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14

One standard method to capture data for phenological studies is with15

digital cameras, taking periodic pictures of vegetation. The large vol-16

ume of digital images introduces the opportunity to enrich these stud-17

ies by incorporating big data techniques. The new challenges, then,18

are to efficiently process large datasets and produce insightful infor-19

mation by controlling noise and variability. On these grounds, the20

contributions of this paper are the following. (a) A histogram-based21

visualization for large scale phenological data. (b) Phenological met-22

rics based on the HSV color space, that enhance such histogram-based23

visualization. (c) A mathematical model to tackle the natural variabil-24

ity and uncertainty of phenological images. (d) The implementation25

of a parallel workflow to process a large amount of collected data effi-26

ciently. We validate these contributions with datasets taken from the27

Phenological Eyes Network (PEN), demonstrating the effectiveness28

of our approach. The experiments presented here are reproducible29

with the provided companion material.30
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1. Introduction32

Plant phenology consists of the study of cyclical events in the vegetation lifecycle and33

the correlation of these events to external factors such as climate change Alberton et al.34

(2017) Walther et al. (2002) Morisette et al. (2009). In this field, scientists build histori-35

cal data that allows them to identify patterns in plant behavior. The goal varies from a36

behavioral comparison of many years of observation Chmielewski and Rötzer (2001) to37

a correlation between the dataset information against external data such as atmospheric38

gas exchange HE et al. (2009). Additionally, phenology provides means for long term39

monitoring of a vegetation site, particularly for vast forests. With phenological analysis,40

it may be possible to detect anomalies such as deforestation, fire, and flooding in a remote41

site, as well as monitor vegetation recovery Alberton et al. (2017).42

Phenological studies use features captured from the target vegetation as data sources.43

Sensors capture relevant information in a periodical fashion. The features are then ana-44

lyzed to extract metrics that summarize the state of vegetation at a specific point in time.45

Further studies take advantage of such metrics to track vegetation changes over time46

Graham et al. (2009). One example of this strategy is NASA’s MODIS project Zhang et al.47

(2003), where two satellites capture data in various groups of wavelengths. The Normal-48

ized Difference Vegetation Index (NDVI) has been used in conjunction with MODIS data49

to detect the presence of vegetation and evaluate its behavior Pettorelli et al. (2005), as50

well as provide remote monitoring of vegetation sites Beck et al. (2006). Although ef-51

ficient, these specialized sensors are expensive for data acquisition. NVDI requires, for52

instance, that images contain visible to infrared light. This cost makes NVDI inaccessible53

for small and medium scale studies.54

The usage of digital camera imagery, such as the example of Phenocam Richardson55

(2018), is a more accessible alternative for the analysis of phenological data. Previous56

studies Yan et al. (2019); Richardson et al. (2009); Sonnentag et al. (2012); Graham et al.57

(2009) show that it is possible to extract relevant metrics from pictures, identifying vegeta-58

tion and phenological phases. The three color components (red, green, and blue) of each59

pixel are frequently the origin of the phenological metrics. Examples of RGB-derived60

metrics include 2G-RGBi Bater et al. (2011); Ide and Oguma (2010), the Green (gcc) and61

Red Chromatic Coordinates (rcc), and the Excess Green (ExG) Sonnentag et al. (2012).62

Most analysis compute the average of the metrics, such as the following for gcc and rcc:63

gcc
mean =

∑n

i=0

Gi

Ri+Gi+Bi

n
(1)

rcc
mean =

∑n

i=0

Ri

Ri+Gi+Bi

n
(2)

where Ri, Gi and Bi are the red, green and blue components (respectively) of a given pixel64

i, and n is the number of pixels in the input image (or the region of interest of the image).65

Figure 1a depicts the mean gcc and rcc metrics of a deciduous broad-leaved forest in66

Japan as a function of time for one year. Such kind of plot enables one to correlate the high67

and low values to seasonal changes in the environment such as the green-up in spring and68
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senescence in the autumn Richardson et al. (2009). For example, we can see that there is69

a significant increase in the gcc values during spring (green-up phase around day 165),70

while rcc reaches its peak value in the autumn, with vegetation senescence (around day71

295). The Figures in the bottom (1c, 1d, 1e, 1f) represent the original pictures taken at72

days 50, 165, 295, and 345 to illustrate typical views of those periods of the year.73
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(a) Average gcc and rcc values for TKY (2006).
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Figure 1: Examples illustrating gcc and rcc-based metrics alongside four images.

Using average values of phenological metrics to depict vegetation behavior is very74

common Richardson et al. (2009); Sonnentag et al. (2012) but poses attenuation and accu-75

racy problems. Averaging may attenuate essential nuances in the phenological metrics76

that could be vital for understanding the natural changes of phenophases. Accuracy77

problems may arise as shown in the example of Figure 1a, where we see that both gcc and78

rcc values present some variability from one day to the other. This variability happens79

because of noise in the source images, which can be the result of scene illumination shifts80

from one day to the other, shadows, obstruction of the camera lens, among others. Exist-81

ing methods already tackle this variability problem. For example, Sonnentag et al. (2012)82

employs a sliding window and 90 percentile selection for noise reduction, but at the cost83

of temporal resolution. Another method includes the selection only of the midday image84

for each day Richardson et al. (2009), a frequent choice Leite et al. (2016), but disregarding85

the rest of the many potentially useful images captured per day.86

Alternative methods based on histograms, such as PhenoVis’ Chronological Percent-87

age Map (CPM) Leite et al. (2016), employ stacked bar plots as shown in Figure 1b. Each88

vertical line has a stack of 20 rectangles whose height corresponds to the value of his-89

togram bins, one for each interval of gcc (represented by the colors). Since there is one90

stacked bar for each day, we can observe the changes of the histogram along time, a piece91

of information much more precise than the average gcc (as in Figure 1a). The tool still92

lacks a mathematical model to smooth noise, and an appropriate palette to reflect colors93

from input images.94
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Contribution95

We strive to build on the concept of CPMs to provide a framework for phenological96

analysis. Our solution tackles the visualization, accuracy, and reliability of the dataset97

information and computational scalability. (a) We incorporate improvements to the CPM98

visualization of PhenoVis, such as mapping colors from the input dataset to define the99

color palette of the final CPM. (b) We also propose three new phenology metrics based100

on the HSV color space while exploring how they depict vegetation phenophases using101

the CPM visualization. Regarding the reliability and accuracy of the dataset information,102

(c) we propose a mathematical model that derives metrics by assigning weights to a set of103

images in a given day, in order to smooth out the interference caused by external factors104

such as shadows, insects or condensation in the camera lens. Finally, (d) we propose105

a parallel strategy for our data analysis workflow, accelerating the analysis loop while106

incorporating multiple years and metrics at a time.107

The paper is structured as follows. Section 2 details the contributions of our work:108

visualization, accuracy, and reliability of the dataset information and computational scal-109

ability. Section 3 presents the results of our method in the visualization, color represen-110

tation, variability control, and uncertainty level measurement, while also discussing the111

scalability of our proposed workflow with performance analysis. Finally, Section 4 con-112

cludes the paper with a discussion about the obtained results.113

2. Materials and Methods114

We describe in the following Subsections the methods we envisioned in our work to115

tackle uncertainty, improved visualization, and computational scalability.116

2.1. New CPM color mapping enabling color-inspired phenology metrics117

Chronological Percentage Maps from PhenoVis Leite et al. (2016) have a fixed color118

palette, being incapable of representing the same colors that are in the original pictures.119

This inflexibility may lead to misinterpretation of the resulting CPM. Improving the se-120

mantics of the color palette can increase the comprehension of the data Lin et al. (2013).121

We enhance the CPM to allow for an arbitrary color palette, enabling color definition for122

each bin in execution time. With this flexibility, the enhanced CPM depicts histograms123

with the same colors as the original pictures. Figure 2a depicts an example of the gcc dis-124

tribution through the year of 2006 from the Takayama deciduous broad-leaved forest site125

(TKY, 36º 08’ 46.2" N, 137º 25’ 23.2" E) Nagai et al. (2018). We see that colors used to depict126

each stacked histogram correspond directly to the colors from the pictures, as shown in127

the five pictures of days 90, 130, 220, 300, and 340 of that year. This mapping improves128

the reasoning process and the correlation to the input dataset by providing an apparent129

reference to the original data. As shown in Figure 2a, we can see five major regions of130

distinct colors along the span of the year: mostly grayed-out, from day 0 to day 120; tran-131

sition phase around day 130; peak greenness at around day 220; vegetation senescence132

around day 300; and a cyclical return to the grayed-out state at day 340.133

With color mapping flexibility, many choices exist to determine the colors for the134

CPM. As colors influence the perception of the data analyst, we propose four different135

phenology metrics for the CPM visualization in two groups: three HSV-based metrics,136
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(a) Enhanced color mapping for the CPM.

(b) Day 90 (c) Day 130 (d) Day 220 (e) Day 300 (f) Day 340

Figure 2: CPM of the gcc (TKY, 2006), with a enhanced color mapping, matching the pictures.

which are inspired by the HSV (Hue-Saturation-Value) color space, and one gcc-based137

metric. The HSV-based metrics generate a more precise histogram visualization, consid-138

ering the color distribution of the original digital images. The gcc-based metric, on the139

other hand, addresses the visualization issues that were pointed out in the original Phe-140

noVis Leite et al. (2016) study, in which the gcc distribution visualization lost the relation-141

ship with the source dataset by using a fixed color palette. For each metric, we generate142

histograms with the distribution of values for the CPM representation. We also remove143

irrelevant pixels, such as those depicting the sky or an observation tower, by masking144

images and selecting only the regions of interest.145

HSV-based146

The HSV (or HSL) color space is an alternative to representing colors without resort-147

ing to RGB values, which components are known to be deeply correlated Cheng et al.148

(2001); Pietikainen et al. (1996). Colors in the HSV color space have three components:149

hue (H), saturation (S), and value or luminance (V/L). By using the HSV color space to150

extract metrics from vegetation images, we expect to enhance visualization by present-151

ing a more meaningful separation of color components, which should, in turn, allow for a152

better distinction of vegetation phenophases. The proposed HSV-based metrics are called153

HSV_H, HSV_Mean and HSV_Mode, as depicted in the three CPMs shown Figure 3 com-154

puted with daily images taken at noon, for simplicity. The differentiating factor among155

each metric is how they determine the colors to represent histogram bins.156

The HSV_H histogram consists of the distribution of hue (H) values of the pixels in157

the image. Each histogram has 360 bins (the number of possible values for H), and the158

resulting CPM includes the sequence of calculated histograms. HSV components define159

the color of each histogram bin and are given by:160

Hb = b Sb = 1 Vb = 1 (3)
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Figure 3: CPMs for the HSV_H (top), HSV_Mean, and HSV_Mode metrics (TKY, 2006).

where Hb, Sb and Vb are the HSV components that define the color of the b histogram161

bin. The HSV_H strategy generates vibrant colors. It enhances the perception of color162

distribution in the CPM because we set the maximum value (100%) for S and V, for every163

histogram bin. While this strategy depicts the vegetation green-up and senescence very164

clearly, the choices for S and V values sacrifice the dataset color representation since it165

employs saturated colors, making it unsuitable for any correlation with the input images.166

The other HSV-based metrics solve this problem.167

The HSV_Mean metric computes the distribution of H values of images (as done pre-168

viously), while also accumulating the S and V values of all the observations, grouped by169

bins. By accumulating the S and V components, we can then calculate the mean value of170

S and V of all the pixels classified in a given H bin. The HSV_Mean metric, thus, provides171

the same color distribution as the HSV_H, but with a more accurate color palette. The172

color of a histogram bin comes from three values. The bin’s H component, the average173

of all the S values of pixels included in that bin, and the average of all the V values of174

pixels included in that bin. Mathematically, the color of the histogram bins defined by175

the HSV_Mean metric is given by:176

Hb = b Sb =

∑Nb

i=0
Sbi

Nb

Vb =

∑Nb

i=0
Vbi

Nb

(4)

where Hb, Sb and Vb are the HSV components of color for a given b bin; Sbi
and Vbi

are the177

S and V components of the ith pixel classified in the b bin; and Nb is the total number of178

pixels categorized in the b bin.179

The HSV_Mode metric follows a similar path of the previous metric since we also use180

the S and V values from the observations of each H bin to compute the resulting color.181

Instead of calculating the mean, however, we calculate the mode of the observations by182

building 10-bin histograms of S and V values for every bin. After building the histograms,183

we take the interval with most observations for S and V and use these components to184
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color the bin for the main histogram. The colors computed by HSV_Mode metric are185

given by:186

Hb = b Sb = SMob Vb = VMob (5)

where SMob and VMob are the mode of S and V of pixels classified in the b bin.187

GCC-based188

Our gcc-based metric is an extension of the gcc based visualization introduced by Phe-189

noVis. This metric strives for using the Green chromatic coordinate as the base metric190

to identify phenophases, while also using information from the source images to keep191

the CPM representation resembling the original dataset. The histogram of the Gcc_Mean192

metric contains 100 bins. For every bin in the histogram, we accumulate the RGB com-193

ponents of all the pixels classified in that bin. The average of these RGB components194

defines the color assigned to the corresponding bin. As a consequence, alongside the gcc195

histogram, we have the mean RGB components of pixels that contributed to each bin. We196

compute the RGB components of each bin’s color as follows:197

Rb =

∑Nb

i=0
Rbi

Nb

Gb =

∑Nb

i=0
Gbi

Nb

Bb =

∑Nb

i=0
Bbi

Nb

(6)

where Rb, Gb and Bb are the R, G and B components which form the RGB color for a given198

b bin; Rbi
, Gbi

and Bbi
are the RGB components of the ith pixel in the b bin; Nb is the number199

of pixels that were categorized in the b bin. Figure 4 shows a CPM calculated using the200

Gcc_Mean metric, considering daily images taken at noon.201

Gcc_Mean

0 100 200 300

DOY

Figure 4: CPM for the Gcc_Mean metric in (TKY, 2006).

2.2. Mathematical modelling to control picture uncertainty202

We propose a mathematical model that aims to reduce the uncertainty level by con-203

sidering multiple images for a given period. Since different images may provide different204

contributions, because of the sunlight illumination and seasonal differences, each image205

in the period receives a user-configurable weight. We compute the representative his-206

togram by applying those weights. The final CPM representation for that period is the207

one computed using this methodology.208

User-configurable Weights. The weights definition is part of the analysis process. To209

accurately define weights, we need to evaluate the images that are available in the dataset210

and decide how much a given image should contribute to the weighted histogram, ac-211

cording to the capture hour and the symmetry of sunshine, for instance. For this study,212
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we define weights based on a Gaussian distribution around the mean, assigning the high-213

est values to images taken between 12:00 and 13:00. We consider hours close to noon as214

the center of our weights distribution because this is the time at which we expect peak215

brightness and thus less variation from shadow exposure. These choices might change216

according to latitude and period of the year, but we fix them for simplicity. The result-217

ing weighted histogram, which represents one day, is given by the sum of the product218

between every histogram and its respective weight:219

H =
∑

t

wt.Ht (7)

where H is the final weighted histogram (the resulting representative histogram for that220

time interval, plotted using the CPM method), Ht is the histogram calculated from an221

image taken at the hour t, and wt is the weight assigned to the hour t according to our222

values inspired by the Gaussian distribution. H and each Ht are vectors of the same223

length, containing one place for each bin of the histogram.224

Single-day Weighting. Figure 5 illustrates an example considering seven images225

taken from day 350 of 2016 of the Mt. Tsukuba dataset (MTK) and how our mathematical226

model acts when using the weights, as shown in Figure 10a. Figure 5a depicts the his-227

tograms of the original pictures, captured from 9:00 to 15:00. The images at the beginning228

of the day (9:00 and 10:00) are considerably different when compared to the rest. Orange229

and red hues are very pronounced in these cases but are much less present in images from230

hours 11:00 and 15:00. Such behavior indicates that during sunrise, the histograms can231

be considerably distorted, most likely by shadows in the input image. Our strategy, how-232

ever, accounts for these variations by assigning very low weights to these images. The233

original pictures are subject to the defined weights to compute the resulting histogram,234

as shown in Figure 5b. By comparing this representative histogram to the ones from the235

original images, we can perceive that our approach tackles well those anomalies.236

Multi-day Weighting. The histogram in Figure 5b is effective in smoothing out the237

trends present within each day. However, there can still exist high variability in the dis-238

tribution of colors from one day to the next. This variability may come from conditions239

such as fog or rain, which can last several hours and thus affect many pictures in multi-240

ple days. In order to deal with such variations, we can extend the averaging process to241

calculate weighted CPMs of multiple days, as shown in Figure 10b. In this scenario, the242

day n, for which we are computing an averaged CPM, has a higher weight for its images243

compared to the weight of images from the previous two days (n− 1 and n− 2). We carry244

out the multi-day averaging process with a moving window.245

The strategy of averaging images from multiple days with a moving window presents246

a tradeoff between smoothing and temporal size precision. One way to adjust this trade-247

off is to change the size of the moving window: by increasing the window size, the CPM248

becomes smoother (less susceptible to high variability) and less precise. Decreasing the249

moving window size, on the other hand, enhances precision at the cost of creating a CPM250

with more color variation. Figure 6 shows CPMs that have been created from the same251

dataset using four window sizes: 2-day, 5-day, 7-day, and 10-day window. It is possible252
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Hour 09 Hour 10 Hour 11 Hour 12 Hour 13 Hour 14 Hour 15

Day 350

(a)

Weighted

Day 350

(b)

Figure 5: (a) The hourly histograms for the day 350; and (b) the histogram produced after applying

weights to every hour. At the top, the hue values from the HSV color space and its respective color.

to observe the smoother plot as the window size increases. Albeit the lack of precision,253

a 10-day averaging (the bottom facet of Figure 6) provides an excellent insight into the254

general trend throughout the year.255

0 40 80 121 161 201 241 281 322 359

Hue

Figure 6: Averaged CPMs for MTK, 2016, with windows of size 2, 5, 7 and 10 days.
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Uncertainty Level (of a histogram). By merging multiple histograms into one, we are256

effectively building a summary of a given day by analyzing different images. This com-257

bination is analogous to calculating the weighted average of many observations, which,258

in our case, is expected to reduce uncertainty by smoothing out abrupt variations in the259

distribution of colors. By averaging histograms, however, we are also introducing a new260

level of uncertainty in the representation. Since the calculated metrics are now a com-261

bination of multiple images, the final histogram for a given day no longer adequately262

represents one specific image from our source dataset. To quantify such uncertainty, we263

propose an uncertainty level metric to measure how well the weighted histogram rep-264

resents all of the observations in a given day. The sum of all the differences between265

the weighted histogram and individual observations defines the uncertainty level of a266

weighted histogram. The differences are also weighted, as expressed by the following267

formula:268

Q(H) =
∑

t

wt.d(H,Ht)
2 (8)

where H is the weighted histogram, Q(H) is the uncertainty level of the weighted his-269

togram, wt is the weight assigned to the hour t, d(H,Ht) is the distance between the270

weighted histogram H , and the histogram of the image taken at the hour t. As before, H271

and each Ht are vectors of values, with one place for each bin of the histogram.272

We employ the Earth Mover’s Distance (EMD) Rubner et al. (2000) to compute d(H,Hi).273

The EMD between two histograms X and Y defines the necessary effort to transform X274

into Y . In an iterative fashion, we compute the difference between subsequent bins, from275

EMD0 to EMDi for every i bin of X and Y histograms, as follows:276

EMD0 = 0

EMDi+1 = Xi + EMDi + Yi
(9)

where X and Y are vectors of values, with one placement for each bin of the histogram.277

When computing EMD, the beginning of the accumulation is a parameter, as it may278

change the final EMD value. In our work, we always start with the first bin: the H=0279

bin when using the HSV-based metrics, or the bin identifier for the smaller gcc value280

when using the gcc-based metric. The bin order in the CPM justifies these choices. To ease281

the comparison between X and Y histograms, we need a single metric that represents282

the total distance. As it is familiar with the EMD metric, we compute the final EMDtotal283

between two histograms by accumulating the absolute values of the differences between284

every bin i, as follows:285

EMDtotal =
∑

i

|EMDi| (10)

Combining weighted histograms with their uncertainty levels enables us to indicate286

how well each weighted histogram represents the reality of each time interval it repre-287

sents. Since the sum of differences gives the uncertainty, a value closer to zero indicates288

a more accurate representation. Figure 7 illustrates how such uncertainty level accompa-289

nies the CPM using the year 2016 of the MTK dataset. The uncertainty level appears as an290
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Figure 7: Uncertainty level (top) plotted alongside the CPM (bottom). This level indicates how

uncertain each of the columns of the CPM is when the CPM aggregate many weighted pictures.

At the left, we show the hue values from the HSV color space and its respective color.

indicator of how accurate the approximations are across the span of one year. The uncer-291

tainty plot appears above the CPM as a column chart. In this plot, every column indicates292

the uncertainty level of the matching histogram, represented in the same X coordinate in293

the CPM below. While the CPM of this Section considers the HSV_H metric, the averaging294

process itself is generic enough to be applied to any histogram. An example of applying295

the same process to the GCC_Mean metric is available in Section 3.3.2.296

2.3. Two-Phase Workflow Implementation297

The implementation aspect of our proposed phenological analysis process takes the298

form of a two-phase workflow. Figure 8 illustrates the general architecture of our imple-299

mentation, detailed below. While Phase 1 must be executed in parallel since it is compu-300

tationally expensive, Phase 2 runs on a laptop.301

Phase 1 - Processing

CPU

core

CPU

core

CPU

core

CPU

core

CPU

core

CPU

core

CPU

core

CPU

core

HSV_H

HSV_Mean

HSV_Mode

Gcc_mean

Histograms

Merged

histograms

Quality

calculation

Phase 2 - Visualization

Figure 8: The proposed phenological analysis workflow

Phase 1. The core concept of the first phase is metrics extraction. It is done with a302

novel C++ implementation of PhenoVis called phenovisr which is an R package re-303

sponsible for reading an input image and calculating the HSV_H, HSV_Mean, HSV_Mode304

and Gcc_Mean metrics. Optionally, it is also possible to provide a mask to phenovisr.305

The mask enables the selection of regions of interest in the input image. When a mask306

is available, phenovisr will ignore all the pixels that are covered by it. An R script307
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Table 1

Description of the deciduous broadleaf (DBF) and mixed forest datasets.

ID Description Type Years Image Res. Images Size Pixels

TKY Takayama (JAP) DBF 2006–2012 2272x1704 20561 18GB 1221518

AHS Alice Holt (UK) DBF 2009–2017 2272x1704 55139 45GB 1166644

MTK Mt. Tsukuba (JAP) Mixed 2007–2017 2272x1704 71875 65GB 522560

equipped with the parallel package orchestrates the execution of phenovisr. It dis-308

patches multiple executions of the metrics extraction routine in parallel. The return value309

from phenovisr is a data frame containing all of the information needed to build the310

CPMs. We keep this data frame in the local storage through a compressed CSV file.311

Phase 2. The second phase consists of the data visualization, built using the R pro-312

gramming language. This part of the workflow expects an input file containing all of313

the necessary data to build the CPMs. The input contains the histograms for the HSV314

and gcc-based metrics enriched with metadata, like the day of the year, time, dataset, and315

camera identifier for the processed image. In total, the input data format is a data frame316

expected to contain 460 lines for each image: 360 for the HSV histogram and 100 for the317

gcc histogram. We used data manipulation with the dplyr package to extract the infor-318

mation needed for each plot, and the ggplot package to build figures. We rely on the319

flexibility of the scripting approach to provide the user with the freedom to adapt the320

resulting CPM as desired.321

3. Results322

We evaluate our methods with high-resolution pictures from the three datasets listed323

in Table 1 Nagai et al. (2018). We first evaluate the proposed phenology metrics and their324

CPM representation with the AHS dataset (Section 3.1). We assess the averaging strategy325

of weighted histogram using the MTK dataset (Section 3.2), followed by the uncertainty326

level evaluation with the TKY dataset (Section 3.3). Finally, we provide a computational327

scalability evaluation using the three datasets (Section 3.4).328

3.1. Metrics and Color Mapping Evaluation329

We analyze the enhanced CPM and the four metrics described in Section 2.1 against330

images from the Alice Holt (AHS) forest site. While the dataset has images from 2009 to331

2017, we analyze only images fro 2012 to 2016 due to inconsistencies in camera position332

and orientation. We built the CPM visualization with images taken at noon, assuming333

that these provide lower noise levels due to peak sunlight to focus on the four metrics.334

Figure 9 shows the yearly CPMs for each metric. We can see that the HSV_H metric335

enhances the perception of color distribution by increasing the saturation and luminance336

levels to 100%. This choice of values generates vibrant colors that indicate vegetation337

lifecycle periods throughout the year (marks A and B). However, the resulting repre-338

sentation harms the overall perception of the dataset since there is no clear relationship339

between the colors displayed in the CPM and the colors that are present in the original340
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images. Apart from elemental identification, analysis with this metric becomes reason-341

ably limited. The HSV_Mean metric generates a color palette that resembles the original342

vegetation pictures, with some distinct aspects such as terrain (mark C). The averaging343

process, however, harms the color distinction between adjacent H bins. The alternative344

then is the HSV_Mode metric, which presents the same distribution with a different color345

palette. By using the mode of S and V between every H bin, this color palette effectively346

creates “steps” that make adjacent bin colors more visible than the HSV_Mean counter-347

part. Comparing HSV_Mean and HSV_Mode CPMs, we can distinguish unexpected data348

such as the one highlighted in mark D. This noise was due to condensation in the camera349

lens by manually inspecting the source images. Finally, the Gcc_Mean metric is unable to350

provide insightful conclusions. As foreseen in previous work Leite et al. (2016), different351

shades of green map to very similar gcc values. As a consequence, different colors map352

to the same gcc distribution bin, and since the colors of each gcc bin define the CPM color353

palette, the colors can become easily distorted.354

Figure 9: CPMs corresponding to four metrics (columns) of five years (lines) for the AHS dataset.

3.2. Weighted CPM Evaluation355

We assess the method of building the weighted histogram by evaluating sets of images356

that become one. For this experiment, the dataset from Mt. Tsukuba (MTK) is suitable be-357

cause it has a large number of images per day, from sunset to sunrise. Figure 10a depicts358

the weights of each hour applied each day for this dataset, while Figure 10b describes the359

3-day weights of the experiment with the moving window across multiple days.360
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Figure 10: Weights for the CPM evaluation using the MTK dataset using years from 2011 to 2016.

3.2.1. One-day averaging361

Our first experiment consists of merging all the hourly images within a single day to362

generate a single distribution per day. Figure 11 shows the hourly HSV_H and HSV_Mode363

CPMs (facet columns) for the year 2016. These CPMs depict the variation in color through-364

out the day (facet lines). It is noticeable that colors are more distorted near the start and365

the end of the day (marks A and B), especially with HSV_Hmetric. For the start of the day,366

evaluating the color distribution in the HSV_Mode metric shows the predominance of or-367

ange and yellow hues (mark A.1). They indicate the occurrence of sunrise, which leads to368

noise due to sunlight exposure. The CPMs for the end of the day present some anomalies369

when analyzing the HSV_H metric, as shown in mark B.1. By analyzing the same period370

with the HSV_Mode metric, we can see that such anomalies are present because the pic-371

tures were taken at night (mark B.2). These plots also show that sunset happens earlier372

by the end of the year. After day 300, half of the pictures are from a night period. Marks373

C.1 and C.2 depict one specific scenario in which the camera lens faces the sun during374

sunset. The sunlight explains the high amount of orange and yellow hues in mark C.1.375

Figure 12 shows the CPM computed by merging the weighted hourly data shown in376

Figure 11 using the weights from Figure 10a. Each merged CPM has the uncertainty level377

on top, which is the same for both since both metrics are HSV-based. When comparing to378

the original CPMs, we can see that our approach for increasing reliability is useful in pro-379

ducing a smoother plot. There is a high variability of color distribution, seen especially380

in the early and late hours of each day in Figure 11. The more significant weight applied381

for less noisy pictures (at noon, for instance) is supposed to compensate for the noise on382

early and late images. However, the high scores in the uncertainty level plot, also com-383

puted using the weights, indicate that the merged CPMs, in this case, have low quality384

because there is still too much dispersion in the original pictures. We can validate this385

claim by vertically comparing the histograms within mark D of Figure 11, which shows386

the high variability on images of different hours on the same day.387

3.2.2. Multi-year data analysis388

By applying a moving window across multiple days to generate an averaged CPM, we389

are favoring data summary and general trends instead of temporal precision. This trade-390

off can be justified when considering the data analysis of multiple years, in which the391

main objective is to observe the overall vegetation changes through long periods. Since392
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Figure 11: CPMs of the MTK dataset, grouped by hour (facet lines). At the top palettes, we show

the available colors throughout each respective plot concerning the hue value.

we are comparing coarse-grained information (that is, the overall state of vegetation),393

temporal resolution is a secondary concern. Our focus is on the trend. To demonstrate394

this scenario, we applied the moving window multi-day averaging across multiple years395

in the MTK dataset. With the available data, we create CPMs from the years 2011 to 2016.396

The moving window used in this experiment is shown in Figure 10b.397

Figure 13 shows the CPMs created by applying the moving window averaging across398

the years 2012 through 2016. The generated plot effectively depicts the vegetation state in399

each year, and the averaging across multiple days smooths the visualization. The multi-400

day averaged CPMs allows us to identify vegetation change and compare a set of days401

throughout many years. We illustrate some examples in the CPMs. The end of 2014402

presented a few red hues in the color distribution when compared to the same period403
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Figure 12: Merged HSV_H and HSV_Mode CPM for the MTK 2016, showing the uncertainty level.
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Figure 13: CPMs of the HSV_H metric by applying the moving window averaging, for five years.

in the year 2013 (mark A). One possible explanation for this distribution difference is404

the early leaf fall in 2014: for the same period, there are still some leaves in the canopy405

of the forest in 2013, while in 2014, leaf fall was already complete. Another example406

appears around DOY 50 of 2015, in which there is more predominance of blue hues when407

compared to the same period of 2014 and 2016 (mark B). A blizzard, absent in 2016 and408

less severe in 2014, covered the vegetation area around the camera, being the origin of409

the anomaly.410
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Day 145 Day 324

Figure 14: Weighted HSV_H CPM for 2011, with the uncertainty level of each day at the top.

3.3. Uncertainty Level Evaluation411

To evaluate the distance between a weighted CPM against the one from original pic-412

tures, we select days with reported high and low levels of uncertainty and analyze the413

hourly images and CPMs for these days. Since the gcc-based and HSV-based CPMs gen-414

erate distinct distributions for the same image, there are then two possibilities for his-415

tograms to derive the uncertainty level: gcc CPMs and HSV CPMs. We discuss the char-416

acteristics of each of them. The dataset from Takayama Flux Site (TKY) was the basis for417

the analysis, with images taken from the year of 2011. The merging process considers the418

hourly images within every day, as described in Section 3.2.1.419

3.3.1. Uncertainty level based on HSV420

The uncertainty level is plotted above the CPM in Figure 14. The plot presents a421

column chart with the EMD-based uncertainty level of each day. Based on the uncertainty422

level plot, we select two days – 145 and 324 – with low and high uncertainty levels for423

comparison.424

Figure 15a shows the hourly CPMs for day 145, for which we have identified a low425

uncertainty level. We notice that the hourly CPMs for this day are very similar, agreeing426

with the small variations in each of the corresponding pictures in the bottom. Such a427

combination reinforces the low uncertainty value computed for this day. Alternatively,428

Figure 15b shows the hourly CPMs for day 324, for which we have identified a high429

uncertainty level. Here, the CPMs are very different from hour to hour. The differences430

come by condensation in the camera lens, especially in pictures taken at hours 9 and 12,431

but also at 16. The high uncertainty value computed for this day captures these issues.432

3.3.2. Uncertainty level based on gcc433

Another possibility is to calculate the uncertainty level when using gcc histograms.434

Figure 16 shows the weighted CPM for the Gcc_Mean metric, alongside the EMD-based435

uncertainty levels for the gcc histograms. The calculated uncertainty level for gcc is much436

more stable than the HSV counterpart (shown in Figure 14). Variability level is reasonably437

low across most of the year, and it increases considerably as gcc levels become higher438

during vegetation green-up (between days 150 and 275, approximately). The increase439

happens because of the nature of gcc, whose value correlates to the shades of green pixels440
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observed in the source images. Fewer shades of green in the pictures become histograms441

with gcc distributions with very low variation.442

Figure 17a shows the evolution of the weighted distribution of gcc values across the443

0 40 80 121 161 202 270 359

Hue

Hour 07 Hour 09 Hour 10 Hour 12 Hour 13 Hour 15 Hour 16

Day 145

(a) CPMs and source images from DOY 145.

0 40 80 121 161 202 243 283 324 358

Hue

Hour 07 Hour 09 Hour 10 Hour 12 Hour 13 Hour 15 Hour 16

Day 324

(b) CPMs and source images from DOY 324.

Figure 15: Comparison of extreme cases of uncertainty levels.

Day 100 Day 150

Day 125 Day 175

Figure 16: Weighted Gcc_Mean CPM for 2011, with the uncertainty level at the top.
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start of the green-up phase to illustrate the contrast coming from the gcc metric. Days444

100 and 125, which presented low gcc values and low uncertainty level, show a narrow445

histogram with the gcc values being distributed across approximately ten bins (from 25446

to 35). Days 150 and 175, on the other hand, presented higher gcc values and higher447

uncertainty levels. The gcc distribution for these days is much broader, which in turn448

allows for more variations between similar histograms.449

We select DOY 162, with the highest uncertainty level for 2011, to demonstrate further450

the high sensitivity of the gcc-based uncertainty level. Figure 17b depicts the hourly CPMs451

and corresponding pictures. We can see the images present some degree of variation452

due to condensation in the camera lens, which impacts the CPMs for hours 09 and 12.453

However, the color information is relatively preserved and contrasts the high uncertainty454

metric presented by our gcc based calculation.455
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(a) Weighted histogram of gcc with 100 bins
for days 100, 125, 150 and 175 of 2011.
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(b) CPM of the gcc metric and corresponding pic-
tures of DOY 162/2011.

Figure 17: Demonstration of the high sensitivity of the gcc-based uncertainty level.

3.4. Metrics Extraction Performance Analysis456

Table 1 lists the characteristics of the datasets of our performance analysis. The ta-457

ble’s last column refers to the number of pixels considered for metrics extraction after the458

selection of the region of interest described in Section 2.1. For these tests, we executed459

the metrics extraction routine in one compute node of the PCAD (http://gppd-hpc.460

GR Alles et al.: Preprint submitted to Elsevier Page 19 of 23

http://gppd-hpc.inf.ufrgs.br/
http://gppd-hpc.inf.ufrgs.br/
http://gppd-hpc.inf.ufrgs.br/


Measuring Phenology Uncertainty with Large Scale Image Processing

inf.ufrgs.br/) from the Informatics Institute at UFRGS. This node is equipped with461

two Intel Xeon E5-2650 v3 processors (ten cores at 2.3GHz each), adding up to 20 CPU462

cores and 128GB of DDR4 RAM.463

To measure the computational scalability, we designed an experiment to extract the464

execution time of our workflow with different configuration scenarios. Our experiment465

consisted of executing the histogram extraction multiple times, both sequentially and in466

parallel. For the parallel executions, the number of worker threads ranged from 4 to 40467

in increments of 4. The decision of spawning more working threads than the number468

of cores in the testbed is two-fold. First, to account for simultaneous multithreading,469

which enables up to 40 computing threads in the node. Second, to measure whether a470

highly IO bound workflow (such as reading images from the disk) would benefit from an471

oversubscription environment. We replicate ten times each experimental configuration,472

in a random order, to address the variability of the experimental results.473

Figure 18 shows the average execution time for Phase 1 (in the Y-axis) as a function474

of the number of workers (X-axis) and datasets (line colors). We observed a reasonably475

high execution time using the trivial, sequential implementation of the metrics extraction476

workflow. The execution time in this scenario ranges from approximately 51 minutes477

for the fastest dataset (TKY) to approximately 131 minutes for the slowest (AHS). We478

expect such variation in execution time because of the differences in workload size: the479

AHS dataset has almost three times more data when compared to the TKY dataset. Still480

considering the sequential implementation, the MTK dataset executes faster than AHS481

despite its larger size. The difference is due to lighter computational workload per image482

since the number of pixels considered for metrics extraction in the MTK dataset is roughly483

half as much as that of the AHS dataset, as detailed by the Pixels column at Table 1.484
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Figure 18: Average makespan (in minutes) of the metrics extraction process.

The parallel implementation significantly improves performance, decreasing the exe-485

cution time to approximately 39, 46, and 15 minutes for the AHS, MTK, and TKY datasets.486

In this scenario, we noticed that our experiments with the AHS dataset presented better487

scaling when compared to the MTK dataset since the execution time for the former is488

lower when compared to the latter. This behavior indicates that the size of each computa-489

tional task, indicated by the number of pixels considered per image for metrics extraction,490
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considerably influences scaling on parallel environments. Further increasing parallelism491

for up to 40 worker threads, however, continued to yield consistently lower performance492

benefits.493

Although performance gains are noticeable, our experiments showed that we quickly494

hit diminishing returns. The difference in execution time by increasing the threads count495

to more than eight is reasonably small. On this matter, we attribute the diminishing496

returns to the highly IO bound nature of our workflow. Even though we can process497

data in a massively parallel fashion, we are still reading images from a spinning hard498

drive, which quickly becomes our bottleneck. One way to attenuate such a bottleneck is499

to explore parallel file systems for higher performance on data ingestion and investigate500

the distribution of subsets of data into multiple computing nodes.501

4. Conclusion and Future Work502

The phenological analysis is an essential aspect of biology study since it strives to503

understand the cyclical effects that are present in nature. When applied to vegetation,504

one of the main objectives of phenological studies is to try to correlate variations in plant505

lifecycle to external factors such as climate change.506

To enhance the phenological analysis process using vegetation pictures, we created507

an analysis workflow that combines parallel processing for efficient metrics extraction508

with the visualization techniques needed to build Chronological Percentage Maps. Our509

proposed analysis incorporates three main aspects: color representation, reliability, and510

uncertainty measurement.511

For color representation, we presented four metrics extracted from vegetation digital512

images: HSV_H, HSV_Mean, HSV_Mode, and Gcc_Mean. For each of these metrics, we513

extract both the histogram and associated metadata from the input dataset. The metadata514

associated with the histogram allows us to create a custom color palette, which in turn515

allows for the CPMs to have colors that resemble the original data. For the HSV based516

metrics, this approach improves visualization by enabling artifacts such as leaves, soil,517

snow, and the sky to be identified in the final CPM. For the gcc based metric, however, the518

resulting CPM does not yield satisfactory results because many different colors can map519

to the same or very similar GCC values, which in turn makes the color representation for520

these CPMs not representative of the original data.521

The reliability of color representations improves through merging histograms of sub-522

sequent images, assigning higher weights to those that are most relevant (such as images523

taken at noon, with peak sunlight). The design of the merging process accounts for ab-524

normal variations on scene illumination, condensation, or obstruction of the camera lens525

or other anomalies. We also proposed a moving window strategy for merging histograms526

of subsequent days, to produce smoother CPMs that enhance data perception on noisy527

datasets. In our tests, both merging processes successfully generated less noisy CPMs by528

considering multiple image histograms with proper weights.529

To consider the uncertainty introduced by the histograms merging process, which530

generates an approximation of the real observations, we used the Earth Mover’s Distance531

(EMD). This distance indicates the distance between actual and computed histograms. By532
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plotting the EMD alongside each histogram in the merged CPM, we can effectively tell533

how close each approximation is to the real pictures. In our tests, the uncertainty level534

calculated from HSV based histograms was much more representative than its counter-535

part calculated from gcc based histograms. We observed that gcc based EMD tends to536

be extremely sensitive to histograms from images with high levels of green since the gcc537

value is deeply dependent on the proportion of green pixels present in an image.538

The metrics extraction process, needed to obtain the histograms that generate CPMs,539

is done within a parallel workflow, which assigns tasks to multiple CPU cores to enhance540

scalability. In our performance experiments, we observe reasonable speedup in execu-541

tion time when increasing the number of available threads from 1 to 4. However, further542

increments did not yield relevant performance improvements because our workflow be-543

comes mainly bottlenecked from disk read speeds.544

We combine our results on color representation, reliability, and uncertainty measure-545

ment to produce insightful Chronological Percentage Maps. These CPMs summarize546

the input data reasonably well, allowing the analyst to distinguish phenological phases547

across multiple years and accounting for occasional anomalies caused by problems dur-548

ing data capture.549

As future work, we plan to apply the analysis technique presented in this paper with550

different vegetation types and varying climatic conditions. We also intend to explore551

multi-node execution in an HPC cluster to allow for even faster metrics extraction, as well552

as to investigate other methods to enhance uncertainty measurement, such as providing553

a statistical test.554

Software and Data Availability555

We endeavor to make our analysis reproducible. A companion material hosted in556

a public GitHub repository at https://github.com/guilhermealles/phenology-analysis-companion/,557

contains the source code, datasets, and instructions to reproduce our results. An archive558

is also available in Zenodo at https://zenodo.org/record/3771710/. The code snippets in R559

(using packages from tidyverse and cowplot) are capable of reproducing each figure560

from the paper.561
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