of graph centrality indices. The authors
show a high detection accuracy and low False Positives
rate, but do not address the tasks of the localization and
identification simultaneously. Authors in [9] propose a fault
management framework for clouds, where they use Hidden
Markov Models (HMM) and two ML clustering algorithms (K-
Nearest Neighbor KNN and K-means) to construct a correlation-
based performance models to detect and recognise anomalies.
Authors in [10] propose an anomaly detection framework for
OpenStack services. This work characterizes nominal operating
modes of each process through clusters of K-means, and define
a process anomaly as a significant deviations from the centroids
of these clusters. The dependency graph of processes is then
used to connect possibly faulty processes. In our work, we
do not make use of the topology in the first place. Rather,
we focus on the joint management of all processes metrics to
detect and localize a malfunction before alarms are produced.

All these state-of-the-art techniques have proposed solutions
for detection and localization separately and without fault type
identification and when the system has already been affected by

faults. Some of these works use data from a specific network
gathered over a long period of time and others used fault
injection approach to generate their data. In our work, we
target a fault injection based approach for early fault detection
(binary classification), localization and identification.

III. EXPERIMENTAL PLATFORM FOR MODEL LEARNING

A. Stimulus-based approach

Faults are rare events which makes difficult to comprehen-
sively learn their impact unless we are provided with rigorous
specification of the system’s faulty behavior. While such
models are not available in cloud-based networks, obtaining
sufficient volumes of labeled data through passive network
monitoring is not realistic neither; this would imply observing
the system for a long time to encounter all types of these rare
events. For these reasons, we choose an interventional approach
which consists in provoking the faulty situations of interest
and "shortening" the waiting time to their natural occurrence.
More specifically, we apply the stimulus-based approach [11]
which consists in methodically applying a series of elementary
resource perturbations in each node of a distributed virtualized
application with the purpose of elucidating causal dependencies
between local and remote states. Here, we aim at discovering
other types of models (statistical and ML models), different
from [11], however we will use the same stimulus-based
approach for a controlled data acquisition.

The solution is to set up an NFV based application in a
private managed cloud environment and to learn its behaviour
through resource perturbations without interfering with other
applications; this environment is called "Sandbox"; in the
present case it is an NFV-based Sandbox. The application
nodes are taken as communicating black-boxes each one relying
on a limited set of computing resources: CPU, memory, disk
Input/Output (I/O), network I/O, etc. Given an input load, the
behavior of an application is then essentially determined by the
quantity of computing and communication resources consumed
by the nodes. We consider therefore any types of faults that
impact the computing and communication resources.

We can see the stimulus as a button that we trigger to
have a system fault each time. In our case, due to the limited
access to the underlying hardware layer, we consider only three
perturbations categories (CPU, Disk I/O, or Network I/O). The
considered faults categories are:

1) CPU stress that means increasing the CPU usage in the
VM using the stress-ng tool1;

2) Disk stress, where the disk usage increases by using the
stress-ng tool;

3) Network stress, in which the network delay increases
using the open source tool tc 2.

B. Test-bed architecture

To generate faults for our solution, we used a test-bed
platform. First we present the telco application which is

1https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
2https://wiki.debian.org/TrafficControl

installed in an open cloud software, OpenStack 3, where the
application nodes are IMS components from ClearWater4 open
source project depicted in Fig. 1. The ClearWater IMS is an
implementation of the IMS core standard [12]. IMS functions

Fig. 1. ClearWater open source project components

are implemented in VMs and are taking full advantage of cloud
computing technology.

• Bono: it is the first point of entry in the IMS core network.
It is responsible for routing incoming SIP transactions to
the IMS registrar server (the Proxy CSCF);

• Sprout: it is a combined SIP registrar and authoritative
routing proxy;

• Dime: it provides two functions:
1) Homestead: provides web interfaces to Sprout for

retrieving authentication credentials and user profile
information;

2) Ralf: provides an HTTP API that both Bono and
Sprout can use to report billable events.

• Vellum: it is used basically to store authentication creden-
tials and profile information;

• Homer: it is a standard XML Document Management
Server (XDMS) used to store multimedia telephony
service settings documents for each user of the system;

• Ellis: it is a web provisioning portal to create subscribers;
• SIPp 5: it is a Load generation tool; creates multiple

SIPp instances each of which emulates a pair of users. It
performs actions in control-plane only. At first we have
ramp-up period of 10 minutes to set-up subscribers load.
Each couple of the created subscribers will try to register
or update the registration every 5 minutes. Then it will
attempt to send an INVITE with a default probability of
16%, and RE-REGISTER with a probability of 16%.

Our platform depicted in Fig. 2 is composed of several
functional blocks:

• Fault catalog: which is the list of perturbations that we
can emulate on the platform;

• Ansible6 orchestrator: which enables us to manage and
execute remotely the perturbations in our platform. The
tests that are executed are organized in a playbook, that
are called “perturbations”;

3https://docs.openstack.org/ocata/fr/install-guide-ubuntu/index.html
4https://www.projectclearwater.org/
5http://sipp.sourceforge.net/
6https://www.ansible.com

Fig. 2. Test-bed architecture

• OpenStack based cloud infrastructure: is our ClearWater
virtual IMS platform;

• Monitoring tools:
1) InfluxDB7 is a time series based database for storing

the metrics collected;
2) Telegraf8 is the SNMP agent used for collecting the

metrics in our VMs;
3) Grafana is our dashboard that we configure to display

the graphs for the metrics that we are collecting.
• Event storage: is a MongoDB9 database used to store the

stimulus start and stop, such a stimulus or a perturbation is
considered as an event with metadata indicating stimulus
name, stimulated metric, and resource type.

C. Fault injection calibration

In contrast with [11], we are interested in early fault
detection, and therefore the perturbations need to be calibrated
in a way to not push the system into an outage mode. The
calibration of the injected perturbations is crucial, and we
performed numerous tests to select the appropriate levels.
Our observation is that too severe perturbations lead to a
collapse of the system: clients start being disconnected and
never manage to reconnect again, so that the metric "connected
users" goes to zero or stabilizes at a low value. By contrast,
too small perturbations could have a non-significant influence
on metrics. We thus selected a single perturbation intensity
for each experiment, slightly below the collapse level, and
guaranteeing at the same time that all collected metrics had
stationary behaviors.

7https://www.influxdata.com/time-series-technical-paper-2/
8https://www.influxdata.com/time-series-platform/telegraf/
9https://www.mongodb.com

We have generated perturbations with three different traffic
patterns: the first one is regular traffic pattern (e.g. day traffic)
with 50k subscribers, the second one represents peak periods
with a 100k subscribers, and the third one with more INVITE
transactions 85% and REGISTER rate of 15%. We have six
different datasets: four datasets are generated with the regular
traffic pattern, one with the high peak, and another one with
more INVITE transactions.

D. Collected metrics

In Machine Leanring, data collection is the most critical step
for building the desired knowledge, about the faulty behaviour
in our context. We collected two types of metrics, some in
the virtualization plane, in the form of resource-related metrics
(CPU, Disk, memory, network, processes), and other in the
application layer, mostly QoS metrics (latency, number of
incoming INVITE/REGISTER). As the application provides
numerous QoS metrics, we had to choose the most appropriate
ones the learning purposes. Stationarity is an important criterion
for metric selection, as the statistical properties should not
change over different periods of time in a given perturbation
scenario. Often, metrics come in a cumulative form (e.g.
number of packets sent), then one has to replace them by their
derivatives to collect instantaneous information and ensure
independence of samples. Several metrics "duplicate" others,
or are highly correlated. We took a single version of them.
Finally, we observed periodic behaviors in data due to the
scenarios executed by the traffic generation software (see
Fig. 3). We rejected this nuisance by sampling our data along
the different phases of these scenarios, at the expense of
augmenting variance.

We end up with around 63K rows of data with 35 features10.
Each line is thus a pair (x, y) where the feature part x =
(x0, x1, ..., x34) gathers our metrics, and the fault class y can
take 13 possible values: either the no fault or a pair <fault-type,
fault-location>:

y ∈ {Normal, CPUBono, CPUDime, CPUSprout,

CPUV ellum, DISKBono, DISKDime,

DISKSprout, DISKV ellum, NetworkBono,

NetworkDime, NetworkSprout, NetworkV ellum}

IV. DATA PREPROCESSING

The early detection of performance degradation in metric
vectors requires a careful analysis of the available data, to
select the right metrics, accommodate nuisances like transient
behaviors, outliers, or the effect of exogenous system load.
It also requires a rigorous experimental methodology, to
avoid biases that could impact detection and classification
performances.

10Data is available upon request

A. Necessity of stationary data

Our fault injection approach consists in perturbing one
resource on a virtual machine, at an appropriate level of severity,
and in collecting metrics over a rather long period of time. We
assume the collected data are stationary, in order to collect a
large number of hopefully independent signatures of a given
perturbation, which then enables a statistical analysis or ML
methods. Too severe perturbations will produce severe service
degradation, resulting in metrics either drastically increasing
or decreasing. For example, the number of connected users
may go to zero, with all traffic metrics. Conversely, too
weak perturbations will be non-detectable. Fig. 3 illustrates

Fig. 3. Samples of available metrics.

samples of some collected metrics, related to numbers of
requests, bytes received, bytes sent (per second), and CPU load.
One can observe that several metrics approximately follow a
Gaussian distribution, as witnessed by Fig. 4. Nevertheless,
their dynamic ranges are extremely different, which requires
a re-normalization of data if we want to handle them jointly.
Not all metrics have such nice behaviors. First, some of them
come in cumulative form (e.g. total number of bytes received),
so they need to be handled under their derivative form (see
also the discussion about experimental biases). Then, there are
numerous outliers, so in our experiments we have discarded data
that were beyond 3 times the standard deviation above/below
the mean value. Other metrics, like the CPU load measurements
(bottom right in Fig. 33), are quantified at the precision of
1%, and exhibit little fluctuations around their mean, hence the
Gaussian approximation for them is far from perfect. We have
also observed metrics with spiky behaviors (typically, variations
of buffer loads) for which the Gaussian approximation would
clearly be inappropriate. Despite the almost Gaussian behavior
of most metrics we have selected, some of them exhibit periodic
pattern. This is quite visible on the Dime and Vellum metrics
(bottom left in Fig. 3). This is due to a 30’ periodic behavior
of the SIPp load generator that plays registration and call
scenarios over its database of users. Our data range over 2
hours, hence 4 periods observed in the data. We have chosen to
ignore this artificial alternation of high and low activity levels,

and considered averaged behaviors over the 2 hours, at the
expense of a larger variance estimate on these data. Similarly,
we have also noticed a sub-period of 5’ in several metrics, still
due to the SIPp activity, that we have also chosen to average
out.

Finally, in some experiments, some metrics are either
unmeasured or almost constant. We have chosen to ignore them
when this is the case. For example, too strong perturbations on
the CPU of VMs can result in almost saturated metrics slightly
below 100%. We consider that this can be easily detected by
a direct observation of the metric. We are rather interested in
weaker perturbations that would not trigger an alarm, and for
which a joint analysis of several metrics would be necessary
to detect the fault. As another example, we have also observed
that latency perturbations in VM communications could result
in a drastic modifications in the statistics of some single metrics
such as the size of cached data in memory. Again, this is then
easily detectable, so we have chosen to ignore such metrics
for the detection of latency perturbations.

Fig. 4. Left: probability distribution for measured latencies at Bono and Sprout.
Right: normalized probability distributions of bytes received per second, by
Bono and by Sprout.

B. Data normalization

The collected metrics have extremely different dynamic
ranges, both due to the nature of the measured quantities
(bits/s, requests/s, CPU load), and due to the current load of
the system. We want to study how metrics jointly evolve in
case of a silent perturbation, without favoring one or another.
We also aim to be insensitive to the “nuisance parameter"
represented by the number of users present in the system.
Therefore, in order to get comparable dynamics, insensitive to
system load, we examine two techniques of normalization of
the selected metrics.

The first normalization technique assumes the data follow
a Gaussian distribution; we center and normalize them in
variance. In doing so, the average activity level is set to zero
(so all information lying in the metric averages is ignored),
and only the correlation between metrics will be analyzed.
This is equivalent to considering the so-called Z-score of data.
Formally, let µ and σ2 be the mean and variance of some
collected metric over 2 hours, we replace each value x by
(x− µ)/σ.

The second normalization technique is slightly less brutal. It
simply consists in resizing the data so that the minimal (resp.
maximal) value of each metric is set to 0 (resp. 1). Formally,

let xmin and xmax be the observed minimal and maximal
values of x over our 2 hours experiment, we replace each x
by (x− xmin)/(xmax − xmin). By contrast with the previous
one, this normalization may preserve information about the
mean and variance of the metric.

C. Metric selection

Which metrics to consider, and how many of them should
we use for early fault detection? Several criteria come into play.
First of all, we select the metrics directly related to the activity
level of both the application (ClearWater) and the virtualization
layer (OpenStack), such as the bytes received and sent by
software components, the numbers of requests, the CPU load
of a VM, etc. We keep also, the metrics reflecting the health
state of the entire system (latency measurements, numbers of
request failures, etc.). As mentioned above, it is important
that these metrics exhibit stationary behaviors. Another sanity
check is that they react to the injected failures. Fig. 5 illustrates
the correlation patterns of the 21 selected metrics (from 35
gathered in the beginning), for two different perturbations.
One can observe that the joint behavior of these metrics is
a signature of the injected fault, and that this information is
preserved by the normalization of data.

Fig. 5. Correlation matrices of 21 metrics for two injected perturbations: a
CPU load on Bono (left), and a latency in communications on Dime (right).

We have performed experiments on the classification of 12
faults (3 fault types over 4 components), using the Extreme
Trees Classifier, fed with z-score data. Fig. 6 sorts selected
metrics according to their influence in the classification decision.
When some of them (the top 17) are simultaneously used, the
classification accuracy is almost perfect.

D. Risks of experimental biases

Some metrics exhibit non-stationary behaviors and their
successive samples are not independent (e.g., see Fig. 7, left).
We have chosen not to model this memory effect, and assume
independence of samples. Our experimental data thus collect
samples over a 2 hours period for each injected perturbation.
The data for training and testing belong to different samples

Fig. 6. Gini influence of metrics for the XTC classifier.

generated in different period of time. If metrics with memory
are used, they can reproduce some kind of timing information,
that would sign the moment at which data were collected. This
information remains even if data are normalized. We have
performed experiments with fake metrics, corresponding to
samples of a Brownian motion, centered and re-normalized in
variance (see Fig. 7, right). As the number of such fake metrics
augments, the fault classification performance increases, and
is almost perfect with simply 10 Brownian motion samples.
Our interpretation is that these synthetic metrics with memory
jointly form a time vector that uniquely identifies the moment at
which experimental data were collected. It is therefore crucial
to reject non-stationary metrics, that exhibit a memory effect.

Fig. 7. Left: a metric with memory (buffered memory on Dime). Right: a
forged fake metric, as a Brownian motion sample.

V. APPROACHES FOR EARLY FAULT LOCALIZATION AND
IDENTIFICATION

We choose four different approaches. We first handpick
Random Forest (RF) because several previous contributions
reported a good accuracy in detecting and identifying service
degradations. We want to check whether RF still performs
well for soft degradations, where one only collects preliminary
symptoms. The second selected approach is Extreme Gradient
Boost (XGBOOST) as one of the most popular recent clas-
sification techniques. It solved many complex problems, and

many Kaggle competitions were won using this algorithm. The
third one is a classical statistical approach, Max-Likelihood
algorithm, assuming metrics follow a Gaussian (multi-valued)
distribution. Max-Likelihood exploit the correlation patterns
between features/metrics which supposedly form different
signatures for our fault classes. It provides the minimal error
classifier, if the collected samples are independent and follow a
Gaussian law. Finally, the fourth method, K-Nearest Neighbors,
it is chosen because it is suitable for our data velocity and was
proven to achieve a good accuracy in similar problems. For
the implementation, we use Python scikit-learn library for RF,
KNN and XGBOOST, and Matlab for Max-Likelihood.

A. First approach: Random Forest

The general idea is to rely on an ensemble of decision
models to improve accuracy. RF [13] is a supervised learning
algorithm that generates and merges several decision trees into
one forest, which enhance the accuracy of the model. For each
decision tree in the forest a random sample of data is chosen
and at each split a subset of features are randomly chosen to
avoid over-fitting and minimize multicollinearity. We find the
best split point and split it to daughter node using a method
for best split (Gini index or entropy) until we reach the nodes
that are too small to be split called leaves. Then when we get
all the trees, we classify using the highest voted class among
all the estimators.

For the RF approach, we need to tune the best hyper-
parameters (The parameters which can be defined by the user
before starting training the model), in particular the number
of estimators (trees) and the maximum depth for a tree ;
because more trees imply more computational costs, and the
improvement is minimal after a certain number of trees, so
we need to find the optimal number. We compare between
two algorithms as shown in Fig. 8 : Grid search algorithm
and Random search [14].The first method tries every single
combination of hyper-parameters from a range of values and the
latter simply tries random combinations of hyper-parameters
from a range of values to find an optimal solution for a
model through Cross Validation (CV), avoiding over-fitting.
We choose K-fold the most popular CV method with k=3 (k:
the number of groups to which the data will be split). For
the implementation, we set 20 iterations, each one trying a
new combination of hyper-parameters: We choose to use the

Fig. 8. Comparison between two hyper-parameter tuning approaches

Random search algorithm because it has a better accuracy and a

faster convergence. The optimal values obtained are 29 for the
maximum depth of a tree and 872 for the number of estimators
in the forest. It should be noted that RF preprocessing is not a
necessary step, as this algorithm is less sensitive to data scaling
then other approaches.

B. Second approach: Extreme Gradient Boost

The Extreme Gradient Boosting (XGBOOST) [15] is also
a supervised ML algorithm, but instead of training models
separately like RF, it trains sequentially, it has a more
regularized formalism to avoid over-fitting; The first weak
tree based classifier uses all the observations, it computes
the residuals (the difference between the predictions and the
actual values) and updates weights for incorrectly predicted
observations. Then, for the second decision tree the observation
with the maximum weights will be selected to construct the
model. We will apply the same procedure by modifying weights
for wrongly classified samples. So, we will iterate sequentially
until constructing the n-th decision. Finally, all of these weak
learners are combined to get a strong weighted prediction.

C. Third approach: Max-Likelihood classification

The Max-Likelihood classification is a classical statistical
approach with sound mathematical foundations for its decision
rule. We assume that all the features are normally distributed
and we estimate the probability that a given observation belongs
to a specific class; the class yi with the highest computed
likelihood is assigned to the observation X.
Each sample will be associated with a class (a concatenation
between type and localization). We implement Logarithmic
Max-Likelihood (`) : a supervised classification by calculating
the following function for each observation vector in the data-
set :

Log-likelihood
= (X − µi)

T Σ−1
i (X − µi) + log(det(Σi)) +Nilog(2π)

where µi is the mean and Σi the correlation matrix of random
vector X in class i (recall that data are normalized, so the
covariance is actually a correlation), and Ni the dimension of
the data in class i.

The proposed approach was initiated by the visualization
of the correlation matrices of each class yi. It is observed
as expected that the correlations between features change
depending on the classes. We take the example of features
dependencies difference between two classes : CPU_Bono,
Network_Dime. The blocks of features are highly correlated
in the data Network in Dime perturbation around one value
and for the CPU Bono the blocks correlation are around 0.5
as depicted in Fig. 5.

D. Fourth approach: K-Nearest Neighbors (KNN)

KNN [16] is a supervised non-parametric ML algorithm
used for pattern recognition and intrusion detection systems;
it is based on feature similarity measure. Given N training
vectors, it identifies K nearest neighbors for vectors, then using

a voting system it finds the class to which a given vector will
be associated. We choose to use this approach since our dataset
is not so voluminous after the removal of noisy features. One
crucial step when using KNN is to choose parameter K, if K
is too low, it will bias the results and if it is too high it will
increase complexity. So we tuned the hyper-parameter to find
the optimal K value using Randomized search and we found
that best value is 15 nearest neighbors.

VI. RESULTS AND COMPARISON OF APPROACHES

We show some experimental results to demonstrate the
effectiveness of our approaches. We first tried to train models
with 70% for train and 30% test, but it seems to be not realistic
and not very robust methodology for that reason we choose
to train our models on a mixture of datasets from different
traffic patterns execution with regular traffic pattern (50k
subscribers), pattern with higher ratio of INVITE (85% ratio
of Invite/Register) and high traffic pattern (100k subscribers).
And then the test was carried out on the dataset obtained from
a distinct execution with a regular traffic pattern.

A. Fault detection

We detect here whether a fault has occurred or not by
recognising preliminary symptoms; it is a binary classification.
As shown in Table I, we compare between the four described
approaches using three performance indicators: Precision,
Recall and AUC score (Area Under Curve) can be understood
as a measure of the probability that the model will classify a
random positive example over a random negative example:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP : True Positive, FP: False Positive, and FN: False
Negative.

TABLE I
DETECTION PERFORMANCE WITH DIFFERENT ML ALGORITHMS

Algorithms/Performance Precision Recall AUC score
RF 93% 94% 99%

XGBOOST 93% 93% 91%
Max-Likelihood 98% 98% 84%

KNN 89% 89% 96%

All approaches have a very good Precision and Recall
around 90%, and away from traditional ML algorithms, Max-
Likelihood classifier performs also as good as the other
approaches. Although, it is important to assess the binary
classification using AUC score, since it tests the efficiency
of a binary classifier on average across a range of possible
decision thresholds. The results obtained with RF, XGBOOST
and KNN with an AUC score above 90% that means that the
three algorithms are able to distinguish between normal and
faulty classes, Max-Likelihood AUC score is 84% less than the
top three classifiers have also a good discrimination capacity

to distinguish between classes with faults and normal. So it is
an easy task for the ML algorithms to recognise faulty patterns
and normal behaviour especially if the preprocessing part is
done correctly.

B. Identification and localization of faults

For the fault localization and identification task, we will
evaluate the classification performance between the described
approaches using Precision, Recall and F1-score since it is
a harmonic mean of Precision and Recall and it is useful to
evaluate if we have imbalanced classes (our samples per class
are not even).

TABLE II
FAULT LOCALIZATION AND IDENTIFICATION PERFORMANCE WITH

DIFFERENT ML ALGORITHMS

Algorithms/Performance Precision Recall F1-score
RF 82% 82% 81%

XGBOOST 81% 81% 80%
Max-Likelihood 44% 43% 43%

KNN 73% 73% 72%

As illustrated in table II, the two highest performance
values belong to RF and XGBOOST with 82% and 81% of
Precision and Recall. Then, we have KNN with a Precision,
Recall of 73% and a F1-score of 72%, it has a performance
which can be enhanced, since KNN is an algorithm that can
suffer from a phenomenon called "dimensionality curse": data
dimensions can affect badly algorithm performance. Max-
Likelihood classifier have the worst performance, that can be
explained by the data size. There is a huge gap between results
obtained for detection using Max-Likelihood classifier and
results for fault identification and localization. It is interpreted
by the fact that some fault patterns are quite similar and this
can lead to prediction errors. For the four approaches, Precision
and Recall are equal, meaning that an equal amount of users
has been classified as False Positives and as False Negatives.
For the learning time, the RF took 59 second since we are
using 872 trees, 24 second for XGBOOST, 3 second for KNN
and the longest one was Max-Likelihood with 1 minute and
40 seconds.

We take a closer look to the classification accuracy for each
class using confusion matrix.

Fig. 9 depicts the confusion matrix of the RF classifier. Lines
represent injected faults, columns stand for detected faults. We
first have CPU faults (top left), then Disk faults (center), and
Network faults (bottom right), and within each block of 4,
locations range over components Bono, Dime, Sprout and
Vellum. On the diagnonal, and below percentages, quantities
A/B stand for the number of cases correctly recognized over
the total number of cases. Off the diagonal, the single number
A stands for the number of wrong classification (for the same
B, constant on a line).

RF classifies well almost all the classes except the latency
in Vellum and Dime; this is explained by the fact that the
two perturbations have a close pattern and a similar impact

Fig. 9. Confusion matrix for RF

on our NFV platform, since Dime and Vellum are two highly
correlated VNFs in the platform. The RF is the best classifier
for this task since number of trees was tuned to find the optimal
value, but with a large computational cost during runtime as a
drawback.

XGBOOST and RF has almost the same accuracy for each
class and the same misclassified classes, which can be explained
by the fact that the two approaches are tree based algorithms.

VII. CONCLUSION AND FUTURE WORK

This work demonstrates that the joint use of performance
metrics enables the early detection, identification and location
of faults in virtualized networks, before QoS is impacted.
One can train classifiers to recognize these fault signatures by
injecting gentle perturbations in the network, at levels that do
impact too much services and nevertheless enable the learning
techniques to grab sufficient information.

We have trained our ML models on a mixture of datasets
obtained with different load levels and protocol usage patterns,
in order to increase robustness to nuisance parameters. The
evaluation was performed on a distinct dataset with a fixed
load level. RF and XGBOOST were best to recognize different
types of fault injections such as CPU exhaustion, excessive
disk I/O, and network latency. They show excellent scores and
resist well to different traffic patterns. This suggests that such
approaches combining gentle fault injection and learning could
be deployed online, in production services.

Despite these early promising results, we need to further
investigate the robustness properties and the generalization
of the proposed methods. For example, the selection of
metrics, the necessary preprocessings (e.g. ouliers removal)
and normalization of data, the calibration of injected faults, the

resistance to traffic loads or to user profiles are important to get
good classification levels, and still need further investigation.
We also assumed that all collected samples were independent,
while Markov models could possibly better account for memory
phenomena in such systems. Nevertheless, the present work
underlines that the joint behavior of multiple continuous metrics
is already quite informative, as opposed to a more traditional
per-metric alarm generation approach.

We plan to extend our work by building another statistical
model to express the correlation between VNFs and resources,
by exploiting the topological structure of the relationships
between the VNF components. We also plan to use this
stimulus-based approach on a Docker based platform and test
our model.

REFERENCES

[1] A. Aghasaryan, C. Dousson, E. Fabre, A. Osmani, Y. Pencole, "Modeling
Fault Propagation in Telecommunications Networks for Diagnosis
Purposes," World Telecommunication Congress, September 2002.

[2] J.M. Sanchez Vilchez, I. Grida Ben Yahia, N. Crespi, "Self-Modeling
based Diagnosis of Services over Programmable Networks," 2nd confer-
ence on Network Softwarization (Netsoft2016), June 2016.

[3] Q. Zhu, T. Tung, Q. Xie, "Automatic Fault Diagnosis in Cloud
Infrastructure",IEEE International Conference on Cloud Computing
Technology and Science, 2013.

[4] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D.A. Maltz, M. Zhang,
"Towards Highly Reliable Enterprise Network Services Via Inference of
Multi-level Dependencies," SIGCOMM’07, August 27–31, 2007.

[5] C. Pham, L. Wang, B. Chul Tak, S.Baset, "Failure Diagnosis for
Distributed Systems using Targeted Fault Injection," Transactions on
Parallel and Distributed Systems 2016.

[6] D. Cotroneo, R. Natella, S. Rosiello, "A Fault Correlation Approach To
Detect Performance Anomalies in Virtual Network Function Chains,"
IEEE 28th International Symposium on Software Reliability Engineering,
2017.

[7] C. Sauvanaud, K. Lazri, M. Kaaniche, K. Kanoun, "Towards Black-
Box Anomaly Detection in Virtual Network Functions," 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops, 2016.

[8] L. Mariani, C. Monni, M. Pezze, O. Riganelli, R. Xin, "Localizing Faults
in Cloud Systems," IEEE 11th International Conference on Software
Testing, Verification and Validation 2018.

[9] B. Sharma, P. Jayachandran, A.Verma, C.R. Das, "CloudPD: Problem
Determination and Diagnosis in Shared Dynamic Clouds," IEEE 43rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops, 2013.

[10] T. Niwa, Y. Kasuya, T. Kitaha, "Anomaly Detection for OpenStack
Services with Process-Related Topological Analysis," 13th International
Conference on Network and Service Management, 2017.

[11] A. Aghasaryan, M. Bouzid, D. Kostadinov, "Stimulus-based Sandbox
for Learning Resource Dependencies in Virtualized Distributed Applica-
tions," 20th Conference on Innovations in Clouds, Internet and Networks
(ICIN) 2017.

[12] 3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; IP Multimedia Subsystem (IMS); Stage 2
(Release 16)

[13] L. Breiman, "Random Forests," Machine Learning, 45(5–32), 2001.
[14] J. Bergstra, Y. Bengio, "Random Search for Hyper-Parameter Optimiza-

tion", Journal of Machine Learning Research 13 (2012) 281-305.
[15] T. Chen, C. Guestrin, "XGBoost: A Scalable Tree Boosting System,"

KDD ’16, August 13-17, 2016.
[16] P. Cunningham, S.J. Delany, "k-Nearest Neighbour Classifiers," Technical

Report UCD-CSI-2007-4, March 27, 2007.

