
HAL Id: hal-03132986
https://hal.inria.fr/hal-03132986

Submitted on 5 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Multiple Environments for Learning and
Decision Making: a Dismantling Use Case

Alejandro Suárez-Hernández, Thierry Gaugry, Javier Segovia-Aguas, Antonin
Bernardin, Carme Torras, Maud Marchal, Guillem Alenyà

To cite this version:
Alejandro Suárez-Hernández, Thierry Gaugry, Javier Segovia-Aguas, Antonin Bernardin, Carme Tor-
ras, et al.. Leveraging Multiple Environments for Learning and Decision Making: a Dismantling Use
Case. IROS 2020 - IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2020,
Las Vegas / Virtual, United States. pp.6902-6908. �hal-03132986�

https://hal.inria.fr/hal-03132986
https://hal.archives-ouvertes.fr

Leveraging Multiple Environments for Learning and Decision Making:
a Dismantling Use Case

Alejandro Suárez-Hernández1 and Thierry Gaugry2 and Javier Segovia-Aguas1

and Antonin Bernardin2 and Carme Torras1 and Maud Marchal2 and Guillem Alenyà1

Abstract— Learning is usually performed by observing real
robot executions. Physics-based simulators are a good alterna-
tive for providing highly valuable information while avoiding
costly and potentially destructive robot executions. We present a
novel approach for learning the probabilities of symbolic robot
action outcomes. This is done leveraging different environments,
such as physics-based simulators, in execution time. To this end,
we propose MENID (Multiple Environment Noise Indeterministic
Deictic) rules, a novel representation able to cope with the
inherent uncertainties present in robotic tasks. MENID rules
explicitly represent each possible outcomes of an action, keep
memory of the source of the experience, and maintain the
probability of success of each outcome. We also introduce an
algorithm to distribute actions among environments, based on
previous experiences and expected gain. Before using physics-
based simulations, we propose a methodology for evaluating
different simulation settings and determining the least time-
consuming model that could be used while still producing
coherent results. We demonstrate the validity of the approach in
a dismantling use case, using a simulation with reduced quality
as simulated system, and a simulation with full resolution where
we add noise to the trajectories and some physical parameters
as a representation of the real system.

I. INTRODUCTION

Probabilistic propositional planning [1] consists in com-
puting behavioral policies reasoning over a set of actions
whose outcomes are uncertain. This policy is meant to
maximize a reward score. Since reward maximization sub-
sumes goal satisfaction, probabilistic planning can be con-
sidered an extension over classical AI planning. Therefore,
probabilistic planning can be regarded as a more powerful
tool for handling the kind of task that typically arise in
robotics. In this paper, we focus on the problem of learning
the categorical distribution associated to the outcomes of a
stochastic symbolic action, with the support of simulations.

Reinforcement Learning (RL) usually requires exhaustive
interaction with the environment and results in less explain-
able reasoning. The work of Eppe et al. [2] tackles these
issues through the combination of a symbolic planner to
set the subgoal roadmap, and a RL module to decide the

*The research leading to these results has received funding from the
EU H2020 research and innovation programme under grant agreement no.
731761, IMAGINE; the HuMoUR project TIN2017-90086-R (AEI/FEDER,
UE); and AEI through the Marı́a de Maeztu Seal of Excellence to IRI
(MDM-2016-0656).

1Authors are with Institut de Robòtica i Informàtica Industrial,
CSIC-UPC Llorens i Artigas 4-6, 08028, Barcelona, Spain
{asuarez,jsegovia,torras,galenya}@iri.upc.edu

2Authors are with Univ. Rennes, INSA, IRISA, In-
ria, France {Maud.Marchal, Thierry.Gaugry,
Antonin.Bernardin}@inria.fr

Current
state

	MDP	problem

Ground	action

MDP
solver

MENID
rule

Action
history

Environment
selector

Action
outcome

Action	
outcome

MENID
DB

Lever
Shake

Suction

Target EnvironmentFast Simulation

Precise
simulation

Robot

Semantic
Analysis

Fig. 1. System’s architecture. The action database contains MENID
rules updated with experiences from both the simulated and the target
environments. In turn, the execution history of the action is used for optimal
decision making. The environment selection criteria for a given action
depends on: (1) the simulator’s accuracy; and (2) the confidence in the
action’s empirical outcome distribution.

specifics on how each subgoal is achieved. They do not
tackle, however, the challenge of learning the distributions
of symbolic stochastic actions.

In pure AI planning, it is often assumed that accurate
models of the actions are available. This kind of knowledge
can hardly be taken for granted in many real world settings.
While several approaches exist for automatically acquiring
deterministic models [3]–[6], probabilistic ones require spe-
cial care. Previous approaches have explored the idea of
information gathering for contingent plan execution [7]–
[9]. These approaches share a similar methodology: they
interleave learning, reasoning and execution. However, if
a robot applied this general strategy, it would be prone to
put itself and its surroundings in harm’s way. Lipovetzky et
al. [10] use simulators, like us, but their premise is based on
blind search without considering the actions’ model.

We propose a novel knowledge gathering algorithm that
distributes executions among different environments. One
of these environments is the target environment (e.g. real
world or highly accurate simulator). Executing actions in this

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 6902

environment is costly and risky. Therefore, we would like
to minimize the amount of exploratory actions performed
within it. On the other hand, we have one or more test
environments that act as a proxy of the target one (e.g.
fast simulator). Execution in a test environment is safe and,
usually much less costly.

In this work, we rely on SOFA, a physics-based simu-
lator [11] to carry out accurate predictions of the actions’
outcome. With SOFA, we are able to simulate several ac-
tions varying the different physical parameters. With high-
resolution models, these simulations are very accurate, al-
though also very time-consuming. A trade-off between accu-
racy and computation time performance must be determined.

Our methodology is suitable to be of use in a wide range
of robotic tasks. In this paper, we demonstrate it in a two-
environments setting (see Fig. 1). We focus on the use case of
dismantling electro-mechanical devices. This kind of prob-
lems is subject to non-determinism in the action execution,
as manipulation skills (such as levering) depend on factors
that escape our control (e.g. friction, jerky motions) and are
somewhat unpredictable.

Our contributions are summarized as follows:
• A novel learning algorithm that decides how to gather

data from two sources to learn the probabilistic outcome
of high-level actions.

• MENID (Multiple Environment Noise Indeterministic
Deictic) rules, an extension of NID rules [8] to cope
with the multi-environment setting.

• A complete workflow illustrating our approach by using
physics-based simulations for generating data for the
learning process.

II. LEARNING METHODOLOGY

We want to enable our robot to learn and perform optimal
decision making in execution time. To this end, we propose
an algorithm that borrows notions from probability estima-
tion and information theory.

In this section, we present first a new action model meant
to cope with several environments. Then, we outline the steps
of our algorithm. Afterwards, we elaborate further on its key
components.

A. MENID rules

In the past, NID (Noise Indeterministic Deictic) rules
have been proposed as a mechanism to model probabilistic
actions [8], [9]. These rules enjoy the following advantages:
• Deictic references: variables that identify objects related

to the parameters and are ground in the precondition.
• A noise effect that covers unknown outcomes or out-

comes that cannot be modeled explicitly.
• Derived predicates that depend on the truth value of

other predicates in the state and that allow expressing
complex preconditions.

A rule has associated a list of outcomes, each with its
probability of happening. However, this probability is bound
to a single environment. To handle multiple environments,

we define a new kind of rule called MENID (Multiple
Environment NID) as follows

ar(χ) : φ(χ)→

1pr,1 . . .

epr,1 : Ωr,1(χ)

. . .
1pr,nr . . .

epr,nr : Ωr,nr(χ)
1pr,0 . . .

epr,0 : Ωr,0(χ)

, (1)

where
• ar is the action associated to this rule.
• χ is the set of variables for the rule, composed of two

disjoint subsets: the action’s parameters χa, and the
rule’s deictic references χr.

• φr(χ) is the preconditon: a set of predicates that must
be present in the current state for this rule to trigger.
When ar is executed, only the rule whose preconditions
are satisfied is applied.

• Each Ωr,i(χ) is a different possible outcome (i.e. a set
of predicates that are added or deleted from the state).

• Ωr,0(χ) is the noise effect.
• Each jpr,i represents outcome Ωr,i(χ)’s probability in

environment j (up to e environments).
An action can consist of several rules, but a rule is linked

to just one action. This allows to conveniently define actions
that, depending on the context, affect the world differently.

The distribution over outcomes of a rule is categorical.
Therefore, outcome frequency when repeatedly triggering a
rule results follows a multinomial distribution. If jxr,i is the
absolute frequency of outcome i in environment j, and the
number of times that r has been triggered in j is ∑

nr
i

jxr,i, the
empirical categorical distribution is

jpr,i ≈ jqr,i =
jxr,i

∑
nr
i=0

jxr,i
. (2)

In the next sections, we focus on the particular case of two
environments (e = 2), being j = 1 the target environment,
and j = 2 the test one. We describe our methodology to
combine both sources of information to approximate the
target distribution.

B. Algorithm Overview

Algorithms to learn NID rules from experiences already
exist, particularly for the case of guided demonstrations [9]
and exogenous effects [12]. We focus here on learning the
different outcome probabilities jpr,i. Thus, we assume that the
system is initialized with all the MENID rules representing
the actions available to the robot, along with their precon-
ditions. For each rule, a list of outcomes (postconditions)
Ωr,i(χ). is also present.

The main procedure of our methodology is sketched in
Algorithm 1. It has been tailored to the particular case of
one target environment and one test environment. However,
it can be easily extended to accommodate more than two
sources. Next, we describe the details of the algorithm.

Initialization: Set E represents the gathered experiences,
and thus is initialized to the empty set (line 1).

6903

Algorithm 1 Learning-execution loop
Input: reward function R, action set A = {a1, . . . ,an}, time

allotment for action testing T
1: E← /0
2: loop
3: s← get current state()
4: Ptarget ← target transition derived from MENID rules
5: a← optimal action in s according to Ptarget
6: if a not marked and δ > δthres then
7: mark a
8: t← T
9: while t > 0 do

10: s′← test action(s,a)
11: elapsed← time spent testing a
12: E← E ∪{(test,s,a,s′)}
13: t← t− elapsed
14: end while
15: else
16: remove mark from a
17: s′← exec action(a)
18: E← E ∪{(target,s,a,s′)}
19: end if
20: Update MENID rules according to E
21: end loop

Approximating and solving the MDP: The first step in
each iteration of the main loop is to retrieve the current state
from the target environment (line 3). Afterwards, an empir-
ical transition model Ptarget(s,a,s′), is constructed from the
current MENID rules (line 4). This construction is detailed in
Sec. II-D. Ptarget is used to find the action best suited for the
current state, solving an MDP (line 5). Our algorithm does
not impose any particular solver. Some options are standard
algorithms like Value Iteration or Thompson sampling [13].
There is also state-of-the-art solvers like PROST [14], Gour-
mand [15], or FF-Hindsight [16].

Testing an action: Low confidence on the empirical out-
come distribution inside the test environment is detrimental
to the calculation of Ptarget(s,a,s′) (Sec. II-D). We determine
that this is the case when δ , the estimated error of the
empirical distribution (Sec. II-C), is larger than a predefined
threshold, e.g. 0.01 (line 6). Action testing is time-limited
(lines 9, 11 and 13). Each experience is extracted and added
to E, labeled as test (lines 10 and 12). The algorithm marks
tested actions (line 7), so they are not tested again in the
next iteration. This avoids an overly cautious behavior.

Executing an action: If an action is trusted enough, or if it
has already been tested in the last iteration, it is scheduled for
execution in the target environment. This action is unmarked
so it is eligible again for testing (line 16). The action is
executed (line 17) and the experience is added to E labeled
as target (line 18).

Updating MENID rules: At the end of the iteration,
MENID rules are updated according to the new experiences
appended to E (line 20).

Algorithm 2 δ bound calculation
Input: confidence ε , vector ααα = [1+ x0 . . .1+ xn], sample

size S
Output: δ s.t. Pr(|pi−qi|> δ ,0≤ i≤ n)≤ ε

1: D← Dir(ααα)
2: Initialize vector eee = [e1 . . .eS]
3: for 1≤ j ≤ S do
4: ppp′′′ = [p′1 . . . p′n]← sample(D)
5: e j←maxi |p′i−

xi
∑

n
i′=0 xi′

|
6: end for
7: Sort eee
8: q← round((1− ε) ·S)
9: return eq

C. Estimating a Categorical Distribution

Algorithm 1 needs to evaluate whether the distribution of
an action in the test environment is estimated with enough
confidence (line 6). Should that be the case, further testing
can be skipped. Sec. II-A already described the simplest way
to estimate the distribution’s parameters. However, we also
need to evaluate the quality of the estimation.

Thompson [17] gives a method to find sample size so

Pr(| jpr,i− jqr,i|> δ ,0≤ i≤ nr)≤ ε, (3)

where jqr,i is an estimation of pr,i, δ is the maximum error
desired for the parameters of the categorical distribution, and
1−ε is the confidence on having the estimation error within
δ tolerance.

For each δ ,ε and number of outcomes (nr + 1), Thomp-
son’s approach calculates the required sample size by ap-
proximating the estimation of each parameter by a Gaussian
distribution. It assumes the worst-case scenario jpr,i =

1
1+nr

.
This results in conservative estimates of the sample size.

We work the other way around: given the vector of
frequencies fff = [jxr,0 . . .

jxr,nr] and the desired ε , we calculate
a δ bound. We stop drawing observations when δ gets below
a certain threshold.

Obtaining δ analytically is difficult. However, it can be
easily approximated with the help of sampling. It is known
that the conjugate prior of the categorical distribution is the
Dirichlet distribution, Dir(ααα), where ααα = [1 + jxr,0 . . .1 +
jxr,nr]. This assigns a likelihood to each choice of jpr,i
parameters in base to the observations. The particular case of
nr = 1 (the noise effect and a regular outcome) corresponds
to the Beta distribution.

The full process for approximating δ is described in
Algorithm 2. A Dirichlet distribution D over the parameters
is defined (lines 1). Then, D is sampled S times (lines 3, 4).
For each sampled set of parameters, the error with respect
to D’s mode is computed and stored in the eee vector (line 7).
Finally, the qth error in the sorted eee vector is picked, where
q is the index that corresponds to quartile (1− ε) · S (lines
9, 10, 11). If S is sufficiently high, eq is a very accurate
approximation to δ . Fig. 2 shows two examples in which
this is the case.

6904

0 200 400 600 800 1000
Sample size

10�2

10�1

100

E
rr
or

p = [0.10, 0.65, 0.25]

δ with ε = 0.01

δ with ε = 0.1

δ with ε = 0.5

Actual error

(a)

0 200 400 600 800 1000
Sample size

10�2

10�1

100

E
rr

or

p = [0.33, 0.33, 0.33]

δ with ε = 0.01

δ with ε = 0.1

δ with ε = 0.5

Actual error

(b)

Fig. 2. Error bounds (δ) for the estimation of two categorical distributions
as sample size increases. The actual error is calculated as maxi | jpr,i− jqr,i|.
Notice that, in both (a) and (b), the bounds follows quite closely the
trend of the error. Moreover, the bounds with ε = 0.01 and ε = 0.1 are
seldom exceeded. The worst case scenario analyzed by Thompson (uniform
distribution) is shown in (b).

D. Combining Information from Multiple Sources

Experiences come either from the test or the target envi-
ronment. We need a strategy to merge these experiences. Let
us first present two basic results:

Proposition 1: If the test environment is a perfect rep-
resentative of the target one, then 1pr,i =

2pr,i, and 1pr,i
can be estimated taking full advantage of the test sample
frequencies:

1pr,i ≈ 1qr,i =
1xr,i +

2xr,i

N1 +N2
, (4)

where N j = ∑
nr
i=0

jxr,i.
Proof: fff = [jxr,0 . . .

jxr,nr] is drawn from a multinomial
distribution with parameters N j, [

jpr,0 . . .
jpr,nr]. Therefore,

E{ jxr,i}= jpr,i ·N j. Since 1pr,i =
2pr,i, E{ jxr,i}= 1pr,i ·N j. This

means that E{1qr,i}=
E{1xr,i}+E{2xr,i}

N1+N2
=

1pr,i·(N1+N2)
N1+N2

= 1pr,i.
In general, however, the distributions of the environments

are different, and the following proposition applies.
Proposition 2: If there is any difference between the two

distributions, the best estimator for 1pr,i considers only the
target, since including the frequencies from an alien popula-
tion would bias the estimator.

Proof: The same reasoning as before can be used to see
that, when 1pr,i 6= 2pr,i, E{1qr,i}= N1

N1+N2
· 1pr,i +

N2
N1+N2

· 2pr,i.
Therefore, by the law of large numbers, the best estimator
of 1pr,i when N1→ ∞ uses only samples from j = 1.

However, when N1 is small (as it is initially), and assuming
that the test environment distribution is reasonably close to
the target one, the outcome frequencies in the test environ-
ment may help establish a prior for the target probabilities.
If the test frequencies are given a weight that decreases with
N1, we can ensure that, in the limit, our estimation will be
unbiased. This same principle motivates the decreasing-m-
estimate [18] that we reformulate for our purposes:

1qr,i =

1xr,i +
m√

1+N1

2xr,i

N1 +
m√

1+N1
N2

, (5)

where m is the weight given initially to the test executions.

When N1→ 0, the estimation will be based almost entirely
on the test executions. Conversely, when N1 increases, the
weight for the test executions decreases, basing the estima-
tion more and more on the target executions.

Line 20 of Algorithm 1 updates the 1pr,i probabilities of
the MENID rules according to the decreasing-m-estimate,
while the test environment rules are updated with the simple
estimate described in Sec. II-A. The most updated proba-
bilities are always available for planning when constructing
the transition model Ptarget(s,a,s′) in line 4. Specifically,
Ptarget(s,a,s′) = 1qr,i if rule r ∈ a triggers in s, and s −−→

Ωr,i
s′

(i.e. s′ follows after the ith outcome). If the transition s−→
a

s′

is impossible, Ptarget(s,a,s′) = 0.

III. SIMULATING ROBOTIC ACTIONS

In order to handle accurate simulations at a near-interactive
computation time, we chose SOFA Framework [11]. SOFA
offers the possibility to handle accurate simulations of rigid
and deformable objects at interactive time performance.
Therefore, it represents a good alternative to more traditional
mechanical simulators that do not handle the object dynamics
at a reasonable framerate, as well as game engines that do not
handle accurate physics. As it is an open-source software, we
were also able to design the scenarios as well as controlling
the parameters as much as we wanted.

A. Simulated Actions

Within the use case of dismantling electro-mechanical
devices, we chose three different robotic actions meant for
disassembling a hard drive. The three actions are: (1) levering
the Printed Circuit Board (PCB) or from the bay; (2) shaking
the bay to remove the PCB; and (3) sucking the PCB with
a suction cup and removing it from the bay. We enrich
actions with parameters that give nuance over their physical
realization and that could influence their success probability
(e.g. discrete values of direction and force for lever).

These three actions are subject to non-determinism in the
action execution, as manipulation skills depend on factors
that escape our control in the real environment (e.g. friction,
jerky motions, errors in perception). Simulating these actions
require the use of a simulator able to handle the simulations
of complex scenes generated from real data.

The resolution of the meshes is a key component for
obtaining accurate results, at the price of a high computation
time. Therefore, we present in Sec. IV-A a study evaluating
the impact of the model quality on the symbolic error.

B. The Resolution Problem

One of the first concerns that arise when using simulation
as a proxy environment is realism and performance. On the
one hand, we would like the simulator to behave as close
as possible as the real world. For that, we need to include
detailed 3D meshes that model the real life component. On
the other hand, we want the simulator to be efficient enough
so it can execute a large number of simulations, and detailed
mesh models make collision detection more complex.

6905

(a)

(b)

(c)

Fig. 3. Illustration of the three scenarios: (a) First scenario: the lever
(blue) is used to remove the PCB (green) from the bay; (b) Second scenario:
different shaking angles are applied to the bay to remove the PCB from it;
(3) Third scenario: the PCB (white) is removed from the bay (red) using a
suction cup (in black, located on the PCB).

At our disposal we have a library of 3D scans of hard
drive components that we use to test our approach. We have
full control on the detail of such models. We deem sensible
to measure the impact of the downgrade. We perform a test
on the accuracy and efficiency of the simulated actions with
respect to the most detailed model (Sec. IV-A).

IV. EXPERIMENTAL STUDY

First, we show that simulations with models of different
quality yield substantially different qualitative results. On the
one hand, this imposes the need to compromise performance
to accuracy and vice versa. On the other hand, this shows
that simulations with different qualities could already be
considered different environments.

Second, we provide evidence that Algorithm 1 takes
advantage of fast simulations to quickly learn the outcomes
probabilities and to exploit the best actions in the target
environment. We show this by plugging in a high-quality
SOFA simulation as target environment.

A. The Mesh Resolution Problem
We have evaluated the performance/accuracy trade-off of

the actions in three scenarios1

1) First scenario: levering a PCB: The first scenario
considers a rigid lever that is used to remove a PCB from
the bay of the hard disk (see Fig. 3a). All the objects are
rigid. We used an Euler implicit integration scheme. Objects’
masses were set to their real world counterpart’s. In this task,
a good location on the PCB to perform the levering action
must be found. In our simulations, we evaluated 20 different
positions of the lever, located at the boundary of the PBC.

1The computer specifications for these experiments are: Linux Kernel
5.2.11-100 x86 64 Fedora 29, Intel(R) Xeon(R) CPU E5-1603 v4 @
2.80GHz, 16GiB Ram, GeForce GTX 1080.

Fig. 4. Different performance measures for the lever, shake and suck action
as the quality of the models (i.e. proportion of retained vertices) varies.

2) Second scenario: shaking the bay: The second scenario
consists in shaking the bay to remove the PCB from it (see
Fig. 3b). We used the same simulator configuration as for the
first scenario. In this task, we tested for 10 different angles
of shaking movement, ranging from 0.01 to 5 degrees.

3) Third scenario: sucking the PCB: In the third scenario,
we used a deformable suction cup to suck the PCB and
remove it from the bay (see Fig. 3c). We used the method
proposed by Bernardin et al. [19] in this scenario. Both the
PCB and the bay were rigid objects with the same properties
as for the two first scenarios, while the suction cup was
modeled as a deformable object using the co-rotational Finite
Element Method (FEM). The success of the task is highly
dependent on the location of the suction cups as well as the
pressure applied on the PCB. In our simulations, we tested
for 9 different positions spread on a 3×3 grid on the PCB.
We also applied 3 different suctions pressures, ranging from
-0.001 to -1135 Pa (difference with atmosphere pressure,
101135 Pa).

The mesh quality was defined as the ratio of the number of
points between the reduced models and the original one. All
experiments were performed on 36 different mesh qualities,
ranging from 0.00103 to 0.01 with 5 repetitions for each
set of parameters. For the lowest quality, the PCB had 303
vertices and 762 triangles while the bay had 491 vertices and
1082 triangles. For the highest quality, the PCB had 3310
vertices and 6776 triangles while the bay had 5183 vertices
and 10466 triangles.

Results are shown in Fig. 4. The symbolic error is mea-
sured as the 1− J(s,s′), where s,s′ are the collection of
predicates that represent the state at the end of a low quality
simulation and its high quality counterpart, respectively; and
J(s,s′) is the Jaccard index between both sets:

J(s,s′) =
|s∩ s′|
|s∪ s′|

(6)

6906

(a)

(b)

Fig. 5. Two different lever motions for levering and removing a PCB
from the hard drive reproduced with the robot arm. The first motion, (a), is
unsuccessful, while the second, (b), is successful.

Pikes on the graphs can be explained as noise on the initial
conditions of the experiment. The irregularities of the models
may result in the objects being displaced.

The plot already allows us to identify the trend that we
anticipated in the lever action, with an inflection point around
0.006: higher qualities result in more execution time and in
results significantly different from lower qualities.

B. Interleaved Learning and Planning

Our learning algorithm has been evaluated using two
configurations of SOFA and a real-life robot setting as the
available environments. The scenes used in our evaluation
contain a variety of hard-drive scenarios. The goal in each
scenario is the removal of the PCB by means of the available
actions (motions with different application points).

One simulation environment has low quality (q = 0.001)
models. While simulations in this high-performance setting
run promptly, the accuracy of the results varies sensibly with
respect to the high-quality models, as depicted in Fig. 4.
The other simulation has high-quality models (q = 0.01).
This setting takes, on average, much more time than its
low-resolution counterpart. It can be appreciated that the
outcomes vary sensibly, which suggests that high-quality
models capture more complex interactions. To account for
stochasticity, random noise is added to the input trajectories
and the physical parameters (friction and restitution).

The robot environment features a WAM robotic arm in
front of a table. On the table is a hard drive with the PCB side
facing upwards. Several levering motions can be executed to
pull the PCB out of the drive, and some of these actions are
more successful than others, as shown in Fig. 5.

Our baseline learns purely from the target environment.
This can be achieved simply by setting T = 0 in our
algorithm (this effectively disables the execution of actions
in the test environment). We compare this to T = 20 (i.e.
20 seconds for testing an action). We use the m-estimate
described in Sec. II-C with m = 10. The success or failure
of an action is rewarded and penalized, respectively (benefit
vs risk tradeoff). To evaluate, we use the accumulated reward
(score) over several episodes for a total duration of 1 hour.

We have run several sets of experiments assigning different
rewards to successful and unsuccessful executions of actions.

In Fig. 6, we show in blue the result of trying to learn
the best action(s) to execute in the high-quality simulation
by interleaving executions of actions in the low-quality
and the high-quality simulations. The red line shows what
happens when only the target environment (the high-quality
simulation) is available.

For each reward choice, we have run five experiments.
The solver used to calculate the best action is a custom
implementation of a Thompson sampler [13].

When there is no risk involved (i.e. the penalty for failing
is 0), as in Fig. 6a, it is usually best to encourage experi-
mentation in the target environment, since failing an action
does not incur in any negative consequence and we sample
results directly from the target distribution, while simulation
only wastes time. However, when more relevance is given
to failures, using the target environment for testing becomes
too risky. Large negative reward can be accumulated, and the
benefits of having a virtual environment to simulate actions
and gain more information about them is more evident.

Our method works thanks to the following: (1) the test
environment allows sampling the action outcomes from a
probability distribution that is sufficiently similar to the target
one; (2) this can be done in less time than using the target
environment directly; and (3) risk-free testing avoids the
occasional penalties and adverse effects that occur at the
beginning, in the abscense of experience.

Fig. 7 shows the result for settings that involve the real-life
robot. We show: (1) in blue, the low-quality simulation/real
robot setting; (2) in red, the high-quality simulation/real
robot setting; and (3) in green, what happens when only
interactions with the real robot are available (baseline). These
results show that, when simulation is involved, we avoid
the accumulation of failures at the beginning of the risky
environments (Fig. 7b, Fig. 7c). However, simulation requires
time, so if no penalty, or mild penalties are associated to
failures, direct executions with the robot or with less precise
simulations give rewards much faster (Fig. 7a, Fig. 7b). Since
our method will eventually decide to not simulate anymore,
the end slope of the curves is always the same.

V. CONCLUSIONS AND FUTURE WORK

Motivated by the idea of using a simulator to gather
symbolic information about the success ratio of robot actions,
we have presented a framework that allows to learn from
experiences performed in different environments. We have
introduced MENID rules, a formalism to model different
outcomes according to multiple environments and their un-
certainty. We have also presented an algorithm able to decide
in which environment execute the actions.

Our framework has been evaluated with scans of real
objects and actions used in a hard drive disassembly task:
lever, shake, and suck. The SOFA simulator has acted as
test environment in a low-resolution configuration, and as
target environment in a high-resolution one by adding noise.
Experiments with a real robot have been also conducted.
Compared to a standard strategy that learns only from

6907

0 600 1200 1800 2400 3000 3600
Time (s)

−500

−300

−100

100

300

500
Sc

or
e

Fast sim./Accurate sim.
Only accurate sim.

(a)

0 600 1200 1800 2400 3000 3600
Time (s)

−500

−300

−100

100

300

500

Sc
or

e

Fast sim./Accurate sim.
Only accurate sim.

(b)

0 600 1200 1800 2400 3000 3600
Time (s)

−500

−300

−100

100

300

500

Sc
or

e

Fast sim./Accurate sim.
Only accurate sim.

(c)

Fig. 6. Results when learning the accurate, but slow simulation environment (target environment). The reward for successful actions is always 1. In (a),
there is no penalty for failing an action. In (b) and (c), failures are penalized with a decrement of 5 and 10 to the score, respectively. The blue line shows
the accumulated reward when the fast but inaccurate environment is used as test environment. Red line represents a learner that can access exclusively the
slow simulator. The shaded regions represent 3 standard deviations around the central trend.

0 600 1200 1800 2400 3000 3600
Time (s)

−500

−300

−100

100

300

500

Sc
or

e

Fast sim./robot
Accurate sim./robot
Only robot

(a)

0 600 1200 1800 2400 3000 3600
Time (s)

−500

−300

−100

100

300

500
Sc

or
e

Fast sim./robot
Accurate sim./robot
Only robot

(b)

0 600 1200 1800 2400 3000 3600
Time (s)

−500

−300

−100

100

300

500

Sc
or

e

Fast sim./robot
Accurate sim./robot
Only robot

(c)

Fig. 7. Results when the target environment is the real world (i.e. physical robot acting in a real-life setting). Scenario (a) features a risk-free environment
(no penalty for failures), while scenarios (b) and (c) correspond to scenarios with a penalty of 5 and 10 for failed actions, respectively.

the target environment, our algorithm learns the actions’
outcomes with less risk.

Once we have validated the learning of action outcomes,
in the future we would like to extend the proposed algorithm
to learn also new outcomes to the rules and even new rules
from scratch. Finally, we would like to explore the case of
more than two environments in detail.

REFERENCES

[1] M. L. Littman, “Probabilistic propositional planning: representations
and complexity,” in Proceedings of the National Conference on
Artificial Intelligence, 1997.

[2] M. Eppe, P. D. H. Nguyen, and S. Wermter, “From semantics to
execution: Integrating action planning with reinforcement learning for
robotic causal problem-solving,” Frontiers in Robotics and AI, vol. 6,
p. 123, 2019.

[3] D. Aineto, S. Jiménez, and E. Onaindia, “Learning STRIPS Action
Models with Classical Planning,” International Conference on Auto-
matic Planning and Scheduling (ICAPS), 2018.

[4] Q. Yang, K. Wu, and Y. Jiang, “Learning action models from plan
examples using weighted MAX-SAT,” Artificial Intelligence, vol. 171,
no. 2-3, pp. 107–143, 2007.

[5] S. N. Cresswell, T. L. McCluskey, and M. M. West, “Acquiring plan-
ning domain models using LOCM,” Knowledge Engineering Review,
vol. 28, no. 2, pp. 195–213, 2013.

[6] H. H. Zhuo, H. Muñoz-Avila, and Q. Yang, “Learning hierarchical
task network domains from partially observed plan traces,” Artificial
Intelligence, vol. 212, no. 1, pp. 134–157, 2014.

[7] D. Draper, S. Hanks, and D. S. Weld, “Probabilistic Planning with
Information Gathering and Contingent Execution,” in Proceedings
of the Second International Conference on Artificial Intelligence
Planning Systems, 1994.

[8] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Journal of Artificial Intelligence
Research, vol. 29, pp. 309–352, 2007.

[9] D. Martı́nez, G. Alenyà, and C. Torras, “Relational reinforcement
learning with guided demonstrations,” Artificial Intelligence, vol. 247,
pp. 295 – 312, 2017, special Issue on AI and Robotics.

[10] N. Lipovetzky, M. Ramirez, and H. Geffner, “Classical Planning with
Simulators: Results on the Atari Video Games,” in IJCAI, 2015, pp.
1610 – 1610.

[11] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau,
H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, and S. Cotin,
“SOFA: A Multi-Model Framework for Interactive Physical Simula-
tion,” in Soft Tissue Biomechanical Modeling for Computer Assisted
Surgery, Yohan Payan, Ed. Springer, 2012, pp. 283–321.

[12] D. Martı́nez, G. Alenyà, T. Ribeiro, K. Inoue, and C. Torras, “Re-
lational reinforcement learning for planning with exogenous effects,”
Journal of Machine Learning Research, vol. 18, no. 78, pp. 1–44,
2017.

[13] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen, “A
tutorial on thompson sampling,” Found. Trends Mach. Learn., vol. 11,
no. 1, p. 1–96, July 2018.

[14] T. Keller and P. Eyerich, “PROST: Probabilistic Planning Based
on UCT,” in International Conference on Automatic Planning and
Scheduling (ICAPS), 2012.

[15] A. Kolobov, Mausam, and D. S. Weld, “LRTDP vs. UCT for Online
Probabilistic Planning,” in AAAI, 2012, pp. 1786–1792.

[16] M. Issakkimuthua, A. Fern, R. Khardon, P. Tadepalli, and S. Xue,
“Hindsight Optimization for Probabilistic Planning with Factored Ac-
tions,” International Conference on Automatic Planning and Schedul-
ing (ICAPS), pp. 120–128, 2015.

[17] S. K. Thompson, “Sample size for estimating multinomial propor-
tions,” American Statistician, 1987.

[18] D. Martı́nez, G. Alenyà, and C. Torras, “Planning robot manipula-
tion to clean planar surfaces,” Engineering Applications of Artificial
Intelligence, vol. 39, pp. 23–32, 2015.

[19] A. Bernardin, C. Duriez, and M. Marchal, “An interactive physically-
based model for active suction phenomenon simulation,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 1466–1471.

6908

