-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

An Alignment Cost-Based Classification of Log Traces
Using Machine-Learning
Mathilde Boltenhagen, Benjamin Chetioui, Laurine Huber

» To cite this version:

Mathilde Boltenhagen, Benjamin Chetioui, Laurine Huber. An Alignment Cost-Based Classification
of Log Traces Using Machine-Learning. ML4PM2020 - First International Workshop on Leveraging
Machine Learning in Process Mining, Oct 2020, Padua/ Virtual, Italy. 10.1007/978-3-030-72693-
5_11. hal-03134114

HAL 1Id: hal-03134114
https://hal.inria.fr /hal-03134114
Submitted on 8 Feb 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/395676883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03134114
https://hal.archives-ouvertes.fr

An Alignment Cost-Based Classification of Log
Traces Using Machine-Learning

Mathilde Boltenhagen®, Benjamin Chetioui?, and Laurine Huber?

! Université Paris-Saclay, ENS Paris-Saclay, CNRS, LSV, Gif-sur-Yvette, (France)
mathilde.boltenhagen@lsv.fr
2 University of Bergen, Department of Informatics, Bergen, Hordaland, (Norway)
benjamin.chetioui@uib.no
3 Université de Lorraine, LORIA (UMR 7503), Nancy, (France)
laurine.huber@loria.fr

Abstract. Conformance checking is an important aspect of process min-
ing that identifies the differences between the behaviors recorded in a log
and those exhibited by an associated process model. Machine learning
and deep learning methods perform extremely well in sequence analysis.
We successfully apply both a Recurrent Neural Network and a Random
Forest classifiers to the problem of evaluating whether the alignment cost
of a log trace to a process model is below an arbitrary threshold, and
provide a lower bound for the fitness of the process model based on the
classification.

1 Introduction

With the cost of computer memory becoming negligible, organizations have be-
come able to store extremely complex event logs from their systems. Process
Mining (PM) is a field of study that attempts to make sense of these logs by
producing corresponding process models. As decision makers increasingly rely on
such models, it is crucial to ensure that they model the targeted systems reliably.
Conformance checking is an entire subfield of PM that aims at defining the key
criteria of a good process model [1]. As of today, the four main criteria that are
considered are fitness, precision, generalization, and simplicity. Because of the
complexity of the involved data and of the resulting process models, the fitness
criterion is the only one unanimously accepted in the community. Computing
the fitness requires alignments of the event logs with the process model, which
often is costly [2,3] and for which a trade-off is possible between higher result
quality and lower computational complexity. The need for such a compromise
begs the question: is it possible to extract high-quality conformance checking
information through a less complex process?

To motivate such research, the 2016 Process Discovery Contest invited sci-
entists to study model compliance from a classification-oriented perspective [4].
The event logs were classified in two classes — compliant and deviant — using
pure data mining techniques. By encoding event logs into sequences of activities
called log traces, it is possible to perform such a classification using Recurrent

Neural Networks (RNNs). RNNs are at the core of significant progress in other
fields of Computer Science such as Natural Language Processing, or Bioinformat-
ics [5]. The PM community has recently shown significant interest in RNNs, but
principally on the topic of Predictive Business Process Monitoring [6,7,8,9,10,11].

In this paper, we focus on the efficiency of Deep Learning (DL) and classical
Machine Learning (ML) methods in conformance checking scenarios. Our core
contribution is an application of a RNN and a Random Forest (RF) classifier to
the problem of classifying traces based on their alignment costs to a reference
process model. We provide some theoretical properties of the fitness along with
reproducible experiments.

2 Related Work

The classification of log traces has been studied in the context of system devia-
tion analysis. Such works generally consider two classes of processes (normal and
deviant) and aim at explaining why discrepancies occur and deviant processes
arise. Nguyen et al. defined trace classes from data attributes and investigated
the problem of classification using decision trees, the k-Nearest Neighbors algo-
rithm and neural networks [12]; Sun et al. and Bose et al. investigated labeled
traces and association rules mining methods that can be used to extract human
readable results from them [13,14]. Similarly, Bellodi et al. provided a method
to classify log traces using Markov Logic formulas [15]. One glaring difference
between these works and ours is that we have an oracle at our disposal to classify
our traces, i.e. a process model.

The application of Long Short-Term Memory (LSTM) networks to the prob-
lem of predicting the next event in a business process was previously investigated
in several works [6,7,8,9]. In lieu of RNNs, Pasquadibisceglie et al. investigated
Convolutional Neural Networks for the same purpose [10]. Building on top of
all these approaches, Taymouri et al. tackled the problem by implementing a
Generative Adversarial Network, with promising results [11].

The present paper is probably most similar to the work of Nolle et al. [16],
whose results, which are based on RNN-based alignments, are extremely promis-
ing, though they perform anomaly detection instead of log trace classification.

3 Preliminaries

In this section, we provide some background and notation for both PM and ML.

3.1 Log Traces, Process Model, Fitness and Alignments
We represent event data as log traces.

Definition 1 (Log traces). Let A be a set of activities. We define a log L as
a finite multiset of sequences o € A*, which we refer to as log traces.

read wait

(open, read, wait, wait, close) open Ek EI| close
(open, read, close) @& 6_4]_’0
(write, wait, close) E(

(open, wait, write, close) write

Fig.1: A log L and an associated process model M

Process models can be generated from an event log; these models extrapolate a
set of possible runs from the recorded log traces exhibited in the aforementioned
event log. An example of a log and associated process model is provided in
Figure 1.

Definition 2 (Runs of a process model). Let M be a process model defined
over a set of activities A. We write Runs(M) C A* the set of sequences generated
by M.

This paper does not discuss the structure of process models; for a given model
M, we consider the set Runs(M) to be a sufficient description of M. How well
M models a log is measured by the fitness criterion and can be computed based
on Runs(M) as the minimal cost of aligning each log trace to a run of M.

Definition 3 (Alignment Cost, Optimal Alignment). Given a log trace

o= {01,...,0m) € L, and a process model M, we define the alignments of o
with M as sequences of pairs (moves) ((07,u}), ..., (0,,uy,)) withp < m+n
such that, for a given index i and a given run u = {uy,...,u,) € Runs(M):

— each move (o},u;) is either: a synchronous move (0;,ur) with o; = ug, a
log move (0;,>>), which represents the deletion of o; in o, or a model move
(>, ug), which represents the insertion of uy in o, where j € {1,...,m} and
ke{l,...,n};

— the left projection (01, ...,0,) of the alignment to A* (which drops the oc-
currences of >), yields o;

— the right projection (u},...,u,) of the alignment to A* (which drops the oc-
currences of >), yields u.

We call alignment cost the count of non-synchronous moves in the alignment. An
optimal alignment is an alignment in which the alignment cost is the minimum
possible given o and M.

The table below describes an optimal alignment of the log trace
(open, wait, write, close) with the process model drawn in Figure 1. Since the
alignment contains one non-synchronous move, its cost is 1.

trace open | wait | write | close
run open | > | write | close

We compute the fitness of a process model with regards to a trace as follows:

minCost(o, select(o, M))

lo| + min |u|
u’ € Runs(M)

fitness(o, M) =1 —

1)

where select(o, M) returns a run « € Runs(M) such that the set of alignments
of o with M using u contains an optimal alignment, and minCost(o, u) returns
the minimum cost of aligning o with M using a run u.

A trace is said to be fitting when its fitness is 1, i.e. when its optimal align-
ment has a cost of 0. We define the fitness of a process model M with regards to
a log L to be the average of the fitness of M with regards to each log trace of L.

3.2 Supervised Learning from Sequences

There are several approaches towards training classification models from se-
quential data in a supervised way. They have in common that they must encode
sequences of variable lengths as fixed-size vectors; these vectors are subsequently
used as training examples for the classifier, which learns a classification model
from them. The quality of the model is then assessed using several metrics and
methods, based on its ability to accurately classify new inputs.

Building a Model One can construct the vectors referenced above in different
ways, e.g. by ignoring the order of the sequences (Bag-of-words) in the hope that
knowledge about the frequency of each word in the sequences is sufficient to train
a classifier (e.g. a RF classifier), or by training Deep Neural Networks able to
encode the ordering of the sequences in the vectors (e.g. a LSTM network).

Long Short-Term Memory networks are RNNs able to learn and remember
over long sequences of inputs [5]. They achieve that by integrating neurons
specifically designed to determine whether a piece of information should be
remembered or forgotten, depending on whether it is relevant for classification.
Figure 2 gives the structure and relevant equations of an LSTM cell.

When one uses LSTM networks for sequence classification, the sequences
(represented as sequences of integers) are usually first passed through an em-
bedding layer before being passed through the LSTM layer; the prediction is
then the output of a dense layer. One may add dropout layers to the network, in
order to randomly ignore a percentage of units during training to avoid overfit-
ting. The specificity of this architecture is that the whole sequence is fed as input
to the network and that the embedding is learned through the training process;
this permits learning a representation of the sequence that somehow embeds its
sequential properties.

Definition 4 (Bag-of-words (BoW) encoding). For an alphabet A and a
sequence o € A*, a Bag-of-words encoding canonically maps o to a multiset of

words of A.

h‘T
N fe=0(Wyg - [hi1,z¢] + by)
iy = o(Wi - [he—1,] + bs)

-
—G a
ft it (o] ~
ét) Cy = tanh(W, - [hy—1,z¢] + be)
h [o] ot = 0(Wo - [hi—1,x¢] + bo)
t-L‘ 't
-» _’

/ Cr=fe*xCio1 +irxC
hy = ot x tanh(Ch)

Ct-1

v

=

Xt

where b, is the bias added at gate g, W, is the weight vector for gate g, x; is the current input,

C¢_1 the memory of last hidden unit, and hy_1 the output of last hidden unit.

Fig.2: LSTM cell (adapted from [17])

In its simplest version, the multiset is encoded as a vector of integers X,
and the element at index i in X, gives the count of the word at index 7 in O4
in the sequence o, where O 4 is a vector containing exactly all the elements of A
in some arbitrary order. For instance, the respective BoW encodings of the log
traces in Figure 1 are (1,1,2,1,0), (1,1,0,1,0), (0,0,1,1,1), and (1,0,1,1,1) for
O = (open, read, wait, close, write).

Random Forests (RFs) are an ensemble learning method for classification. A
RF constructs a bootstrapped collection of decision trees, i.e. a collection of
decision trees that are sampled with replacement. Each decision tree consists of
inner dichotomous nodes representing tests on random subsets of features, and
of leaf nodes representing the possible output classes. The class of a given input
can be predicted by taking the majority vote of the classification trees [18].
These decision trees can help to understand which features are important for
classification, since every output can be represented as a list of decisions taken
at the dichotomous nodes.

Validating a Model We recall some metrics used to evaluate classification
models, as well as one famous validation technique, namely the K-fold cross-
validation.

Definition 5. In the following, given a classification model C and a given input
i, we write yc,; the actual class of the input and fc; its predicted class by C.

Definition 6 (Accuracy). For a given classification model C' and an input i,
we say that the classification is accurate when yc,; = Jc,i. For a set of inputs
S, we define Egc = {i : i € S, §ci = yc,i}- The accuracy accc(S) of the
classification of S by C is given as accc(S) = %

Definition 7 (Cross-Entropy Loss). For a given binary classification model
C and a given set of inputs S, there exists an error function called cross-entropy

loss lossc(S) defined by lossc(S) = ﬁ > ics —log(P(ic, = yc,))-

K-fold cross-validation K-fold cross-validation is a model validation technique
used to lower the biases that may emerge when one only selects one training
set and one testing set. Given K € N*| the dataset D is split into K i-indexed
subsets D;. For each subset, one trains a model using D\ D; as the training set,
and subsequently evaluates it using D; as the testing set. The performance of
the model is then summarized using the mean and variance of the evaluation
scores.

4 Classifying Traces and Bounding the Fitness of a Model

The fitness of a log trace to a process model represents important information
in conformance checking. Computing the fitness requires computing alignments
of the trace with the model, which is a costly process. In this section, we present
a binary classification of log traces based on their closeness to a process model:
the Alignment Cost Threshold-based Classification (ACTC). This classification
provides means of extracting relevant information at a much lower cost than
alignments, while still guaranteeing a lower bound for the fitness of a process
model to a log.

Definition 8 (Alignment Cost Threshold-based Classification). Let M
be a process model and L be a log. For a given alignment cost threshold t 4c € N,
the ACTC maps each log trace o € L to one of two classes depending on its
minimal alignment cost ¢y ar:

— the positive class Lpos if co,mr < tac;
— the negative class Lyey otherwise.

The t 4¢ parameter allows us to have more flexibility — in that we can now
work with arbitrarily close traces instead of only fitting ones — and to control
the balance of our two classes.

Theorem 1. Given the ACTC of a log L for a model M and a cost threshold
tac, the following holds:

Y p—
o]+ min |ul

o€ Lpos u€ Runs
fitness(L, M) > !] Eftuns (M) (2)

i.e. fitness(L, M) is bounded from below.

Proof. The fitness of a process model M with regards to a log L is defined as
the average of the fitness of M with regards to each log trace of L, i.e.

Z minCost(o, select(a, M))

o]+ min |u|
oel u’€ Runs(M)

L]

fitness(L, M) =1 —

Let there be an ACTC of cost threshold ¢ 4¢. For every o € L, we have

0 if 0 € Lieg

fitness(o, M) > < 1 — tac 7 if 0 € Lpos » (4)
lol+ min |u|
u’ € Runs(M)

since t4¢ is the highest allowed alignment cost for a trace to be classified into
Lpos. It follows trivially that:

R
lo|+ min |u]
0€Lpos u€ Runs (M)
L]

fitness(L, M) > (5)

In the following, we write B = fitness(o, M) for any o € Lyos. O

Taking a small value for t 4¢ results in a large B, but a potentially smaller
cardinality for L,s; on the other hand, a large ¢ 4¢ will induce a larger cardi-
nality for L,s but a smaller B. The aim of the following is to compute B from
predictions, i.e. in a case where L, is built using a predictive approach. In this
case, there is a risk that traces will be classified erroneously. We show in the next
sections that classification models are good enough in practice to guarantee a
lower bound of their fitness that is very close to the one outlined above.

5 Experiments

In this section, we present our datasets; we follow by describing how we param-
eterize our classification models; finally, we present our experimental results.

5.1 Alignment Datasets

The ACTC requires a training set of alignments; for that purpose, we have
created alignments datasets that contain the trace variants of each dataset (i.e.
the unique sequences in the log) and their minimal alignment costs for several
process models*; that way, we rid our results of the noise induced by duplicate
traces.

We ran our experiments on the three largest logs from the Business Process
Intelligence Challenges available at the time of writing, using models from the
work of Augusto et al. [19]. The models were discovered using the preprocessing
method of Conforti et al. [20], and then either the Inductive Miner (IM) [21], the
Split Miner (SM) [22], or the Heuristic Miner (SHM) [23]. Table 1 summarizes
the relevant pieces of information pertaining to the datasets.

4 https://github.com/BoltMaud/An- Alignment-Cost-Based-Classification-of-Log-
Traces-Using-ML

Log Number of Method of Model Average Median Dataset
Trace Variants discovery Alignment Cost | Alignment Cost Name
Noise Filter + IM 2.14 2.00 2012
BPIC_2012 4 366 Noise Filter + SM 3.02 3.00 ASG12
Noise Filter + SHM 7.60 6.00 AR
Noise Filter + IM 14.90 13.00 5017
BPIC_2017 15 930 Noise Filter + SM 15.03 13.00 3017
Noise Filter + SHM 16.31 14.00 Asety
BPIC_2019 11 973 Noise Filter + IM 24.38 6.00 As019

Table 1: Event log description and alignment costs

For each log, we also generate a set of 1000 random mock traces of lengths
varying between 1 and the length of the longest trace in the log. These traces
have, in most cases, a very high alignment cost with regards to the process
models.

5.2 Learning Methods

We train two classifiers, namely a RF on BoW-encoded sequences, and a LSTM
network on sequences whose encoding embeds the sequential properties of the
activities. The general overview of the training process is shown in Fig. 3.

Evaluate model

10-Fold (test + fictional)
. TAC TAC S,
Vectorized LT class Vectorized LT class Feed Select
Bag-of-Words. Split model RF 'model
L. train (train) | |
tAC original
Logtraces (LT) | " | | | % | | Beereeiiriiniian
s n class test LSTM
crinal ‘mock ‘mock Layers Output Shape Computed
original - T - Input Layer (batch_size, m) accuracy
--------------------- Vectorized LT| e Vectorized LT| e - Embedding (batch_size, m, 1) | |
mock class class - Bi-LSTM (batch_size, m, 100) Select
Solit] Feed - Dropout (batch_size, m, 100) model
original (Spiit,) train model -LSTM (batch_size,50)
Word2Index”| | | e ARFILLEE BEREE (train) - Dropout (batch_size,50)
................... ... - Dense (batch_size, 2)
mock m = maximal trace length Evaluat del
valuate mode!

(test + fictional)

Preprocessing Training and selection Evaluation

Fig. 3: Overview of the experimental setup

LSTM Network This model takes constant-length vectors of integers as inputs,
in which a given integer corresponds to exactly one activity. Traces that are
shorter than the expected length of the vectors are padded as needed.

The architecture of the model we train is given in Figure 3. The input layer
takes a vector of size m (corresponding to the length of the longest trace in the
log) containing elements belonging to the set of all the actions taken in the log
traces. The vector is encoded into a vector of 15 elements using an embedding
layer. The resulting vector is then fed to a bi-LSTM layer — ensuring that the
left and right contexts of the actions in the input traces are remembered — and
then to another simpler LSTM layer. Dropout layers with a frequency rate of

0.5 are added to prevent overfitting. The dense layer uses the softmax activation
function to output the predicted classes, thus ensuring that they are mutually
exclusive. We train the model for 10 epochs and with a batch size of 50 in-

stances °.

RF Classifier The RF classifier does not take into account the order of the
events, as it takes as input vectors that represent an ensemble of features, in our
case activities. The classifier is thus trained with vectors resulting from a BoW
encoding of the traces.

The target values, i.e. the prediction classes, are 0 (negative) or 1 (positive)
depending on the minimal alignment cost of the sequence.

We set up 3 verification steps: first, we split the dataset into a training set
(67%) and a testing set (33%) using a 10-fold cross-validation on the training
sets to find the best predictive model in terms of accuracy. Second, we predict
the classes of the sequences in the testing sets, and compare the accuracy during
training to the accuracy during testing; they should be similar. Finally, we feed
randomly generated traces with a high alignment cost to the predictive model;
they should always be classified negatively.

5.3 Results and Interpretation

We built two distinct classifiers — one RNN and one RF — for each pair (d, m),
with d one of the 7 datasets in Table 1, and m one of the possible alignment
costs for the model; each pair represents an ACTC problem.

Table 2 summarizes the results of the experiments, where t 4¢ is the median
of the alignment costs given in Table 1. The table contains the accuracies and
losses for our testing data, and we compare our running times with the ones of
ProMS® for computing the alignments.

Both learning models exhibit good accuracy and low losses, thus confirm-
ing the potential of predictive approaches for the problem of alignment. The
predicted lower bound of the fitness is computed from the traces classified as
positive and is very close to the exact fitness lower bound. However, we note a
significant difference between the actual fitness and these lower bounds. This is
because the fitness function we use is coarse-grained, in that it gives a purely
binary score denoting whether a log trace is classified as negative or positive.
Despite this weakness, it remains somewhat useful as a heuristic to decide which
of two models better fits a trace. It is also worth noting that our binary clas-
sification is straightforward to understand, whereas understanding alignments
tends to require more expertise; such a classification is therefore likely to be
very valuable to decision makers.

5 The size of the embedding layer, the number of epochs, the batch size, and the
stack of LSTM layers were chosen after several initial experiments, as they were the
parameters that yielded the best results.

5 https://www.promtools.org

Align- | . % of | Fitness RNN Random Forest ProM
Fitness | tac

ments positive| Lower || Acc | Loss |Predicted| Avg. | Acc | Loss [Predicted| Avg. | Avg.
Bound Fitness | Run- Fitness |Run-| Run-

Lower | time Lower |time | time

Bound | (ms) Bound | (ms)| (ms)

AB1, | 0.950 73 0.695 |/0.999]0.011| 0.695 |12.00|0.988|0.057| 0.700 | 0.06 | 42.28

2
ASp12 | 0.932 3 73 0.670 |/0.829]0.377| 0.745 |19.72|0.820|0.472| 0.713 | 0.08 | 52.85
6

AT, | 0.837 56 0.476 |/0.969]0.104| 0.491 |23.75/0.972|0.136| 0.479 | 0.06 | 99.89

Aspi7 | 0.874 | 13 53 0.463 |/0.984|0.047| 0.473 |10.01|0.979|0.056| 0.467 | 0.03 | 5.12

ASpi7 | 0.819 | 13 52 0.415 || 0.985|0.049| 0.420 | 2.70 |0.985|0.053| 0.421 | 0.03 | 7.72

A 1 0794 | 14 52 0.400 |/0.981]0.055| 0.410 | 4.05 |0.984|0.055| 0.405 | 0.03 | 33.23

Asp19 | 0.561 6 53 0.328 |/0.973]0.078| 0.338 |15.11|0.958|0.103| 0.344 | 0.03 | 1.09

Table 2: Alignment Cost Threshold-based Classification by using a RNN and a
Random Forest Classifier, with ¢ 4¢ the median of the alignment costs.

Once the model has been trained, predicting the class of a trace is, in most
cases, significantly faster than computing its exact alignment, as summarized
in Table 2. One glaring exception is in the case of Ay, in which computing
exact alignments remains roughly 14 times more efficient than performing a
prediction using the RNN. This is because the model is very simple (made of
only 13 transitions, without loops); this is not surprising and should not matter
in practice, as predictive approaches are tools designed to outperform exact
approaches in complex cases with big or even intractable search spaces. One
noteworthy caveat of using predictive approaches, however, is the fact that the
models must be trained before they become able to output predictions. In our
experiments, training a model took from 3.18s to 8.97s for our RF classifier, and
from 2675.87s to 34837.31s for our LSTM network —both of which involved a
10-fold cross validation.

To better assess the impact of ¢ 4¢ on our results, we perform a comparison of
the predictions with varying ¢ 4¢ values in Table 3. We summarize the accuracy,
loss, and distribution into the two output classes for the testing data, as well
as for randomly generated mock data. We notice that the accuracy drops very
fast as t4¢ grows larger for the mock data; this is induced by an equally quick
drop in the percentage of log traces classified as negative. Given actual log traces
however, both classifiers are reasonably accurate in each one of the considered
cases. As was the case in Table 2, we note that the predicted lower bound of the
fitness is close to the one given by our exact formula. This is also a nice result,
although the actual fitness of the process model with regards to the log is pretty
far off at 0.837.

6 Conclusion and Opening

We presented a compelling use of ML for conformance checking by constructing
binary oracles — using a RF classifier and a LSTM network — that are able to
predict with high accuracy whether the minimal alignment cost of a log trace
with regards to a process model is below an arbitrary threshold. The method

. Class | % Fitness RNN Random Forest
Ac : 0 Lower Bound | Acc | Loss |Predicted Fitness| Acc | Loss |Predicted Fitness
Lower Bound Lower Bound
all 100 0.992 | 0.029 0.998 | 0.009
9 pos 8 0.071 0.982 | 0.214 0.076 1.000 | 0.043 0.073
neg 92 0.992 | 0.013 0.998 | 0.006
mock | 100 / 0.961 | 0.108 / 0.904 | 0.207 /
all 100 0.991 | 0.042 0.999 | 0.016
4 pos 20 0.169 0.968 | 0.151 0.166 1.000 | 0.021 0.170
neg 80 0.997 | 0.016 0.998 | 0.015
mock | 100 / 0.937 | 0.303 / 0.876 | 0.317 /
all 100 0.971 | 0.104 0.972 | 0.150
6 pos 56 0.476 0.990 | 0.066 0.491 0.978 | 0.063 0.479
neg 44 0.944 | 0.156 0.962 | 0.268
mock | 100 / 0.871 | 0.543 / 0.837 | 0.548 /
all 100 0.976 | 0.092 0.984 | 0.077
8 pos 65 0.500 0.980 | 0.079 0.498 0.989 | 0.031 0.501
neg 35 0.970 | 0.116 0.974 | 0.161
mock | 100 / 0.818 | 1.189 / 0.782 | 0.911 /
all 100 0.937 | 0.165 0.971 | 0.103
10 pos 73 0.524 0.943 | 0.100 0.508 0.979 | 0.055 0.522
neg 27 0.921 | 0.336 0.949 | 0.233
mock | 100 / 0.364 | 3.759 / 0.620 | 1.650 /

Table 3: Comparison of the prediction results for different ¢4 values for the
testing set of ASiW,. The exact fitness for the used sublog is 0.837.

we proposed is more flexible, cheaper, and easier to understand for humans
than the one usually used for exact alignments. We furthermore proved the
existence of a lower bound for the fitness of a process model. Our work shows
that there is a lot of value to be gained in exploring the use of ML methods
in conformance checking. Future investigations may include whether the exact
minimal alignment cost of a trace with a process model can be predicted from
a regression model; another interesting project could build on the work of Nolle
et al. [16] to predict optimal alignments of a log trace to a process model.

References

1. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking.
Springer (2018)

2. Adriansyah, A.: Aligning observed and modeled behavior. (2014)

3. Van Dongen, B., Carmona, J., Chatain, T., Taymouri, F.: Aligning modeled and
observed behavior: a compromise between computation complexity and quality. In:
CAISE, Springer (2017)

4. Carmona, J., de Leoni, M., Depaire, B., Jouck, T.: Summary of the process discov-
ery contest 2016. In: Proceedings of the Business Process Management Workshops,
Springer. (2016)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
(1997)

6. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep
learning. Decision Support Systems (2017)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Tax, N., Verenich, 1., La Rosa, M., Dumas, M.: Predictive business process moni-
toring with LSTM neural networks. In: CAISE, Springer (2017)

Camargo, M., Dumas, M., Gonzélez-Rojas, O.: Learning accurate LSTM models
of business processes. In: BPM, Springer (2019)

Lin, L., Wen, L., Wang, J.: Mm-pred: A deep predictive model for multi-attribute
event sequence. In: International Conference on Data Mining, STAM (2019)
Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional
neural networks for predictive process analytics. In: International Conference on
Process Mining, ICPM, IEEE (2019)

Taymouri, F., La Rosa, M., Erfani, S., Bozorgi, Z.D., Verenich, 1.: Predictive
business process monitoring via generative adversarial nets: The case of next event
prediction. In Proc. of BPM, Springer (2020)

Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining busi-
ness process deviance: a quest for accuracy. In: OTM Confederated International
Conferences” On the Move to Meaningful Internet Systems”, Springer (2014)
Sun, C., Du, J., Chen, N., Khoo, S.C., Yang, Y.: Mining explicit rules for soft-
ware process evaluation. In: Proceedings of the 2013 International Conference on
Software and System Process

Bose, R.J.C., van der Aalst, W.M.: Discovering signature patterns from event
logs. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM), IEEE

Bellodi, E., Riguzzi, F., Lamma, E.: Probabilistic declarative process mining. In:
International Conference on Knowledge Science, Engineering and Management,
Springer (2010)

Nolle, T., Seeliger, A., Thoma, N., Miihlhduser, M.: Deepalign: Alignment-based
process anomaly correction using recurrent neural networks. In: CAISE, Springer
(2020)

Olah, C.: Understanding LSTM networks (08 2015) [Online; acceded on 02-
September-2020].

Breiman, L.: Random forests. Machine learning (2001)

Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., La Rosa, M., Reifiner,
D.: Abstract-and-compare: A family of scalable precision measures for automated
process discovery. In: BPM, Springer (2018)

Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior
from business process event logs. IEEE Transactions on Knowledge and Data
Engineering (2016)

Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: BPM, Springer
(2013)

Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowledge and Information Systems (2019)

Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Bruno, G.: Automated dis-
covery of structured process models from event logs: the discover-and-structure
approach. Data & Knowledge Engineering (2018)

