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Résumé
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Collapses and Persistent Homology

by Siddharth Pritam

Dans cette thèse, nous introduisons deux nouvelles approches pour calculer l’homo-
logie persistante (HP) d’une séquence de complexes simpliciaux. L’idée de base est
de simplifier les complexes de la séquence d’entrée en utilisant des types spéciaux
de collapses (effondrement), les collapses forts et les collapses d’arêtes, et de calculer
l’HP d’une séquence réduite de plus petite taille qui a la même HP que la séquence
initiale.

Notre première approche utilise les collapses forts introduits par J. Barmak et E.
Miniam [DCG (2012)]. Un collapse fort supprime les sommets dits dominés d’un
complexe simplicial. Notre approche utilisant les collapses forts a plusieurs carac-
téristiques qui la distinguent des travaux antérieurs. La méthode n’est pas limitée
aux filtrations (c’est-à-dire aux séquences de sous-complexes simpliciaux imbriqués)
mais fonctionne pour d’autres types de séquences comme les tours et les zigzags. Par
ailleurs, pour implémenter les collapses forts, il suffit de représenter les simplexes
maximaux du complexe, et pas l’ensemble de tous ses simplexes, ce qui économise
beaucoup d’espace et de temps. De plus, les complexes de la séquence peuvent être
collapsés indépendamment et en parallèle.

Dans le cas des complexes en drapeaux (flag complexes), les collapses forts peuvent
être réalisés sur le 1-squelette du complexe et le complexe résultat est également un
complexe en drapeau. Nous montrons que si l’on restreint la classe des complexes
simpliciaux aux complexes en drapeaux, on peut améliorer la complexité en temps et
en espace de facon décisive par rapport aux travaux antérieurs. Lorsque les collapses
forts sont appliqués aux complexes d’une tour de complexes en drapeau, nous
obtenons une séquence réduite qui est aussi une tour de complexes en drapeau que
nous appelons le coeur de la tour. Nous convertissons ensuite le coeur de la tour en
une filtration équivalente pour calculer son HP. Là encore, nous n’utilisons que les
1-squelettes des complexes. La méthode résultante est simple et extrêmement efficace.

Nous étendons la notion de sommet dominé au cas de simplexes de dimension
quelconque. Le concept d’arête dominée apparait très puissant et nous l’étudions
dans le cas des complexes en drapeaux de facon plus détaillée. Nous montrons que les
collapses d’arêtes (suppression des arêtes dominées) dans un complexe en drapeaux
peut être effectué, comme précédemment, en utilisant uniquement le 1-squelette du
complexe. En outre, le complexe résiduel est également un complexe de drapeaux.
Ensuite, nous montrons que, comme dans le cas des collapses forts, on peut utiliser
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les collapses d’arêtes pour réduire une filtration de complexes en drapeaux en une
filtration de complexes en drapeaux plus petite qui a la même HP. Là encore, nous
utilisons uniquement le 1-squelettes des complexes.

Comme l’ont démontré de nombreuses expériences sur des données publiques, les
approches développées sont extrêmement rapides et efficaces en mémoire. En parti-
culier, la méthode utilisant les collapses d’arêtes offre de meilleures performances
que toutes les méthodes connues, y compris l’approche par collapses forts. Enfin,
nous pouvons faire des compromis entre précision et temps de calcul en choisissant
le nombre de complexes simpliciaux de la séquence à collapser.
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by Siddharth Pritam

In this thesis, we introduce two new approaches to compute the Persistent Homology
(PH) of a sequence of simplicial complexes. The basic idea is to simplify the complexes
of the input sequence by using special types of collapses (strong and edge collapse)
and to compute the PH of an induced sequence of smaller size that has the same PH
as the initial one.

Our first approach uses strong collapse which is introduced by J. Barmak and E.
Miniam [DCG (2012)]. Strong collapse comprises of removal of special vertices called
dominated vertices from a simplicial complex. Our approach with strong collapse has
several salient features that distinguishes it from previous work. It is not limited
to filtrations (i.e. sequences of nested simplicial subcomplexes) but works for other
types of sequences like towers and zigzags. To strong collapse a simplicial complex,
we only need to store the maximal simplices of the complex, not the full set of all
its simplices, which saves a lot of space and time. Moreover, the complexes in the
sequence can be strong collapsed independently and in parallel.

In the case of flag complexes strong collapse can be performed over the 1-skeleton
of the complex and the resulting complex is also a flag complex. We show that if we
restrict the class of simplicial complexes to flag complexes, we can achieve decisive
improvement in terms of time and space complexities with respect to previous work.
When we strong collapse the complexes in a flag tower, we obtain a reduced sequence
that is also a flag tower we call the core flag tower. We then convert the core flag tower
to an equivalent filtration to compute its PH. Here again, we only use the 1-skeletons
of the complexes. The resulting method is simple and extremely efficient.

We extend the notions of dominated vertex to a simplex of any dimension. Domina-
tion of edges appear to be very powerful and we study it in the case of flag complexes
in more detail. We show that edge collapse (removal of dominated edges) in a flag
complex can be performed using only the 1-skeleton of the complex as well. Further-
more, the residual complex is a flag complex as well. Next we show that, similar to
the case of strong collapses, we can use edge collapses to reduce a flag filtration F to
a smaller flag filtration F c with the same persistence. Here again, we only use the
1-skeletons of the complexes.

As a result and as demonstrated by numerous experiments on publicly available data
sets, our approaches are extremely fast and memory efficient in practice. In particular
the method using edge collapse performs the best among all known methods includ-
ing the strong collapse approach. Finally, we can compromize between precision
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and time by choosing the number of simplicial complexes of the sequence we strong
collapse.
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Chapter 1

Introduction

1.1 Topological Data Analysis

Empirical verification is at the heart of scientific investigation and data is the main ob-
ject which facilitates the verification. There are many different ways one can possibly
extract information out of data. Mathematics is the language that provides different
tools through which we can interact with data. Each tool reveals a different nature of
the data and often their combinations provides a more broader understanding. In this
thesis we focus on one specific mathematical tool, Topology along with Geometry.

Topology is the branch of mathematics which studies the characterization of invari-
ants of a space under ‘continuous deformations’. These invariants can be the number
of connected components, loops, voids, holes, tunnels and their higher-dimensional
analogs. They can also be purely algebraic or combinatorial in nature, like the Euler
characteristic.

In most cases data comes with a notion of similarity between its constituent elements
(points) which leads to the notion of distance between them. The notion of distance
allows us to talk about geometry and topology. Therefore data has shape and using
geometric and topological methods one could extract the information about its shape.
Metric space is the formalism of the concept of similarity and often in practice data is
presented as a point set in a metric space. Given a point set P in a metric space, we
assume that it is a finite sample of some underlying space X and we want to infer the
topology of X using P. Below is a simple example, a point set sampled from a torus.

FIGURE 1.1 – Point cloud sampled from a torus.
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The idea of topological inference is not entirely new and it has been done in rather
simplistic forms. For example given a point set as in Figure 1.2, we would like to
classify or to cluster them into similar groups. The topological interpretation of clus-
tering would be to understand the nature and the number of connected components
of the point set. Traditionally there are algorithms like K-means and PCA (Principle
Component Analysis) to perform such tasks.

FIGURE 1.2 – Left: Point set in R2 and Right: Its clusters represented
in different colors.

Another example is regression where one starts with certain hypothesis about the
shape of the data like being linear and wants to compute the line that fits the data
best as shown in Figure 1.3.

FIGURE 1.3 – A regression line fitting the given point set.

The underlying space X could be far more complex than being linear or of the shape
of torus, with possibly many more holes of different sizes and of high dimensions.
The mathematical formalism which captures the notion of connectivity, loops, voids,
tunnels and their higher-dimensional analogs is called homology. Homology is a
topological invariant, that is, it does not change under ‘continuous deformations’
and it is of algebraic nature. We associate one group per dimension to the space
X that ‘measures’ the number and the nature of the ‘holes’ of X. Topological Data
Analysis (abbreviated as TDA) is a new and fast emerging field, whose goal is to
extract geometric and topological properties of complex data with advanced tools
like homology.
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1.2 Persistent Homology

Since the point set P is usually a finite sample of X therefore it can not have the exact
topology of X. One possible way to infer the topology of X is to consider balls of
some radius ε (called scale), around each point of P such that their union covers X in a
’nice‘ way.

FIGURE 1.4 – Points in R2 and euclidean balls around them, with
increasing radii.

In the above example Figure 1.4, at very small scale, the points seem to be isolated,
with balls around them forming many small clusters. At medium scale, it is apparent
that the points have circular shape. Finally, at large scale, the balls around them forms
a single large cluster and does not seem to represent the original shape. Therefore,
the radius of the balls in the middle could be thought as the ‘right’ scale at which the
union of balls represents the circle from which the points could have been possibly
sampled. This brings us the question of how to choose the ‘right’ scale. However,
there might not be a single ‘right’ scale. In the example below, Figure 1.5, at no scale
the union of balls could capture the two loops.

FIGURE 1.5 – At no scale the union of balls can capture both the loops.

To resolve this issue we would naturally like to look at the balls around the point
set at multiple scale. If we track the evolution of the union of the balls as the scale
increases, we see that a specific topological feature (hole) starts appearing at a certain
scale and then dies at another scale. Therefore, every specific topological feature has
a life span in this process, some persist longer and others die quickly. The natural
conclusion of this observation would be that the features that last longer are real
features of the data and the small persisting features are noise. The mathematical
idea to capture this intuition is called Persistent homology.

Persistent homology (PH) was introduced by Edelsbrunner, Letscher and Zomorodian
in their milestone paper [27]. The scale of life and death of all topological features
could be summarized as points (life, death) in R2. This summary of points is called the
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persistence diagram, see Figure 1.8 for an example. In the same paper [27], Edelsbrunner
et. al. provided a simple and fast algorithm to compute the persistence diagram as well.

The computation of persistence diagram is performed over a combinatorial or discrete
structure on the given point set P. This structure is called a Simplicial complex. A sim-
plicial complex is a collection of points, edges, triangles, tetrahedron and their higher
dimensional analogs called simplices, such that they are ’nicely’ glued. Formally, a
k-simplex σ is the convex hull of (k + 1) affinely independent points and k is called its
dimension. A sub-collection τ of the (k + 1) points is also a simplex, called a face of σ
and σ is called a co-face of τ. A simplicial complex K is then a collection of simplices
such that

1. A face τ of any simplex σ is in K.

2. Two simplices σ1 and σ2 in K intersect only at a common face τ.

The dimension of a simplicial complex K is the maximum of the dimensions of its
simplices. Simplicial complexes are one of the most important combinatorial structure
in computational topology and arise naturally in many different contexts. There is a
simplicial complex associated to the union of balls around the points in P. Given P
and scale ε, we add edges between the points of P whenever two balls around them
of radius ε have a common intersection, we put a triangle between three points of
P whenever the balls around them have a common intersection, likewise we add
tetrahedrons and higher dimensional simplices. The simplicial complex constructed
in this fashion is called the Čech complex denoted as C(P, ε). Most important, the
union of balls and the Čech complex have the same topology (more precisely they
are homotopy equivalent). See Figure 1.6 for an example of a union of balls and its
associated Čech complex.

FIGURE 1.6 – Union of balls and the associated Čech complex.

As we increase the scale, the associated Čech complexes {C(P, ε)}0≤ε form a nested
sequence, i.e. for ε1 ≤ ε2, C(P, ε1) ⊆ C(P, ε2). More general such a sequence of nested
simplicial complexes is called a filtration. Traditionally persistence has been defined
and computed for such sequences.

The Alpha complex is another simplicial complex which arises from the union of balls
and has the same homology as the Čech complex. Here, we restrict the ball around
a point by the corresponding Voronoi cell of the point and look at the intersection
patterns of the restricted balls. When two restricted balls intersect we put an edge
and for an intersection of three restricted balls we put a triangle and so on so forth.
This means that given two points whose Voronoi cells are not intersecting the balls
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around them would not intersect as well. Therefore points that are far apart will not
span a simplex in the alpha complex. The alpha complex is a subcomplex of the Čech
complex and the Delaunay triangulation. Below is an example of a union of restricted
balls and its associated alpha complex, Figure 1.7.

FIGURE 1.7 – Union of restricted balls and the associated alpha com-
plex. The black edges are the 1-cells of the Voronoi cell decomposition

that restrict the balls around the points.

We define another simplicial complex closely related to the Čech complex. We define
a subset of points of P as a simplex σ whenever pairwise distance between any two
points of σ is less than 2ε. We call this simplicial complex the Vietoris-Rips complex or
simply the Rips complex, denoted as R(P, ε).

The Rips complex is a special type of simplicial complex called a Flag complex. Flag
complexes are fully characterized by their graph (or 1-skeleton), the other faces
being obtained by computing the cliques of the graph. Hence, a flag complex can be
represented by its 1-skeleton, which is a very compact representation. Flag complexes
are very popular and, in particular, Rips complexes are widely used in Topological
Data Analysis. Along with Rips complex, Čech and alpha complexes are commonly
used too, specially in low dimensions. We discuss more about their advantages and
disadvantages in Section 1.4.

We briefly summarize the complete pipeline of the PH computation.

Point
Set P

A Filtra-
tion F
over P

Boundary
Matrix
M of F

Persistence
Diagram

Given a point set P in a metric space, we build a sequence of simplicial complexes
(for example a filtration F of Rips complex) over P. We then compute a boundary
matrix M over a filtration, such that the columns and rows of the boundary matrix
are the simplices of the filtration sorted as per their filtration value. A non-zero
entry M[σi][σj] implies σi is a face of σj. We then reduce this matrix to a special form,
to retrieve special pairings of the simplices that corresponds to the points in the
persistence diagram. We discuss the reduction algorithm in more details in Chapter 2.
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F K1 ↪→ K2 ↪→ K3 ↪→ · · · ↪→ Kn

M Mm,n =


0 0 · · · 1
0 1 · · · 1
...

...
. . .

...
0 1 · · · 0


PD Figure 1.8

FIGURE 1.8 – A Persistence Diagram: Different colors denote different
dimensions of the homology groups.

Stability: Two point sets P and P′ can be compared by their corresponding persis-
tence diagrams associated to some filtrations defined over P and P′. The bottleneck
distance is a measure of similarity between two persistence diagrams, which we define
more precisely in Chapter 2.

Stability of persistence diagrams is one of the most important result in the theory
of persistence. It states that, small perturbations in the point set P leads to a small
perturbation in its persistence diagram. More formally if P and P′ are two point sets
such that their Hausdorff distance is at most ε then the bottleneck distance between their
corresponding persistence diagrams would be bounded above by ε. The first result
about stability of persistence diagram was proved by Cohen-Steiner, Edelsbrunner
and Harer in [17]. The stability in [17] was defined for functions however we used
the formulation of point sets for simple exposition.

At a scale ε, the Čech complex and the Rips complex of a point P ∈ Rd follow the
following inclusion property,

R(P, ε) ⊆ C(P,
√

2ε) ⊆ R(P,
√

2ε)

and are called interleaved. As a consequence of stability theorem, the interleaving
relation implies that the bottleneck distance between the persistence diagram of a
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Rips filtration and the persistence diagram of the corresponding Čech filtration is
bounded above by

√
2.

1.3 Extensions of Persistent Homology

Since its introduction, the theory of persistence has evolved very rapidly in subse-
quent years both on theoretical and algorithmic fronts. Carlsson and Zomorodian
provided solid algebraic foundations and extended the algorithm for more general
cases in [50]. Subsequently, Persistent Homology was defined for sequences more
general than filtrations. A Zigzag filtration is a sequence of simplicial complexes
connected through inclusions and removals (inclusion in the reverse direction) of
simplices:

A zigzag filtration: K1 ↪→ K2 ←↩ · · · ↪→ Km

Carlsson and Silva defined and provided an algorithm to compute zigzag persis-
tence [12] which was further improved in [13].

The theory of persistence extends naturally to zigzag sequences due to their connec-
tion with quiver theory [20]. For the same reason it was natural to define persistence
diagrams corresponding to sequences of simplicial complexes connected through
more general simplicial maps not just inclusions. Such a sequence is called a tower
if the maps are in the same directions and a zigzag sequence if the maps are in both
directions. Below are examples of a tower and a zigzag sequence respectively.

Tower: K1
f1−→ K2

f2−→ · · · → Km

A zigzag sequence: K1
f1−→ K2

g2←− · · · → Km

Here fi and gi are simplicial maps. The first algorithm to compute the persistence of
a tower was given by Dey, Fan and Wang in [22]. Their strategy was to transform
a tower into an equivalent filtration using the link condition over edges between
contracting vertices of the simplicial maps. Their approach was further improved by
Kerber and Schreiber in [34] by using coning instead of the link condition. They also
provided a theoretical guarantee over the size of the equivalent filtration. Using the
same strategies it is possible to compute the zigzag persistence of any general zigzag
sequence by converting it to an equivalent zigzag filtration.

Towers appear frequently in situations where one wants to approximate or sparsify a
filtration using certain methods that involves mapping several vertices to one vertex
that is either a topological or a geometric representative. The examples of such
methods can be found in the work of Dey et. al. [22] and the work of Choudhary et.
al. [16]. Our work reported in [10, 9] also reduces a filtration usually to a tower.

Persistence has also been extended to multiple parameters, that is, there are more
variables than the distance that dictate the growth of the filtrations. It is then called
multidimensional persistence. Multidimensional persistence has been introduced by
Carlsson and Zomorodian [51]. Multidimensional persistence does not have a well
behaved descriptor like persistence diagram. However, there are other invariants like
the rank invariant [51] and minimal presentations. Recently an algorithm to compute
minimal presentations for 2-dimensional filtrations has been introduced [36].
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1.4 Challenges and Previous Work

Challenges. The size of a filtration is defined as the size (number of simplices) of
the last (largest) complex in the sequence. If the size of the filtration is n then the
computation of persistence takes O(n3) time 1. In practice, it has been observed that
the running time of the persistence algorithms is linear in n. This makes computation
of persistence reasonably fast for small filtrations. However as the dimension of the
simplices grows the size of any filtration (Čech, Rips, alpha) grows exponentially
with the dimension and it becomes impractical to compute persistence for higher
dimensional filtrations. The major bottleneck in computing persistence diagram is
the computation time of the complexes and their sizes. Improving the performance of
computing Persistent Homology has been a central goal in Topological Data Analysis
since the early days of the field about 20 years ago.

The time complexity of computing the Čech complex depends exponentially on the
dimension d of the ambient space. Also the number of simplices in a Čech filtration
could be very large, exponential in the number of points in P, O(2nv), where nv = |P|.
Therefore the computation time and its size makes a Čech filtration almost unusable
for PH computation.

Alpha complexes have a better size complexity, O(n
⌊

d
2

⌋
v ), where nv is the number

of points in P and d is the ambient dimension. That leads to a smaller size and fast
computation in low ambient dimensions. However, in higher ambient dimensions
the alpha complex has the same issues as the Čech complex.

The time to compute Rips complexes is much faster as we only need to compute
the pairwise distances between the points of P and therefore the time complexity is
independent of the ambient dimension d of the point set. However, Rips complexes
has the same size complexity as the Čech complex, and therefore as the dimension of
the complex grows the computation of persistence of Rips filtration is time intensive
as well.

The k-skeleton of a simplicial complex K is the set of simplices of dimension less
than or equal to k, it is a subcomplex of K. To compute Persistent Homology until
dimension k, we only need simplices up to dimension k + 1, i.e. the (k + 1)-skeleton
of the filtration. One way to restrict the size of a filtration is to restrict it to some
particular skeleton. However, by doing so we loose the information about possible
higher dimensional features in the persistence diagram of the filtration. Also, in
practice restricting to k-skeleton is only tractable for values of k up to 4 or 5.

Therefore for higher dimensional simplicial complexes (Rips, Čech, alpha) the prob-
lem of size persists. The large size of these filtrations not only slows down the actual
persistence computation, but it also induces large computation time to set-up the
boundary matrix which we need to reduce to compute the persistence diagram. This
thesis addresses this problem in a novel way and provides a solution which is a quite
significant step forward.

1The theoretical time complexity to compute PH is O(nω), where ω ≤ 2.4 is the matrix multiplication
exponent [39, 29]. However, most practical algorithms has time complexity O(n3).
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Previous Work. Much progress has been accomplished in recent years along several
directions. Regarding PH computation itself, a number of clever implementations
and optimizations have led to a new generation of software [30, 5, 4, 41]. Gudhi [30]
and Phat [5] compute PH for any filtrations whereas Ripser [4] specializes in Rips
filtration. Dionysus [41] is designed to compute the persistence diagram of a zigzag
filtration.

One of the first significant optimization technique was developed in [6]. The notion
of persistent cohomology was introduced in [19]. Gudhi and Dionysus use the dual
algorithm (computes persistent cohomology) to compute persistence diagrams which
is substantially faster than the standard algorithm (persistent homology). In all the
above mentioned technique the goal was to make the reduction of the boundary
matrix faster.

A second way to improve the overall process is to reduce the size of the complexes
in the input sequence while preserving (or approximating in a controlled way) the
persistent homology of the sequence.

The first approximation scheme for filtrations was given by Hudson et. al in [32].
Sheehy gave the first approximation scheme for Rips filtrations [45]. In a metric
space, for a given ε ∈ (0, 1), they construct a (1 + ε)-approximate filtration of the
Rips filtrations. The size of the k-skeleton of the approximate filtraion is n( 1

ε )O(λk),
where λ is the doubling dimension of the metric. The work of Sheehy [45] has two
significant new features, 1. the approximation factor ε is an input parameter of the
scheme, 2. the size of the approximate filtration depends on the dimension of the
skeleton.

Dey et. al gave a similar approximation scheme for the Rips filtrations [22]. Their
method used vertex collapses based on geometric proximity and they reduce a
filtration to an approximate simplicial tower. The scheme was further improved
in [23], leading to a significantly better performance in practice compare to [22]
and [45].

Several other algorithms with theoretical guarantees have been proposed recently
using a variety of similar ideas and techniques, e.g. interleaving smaller and easily
computable simplicial complexes, or sub-sampling the point sample [14, 11, 35, 15].
The work reported in [35, 15] approximates a Čech filtrations using geometric tech-
niques. The work of Botnan and Spreemann [11] approximates a Čech filtration using
collapses derived using geometric criterion. Chazal and Oudot [14] use interleaving
of the Rips complex and the Witness complex with the Čech complex to approximate
the persistence of a Čech filtration.

The above approximation methods are based on geometric techniques. There are
reduction methods based on topological notions. Examples of exact reductions can be
found in the work of Mischaikow and Nanda [40] who use Morse theory to reduce
the size of a filtration. The work of Maria and Schreiber [38] extends the work of
Mischaikow and Nanda [40] to zigzag filtrations. Similar to the work of Mischaikow
and Nanda [40], the work of Dłotko and Wagner use simple collapses [25]. These
methods preserve the filtration nature of the output sequence, i.e. a filtration is
reduced to a filtration and a zigzag filtration is reduced to a zigzag filtration. The
above schemes [40, 25, 38] do not provide theoretical guarantees over the output
size of the filtration as it is NP-Complete to compute optimal Morse-matching or a
smallest ‘simple’-core.

Recently Dey and Slechta [24] have used the notion of Edge contraction (different than
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the Edge collapses introduced in this thesis) that involves contracting edges that
satisfy so called link condition to simplify a filtration. Their method is approximate for
general simplicial complexes and exact when the underlying space of the simplicial
complex is a 2-manifold.

1.5 Our Contribution

As described in the previous section the problem of efficient computation of persistent
homology is the central topic of research since its introduction. Motivated by this
problem, in this thesis, we introduce two new approaches (corresponding to two
types of collapses) to compute the PH of a given sequence of simplicial complexes
(filtration, tower, zigzag sequence) in an efficient way. Both approaches are closely
related and are as follows,

1. We use the notion of strong collapse introduced by J. Barmak and E. Minian [3] to
simplify the complexes of the input sequence.

2. Instead of strong collapses, we use the so-called edge collapses. In fact, we more
generally define k-collapses. When k = 0, we have strong collapses and when k = 1
edge collapses and we use edge collapse to simplify a filtration.

Both of our approaches are pre-processing methods and they are applied even before
the boundary matrix is computed. In the case of general simplicial complexes our
collapse strategy requires only the maximal faces of the simplicial complexes. And In
the case of Flag complex both of them work on the 1-skeleton and this is the most
powerful aspect of our approach. Therefore the collapses of the simplicial complexes
are fast and memory efficient. Once we have a smaller sequence of simplicial complex
we proceed normally by setting up the boundary matrix and then its reduction.

Numerous experiments show that both approaches outperform previous methods.
Edge collapse performs better than strong (vertex) collapse. However, vertex and
edge collapses can be applied together one after another. Also as both vertex and
edge collapses are pre-processing methods they can be combined with any other
pre-processing method and any PH computation software.

1.5.1 Strong Collapse Approach.

We use the notion of strong collapse as introduced by Barmak and Minian [3] to
reduce a sequence of simplicial complexes. Specifically, our 1st approach can be
summarized as follows. Given a sequence

Z : {K1
f1−→ K2

g2←− K3
f3−→ · · ·

f(n−1)−−−→ Kn}

of simplicial complexes Ki connected through simplicial maps { fi−→ or
gj←−}. We inde-

pendently strong collapse the complexes of the sequence to reach a sequence

Z c : {Kc
1

f c
1−→ Kc

2
gc

2←− Kc
3

f c
3−→ · · ·

f c
(n−1)−−−→ Kc

n},

with induced simplicial maps {
f c
i−→ or

gc
j←−} (defined precisely in Chapter 3). The complex

Kc
i is called the core of the complex Ki and we call the sequence Z c the core sequence
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of Z . We show that one can compute the PH of the sequence Z by computing the PH
of the core sequence Z c, which is usually of much smaller size.

Our approach has some similarity with the work of Wilkerson et. al. [48, 49] who also
use strong collapses to reduce the PH computation but it differs in three essential as-
pects: it is not limited to filtrations (i.e. sequences of nested simplicial subcomplexes)
but works for other types of sequences like towers and zigzags. It also differs in the
way strong collapses are computed and in the manner PH is computed.

General simplicial complexes. A first central observation is that to strong collapse a
simplicial complex K, we only need to store its maximal simplices (i.e. those simplices
that have no coface). The number m of maximal simplices is smaller than the total
number of simplices by a factor that is exponential in the dimension d of the complex
and m is linear in the number nv of vertices for a variety of complexes [7]. Working
only with maximal simplices dramatically reduces the time and space complexities
compared to the algorithm of [49]. We prove that the complexity of our algorithm is
O(n2

vdΓ2
0). Here Γ0 is the largest number of maximal simplices incident to a vertex.

As observed in [8, 7], Γ0 is usually small and appears to be almost constant along a
filtration (see Section 3.5 for a discussion). As a consequence, the time to collapse the
i-th simplicial complex Ki in the sequence is almost independent of i, which is a clear
advantage over methods that use a full representation of the complexes and suffer an
increasing cost as i increases.

Once a reduced sequence has been computed as described above, we cannot compute
its PH directly. Indeed, all PH algorithms require as input a full representation of the
complexes. We thus have to convert the representation by maximal simplices used to
efficiently perform the strong collapses into a full representation of the complexes.
This takes time exponential in the dimension (of the collapsed complexes). However,
this exponential burden is to be expected since it is known that computing PH is NP-
hard when the complexes are represented by their maximal faces [1]. Nevertheless,
we demonstrate in Chapter 3 that strong collapses combined with known persistence
algorithms lead to major improvements over previous methods to compute the PH
of a sequence.

The major advantages of our approach are:

– The collapses of the complexes in the sequence can be performed independently and
in parallel. This is due to the fact that strong collapses can be expressed as simplicial
maps, unlike simple collapses [47].

– Instead of computing the exact PH, we can compute an approximate PH which is
substantially faster at a very minimal cost. The approximation scheme is detailed in
Sections 3.5.

Flag complex. Most of the previous methods described in Section 1.4 are for general
simplicial complexes except [4, 45] which focus on the Rips complex, an example of a
flag complex. In Chapter 4, we show that further decisive progress can be obtained if
one restricts the family of simplicial complexes to flag complexes.

In the case of a Rips complex, the maximal simplices are the maximal cliques of the
1-skeleton of the complex and their computational time can be very large (exponential
in the dimension of the complex). As a result, a naive application of our method
would devote most of the time to compute the maximal faces of the complexes prior
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to their strong collapse. We show that we can avoid computing maximal cliques and
we can strong collapse any flag complex using only the 1-skeleton or graph of the
complex. The strong collapses of a flag complex can be computed in time O(n2

vk2)
where nv is the number of vertices of the complex and k the maximal degree of its
graph. Another crucial observation is that the reduced complex obtained by strong
collapsing a flag complex is itself a flag complex.

Furthermore, if we consider a flag tower, i.e. flag complexes connected by simplicial
maps, the obtained core sequence is also a flag tower. In the general case where the
core sequence is not a filtration (which usually happens even if the original sequence
is a filtration), we need to convert the flag tower to an equivalent filtration to compute
its PH using known algorithms. To do so, we build on the work of [22, 34] again by
restricting ourselves to flag complexes. This allows us to convert a flag tower to an
equivalent flag filtration using again only the 1-skeleton.

The figure shows the flow diagram of our method when restricted to a flag filtration.

Filtration
(Flag)

Tower
(Flag)

Filtration
(Flag)

Further advantages of our approach for flag complexes are:

– We can compute PH for large complexes of high dimensions as we don’t need to
compute the maximal simplices.

– The dimension of the original sequence is in fact irrelevant and what matters is the
dimension of the core sequence, which is usually quite small.

1.5.2 Edge Collapse Approach.

We extend the notion of strong collapse to edge collapse. Edge collapses appear to be
very powerful, specially in the context of flag complexes. Keeping the same general
philosophy we further improve on our approach using strong collapse by using edge
collapse. We again use edge collapse to simplify a flag filtration F to another smaller
flag filtration F c with the same persistence.

The figure shows the flow diagram of our method using the edge collapse when
applied to a flag filtration.

Filtration
(Flag)

Filtration
(Flag)

Our method with edge collapse or in fact more general simple collapse works for all
kind of simplicial complexes. However we focus on the case of flag complexes as the
reduction in this case can be performed using only the 1-skeletons of the complexes.

The approach with edge collapse has some new key features that makes it several
orders of magnitude more efficient than all known methods including our strong
collapse approach.

1. Edge collapses share some important properties with strong collapses. Most
notably, we can use edge collapses to reduce flag filtrationsF to smaller flag filtrations
F c with the same persistence, using only the 1-skeletons of the complexes.
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2. The reduction is exact and the PH of the reduced sequence is identical to the PH
of the input sequence. Our algorithm thus computes the exact PH as does [4] but
differs from [45] where provably good approximations were computed. However,
our algorithm using edge collapse can easily be adapted to compute approximate PH
as well with larger gain in the computation time.

3. In the strong collapse approach, the reduced sequence associated to a filtration is
usually a tower and part of the computing time was devoted to transforming this
tower in another equivalent filtration. There is no such need in the algorithm using
edge collapse, which is another main source of improvement.

4. The resulting method is simple and extremely efficient. On the theory side, we show
that the edge collapse of a flag filtration can be computed in time O(n nc k2), where n
and nc are the number of edges in the input and output 1-skeletons respectively and
k is the maximal degree of a vertex in the input graph.

1.6 Outline

An outline of this thesis is as follows.

–In Chapter 2, we review the basic ideas and constructions related to topology, sim-
plicial complexes, simple and strong collapses, homology, persistent homology. For
more details on the topics of persistent homology readers can refer to [26] , for
Algebraic topology to [31], for strong collapse to [3].

–In Chapter 3, we provide an algorithm to strong collapse a general simplicial complex.
We then prove that strong collapse of a sequence of simplicial complexes preserves
its persistence. We provide a scheme to approximate a Rips filtration and then we
perform some experiments to show case the efficiency or our approach.

–In Chapter 4, we restrict our attention to flag complexes and build upon the work
of Chapter 3. We show that the core of a flag complex is a flag complex and we
can compute the core skeleton of a flag complex using only its 1-skeleton. The
time complexity of the algorithm is O(n2

vk2) where nv is the number of vertices of
the complex and k the maximal degree of its graph. This is a major improvement
over using maximal simplices. Then we use the same scheme as in Chapter 3 to
compute the core sequence of a filtration which is usually a flag tower. We further
build on the work of [22, 34] and provide an algorithm to convert a flag tower to
an equivalent flag filtration using again only the 1-skeleton. We end with some
experiments. The experiments show that the gain is tremendous when we work only
with the 1-skeleton.

–In Chapter 5, we more generally define k-collapses that are identical to the extended
collapses introduced in [2]. When k = 0, we have strong collapses and when k = 1
edge collapses and we use edge collapse to simplify a filtration. We show that edge
collapse of a flag complex is also a flag complex. A complex with no possibilities of
further edge collapse is called a 1-core. We show that, we can compute 1-core of a flag
complex using only its skeleton. Furthermore, we show that a simplicial complex
may have several 1-cores.

We then prove that simple collapse preserves the PH of a sequence of simplicial
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complex 2. We then use edge collapse to simplify a flag filtration to another flag
filtration again using only 1-skeleton. We provide some experiments and show that
edge collapse outperforms even strong collapse and works on more general point set
that strong collapse.

2This could be seen as an extension of the same result about strong collapse preserving the PH of
sequence of simplicial complex.
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Chapter 2

Basic Notions

In this chapter, we briefly review some of the basic concepts of Topology, notions like
simplicial complex, homotopy equivalence, different notions of collapses, homology
groups, persistent homology. Readers can refer to [31, 26, 42] for a comprehensive
introduction of these topics.

In Section 2.1, we provide definitions of a topological space, continuous maps and
define the notions of topological equivalences like homeomorphism and homotopic
equivalence. In Section 2.2, notions of simplicial complex, simplicial maps and
examples of commonly used simplicial complexes are discussed. In Section 2.3 we
introduce the notion of simple collapses. Different notions of homology groups are
defined in Section 2.4. We provide more details about Persistent Homology along
with the matrix reduction algorithm in Section 2.5.

2.1 Topology

Topology is the branch of mathematics which studies the properties a space X under
continuous deformation. More specifically it characterizes invariants that do not
change when we deform the space continuously.

2.1.1 Topological Space

Definition 2.1.1. A topological space is an ordered pair (X,U ), where X is a set and U
is a collection of subsets of X, satisfying the following axioms:

1. The empty set ∅ and X itself belong to U .

2. Any arbitrary (finite or infinite) union of members of U is in U as well.

3. The intersection of any finite number of members of U still belongs to U .

The elements of U are called open sets and the collection U is called a topology on X. A
subset A of X is called closed if X \ A is an open set.

Examples:

1. Given X = {a, b, c, d}, the collection U = {∅, {a, b, c, d}} of only the two subsets
of X forms a topology of X, called the trivial topology (indiscrete topology) on X.

2. Given X = {a, b, c, d}, the collection U = P(X) (the power set of X), (X,U ) is a
topological space. U is called the discrete topology on X.



16 Chapter 2. Basic Notions

3. Given X = R, i.e. the set of real numbers, the set U = {⋃(a, b)| a < b; a, b ∈ R} of
union of open intervals in R is a topology on R, called the standard topology.

A subset A ⊆ X is called a subspace of (X,U ) if A ∩ U is a topology on A, we call
this an induced topology on A.

Standard topology on Rd: The set of points B(c, ε) := {x ∈ Rd| ||x− c|| ≤ ε} is
called a d-ball in Rd, here c is the center and ε is the radius of the ball. If we replace
the inequality ||x− c|| ≤ ε with the strict inequality ||x− c|| < ε, then we call the set
an open d- ball, denoted as Bo(c, ε). The open ball extends the notion of the open
interval (a, b) to the higher dimensional Euclidean space.

If X = Rd and U is the set of union of open balls in Rd, then U defines a topology on
Rd and is called the standard topology on Rd.

For brevity we will write a topological space (X,U ), as X assuming some well defined
topology U on X. We will also refer a topological space X by simply space unless it
means something else.

The notion of open sets is an abstraction of the concept of closeness (distance) on
a metric space and that in turn facilitates a more abstract definition of continuous
maps.

Definition 2.1.2. A map f : X → Y between two topological spaces is called continuous if
for every open set V in Y the inverse f−1(V) is an open set in X.

This definition of continuous map is then further used to define different notions of
equivalence between two topological spaces.

2.1.2 Topological Equivalences

The most fundamental and strict form of equivalence between two topological spaces
is called homeomorphism, which we define as follow.

Definition 2.1.3. A continuous map f : X → Y between two topological spaces is a
homeomorphism if it has the following properties:

1 . f is a bijection (one-to-one and onto), i.e. there exist an inverse f−1 : Y → X.

2. The inverse map f−1 is continuous.

If such a map exists, X and Y are called homeomorphic. Being homeomorphic is an
equivalence relation on topological spaces.

Topology is precisely the study of properties of a topological space X which are
preserved under homeomorphisms. Very often the topological spaces we consider are
geometric objects, such as disks, sphere, Rd etc. Some properties that are preserved
under homeomorphism are connectedness, dimension, number of holes/cavities...

Homeomorphism is a very strong notion of equivalence and when two spaces are
homeomorphic they are topologically the same. However it is not an easy task to
prove that two spaces are homoemorphic. This difficulty leads to a relatively relaxed
notion of equivalence between topological spaces called homotopy equivalence.

Definition 2.1.4. Let f and g be two continuous maps from a space X to a space Y. A
homotopy between f and g is defined to be a continuous function H : X× [0, 1]→ Y from
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the product of the space X with the unit interval [0, 1] to Y such that H(x, 0) = f (x) and
H(x, 1) = g(x) for all x ∈ X.

Intuitively H describes a continuous deformation of f into g. If such an H exists then
f and g are said to be homotopic.

Definition 2.1.5. Two spaces X and Y are called homotopy equivalent, if there exist
continuous maps f : X → Y and g : Y → X such that g ◦ f is homotopic to the identity map
idX and f ◦ g is homotopic to idY.

We call the maps f and g homotopy equivalences. Every homeomorphism is a
homotopy equivalence, but the converse is not true. For example, a solid disk and a
single point are homotopy equivalent however, the disk is not homeomorphic to the
point. Next we look into a special type of homotopy equivalence called deformation
retraction.

Definition 2.1.6. Let X be a topological space and A a subspace of X. Then a continuous
map r : X → A is a retraction if the restriction of r to A is the identity map on A; that is,
r(a) = a for all a in A.

Definition 2.1.7. A continuous map F : X× [0, 1]→ X is a deformation retraction of a
space X onto a subspace A if, for every x ∈ X and a ∈ A,

1. F(x, 0) = x

2. F(x, 1) ∈ A

3. F(a, 1) = a.

Equivalently, a deformation retraction is a homotopy between a retraction and the
identity map on X. The subspace A is called a deformation retract of X. As stated
before a deformation retraction is a special case of a homotopy equivalence.

If a deformation retraction does not move the points in A throughout the homotopy
then F is called a strong deformation retraction, that is we add an additional (4th)
condition of F(a, t) = a for all t ∈ [0, 1] and a ∈ A.

Definition 2.1.8. A space is said to be contractible, if it is homotopy equivalent to a point.

2.2 Simplicial complex

In this section, we will introduce the concept of simplicial complexes which are of
utmost importance in computational topology. We begin with the geometric notion of
simplicial complex. However later we will primarily work with the abstract simplicial
complexes.

2.2.1 Geometric simplicial complex

Definition 2.2.1. A geometric k-simplex σ is the convex hull of any k + 1 affinely inde-
pendent points {v0, v1, ...vk} in Rd.

Here k is called the dimension of σ and vis are its vertices. For example, 0-simplex is a
point, a 1-simplex is an edge, a 2-simplex is a triangle and a 3-simplex is a tetrahedron
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and so on and so forth. Since {v0, v1, ...vk} are affinely independent any smaller
subset of vertices are also affinely independent, the convex hull τ of a subset of the
set {v0, v1, ...vk} is then called a face of σ and σ is called a coface of τ.

Definition 2.2.2. A geometric simplicial complex K is a set of geometric simplices that
satisfies the following conditions:

1. Every face τ of a simplex σ ∈ K is also in K.

2. The non-empty intersection of any two simplices σ1, σ2 ∈ K, is a face of both σ1 and σ2.

Informally, a geometric simplicial complex is a set of simplices that are glued nicely,
i.e. they only intersect each other at common faces.

Since K is a subset of Rd any well defined topology on Rd can easily be induced on K.
When we consider K as a topological space, we will assume that the induced topology
is the standard topology unless otherwise stated.

2.2.2 Abstract simplicial complex

Definition 2.2.3. An abstract simplicial complex K is a collection of subsets of a non-
empty finite set X, such that for every subset A in K, all the subsets of A are in K.

An element of K is called a simplex (abstract). An element of cardinality k + 1 is
called a k-simplex and k is called its dimension. A simplex is called maximal if it
is not a proper subset of any other simplex in K. A sub-collection L of K is called a
subcomplex, if it is a simplicial complex itself. L is a full subcomplex if it contains
all the simplices of K that are spanned by the vertices (0-simplices) of the subcomplex
L.

The abstract simplicial complexes are purely combinatorial objects. However, any
abstract simplicial complex K can be realised as a geometric simplicial complex in Rd

if d is sufficiently large. This can be easily seen through embedding a single abstract
k-simplex σ in Rk. We can always choose k + 1 affinely independent points in Rk,
mapping the vertices of σ to these k + 1 points we embed σ geometrically in Rk,
denoted as |σ|. A consistent choice of such points for all simplices in the abstract
simplicial complex K will provide a geometric realisation of K in Rd for some d. The
geometric realisation K will be denoted as |K|. |K| itself is a geometric simplicial
complex and can have the induced standard topology.

From now on we will call an abstract simplicial complex simply a simplicial complex or
just a complex.

2.2.3 Examples of simplicial complexes

Now we will introduce some commonly used simplicial complexes.

Čech complex : Let P be a set of finite points in Rd and B(P, ε) := {B(c, ε)| c ∈ P}
be the set of d-balls of some non-negative radius ε whose centers c are in P. The set
of all non-empty intersections of such balls is an abstract simplicial complex and is
called Čech complex, denoted as C(P, ε).



2.2. Simplicial complex 19

Vietoris-Rips (VR) complex : Let σ ⊆ P be a subset of points in P such that any two
points p, q in σ is at most 2ε far apart, that ||p− q|| ≤ 2ε. The collection of all such
subsets of P defines a simplicial complex called the Vietoris-Rips (VR) complex of
the point set P at distance (scale) 2ε, denoted as R(P, ε). Vietoris-Rips (VR) complexes
are often called simply Rips complexes.

Figure 2.1 is an example of a Čech (bottom left) and a Rips(bottom right) complex of
a point set.

FIGURE 2.1 – On the left is the Čech complex and the right is the Rips
complex.

It is not hard to see that the Čech complex C(P, ε) is a subcomplex of the Rips complex
R(P, ε). In fact, they satisfy more stronger inclusion property,

R(P, ε) ⊆ C(P,
√

2ε) ⊆ R(P,
√

2ε)

and are called interleaved.

When the point set P is clear from the context, for parameter(radius) ε, we will denote
the Čech complex as Cε and the Rips complex as Rε.

2.2.4 Star, Link and Simplicial Cone

Definition 2.2.4. Let σ be a simplex of a simplicial complex K, the closed star of σ in K,
stK(σ) is a subcomplex of K which is defined as follows,

stK(σ) := {τ ∈ K| τ ∪ σ ∈ K}.

Definition 2.2.5. The link of σ in K, lkK(σ) is defined as the set of simplices in stK(σ)
which do not intersect with σ,

lkK(σ) := {τ ∈ stK(σ)|τ ∩ σ = ∅}.
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The open star of σ in K, sto
K(σ) is defined as the set stK(σ) \ lkK(σ). It is not a

subcomplex of K.

Let L be a simplicial complex and a a vertex not in L. Then the simplicial cone aL is
defined as

aL := {a, τ | τ ∈ L or τ = σ ∪ a; where σ ∈ L}.

2.2.5 Flag complex and Neighborhood

Definition 2.2.6. A complex K is a flag complex if, when a subset of its vertices has pairwise
edges (1-simplices) between them, they span a simplex of K.

It follows that the full structure of K is determined by its 1-skeleton (or graph) we
denote by G. The above defined Rips complex is an example of a flag complex.

For a vertex v in G, the open neighborhood NG(v) of v in G is defined as

NG(v) := {u ∈ G | [uv] ∈ E},

here E is the set of edges of G.

The closed neighborhood NG[v] is

NG[v] := NG(v) ∪ {v}.

Similarly we define the closed and open neighborhood of an edge [xy] ∈ G, NG[xy]
and NG(xy) respectively as

NG[xy] := N[x] ∩ N[y] and

NG(xy) := N(x) ∩ N(y).

The above definitions can be extended to any k-clique (k-simplex of K) σ = [v1, v2, ..., vk]
of G;

NG[σ] :=
⋂

vi∈σ

N[vi] and

NG(σ) :=
⋂

vi∈σ

N(vi).

2.2.6 Simplicial maps

Definition 2.2.7. A vertex to vertex map ψ : K → L between two simplicial complexes is
called a simplicial map, if it always maps a simplex in K to a simplex in L.

Since simplicial maps are determined by the images of the vertices they are finitely
many.

A simplicial map ψ : K → L between two simplicial complexes K and L induces a
continuous map |ψ| : |K| → |L| between the underlying geometric realizations.
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Any general simplicial map can be decomposed into more elementary simplicial
maps, namely elementary inclusions (i.e., inclusions of a single simplex) and ele-
mentary contractions {{u, v} 7→ u} (where a vertex is mapped onto another vertex).
The inverse operation of inclusion is called simplicial removal denoted as K ←↩ L,
where L is a subcomplex of K.

Here are examples of an elementary inclusion and an elementary contraction.

1. Elementary inclusion: inclusion of a single simplex (the solid triangle) K1
∪σ
↪−→ K2.

2. Elementary contraction: mapping a vertex v to another vertex u K1
{u,v}7→u−−−−−→ K2.

vu

x

y

u

x

y

Definition 2.2.8. Two simplicial maps φ : K → L and ψ : K → L are contiguous if, for all
σ ∈ K, φ(σ) ∪ ψ(σ) ∈ L.

v1

v2

v3 ψ:v1 7→w1;{v2,v3}7→w2−−−−−−−−−−−−→
φ:{v1 ,v2 ,v3}7→w1

w1

w2

FIGURE 2.2 – Maps φ and ψ are contiguous.

We denote two contiguous maps as φ ∼c ψ. Two contiguous maps are known to be
homotopic [42, Theorem 12.5]. Two maps φ1 and φ2 are in the same contiguity class
if there exists a sequence of simplicial maps φ1 = ψ0, ψ1, ..., ψk = φ2 such that the
consecutive maps ψi and ψi+1 are contiguous for all i = 0...k. We denote two maps
in the same contiguity class as φ1 ∼ φ2. Two maps in the same contiguity class are
homotopic.

2.3 Collapses and Edge Contraction

In this section, we will review some of the basic notion of simplicial collapses. Col-
lapses are combinatorial analog of deformation retractions defined in section 2.1.
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2.3.1 Simple Collapse

Simple collapse is the most fundamental type of collapse. The notion of simple collapse
was introduced by J.H.C. Whitehead in the late 1930s [47].

Definition 2.3.1. Given a complex K, a simplex σ ∈ K is called a free simplex if σ has a
unique coface τ ∈ K.

The pair {σ, τ} is called a free pair.

Definition 2.3.2. The action of removing a free pair: K → K \ {σ, τ} is called an elemen-
tary simple collapse.

A series of such elementary simple collapses is called a simple collapse. We denote
it as K↘ L. This operation preserves the homotopy type of the simplicial complex K,
which we write K ∼ L. In particular, there is a retraction map |r| : |K| → |L| between
the underlying geometric realization of K and L and there is a strong deformation
retraction between |r| and the identity over |L|. The inverse operation of (elementary)
simple collapse is called an (elementary) simple expansion. Two complexes K and L
are said to be simple homotopic, if there exists a series of elementary simple collapses
and/or expansions between them. Figure 2.4 is an example of a simple collapse and
expansion.

FIGURE 2.3 – Examples of simple collapses.

A complex K′ will be called simply-minimal if there is no free pair {σ, τ} in K′. A
subcomplex Kec of K is called an elementary core of K if K↘Kec and Kec is simply-
minimal. The elementary cores are not unique and they depend on the order of
removals of free pairs.

Definition 2.3.3. A complex K is said to be simply collapsible or collapsible, if it simply
collapses to a vertex.

2.3.2 Edge Contraction

Related to the notion of collapses there is a notion called Edge contraction introduced
by Dey et. al. in [21], which is a contraction of special edges that satisfies so called
link condition defined below.

Definition 2.3.4. An edge [u, v] in a complex K is said to satisfy the link condition if
lnK([u, v]) = lnK(u) ∩ lnK(v).

Definition 2.3.5. Given an edge [u, v], the associated simplicial map r[u,v] defined by

r(x) = x; if x /∈ {u, v},

r(x) = u; if x ∈ {u, v}

is called an edge contraction.
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The contraction operation merges the two vertices u, v to a single vertex either u or
v. Given an edge [u, v] ∈ K that satisfies the link condition, the associated retraction
map r[u,v] preserves the homotopy type of the complex K.

FIGURE 2.4 – The edge [u, v] satisfies the link condition. The complex
(in the right) which is the image of an edge contraction may not be a
subcomplex of the original complex K. As the triangle [p, q, u] doesn’t

exist in K.

2.4 Homology Groups

Intuitively Homology groups capture the number of connected components, number
of holes, number of cavities and higher dimensional equivalents of a space. We
associate a family of groups, one per dimension to a topological space. The homology
groups are topological invariants in the sense, that two homotopic spaces have the
isomorphic homology groups. There are many different types of homology theories,
in this section we will focus on simplicial homology and briefly talk about singular
homology.

2.4.1 Simplicial Homology

Let K be a simplicial complex and G be any abelian group. We start with defining
orientation of the simplices in the complex K by fixing an order on the vertices of
the complex K. A k-simplex σ with vertices {v0, v1, · · · , vk} will be denoted as an
ordered set σ = [v0, v1, · · · , vk]. A face τ of σ will inherit the order of the vertices
from σ. A (k− 1) face of σ = [v0, v1, · · · , vk] obtained by removing the vertex vi from
σ will be denoted as [v0, · · · , v̂i, · · · , vk].

Definition 2.4.1. For any non-negative integer p, the p-th chain group C(K, G, p), is
the free abelian group defined using the p-simplices of K as basis and the elements of G as
coefficients.

Therefore, any element c ∈ C(K, G, p) can be written as the formal sum

∑
α

gασα

Where gα ∈ G and σα is a p-simplex. c is called a p-chain. The summation⊕ operation
in C(K, G, p) is defined component-wise (at each basis element) using the summation
operation of G. For a fixed K and G we will write C(K, G, p) as Cp.
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We define a boundary homomorphism between two consecutive chain groups Cp
∂p−→

Cp−1 by specifying them on each p-simplex σα = [v0, v1, · · · , vp].

Definition 2.4.2 (boundary homomorphism). ∂p(σα) = ∑
i
(−1)i[v0, · · · , v̂i, · · · vp]

Apart from being a homomorphism, ∂p satisfies the following property (Lemma 2.4.1).

Lemma 2.4.1. ∂p−1(∂p(σα)) = 0.

Proof. The proof follows directly from the definition.

We can link all the chain groups Cps through the boundary homomorphisms ∂p and
we get the following sequence of abelian groups connected through homomorphisms,

· · · → Cp+2
∂p+2−−→ Cp+1

∂p+1−−→ Cp
∂p−→ Cp−1 → · · ·C1

∂1−→ C0
∂0−→ 0.

with the property ∂p−1∂p = 0. Such a sequence of chain groups linked by boundary
homomorphisms is called a chain complex. Observe that the sequence has been
extended by 0 at the end with a zero boundary map, ∂0 = 0.

Definition 2.4.3. A p-chain c ∈ Cp is called a p-boundary if for there exists a (p+ 1)-chain
γ ∈ Cp+1, the following is true,

∂p+1(γ) = c.

We denote the set of p-boundaries by Bp = Im∂p+1 := ∂p+1(Cp+1).

Definition 2.4.4. A p-chain c ∈ Cp is called a p-cycle if ∂p(c) = 0.

The set of p-cycles will be denoted by Zp = Ker∂p. It is not hard to see that, Zp and
Bp both are subgroups of Cp.

Due the property ∂p−1(∂p(σα)) = 0, it directly follows that Bp ⊆ Zp.

Definition 2.4.5. The p-th homology group Hp(K) of a chain complex is defined as the
quotient group Zp/Bp.

It is again an easy exercise to check that Hp(K) is in fact a group. The operation of
taking quotient establishes an equivalence relation between elements of Zp, where two
p-cycles c1, c2 ∈ Zp are equivalent if they differ by a p-boundary, that is, c1 = c2 + b1;
for some b1 ∈ Bp . Therefore the elements of Hp are the equivalence classes of Zp.
Two p-cycles representing the same homology class are called homologous.

When we choose elements from a field F as coefficients instead of a group G to define
the chain groups Cp, that is Cp = C(K, F, p), then the homology groups Hp(K) are
in fact vector spaces. This is a mere consequence of the fact that C(K, F, p) is itself a
vector space. In computational topology, Z2 (Z mod 2) is the most common used set
of coefficients.

Definition 2.4.6. The p-th Betti number βp is defined as the rank of the p-th homology
group, βp = rank(Hp).

The Betti numbers can be written as the difference between the rank of Zp and the
rank of Bp.

βp = rank(Zp)− rank(Bp).
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The definition of simplicial homology is purely combinatorial and algebraic. It does
not use any topological structure of the simplicial complex. However, homology
groups are topological invariants. Indeed, they are isomorphic for homeomorphic
topological spaces and in fact they are isomorphic for homotopic spaces. The follow-
ing lemma is the first fact that establishes the invariant nature of homology groups.

Lemma 2.4.2. Let f : K → L be a simplicial map between two simplicial complexes K and
L. f induces a homomorphism between the corresponding homology groups of K and L, that
is, there exists a map f ∗ : Hp(K)→ Hp(L), induced by f for all p.

Proof. We will provide a sketch of the proof. Using f we first define a homomorphism
between the pth chain groups f# : Cp(K) → Cp(L). For each p-simplex σ ∈ K, we
define f#(σ) = f (σ) if dim( f (σ)) = p, and f#(σ) = 0 otherwise. Then, for

c ∈ Cp(K)

c = ∑
α

gασα

f#(c) := ∑
α

gα f (σα)

f# satisfies the following property,

f#∂ = ∂ f#

Where ∂ is the respective boundary homomorphisms of Cp(L) and Cp(K). The
property f#∂ = ∂ f# implies that f# takes cycles to cycles and boundaries to boundaries.
Therefore, it induces a homomorphism f ∗ : Hp(K) → Hp(L) on the corresponding
homology groups as well.

The above defined map f# is called a chain map as it satisfies f#∂ = ∂ f#.

2.4.2 Singular Homology

Simplicial homology is one of the most traditional definition of homology, which
is defined for simplicial complexes. However using the notion of singular simplices
(defined later) it is possible to have a more general notion of homology that extends
to any general topological spaces.

Let ∆p = [v0, · · · , vp] denote a standard p-simplex, whose vertices vi are the unit
vectors along the coordinate axes of Rd.

Definition 2.4.7. A singular p-simplex in a topological space X is a continuous map
σo : ∆p → X.

Using this basic definition of a singular simplex we can extend all the notions like
chain complex, boundary maps, homology groups etc.

Definition 2.4.8. For any non-negative integer p, the singular p-th chain group Co(X, G, p),
is the free abelian group defined using the singular p-simplices of X as basis and the elements
of G as coefficients.
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We will write Co
p for Co(X, G, p) when X and G are clear from the context.

We define the boundary homomorphism between two consecutive singular chain
groups Co

p and Co
p−1 implicitly by the boundary homomorphism on the corresponding

standard simplex. Below is the definition of a singular boundary homomorphism
over a singular p-simplex which can be extended to any singular p-chain c ∈ Co

p
componentwise.

Let σo
α |[v0, · · · , v̂i, · · · vp] denotes the restriction of the map σo

α : ∆p → X to the face
[v0, · · · , v̂i, · · · vp] of ∆p.

Definition 2.4.9 (singular boundary homomorphism).

∂o
p(σ

o
α) := ∑

α

(−1)iσo
α |[v0, · · · , v̂i, · · · vp].

∂o
p also follows the same properties of being a ‘boundary’ homomorphism, that is,

∂o
p−1(∂

o
p(σ

o
α)) = 0. Therefore we can define the p-th singular homology Ho

p(X) =

Ker∂o
p/Im∂o

p+1.

In the case of simplicial homology, a simplicial map between two simplicial complexes
induces a homomorphism between their homology groups. we have the following
analog for singular homology

Lemma 2.4.3. If f : X → Y be a continuous map between two spaces X and Y, then f
induces a homomorphism between the corresponding singular homology groups of X and Y.
In other words, there exists a map f ∗ : Ho

p(X)→ Ho
p(Y), induced by f for all p.

Using the above lemma and some of its consequences we have the following homo-
topy invariant property of singular homology groups.

Theorem 2.4.1. Let f : X → Y be a continuous map between two spaces X and Y such that
f is a homotopy equivalence. Then f ∗ : Ho

p(X)→ Ho
p(Y) is an isomorphism for all p.

With the definition of singular homology we can have a homology theory for any
topological space. Furthermore, there is a remarkable fact that singular homology
and simplicial homology of a simplicial complex K are isomorphic.

Theorem 2.4.2. Hp(K) and Ho
p(|K|) are isomorphic for all p.

The implicit consequence of the above theorem is that for any triangulated space
X its simplicial homology does not depend on that particular triangulation. As a
consequence of the above theorem and lemmas, we have the following homotopy
invariant property of simplicial homology groups.

Theorem 2.4.3. Let f : K → L be a simplicial map between two simplicial complexes K and
L such that | f | : |K| → |L| is a homotopy equivalence. Then f ∗ : Hp(K) → Hp(L) is an
isomorphism for all p.

The simplicial chain group of a finite simplicial complex is finitely generated since it
has finitely many simplices and therefore a finite basis. However even for a compact
(‘finite’) space X there is an infinite number of continuous maps from ∆p to X and
therefore an infinite number of singular p-simplices. This implies that a singular p-th
chain group is infinitely generated. The definition of singular homology is more widely
applicable and mathematically more powerful, however due to the infinite number
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of singular simplices, it is computationally intractable. Therefore for all practical
purposes we use simplicial homology as our main tool.

2.5 Persistent Homology

Persistent Homology (PH) is a new child of the traditional homology theories, a dy-
namic variant. Imagine a topological space, for example, a simplicial complex which
is evolving with time (e.g. growing with inclusion of more simplices) and you want
to keep track of the evolution using homological measurements. Persistent homology
is precisely a tool for such a measurement. The advent of Persitent homology was
to understand the topology of data, usually represented as a point cloud P in some
euclidean space Rd. The underlying assumption is that the point cloud P is a finite
sample of some topological space X. The goal of persistent homology is then to infer
the topological (more specifically homological) information of X through P.

Now since P is just a finite sample of X, we can not get the true homological informa-
tion of X by computing the homology groups of P. One way to solve this problem and
approximate the space X would be to inflate the points in P as solid d-balls of some
radius ε. And if we choose the right parameter ε the union of balls Pε :=

⋃
p∈P

B(p, ε)

will be a ‘good’ cover of X and then we compute the homology group of Pε. However
there are two problems associated with this approach, the first problem is how to
choose the right parameter and the second and more fundamental problem is that
there might not be a single parameter providing the right homology. Figure 2.5 is an
illustration of this problem.

FIGURE 2.5 – At no scale the union of balls can capture both the loops.

Persistent homology solves both of these problems, by computing homology at mul-
tiple scales and provides information about the many ’right’ scales that correspond
to some topological feature of the data. Mathematically, there are several different
ways to characterize the evolution of a space. We will start with the simplest version
of it, which is called a filtration.
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2.5.1 Sequences of complexes

Definition 2.5.1. A filtration F is a sequence of nested simplicial complexes

F : K1 ⊆ K2 ⊆ · · · ⊆ Km.

A filtration could also be defined as a function f : K → R over the final simplicial
complex K = Km. Where f assigns a real value to each simplex σ in K such that if
τ ⊆ σ is a face of σ then f (τ) ≤ f (σ).

The most natural example of a filtration is a filtration coming out of the union of balls
Pε and the Čech complex Cε is precisely the desired simplicial complex. For increas-
ing values of ε > 0, the Čech complexes {Cε}0≤ε forms a filtration. Also, the Rips
complexes {Rε}0≤ε with increasing scale parameter forms a filtration. Illustration of
a filtration, Figure 2.6.

FIGURE 2.6 – A sequence of simplicial complexes connected through
inclusions.

Filtrations can be further generalized to a tower.

Definition 2.5.2. A sequence of simplicial complexes

T : K1
f1−→ K2

f2−→ K3
f3−→ · · ·

f(m−1)−−−→ Km.

connected through simplicial maps fi is called a simplicial tower or simply a tower.

This could be even further generalized to a zigzag sequence.

Definition 2.5.3. A sequence of simplicial complexes

Z : K1
f1−→ K2

g2←− K3
f3−→ · · ·

f(m−1)−−−→ Km.

connected through simplicial maps fi and gis in both directions is called a zigzag sequence.

When the maps fi and gi are inclusions, a zigzag sequence is called zigzag filtration.

A tower is then a special case of zigzag sequence, when the simplicial maps are only
in one direction and a filtration is a special case of tower where the simplicial maps
are only inclusions.

2.5.2 Persistent homology.

Although Persistent homology could be defined for zigzag sequences, we will restrict
our exposition mostly to towers and filtrations.
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If we compute the homology classes of all the Ki with coefficients from a field F, we
get the sequence

P(T ) : Hp(K1)
f ∗1−→ Hp(K2)

f ∗2−→ Hp(K3)
f ∗3−→ · · ·

f ∗(m−1)−−−→ Hp(Km).

Here f ∗i is the homomorphism induced from fi. P(T ) is a sequence of vector spaces
connected through the homomorphisms f ∗i and is called a persistence module. More
formally, a persistence module V is a sequence of vector spaces {V1 −→ V2 −→ V3 −→
· · · −→ Vm} connected through homomorphisms {−→} between them. A persistence
module arising from a sequence of simplicial complexes captures the evolution of the
topology of the sequence.

For two integers b and d, 1 ≤ b ≤ d ≤ n, we can define an interval module I[b, d]
by assigning Vi to F when i ∈ [b, d], and to the null space otherwise. The maps
between any two F vector spaces are identity and are zero otherwise. For example

I[2, 4] : {0 0−→ F
I−→ F

I−→ F
0−→ 0 0−→ 0}, here n = 6.

The following theorem states that any persistence module can be decomposed into a
collection of intervals of the form [i, j] [12, 50].

Theorem 2.5.1. Any persistence module V is isomorphic to a direct sum of interval modules,

P(T ) ∼=
⊕

I[i, j]

The multiset of all the intervals [i, j] in this decomposition is called the persistence
diagram of the persistence module. An interval of the form [i, j] in the persistence
diagram of P(T ) corresponds to a homological feature (a ‘cycle’ of dimension p )
which is born at i and died at j.

2.5.3 Computing Persistence Diagram

In this subsection, we will discuss an algorithm to compute the persistence diagram
of a persistence module induced by a filtration function f on a complex K with
coefficients Z2.

Let {σ1, σ2, · · · , σm} = K be the set of ordered (by filtration value) simplices of K.

Notice that as we move in increasing order of simplices, each simplex either creates
a homological feature (‘cycle’) or destroys one. The simplex which creates a cycle
is called a positive simplex and the one which destroys a cycle is called negative
simplex. Therefore, an algorithm which computes the persistence diagram of a filtered
simplicial complex K should essentially compute the pairings [positive, negative] of
simplices corresponding to each homological feature.

We set up the following boundary matrix, ∂,

∂[i, j] = 1 if σi ⊂ σj and dim(σi) = dim(σj) -1;

∂[i, j] = 0 otherwise.

Therefore, the rows and columns of ∂ have the same order as the simplices and its
columns stores the boundary of a simplex. Also ∂ is an upper-triangular matrix
since a face simplex appears before its cofaces. We reduce ∂ to another matrix R



30 Chapter 2. Basic Notions

using column operations so that we get the desired pairings of positive and negative
simplices.

Let low(j) be the maximum value of the non-zero row index in column j (i.e. the index
of the lowest non-zero row) and let it undefined for a zero column. The algorithm
reduces ∂ by adding columns from left to right and it is reduced if low(j) 6= low(j′)
whenever j 6= j′ for any two non-zero columns.

Algorithm 1 Reduction Algorithm

1: procedure REDUCE(∂) . ∂ is the boundary matrix.
2: R = ∂;
3: for j = 1 to m do
4: while there exists j′ < j with low(j′) = low(j) do
5: add column j′ to column j . mod 2 operation.
6: end while
7: end for
8: end procedure . Return R

We discuss a few properties of the matrix R.

Each zero column of R corresponds to a positive simplex, and the number of zero
columns corresponding to the p-simplices of K is the rank of Zp. Each non-zero
column corresponds to a negative simplex, and the number of non-zero columns
corresponding to the p-simplices of K is the rank of Bp. This gives us the rank of
the homology classes of K as βp = rank(Zp)− rank(Bp). However to compute the
persistent homology we need to find the appropriate pairings of positive and negative
simplices. Interestingly the matrix R does contain this information.

To compute the pairings we consider a zero column i, as mentioned before σi is
a positive simplex and therefore we look for its negative partner. We look at the
corresponding row, i for the negative partner simplex. There are two possibilities:

1. There exists a column j, such that low(j) = i. Then σj is said to be paired with σi and
therefore [i, j] or with the filtration values [ f (σi), f (σj)] is a point in the persistence
diagram of Hp(K), where dim(σi) = p.

2. There exists no column j, such that low(j) = i. Then σi remains un-paired, so σi
corresponds to a class that was created but was never destroyed and this gives a
point [i, ∞) or [ f (σi), ∞) in the persistence diagram of Hp(K), where dim(σi) = p.

Although the reduced matrix R is not unique, the above properties are true for any
matrix reduced from δ. The runtime complexity of the algorithm is O(m3). However,
in most practical cases, the runtime is usually near-linear in m as ∂ is usually sparse.

2.5.4 Equivalence and Stability of Persistence Modules

The following theorem states a condition under which two persistence module will
be equivalent [12, 20].

Theorem 2.5.2. Two different persistence modules V : {V1 −→ V2 −→ · · · −→ Vm} and
W : {W1 −→W2 −→ · · · −→Wm}, connected through a set of homomorphisms φi : Vi →Wi
are equivalent if the φi are isomorphisms and the following diagram commutes.
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V1 V2 · · · Vm−1 Vm

W1 W2 · · · Wm−1 Wm

φ1 φ2 φm−1 φm

Equivalent persistence modules have the same interval decomposition, hence the
same diagram.

For simplicity we have chosen the set of natural numbers as our index set, that is the
vector spaces Vi in V are indexed over N and therefore the intervals are also natural
numbers. However, the definition works well for any index set J ⊆ R. There exists
more approximate notions of similarity between two persistence modules.

Bottleneck distance. If J ⊆ R is the chosen index set then a persistence diagram
is a multiset of points in the extended plane, R̄2. Clearly, the persistence diagram
consists of points above the diagonal (the line x = y). To have a well defined notion
of distance between two persistence diagrams, we add the points of the diagonal to
the diagram, each with infinite multiplicity. We use the L∞ norm to define distance
between two points v = (v1, v2) and w = (w1, w2) in R̄2, that is,

‖v− w‖∞ = max{|v1 − w1|, |v2 − w2|}.

Let dgm(V) and dgm(W) be two persistence diagrams. Let us consider bijections η :
dgm(V) → dgm(W) then the bottleneck distance dB(dgm(V), dgm(W)) between
the diagrams is defined as follows,

Definition 2.5.4 (bottleneck distance).

dB(dgm(V), dgm(W)) = inf
η

sup
v∈dgm(V)

‖v− η(v)‖∞.

Therefore, it is an infimum over all possible η.

The problem of computing the bottleneck distance between two persistence diagrams
can be reduced to a matching problem of a bipartite graph. Assuming that the
persistence diagrams consist of finitely many off-diagonal points with finite multi-
plicity and all the diagonal points with infinite multiplicity. In this case, computing
dB(dgm(V), dgm(W)) reduces to a bipartite graph matching problem.

Let X = dgm(V) and Y = dgm(W) then X0 and Y0 respectively denote the off-
diagonal points of X and Y. If a = (x, y) is an off-diagonal point, then the closest
point to a on the diagonal is its orthogonal projection on the diagonal, denoted as
a′ = ( (x+y)

2 , (x+y)
2 ). Let X′0 denote the set of all projections of X0 and similarly Y′0

denote the set of all projections of Y0.

We define M = X0 ∪Y′0 and N = X′0 ∪Y0 ; they both have the same cardinality. Then
computing bottleneck distance is computing a matching in the weighted complete
bipartite graph, G = (M ∪ N, M× N, c) and the weights are given by the following
weight function

c(a, b) = ‖a− b‖∞; if either a or b or both are not on the diagonal,

c(a, b) = 0; Otherwise
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The points in the dgm(V) can be transformed to log scale by mapping a point
(v1, v2) ∈ dgm(V) ∈ R2 to (log(v1), log(v2)) ∈ R2 and we denote this log transform
on dgm(V) as log(dgm(V)). The bottleneck distance on log scale is then defined as
dB(log(dgm(V)), log(dgm(W))).

Stability. Stability of persistence diagrams is the hallmark result in the theory of
persistence, it provides a context to the persistence theory. There are several different
variants of the stability theorem. The following Theorem 2.5.3 states that if there are
two close filtrations on a simplicial complex K then their persistence diagram would
be close as well.

Theorem 2.5.3. Let K be a simplicial complex and f , g : K → R two filtration functions
on K. Let V f and Vg be two persistence modules associated with the filtrations f and g
respectively, then the bottleneck distance between dgm(V f ) and dgm(Vg) is bounded from
above by the L∞-distance between f and g, that is,

dB(dgm(V f ), dgm(Vg)) ≤ ‖ f − g‖∞

where ‖ f − g‖∞ = sup
σ∈K
| f (σ)− g(σ)|

One of the application of the above stability theorem is that given a point set P,
the bottleneck distance on log scale between the persistence diagrams of the Čech
filtration and the Rips filtration is bounded. We make this more precise as follows.

Theorem 2.5.4. Let P ⊂ Rd be a point set and {Cε} and {Rε} be the filtrations of Čech and
Rips complexes for increasing values of 0 ≤ ε ∈ R, then

dB(log(dgm(Cε)), log(dgm(Rε))) ≤
√

2

Proof. The Čech and the Rips filtrations individually define two filtration functions f
and g on the final simplicial complex K which is a |P|-simplex. As mentioned before
since these filtrations are interleaved, with the following inclusions,

R(P, ε) ⊆ C(P,
√

2ε) ⊆ R(P,
√

2ε)

the corresponding filtration functions satisfy,

‖log( f )− log(g)‖∞ ≤
√

2

and therefore Theorem 2.5.3 implies,

dB(log(dgm(Cε)), log(dgm(Rε))) ≤
√

2.

Another implicit consequence of the stability theorem is that if the point set P is
transformed to P′ with small perturbations then the persistence of diagram of the
perturbed point changes with small amount, bounded above by the amount of
perturbation.
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2.6 Conclusion

In this chapter, we reviewed some essential notions of topology and in particular
of persistent homology and briefly explained a simple algorithm to compute the
persistence diagram of a filtration.

As discussed in Section 1.4 of Chapter 1, recently there are many improved algorithms
to compute the persistence diagram of filtrations by exploiting the sparsity and
the structure of the boundary matrix. Another variant is to compute persistence
cohomology, which is dual to homology.

All these algorithm focuses on the faster reduction of the boundary matrix. The
second approach for faster computation of the persistence diagram is to simplify the
input filtration to a smaller filtration by preserving the persistence or approximating it
by bounded bottleneck distance. Our work in this thesis is along the second approach
we uses strong collapses and edge collapses to simplify the input filtration.

In Section 1.3 of Chapter 1, we have mentioned the extensions of persistent homology
to more general sequences like towers and zigzag sequences. We also mention new
techniques to compute persistence diagrams of towers as well, usually by converting
the tower to an equivalent filtration by simplicial expansion (conning) and then
compute the persistence of the equivalent filtration [22, 34]. We have made further
advancements in the special case of the flag tower (tower of flag complexes) based on
the previous works [22, 34], which we will explain in more details in Chapter 4.

There are algorithms to compute zigzag persistence of zigzag filtration [12, 13]. The
usual technique to convert a tower to an equivalent filtration works for the conversion
of a general zigzag sequence to an equivalent zigzag filtration. And this facilitates
the computation of the zigzag persistence of any general zigzag sequence.
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Chapter 3

Strong Collapse And Persistence

In this chapter, we introduce our first approach to simplify the complexes of the input
sequence using the notion of strong collapse. As described before in Chapter 1, Given
a zigzag sequence

Z : {K1
f1−→ K2

g2←− K3
f3−→ · · ·

f(n−1)−−−→ Kn}

of simplicial complexes Ki connected through simplicial maps { fi−→ or
gj←−}, we inde-

pendently strong collapse the complexes of the sequence to reach a sequence

Z c : {Kc
1

f c
1−→ Kc

2
gc

2←− Kc
3

f c
3−→ · · ·

f c
(n−1)−−−→ Kc

n},

with induced simplicial maps {
f c
i−→ or

gc
j←−} (defined in Section 3.4).

Kc
i is the core of the complex Ki and the sequence Z c is called the core sequence of
Z . In Section 3.4, we prove that Z and its core sequence Z c are equivalent.

We introduce the notion of strong collapse in Section 3.1. In Section 3.2 we define
the notion of nerve of a simplicial complex and show its relationsip with the strong
collapse. We describe an algorithm to compute the core Kc of a general simplicial
complex K using strong collapses. The algorithm uses a representation of K that
consists of only the maximal simplices of K. It is based on the nerve-square N 2(K)
construction defined in Section 3.2.

We then use our algorithm to compute the core sequence by independently strong
collapsing the constituent complexes of the sequence. We explain an approximation
scheme that compromizes between precision and time by choosing the number of
simplicial complexes of the sequence we strong collapse. In Section 5.4, we perform
some experiments on publicly available data sets, which shows that our approach is
extremely fast and memory efficient in practice.

3.1 Strong Collapse

The notion of strong collapse is relatively new and it was introduced by Barmak and
Minian [3]. It is a special type of simple collapse and is a stronger notion than simple
collapse.

Definition 3.1.1. A vertex v in K is called a dominated vertex if the link of v in K, lkK(v)
is a simplicial cone, that is, there exists a vertex v′ 6= v and a subcomplex L in K, such that
lkK(v) = v′L.



36 Chapter 3. Strong Collapse And Persistence

v′v v′ v′v′

FIGURE 3.1 – Illustration of an elementary strong collapse. In the complex
on the left, v is dominated by v′. The link of v is highlighted in red.

Removing v leads to the complex on the right.

We say that the vertex v′ is dominating v and v is dominated by v′. The symbol K \ v
(deletion of v from K) refers to the subcomplex of K which has all the simplices of K
except the ones containing v.

Removal of a simplex. We denote by K \ σ the subcomplex of K obtained by re-
moving σ, i.e. the complex that has all the simplices of K except the faces and the
cofaces of σ.

Below is an important remark from [3, Remark 2.2], which proposes an alternative
definition of dominated vertices.

Remark 3.1.1. A vertex v ∈ K is dominated by another vertex v′ ∈ K, if and only if all the
maximal simplices of K that contain v also contain v′ [3].

Definition 3.1.2. An elementary strong collapse is the deletion of a dominated vertex v
from K, which we denote with K↘↘e K \ v.

Figure 3.1 illustrates an easy case of an elementary strong collapse.

Definition 3.1.3. There is a strong collapse from a simplicial complex K to its subcomplex
L, if there exists a series of elementary strong collapses from K to L, denoted as K↘↘ L.

The inverse of a strong collapse is called a strong expansion. If there exists a combi-
nation of strong collapses and/or strong expansion from K to L then K and L are said
to have the same strong homotopy type.

The notion of strong homotopy type is stronger than the notion of simple homotopy
type in the sense that if K and L have the same strong homotopy type, then they
have the same simple homotopy type (simple homotopic), and therefore the same
homotopy type [3]. The converse is not necessarily true, there are examples of
contractible or simply collapsible simplicial complexes that are not strong collapsible.

A complex without any dominated vertex will be called a minimal complex. A core
of a complex K is a minimal subcomplex Kc ⊆ K, such that K↘↘ Kc. Every simplicial
complex has a unique core up to isomorphism. The core decides the strong homotopy type of
the complex, and two simplicial complexes have the same strong homotopy type if and
only if they have isomorphic cores [3, Theorem 2.11].

Retraction map: If a vertex v ∈ K is dominated by another vertex v′ ∈ K, the vertex
map r : K → K \ v defined as: r(w) = w if w 6= v and r(v) = v′, induces a simplical
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map that is a retraction map. The homotopy between r and the identity iK\v over
K \ v is in fact a strong deformation retraction. Furthermore, the composition (iK\v)r
is contiguous to the identity iK over K [3, Proposition 2.9].

Existence of a simplicial map (the retraction map r) corresponding to a strong collapse
is a special property of strong collapse, which is not true in the case of simple collapse.
For example in Figure 2.4 (a) there are no simplicial map corresponding to the removal
of the free pair (the triangle and the edge).

3.2 Nerve and Strong Collapse

One of the most remarkable property of strong collapses is its association with the
operation of nerve of a simplicial complex. We will first begin with the definition of a
cover and the general definition of a nerve.

Definition 3.2.1. A closed cover U of a topological space X is a set of closed sets of X such
that X is equal to their union.

Here we choose closed sets to define a cover, if we choose open sets we define an
open cover where X could be a subset of the union of the open sets in U .

Definition 3.2.2. A cover U is called a good cover if for any subset {Ui1 , · · · , Uik} ⊆ U
the intersection

⋂
ij

Uij is either empty or contractible.

Definition 3.2.3. The nerve of a cover U is an abstract simplicial complex, defined as the set
of all non-empty intersections of the elements of U .

The following theorem is one of the foundational theorem of computational topology.

Theorem 3.2.1. The nerve of a finite good closed cover U is homotopy equivalent to the space
X :=

⋃
Uα∈U

Uα.

The nerve is a well known construction that transforms a continuous space to a
combinatorial space preserving its homotopy type. The Čech complex defined in
subsection 2.2.3 is the nerve of the cover (the set of d-balls) of the space defined by
the union of the balls. Since a d-ball is convex, the intersection of any finitely many
d-ball is convex and hence contractible, therefore the Čech complex is homotopic to
the space defined by the union of the balls.

Nerve of a simplicial complex: The nerve N (K) of a simplicial complex K is
defined as the nerve of the set of maximal simplices of the complex K (considered as
a cover of the complex). Hence all the maximal simplices of K will be the vertices of
N (K) and their non-empty intersection will form the simplices of N (K). For j ≥ 2
the iterative construction is defined as N j(K) = N (N j−1(K)). This definition of
nerve preserves the homotopy type, K ' N (K)[3]. A remarkable property of this
nerve construction is its connection with strong collapses.

Taking the nerve of any simplicial complex K twice corresponds to a strong collapse.

Theorem 3.2.2. [3, Proposition 3.4] For a simplicial complex K, there exists a subcomplex
L isomorphic to N 2(K), such that K↘↘L.



38 Chapter 3. Strong Collapse And Persistence
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FIGURE 3.2 – Left: K (in grey), Right: N (K) (in grey) and N 2(K) (in
red). N 2(K) is isomorphic to a full-subcomplex of K highlighted in

red on the left.

An easy consequence of this theorem is that a complex K is minimal if and only if it is
isomorphic to N 2(K) [3, Lemma 3.6]. This means that we can keep collapsing our
complex K by applying iteratively N 2(.) until we reach the core of the complex K.
The sequence K,N 2(K), ...,N 2p(K) is a decreasing sequence in terms of number of
simplices.

3.3 Strong collapse of a simplicial complex

In this section, we describe an algorithm to strong collapse a simplicial complex K,
provide the details of the implementation and analyze its complexity.

Data structure. Basically, we represent K as the adjacency matrix M between the
vertices and the maximal simplices of K. We will simply call M the adjacency matrix
of K. The rows of M represent the vertices and the columns represent the maximal
simplices of K. For convenience, we will identify a row (resp. column) and the vertex
(resp. maximal simplex) it represents. An entry M[vi][σj] associated with a vertex vi
and a maximal simplex σj is set to 1 if vi ∈ σj, and to 0 otherwise. For example, the
matrix M in the left of the Table 3.1 corresponds to the leftmost simplicial complex K
in Figure 3.2.

Usually, M is very sparse. Indeed, each column contains at most d + 1 non-zero
elements since the simplices of a d-dimensional complex have at most d + 1 vertices,
and each line contains at most Γ0 non-zero elements where Γ0 is the maximum number
of maximal simplices that are incident to a given vertex. As already mentionned, in
many practical situations, Γ0 is a small fraction of the number of maximal simplices.
It is therefore beneficial to store M as a list of vertices and a list of maximal simplices.
Each vertex v in the list of vertices points to the maximal simplices that contain v, and
each simplex in the list of maximal simplices points to its vertices. This data structure
is similar to the SAL data structure of [8].

Core algorithm. Given the adjacency matrix M of K, we compute the adjacency
matrix C of the core Kc. It turns out that using basic row and column removal
operations, we can easily compute C from M. Loosely speaking our algorithm
recursively computes N 2(K) until it reaches Kc.
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σ1 σ2 σ3 σ4 σ5

a 0 0 1 0 0
b 1 1 1 0 0
c 1 0 0 0 0
d 0 0 1 1 0
e 0 1 0 1 1
f 0 0 0 0 1

b d e
σ1 1 0 0
σ2 1 0 1
σ3 1 1 0
σ4 0 1 1
σ5 0 0 1

σ2 σ3 σ4
b 1 1 0
d 0 1 1
e 1 0 1

TABLE 3.1 – From left to right M, N (M) and N 2(M).

The columns of M (which represent the maximal simplices of K) correspond to the
vertices of N (K). Also, the columns of M that have a non-zero value in a particular
row v correspond to the maximal simplices of K that share the vertex associated with
row v. Therefore, each row of M represents a simplex of the nerve N (K). Not all
simplices of N (K) are associated with rows of M but all maximal simplices are since
they correspond to subsets of maximal simplices with a common vertex. To remedy
this situation, we remove all the rows of M that correspond to non-maximal simplices
of N (K). This results in a new smaller matrix M whose transpose, noted N (M), is
the adjacency matrix of the nerve N (K). We then exchange the roles of rows and
columns (which is the same as taking the transpose) and run the very same procedure
as before so as to obtain the adjacency matrix N 2(M) of N 2(K).

The process is iterated as long as the matrix can be reduced. Upon termination, we
output the reduced matrix C := N 2p(M), for some p ≥ 1, which is the adjacency
matrix of the core Kc of K. Removing a row or column is the most basic operation of
our algorithm. We will discuss it in more detail later in the paragraph Domination test.

Example. As mentioned before, the matrix M in the left of the Table 3.1 represents
the simplicial complex K in the left of Figure 3.2. We go through the rows first, rows
a and c are subsets of row b and row f is a subset of e. Removing rows a, c and f
and transposing M yields the adjacency matrix N (M) of N (K) in the middle. Now,
row σ1 is a subset of σ2 and of σ3, and σ5 is a subset of σ2 and of σ4. We remove these
two rows of N (M) and transpose N (M) so as to get N 2(M) (the rightmost matrix
of Table 3.1), which corresponds to the core drawn in red in Figure 3.2.

Domination test. Now we explain in more detail how to detect the rows that need
to be removed. Let v be a row of M and σv be the associated simplex in N (K). If σv
is not a maximal simplex of N (K), it is a proper face of some maximal simplex σv′

of N (K). Equivalently, the row v′ of M that is associated with σv′ contains row v in
the sense that the non zero elements of v appear in the same columns as the non zero
elements of v′. We will say that row v is dominated by row v′ and determining if a
row is dominated by another one will be called the row domination test. Notice that
when a row v is dominated by a row v′, the same is true for the associated vertices
since all the maximal simplices that contain vertex v also contain vertex v′, which is
the criterion to determine if v is dominated by v′ (See Remark 1 in Section 3.1.1). The
algorithm removes all dominated rows and therefore all dominated vertices of K.
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After removing rows, the algorithm removes the columns that are no longer maximal
in K, which might happen since we removed some rows. Removing a column may
lead in turn to new dominated vertices and therefore new rows to be removed. When
the algorithm stops, there are no rows to be removed and we have obtained the core
Kc of the complex K. Note that the algorithm provides a constructive proof of 3.2.2.

Removing columns is done in very much the same way: we just exchange the roles of
rows and columns.

Computing the retraction map r. The algorithm also provides a direct way to com-
pute the retraction map r defined in Section 3.1. The retraction map corresponding to
the strong collapses executed by the algorithm can be constructed as follows. A row
r being removed in M corresponds to a dominated vertex in K and the row which
contains r corresponds to a dominating vertex. Therefore we map the dominated
vertex to the dominating vertex and compose all such maps to get the final retraction
map from K to its core Kc. The final map is simplicial as well, as it is a composition of
simplicial maps.

Reducing the number of domination tests. We first observe that, when one wants
to determine if a row v is dominated by some other row, we don’t need to test v with
all other rows but with at most d of them. Indeed, at most d + 1 rows can intersect
a given column since a simplex can have at most d + 1 vertices. For example, in
Table 3.1 (Left), to check if row e (highlighted in brown) is dominated by another row,
we pick the first non-zero column σ2 (highlighted in Gray) and compare e with the
non-zero entries {b} of σ2.

A second observation is that we don’t need to test all rows and columns for domi-
nation, but only the so-called candidate rows and columns. We define a row r to be
a candidate row for the next iteration if at least one column containing one of the
non-zero elements of r has been removed in the previous column removal iteration.
Similarly, by exchanging the roles of rows and columns, we define the candidate
columns. Candidate rows and columns are the only rows or columns that need to be
considered in the domination tests of the algorithm. Indeed, a column τ of M whose
non-zero elements all belong to rows that are present from the previous iteration
cannot be dominated by another column τ′ of M, since τ was not dominated at
the previous iteration and no new non-zero elements have ever been added by the
algorithm. The same argument follows for the candidate rows.

We maintain two queues, one for the candidate columns (colQueue) and one for the
candidate rows (rowQueue). These queues are implemented as First in First out
(FIFO) queues. At each iteration, we pop out a candidate row or column from its
respective queue and test whether it is dominated or not. After each successful
domination test, we push the candidate columns or rows in their appropriate queue
in preparation for the subsequent iteration. In the first iteration, we push all the rows
in rowQueue and then alternatively use colQueue and rowQueue. Algorithm 2 gives
the pseudo code of our algorithm.

Time Complexity. The most basic operation in our algorithm is to determine if a row
is dominated by another given row, and similarly for columns. In our implementation,
the rows (columns) of the matrix that are considered by the algorithm are stored as
sorted lists. Checking if one sorted list is a subset of another sorted list can be done in
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Algorithm 2 Core algorithm

1: procedure CORE(M) . M is the adjacency matrix of K.
2: rowQueue← push all rows of M (all vertices of K)
3: colQueue← empty
4: while rowQueue is not empty do
5: v← pop(rowQueue)
6: σ← the first non-zero column of v
7: for non-zero rows w in σ do
8: if v is a subset of w then
9: Remove v from M

10: push all non-zero columns τ of v to colQueue if not pushed before
11: break
12: end if
13: end for
14: end while
15: while colQueue is not empty do
16: τ ← pop(colQueue)
17: v← the first non-zero row of τ
18: for non-zero columns σ in v do
19: if τ is subset of σ then
20: Remove τ from M
21: push all non-zero rows w of τ to rowQueue if not pushed before
22: break
23: end if
24: end for
25: end while
26: if rowQueue is not empty then
27: GOTO 4
28: end if
29: return M . M is now the adjacency matrix of the core of K.
30: end procedure
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time O(l), where l is the size of the longer list. Note that the length of a row list is
at most Γ0 where Γ0 denotes the largest number of maximal simplices incident to a
vertex. The length of a column list is at most d + 1 where d is the dimension of the
complex. Hence checking if a row is dominated by another row (Line 8) takes O(Γ0)
time and checking if a column is dominated by another column (Line 19) takes O(d)
time.

Next consider one execution of the while loop on rows (Lines 4-14). We will loop at
most nv times since rowQueue contains at most nv elements, where nv is the number
of vertices of the complex K. Since simplex σ has at most d + 1 vertices w and since
testing if v is a subset of w (Line 8) takes at most Γ0 time as shown above, a row
domination test (Lines 7-13) takes time O(dΓ0). Hence, executing one while loop on
rows takes nvdΓ0 time. If, during the execution of the while loop, we never execute
Lines 9-10, there is no dominated vertex, colQueue remains empty and the algorithm
stops. Otherwise, we enter the while loop on columns (Lines 15-25).

We will loop at most m times since colQueue contains at most m elements where m
is the number of maximal simplices in K. Vertex v is incident to at most Γ0 maximal
simplices and, as shown above, testing if τ is a subset of σ (Line 19) takes O(d) time.
It follows that executing one while loop on columns takes O(mdΓ0) time.

It remains to bound the number of times we execute the while loops or, equiva-
lently, the number of times we execute Line 27. This number is at most nv. Indeed,
each time we execute Line 27, the algorithm has removed at least one row from
M since otherwise it stops. It follows that the total complexity of the algorithm is
O(nvdΓ0 (nv + m)). Noticing that nvΓ0 ≥ m, the complexity can be simply written as
O(n2

vdΓ2
0).

In practice, m is much smaller than n, the total number of simplices, and Γ0 is much
smaller than Γ, the maximum number of simplices incident on a vertex. Typically
Γ grows exponentially with d while Γ0 remains almost constant as d increases. See
Table 5 in [8], related results in [7], and the plots in Section 3.5.

3.4 Strong collapse of a sequence of simplicial complexes

In this section, we will present our main result that the persistence homology of
a sequence of simplicial complexes is preserved under strong collapse. We begin
with some brief background on zigzag persistence all the notions recalled here are
simply extensions of the notions about towers and filtration recalled in Section 2.5,
we mention them here for completeness. Readers interested in more details can refer
to [12, 13, 20].

Given a zigzag sequence of simplicial complexes

Z : {K1
f1−→ K2

g2←− K3
f3−→ · · ·

f(n−1)−−−→ Kn}.

If we compute the homology classes of all Kis, we get the sequence

P(Z) : {Hp(K1)
f ∗1−→ Hp(K2)

g∗2←− Hp(K3)
f ∗3−→ · · ·

f ∗(n−1)−−−→ Hp(Kn)}.

Here Hp(−) denotes the homology class of dimension p with coefficients from a field
F and ∗ denotes an induced homomorphism. P(Z) is a sequence of vector spaces
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connected through homomorphisms, called a zigzag module. More formally, a zigzag
module V is a sequence of vector spaces

{V1 −→ V2 ←− V3 −→ · · · ←→ Vn}

connected with homomorphisms {−→,←−} between them. A zigzag module arising
from a sequence of simplicial complexes captures the evolution of the topology of the
sequence.

For two integers b and d, 1 ≤ b ≤ d ≤ n; we can define an interval module I[b, d] by
assigning Vi to F when i ∈ [b, d], and null spaces otherwise, the maps between any
two F vector spaces is identity and is zero otherwise. For example

I[2, 4] : {0 0−→ F
I←− F

I−→ F
0←− 0 0−→ 0},

here n = 6. Any zigzag module can be decomposed as the direct sum of finitely many
interval modules, which is unique upto the permutations of the interval modules
[12].

The multiset of all the intervals [bj, dj] corresponding to the interval module de-
composition of any zigzag module is called a zigzag (persistence) diagram. The
zigzag diagram completely characterizes the zigzag module, that is, there is bijective
correspondence between them [12, 50].

Two different zigzag modules

V : {V1 −→ V2 ←− V3 −→ · · · ←→ Vn} and

W : {W1 −→W2 ←−W3 −→ · · · ←→Wn},

connected through a set of homomorphisms φi : Vi →Wi are equivalent if the φis are
isomorphisms and the following diagram commutes [12, 20].

V1 V2 V3 · · · Vn−1 Vn

W1 W2 W3 · · · Wn−1 Wn

φ1 φ2 φ3 φn−1 φn

Note that the length of the modules and the directions of the arrows in them should
be consistent. Two equivalent zigzag modules will have the same interval decompo-
sition, therefore the same zigzag diagram.

Strong collapse of the zigzag module: Given a zigzag sequence

Z : {K1
f1−→ K2

g2←− K3
f3−→ · · ·

f(n−1)−−−→ Kn}.

We define the core sequence Z c of Z as

Z c : {Kc
1

f c
1−→ Kc

2
gc

2←− Kc
3

f c
3−→ · · ·

f c
(n−1)−−−→ Kc

n}.

Where Kc
i is the core of Ki. The forward maps are defined as, f c

j := rj+1 f jij; and
the backward maps are defined as gc

j := rjgjij+1. The maps ij : Kc
j ↪→ Kj and
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rj : Kj → Kc
j are the composed inclusions and the retractions maps defined in

Section 3.1 respectively. We call the procedure of forming the core sequence using the
cores and the induced simplicial maps as core-assembly.

Theorem 3.4.1. Zigzag modules P(Z) and P(Z c) are equivalent.

Proof. Consider the following diagram

K1 K2 K3 · · · Kn−1 Kn

Kc
1 Kc

2 Kc
3 · · · Kc

n−1 Kc
n

f1

r1 r2

g2

r3

fn−1

rn−1 rn

f c
1

gc
2

f c
n−1

and the associated diagram after computing the p-th homology groups

Hp(K1) Hp(K2) Hp(K3) · · · Hp(Kn−1) Hp(Kn)

Hp(Kc
1) Hp(Kc

2) Hp(Kc
3) · · · Hp(Kc

n−1) Hp(Kc
n)

f ∗1

r∗1 r∗2

g∗2
r∗3

f ∗n−1

r∗n−1 r∗n
( f c

1 )
∗

(gc
2)
∗

( f c
n−1)

∗

Since there exists a strong deformation retraction between rj and ij, the induced
homomorphisms r∗j and i∗j are isomorphisms [31, Corollary 2.11]. We claim that the
composed map ijrj is contiguous to the identity on Kj. Indeed, ij can be decomposed
into a series of inclusions i1

j i2
j ...is

j that correspond to elementary strong collapses and

similarly rj can be decomposed into rs
j r

s−1
j ...r1

j for some s. Using [3, Proposition 2.9]
and the fact that contiguity is preserved under composition, it follows that ijrj is
contiguous to the identity on Kj since

ijrj = i1
j i2

j ...is
j ◦ rs

j r
s−1
j ...r1

j ∼ i1
j i2

j ...is−1
j ◦ rs−1

j ...r1
j ∼ ... ∼ i1

j ◦ r1
j ∼ id

It then follows that f c
j rj = rj+1 f jijrj is contiguous to rj+1 f j, and similarly that gc

j rj+1

is contiguous to rjgj. Now, since contiguous maps are homotopic at the level of
geometric realizations and since homotopic maps induce the same homomorphism,
we have ( f c

j rj)
∗ = (rj+1 f j)

∗ and thus ( f c
j )
∗r∗j = r∗j+1 f ∗j and similarly (gc

j )
∗r∗j+1 = r∗j g∗j ,

see [31, Proposition (1) page 111]. Therefore all the squares in the lower diagram
commute and the set of maps r∗j s are isomorphisms, therefore P(Z) and P(Z c) are
equivalent and hence their zigzag diagrams are identical.

Remark. The above result can be extended to multidimensional persistence using
the more general notion of quiver representation [20].

The algorithms to compute persistence are for sequences of simplicial complexes
connected via inclusions only : inclusions can be in both directions, that is either
zigzag filtrations or filtrations. To compute the persistent homology of more general
sequences, one usually converts them to an equivalent inclusion-only sequence.
Zigzag sequences will thus be transformed in zigzag filtrations and towers will be
transformed in filtrations respectively.
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The works of Dey et. al. [22] and Kerber and Schrieber [34] describe methods to
convert a tower to a filtration general towers. The same techniques could be applied to
convert a zigazag sequence to a zigzag filtration. Given a zigzag sequence of general
simplicial complexes, one can individually strongly collapse each of the complexes
using the algorithm described in Section 3.3 and then assemble the cores using the
maps prescribed in this section and compute the persistence of the core sequence.
The core sequence of a zigzag filtration is usually a general zigzag sequence rather
than a zigzag filtration. To compute the persistent homology of such a core sequence,
one can expand it so as to obtain a zigzag filtration using the approach described
in [22] and [34].

In the next section we perform some experiments using the methods described in
this section. Our experiments are performed on filtrations of Rips complex and after
strong collapsing the filtrations we get towers. We then use the algorithm described
in [34] to compute the persistence of the core tower.

In the special case of a flag filtration or of a flag tower, the core sequence is a flag
tower. Again, to compute the persistence of a flag tower, one needs to expand it to
get a filtration. We describe a method to transform a flag tower to a flag filtration
using only the 1-skeleton of the tower in Chapter 4.

3.5 Approximation of the persistence diagram of filtrations

In this section, we restrict our attention to the case of filtrations, i.e. nested sequences
of simplicial complexes connected by inclusions. Filtrations, and in particular Rips
filtrations, are easy to construct and commonly used in Topological Data Analysis.
However, because of their inclusive nature, the number of simplices grows exponen-
tially in the number of sample points which often limits PH computation to small
examples.

As we have seen, our method tackles this issue by using only maximal simplices and
dramatically reducing the size of the input complexes using strong collapses. Further
dramatic reduction can be obtained if we allow to approximate the PH of the input
filtration as shown now.

An approximation scheme: Instead of strong collapsing all the complexes in the
filtration, we can strong collapse the complexes less often, i.e. after several inclusions
rather than just one. This will result in a faster algorithm but comes with a cost: the
computed PD will only be approximate.

The complexes in a filtration F are usually associated to different real values of a
scale parameter. For example, in a VR filtration, the filtration value of a simplex is
the length of the longest edge of the simplex and in general the filtration consists
of a sequence of elementary inclusions (i.e. inclusion of a single simplex) with non
decreasing filtration values. A persistent pair then associates the filtration value of a
simplex that creates a homology cycle with the filtration value of the simplex that
kills the cycle. The length of the persistence pair is the difference between the two
filtration values.

We call snapshots the values of the scale parameter at which we choose to strong
collapse the complex. The difference between two consecutive snapshots is called a
step. We approximate the filtration value of a simplex as the value of the snapshot at
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which it first appears. It is not hard to see that our algorithm will report all persistence
pairs that are separated by at least one snapshot. Hence if all steps are at most some
ε > 0, we will compute all the persistence pairs whose lengths are at least ε. It follows
that the bottleneck distance between the computed PD and the exact one is at most ε.

Computational experiments: Now, we present some computational experiments
to showcase the efficiency achieved by our approach. For our experiments, we choose
three datasets coming from applications, for more detail about the datasets please
refer to [43]. The algorithms to strong collapse a simplicial complex (Algorithm 2)
and to form the core sequence (core-assembly) have been coded in C++. We name
our package to preprocess the initial sequence and construct the collapsed sequence
PH-Collapser. The code has been compiled using the compiler ‘clang-900.0.38’ and all
computations were performed on a ‘2.8 GHz Intel Core i5’ machine with 16 GB of
available RAM.

For each data set, we select a number of snapshots and independently strong collapse
all the complexes associated to these snapshots. We then assemble the resulting
individual cores using the induced simplicial maps introduced in Section 3.4. The
resulting core sequence with induced simplicial maps between the collapsed com-
plexes is in general a simplicial tower we call the core tower. We then convert the core
tower into an equivalent filtration using the Sophia software [44], which implements
the algorithm described by Kerber and Schreiber [34]. Finally, we run the persistence
algorithm of the Gudhi library [30] to obtain the persistence diagram (PD) of the
equivalent filtration. For the core tower, we use Gudhi through Sophia using the
command <./sophia -cgudhi inputTowerFile outputPDFile> 1.

Table 3.2 summarises the results of the experiments. The total time includes 1. the
time taken to compute the entire VR filtration at snapshot values, 2. the time taken
to collapse all the subcomplexes, assemble their cores and transform them into an
equivalent filtration, and 3. the time to compute the PD of the equivalent filtration.
At each snapshot, we compute the full associated VR complex with no restriction
on its dimension and compute the PD in all dimensions upto the dimension of the
complex. The experiments are done on the three datasets netw-sc, senate and eleg
from [18]

In all cases, the total time stays within a small factor (less than 2) from the time
to compute the VR complex. The only exception is the dataset senate, which has
comparatively fewer points and for which the time to compute the VR complex is
relatively fast. However, here too the ratio is less than eight, which is much less than
403, the number of snapshots. This clearly indicates that in our approach the time
to perform the strong collapses and the core assemblies together with the time to
compute the PD is much smaller than the time to compute the VR complex. This
implies that one can refine the PD (through smaller steps) at a very low cost.

Our choice of snapshots is arbitrary and could be done in a non uniform way after
analyzing the distribution of the length of the edges in the Rips-complex at a relatively
small increase in the total computing time.

1 When we use the -cgudhi option, Sophia reports two computation times. The first one is the total
time taken by Sophia which includes (1) reading the tower, (2) transforming it to a filtration and (3)
computing PD using Gudhi. The second reported time is just the time taken by Gudhi to compute the
exact PD of the input filtration. In our comparisons, we report the total time taken by Sophia.
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Data Pnt Threshold
Strong Collapse + PH computation

Dim Rips-Comp-Time Total-Time Step TotSnaps
netw-sc 379 4.5 41 13s 21s 0.02 213

” ” 5.5 57 117s 144s 0.02 263
senate 103 0.415 54 1.7s 13.1s 0.001 403
eleg 297 0.3 105 443s 578.3s 0.001 284

TABLE 3.2 – The columns are, from left to right: dataset (Data), number
of points (Pnt), maximum scale parameter (Threshold), dimension of
the VR Complex (Dim), time taken to compute the VR complex (Rips-
Comp-Time), total time (Total-Time), parameter step (Step) and total
number of snapshots used (TotSnaps). All times are averaged over

five trials.

Comparison with Ripser. Ripser [4] is a state-of-the-art software to compute persis-
tence of Rips complex. To compare, we perform the same experiments using Ripser.
Command <./ripser inputData –format distances –threshold inputTh –dim inputDim >
was used to run Ripser and we used the distance matrix format for all the datasets.
Differently from PH-Collapser, Ripser needs a parameter –dim until which it com-
putes the PD. For a given threshold (maximum scale parameter) and dim, Ripser
basically computes the dim-skeleton of the VR complex and then computes the PD of
the skeleton.

Table 3.3 contains the results of Ripser. By comparing the tables, PH-Collapser clearly
outperforms Ripser by a huge margin considering that we compute the persistence
diagram until the full dimension. Ripser performs quite well for computing PD in
low-dimensions, however as we move to intermediate dimensions it slows down
quite considerably and in some cases (dimension above 7) the size of the complex is
so huge that Ripser crashed due to memory overload. In Table 3.3, we provide the
running time of Ripser with increasing dimension of the PD computed.

Val Val Val
Dim Time Dim Time Dim Time

netw-sc 379 4.5 4 3.8s 5 21.5s 7 357s
” ” 5.5 4 25.3s 5 231.2s 6 ∞

senate 103 0.415 3 0.52s 4 5.9s 5 52.3s
” ” ” 6 406.8s 7 ∞

eleg 297 0.3 3 8.9s 4 217s 5 ∞

TABLE 3.3 – The columns are, from left to right: dataset (Data), number
of points (Pnt), maximum scale parameter (Threshold), input dimen-
sion for Ripser (Dim), total time taken by Ripser (Time). Most results
are averaged over five trials except the longer ones. ∞ in the Time
column means that the experiment ran longer than 12hrs or crashed

due to memory overload.

The datasets we considered here didn’t have any non-trivial persistence pairs beyond
dimension 4-5, however with our approach we were able to say it and until the
maximum possible dimension. Whereas in most of the cases, Ripser couldn’t compute
even the Rips skeleton beyond dimension 7.
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As mentioned before in this section, we define the filtration value of a simplex as the
value of the snapshot parameter at which it appears for the first time. Therefore, the
computed PD by PH-Collapser is not exact. However, in the above experiments, we
choose steps that are very small so that the bottleneck distance between the two PD
returned by Ripser and PH-collapser for a given data set is also very small.

The above experiments have been performed considering Rips complexes as general
simplicial complexes. This was to illustrate the general performances of our algorithm
that works for any type of simplicial complexes. However, in the case of Rips
complexes and, more generally, in the case of flag complexes, we can further improve
the performances by representing the complexes by their 1-skeletons instead of their
maximal faces, an even more compact representation. In Chapter 4, we adapt the
methodology introduced in this Chapter to the case of flag complexes and show
that we can compute the core filtration (which is itself a flag filtration) using only
1-skeletons.

The plots below count the maximal simplices and the dimensions of the complexes
across the initial filtration (in solid) and the collapsed tower (as dashed). We show in
solid red and dashed red respectively the filtration and the collapsed tower of the
data netw-sc. Similarly we show in solid green and dashed green respectively the
filtration and the collapsed tower of the data senate. Finally, we show in solid black
and dashed black respectively the filtration and the collapsed tower of the data eleg.
We can observe that in all cases the number of maximal simplices never increases.
Also they are far fewer (by a factor exponential in the dimension) in number com-
pared to the total number of simplices. Observe that for the uncollapsed filtrations
solid red, green and black, the dimension of the complexes increases quite rapidly
with the snapshot index. Another key fact to observe is that the dimension of the
complexes in the corresponding core tower are much smaller than their counterparts
in the original filtration. This has a huge effect on the performances since the total
number of simplices depends exponentially on the dimension.
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Observations from the plots combined with the experimental results of Table 3.2
clearly indicate that performances are much improved when using strong collapses.
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3.6 Discussion

In this chapter, we presented a novel approach to compute the persistence homology
of a sequence of simplicial complexes. Our approach is based on strong collapses
that has been introduced by Barmak and Minian [3]. Our method works very well in
pratice and, as shown using publicly available data, it is much faster and memory effi-
cient with respect to not using it. We believe that the solid mathematical foundations
presented in [3], its applicability to all kinds of sequences of simplicial complexes,
and the availability of the simple and efficient algorithms developed in this chapter,
strong collapses will be immensely useful to reduce the complexity of many problems
in computational topology.

On the theoretical side, this work raises several questions. In particular, it would be
nice to have theoretical guarantees on the amount of reduction the algorithm can
achieve. We intend to explore this and related issues in future work.

This chapter was based on our work reported in [10].
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Chapter 4

Persistence of Flag Complexes

In this chapter, we restrict the class of simplicial complexes to flag complexes and
we focus on the problem of computing Persistent Homology of a flag tower, i.e. a
sequence of flag complexes connected by simplicial maps. The case of flag filtration
is then a special case of flag tower. Flag complexes are fully characterized by their
graph (or 1-skeleton), the other faces being obtained by computing the cliques of
the graph. By restricting to the case of flag complexes, we achieve further decisive
improvement in terms of time and space complexities with respect to our approach
in the previous chapter.

We first show that strong collapses of flag complexes can be computed in time O(k2n2
v)

where nv is the number of vertices of the complex and k is the maximal degree of its
graph. Moreover we can strong collapse a flag complex knowing only its 1-skeleton
and the resulting complex is also a flag complex.

In the previous chapter, we showed that the persistent homology of Rips filtrations
can be computed very efficiently using strong collapses. However, most of the
time was devoted to computing the maximal cliques of the complex prior to their
strong collapse. Using the results developed in this chapter we avoid computing the
maximal simplices.

After strong collapsing a flag tower as prescribed in the previous chapter, Section 3.4,
the reduced sequence is also a flag tower. As previously described in Chapter 1 to
compute persistence of a tower we need to transform it to an equivalent filtration. In
Section 4.2, we show how to transform a flag tower to an equivalent flag filtration
using again only 1-skeletons. This implies that the complete pre-processing described
in the previous chapter can be performed only on the 1-skeleton, when the complex
is a flag complex. This leads to a very simple and extremely efficient method.

In Section 4.1 we prove that strong collapse of a flag complex can be computed
using the 1-skeleton of the complex and provide a simple algorithm to compute the
1-skeleton of the core. The algorithm to transform a flag tower to a flag filtration is
discussed in Section 4.2. In Section 4.3 we provide the computational experiments.

4.1 Strong Collapse of a Flag complex

In this section, we show that the core of a flag complex K is itself a flag complex
whose graph is called the core graph of K. The core graph of K can be computed from
the 1-skeleton G of K in time O(n2

vk2).

Although this change with respect to the Algorithm 2 in previous chapter might look
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minor, it is crucial in practice as the time to compute all the maximal simplices of
a flag complex from its graph is exponential in the number of its vertices. We thus
reduce immensely the time and space complexity of the general algorithm of previous
chapter whose complexity is O(v2Γ0d + m2Γ0d), where Γ0 is an upper bound on the
number of maximal simplices incident to a vertex.

In the following lemma, we describe a condition in terms of the closed neighborhood
NG[v] of a vertex v of a flag complex K under which v will be dominated by another
vertex v′ of K. This result has been studied in another context in [28, Lemma 4.1].

Lemma 4.1.1. Let K be a flag complex. A vertex v ∈ K is dominated by v′ iff NG[v] ⊆
NG[v′].

Proof. If v is dominated by v′, then, according to Remark 1, the set of maximal
simplices that contain v is a subset of the set of maximal simplices that contain v′. It
follows that NG[v] ⊆ NG[v′].

Now we prove the other direction. Let σ be a maximal simplex of K containing
v. Any other vertex x of σ is joined to v by an edge [x, v] ∈ σ. Moreover, since
NG[v] ⊆ NG[v′], [v, v′] and [x, v′] are in K. It follows that every vertex in σ has an
edge with both v and v′ and, since K is a flag complex and σ is maximal, v′ must be
in σ. This implies that all the maximal simplices that contain v also contain v′. Hence
v is dominated by v′.

As mentioned before in Chapter 2, an elementary strong collapse consists in removing
a dominated vertex, and it can be easily observed that removing a vertex does not
affect the ‘flagness’ of the residual complex K \ v. In other words, if σ is a maximal
clique with vertex v, the resultant clique σ \ v is still a maximal clique in K \ v.
Moreover, all the other cliques that do not contain v still span the complete simplices.
This implies that the core Kc of a flag complex K with graph G is a flag complex of a
sub-graph Gc of G.

In what follows next, we describe an algorithm to compute the core graph Gc ⊆ G
whose flag complex is the core Kc of K.

Data structure: We represent G with its adjacency matrix M, where the rows and
the columns of M represent the vertices of G. An entry M[vi][vj] associated with
vertices vi and vj is set to 1 if either the edge [vi, vj] ∈ G or i = j, and to 0 otherwise.
Note that we set M[vi][vj] = 1 for i = j to be able to consider closed neighborhood.
We will say that a row v is contained in another row v′ if the set of column indices
of the non-zero entries of v is a subset of the indices of the non-zero entries of v′. It
is clear that if a row v is contained in another row v′, we have NG[v] ⊆ NG[v′] and
therefore the vertex v is dominated by the vertex v′

Core graph algorithm: Given the adjacency matrix M of G, we compute the adja-
cency matrix C of the core graph Gc. In view of Lemma 4.1.1, we can easily compute
C from M using basic row removal operations. Loosely speaking, we remove the
rows of M that are contained in another row. After removing the row associated to v,
we simultaneously update the matrix by removing the column associated to v. The
process is iterated as long as the matrix can be reduced. Upon termination, we output
the reduced matrix C, which is the adjacency matrix of the core graph Gc of K. Since
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the core of a complex is always unique, the order in which vertices are removed does
not matter [3].

Retraction map computation: We can easily compute the retraction map r defined
in Section 3.1 using the above core graph algorithm. A row v being removed in M
corresponds to a dominated vertex in K and the row which contains v corresponds
to a dominating vertex. Therefore we map the dominated vertex to the dominating
vertex.

Domination tests optimization: Let us observe that, to check if a row v is domi-
nated by some other row v′, it is sufficient to compare v with its neighbors, which are
at most k in number, if k denotes the maximum degree of the vertices in G.

We define a row v to be a candidate row for the next iteration if at least one of its
neighbors has been removed in a previous row removal iteration. We observe that
the candidate rows are the only rows that need to be considered in the domination
tests of the algorithm. Indeed, a row w of M whose set of neighbors has not been
modified at the previous iteration cannot be dominated by another row v′ of M, as
w was not dominated in the previous iteration and all other vertices can only loose
neighbors. This ensures that w will still remain un-dominated.

We maintain a queue, for the candidate rows (rowQueue) which is implemented as a
First in First out (FIFO) queue. At each iteration, we pop out a candidate row from
rowQueue for domination test. After each successful domination test, we push the
new candidate rows in the queue in preparation for the subsequent iteration. In the
first iteration, we push all the rows in rowQueue. Algorithm 3 gives the pseudo code
of our algorithm.

Algorithm 3 Core graph algorithm

1: procedure CORE(M)
2: input : the adjacency matrix M of the graph of a flag complex K
3: rowQueue← push all rows of M (all vertices of K)
4: while rowQueue is not empty do
5: v← pop(rowQueue)
6: NG[v]← the non-zero columns of v
7: for w in NG[v] do
8: if NG[v] ⊆ NG[w] then
9: Remove from M the column and the row associated to v

10: push all the entries of NG(v) to rowQueue if not pushed before
11: break
12: end if
13: end for
14: end while
15: return M . M is now the adjacency matrix of the core of K
16: end procedure

Time Complexity: Let us start by analyzing the most basic operation in our algo-
rithm which is to determine if a row is dominated by another row. We store the rows
of the matrix as sorted lists. Deciding if a sorted list is included in another sorted list
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(Line 8) can be done in time O(l), where l is the size of the longer list. In our case, the
length of a row list is at most k + 1 where k denotes as before the maximal degree of
any vertex. Hence lines 8-12 takes O(k) time.

As explained in the paragraph Domination tests optimization, each row is checked
against at most k other rows. Hence the for loop (Lines 7-13) is executed at most k
times. Moreover, since at each iteration we ought to remove at least one row, the total
number of iterations on the rows, i.e. the number of times the while loop is executed,
is at most O(n2

v), where nv is the total number of vertices of the complex K. It follows
that the worst-case time complexity of our algorithm is O(n2

vk2).

4.2 From a Flag Tower to a Flag Filtration

In this section, we show that, thanks to the notion of strong collapses, we can ef-
ficiently turn a flag tower into a flag filtration using only edge inclusions over the
1-skeletons of the complexes.

4.2.1 Previous work

It is known that any general simplicial map can be decomposed into elementary
inclusions and elementary contractions. Hence if we can replace an elementary
contraction {{u, v} 7→ u} by an equivalent (not necessarily elementary) inclusion, we
transform a tower into an equivalent filtration. This was the philosophy introduced
by Dey et al. [22]. This idea has been further refined by Kerber and Schreiber [34] who
introduced a slightly different approach based on coning. They provided theoretical
bounds on the size and time to construct the final equivalent filtration. Specifically,
they proved that the size of the equivalent filtration is O(d ∗ n ∗ log n0), where d is
the maximal dimension of the complexes in the input tower and n (resp. n0) the total
number of elementary inclusions (resp. vertex inclusions) in the input tower [34,
Theorem 2].

4.2.2 A new construction

We now present an algorithm that turns a flag tower into a flag filtration with the
same PH. Our work builds upon the above mentioned previous works [22, 34]. The
difference is that we use strong expansion which is the inverse operation of a strong
collapse. The main advantage of strong expansions is that, when the input is a flag
tower, we can use the domination criterion of Lemma 4.1.1. This leads to a simple
algorithm that only deals with edges. The output filtration is a flag filtration, which
can be represented very compactly. Moreover, since a strong expansion is a coning, we
will be able to use the theoretical results of [34]. Now we describe our construction.

Let Ki be a flag complex and Gi be its 1-skeleton. We associate to Ki an augmented
complex Ki ⊇ Ki. As will be seen below, Ki is also a flag complex whose 1-skeleton
will be denoted by Gi. Following the terminology of [34], we call a vertex v ∈ Ki to
be active if it is currently not dominated. The active closed neighborhood ActNGi [v] is
then defined as the set of all active vertices in NGi [v]. Similarly, ActNGi [v \ u] denotes
the set of active vertices in the closed neighborhood NGi [v] of v that are not in NGi [u].
Finally, let {[u, ActNGi [v \ u]]} denote the set of edges between u and ActNGi [v \ u].
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Using the notions defined above, we now explain how to inductively construct a
filtration associated to a given flag tower. The construction operates in a streaming
fashion on the 1-skeleton. We distinguish two kinds of inputs: elementary inclusions
(of a vertex or an edge) and elementary contractions. For i = 0, we set G0 = ∅. We
then define Gi as follows.

1. if Gi
∪σ−→ Gi+1 is an elementary inclusion where σ is either a vertex or an edge,

we set Gi+1 := Gi ∪ σ.

2. if Gi
{u,v}7→u−−−−−→ Gi+1 is an elementary contraction

2.1. if |ActNGi [v \ u]| ≤ |ActNGi [u \ v]|, we set Gi+1 := Gi ∪ {[u, ActNGi [v \
u]} and v as contracted

2.2. otherwise, we set Gi+1 := Gi ∪ {[v, ActNGi [u \ v]} and u as contracted.

v

u

IGi IGi+1

FIGURE 4.1 – Demonstration of strong expansion: On the left we have
the active neighborhoods of the vertex u (in red) and of v (in blue) in
the graph Gi. The graphs Gi might have other vertices and edges, here
we have zoomed into the local active neighborhoods of u and v. On
the right, we have the local neighborhoods of u and v in Gi+1 after

conning v to the active neighborhood of u.

Note that Gi ⊆ Gi+1 and thus Ki ⊆ Ki+1. We continue the construction until the end
of our input tower.

Complexity Analysis: The vertices marked contracted during our construction are
exactly the same as the inactive vertices defined in [34]. By construction, any con-
tracted vertex will be dominated permanently in the filtration. Since such a vertex
stops existing in the tower later on, its neighborhood stays the same and the vertex
remains dominated. Therefore, at any point in our construction, the number of active
vertices is less than the number of active vertices that are used in [34]. Moreover,
since a strong expansion is a coning, the size of the final filtration in our construction
is at most that obtained by the construction prescribed in [34]. Moreover, since we
are working with 1-skeletons only, the space and time complexity of our method is
much lower than that of [34].

Let us now analyze the time complexity of the algorithm. Notice that there are
two basic operations on the 1-skeleton, elementary inclusions in Line 1, and the
computation and comparison of ActNGi [v \ u] and ActNGi [u \ v] in Lines 2.1 and
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2.2. Elementary inclusions can be performed in constant time O(1). To compute
ActNGi [v \ u] we need to compute NGi [v], NGi [u] and the subset of vertices that are
dominated (inactive) in NGi [v \ u]. We can access NGi [v] and NGi [u] in constant time
O(1) and compute the set-difference NGi [v \ u] in O(k log k) time, where k is the
maximum degree of a vertex. Finally computing the dominated vertices in NGi [v \ u]
can be done inO(k3) time as |NGi [v \ u]| ≤ k. Therefore computing ActNGi [v \ u] and
ActNGi [u \ v] takes O(k3) time. Since the size of active relative closed neighborhoods
are bounded by k, for each elementary contraction, we include at most k edges inO(k)
time. It follows that the worst-case time complexity for each elementary contraction
is O(k3).

We conclude that the time complexity of the algorithm is O(|Gm|+ nc ∗ k3) where nc
is the number of elementary contractions in the input tower and |Gm| is the size of
the 1-skeleton of the output flag filtration. The space complexity of our construction
is O(n0 ∗ k) which is the size of a sparse adjacency matrix of a flag complex with n0
vertices.

Correctness: Finally we prove few lemmas and state our main result Theorem 4.2.2
to certify the correctness of the output of our construction.

Lemma 4.2.1. Let fi : Ki
{u,v}7→u−−−−−→ Ki+1 be the first elementary contraction in the tower

T : K0
f0−→ K1

f1−→ ...
fm−1−−→ Km. Then there exists a complex K′i+1 ⊆ Ki+1 such that

Ki+1 ↘↘ K′i+1 and Ki+1 ↘↘ K′i+1.

Proof. Since fi is the first contraction Ki = Ki and Gi = Gi. Let Gi+1 := Gi ∪
{[u, ActNGi [v \ u]} be the graph defined in the construction Line 2.1. By construction,
contracting v to u in both graphs Gi and Gi+1 yields the same graph Gi+1.

Let x′ ∈ ActNGi [v \ u]. We observe that adding the edge [ux′] to Gi does not change
the fact that all x ∈ {NGi [v \ u] \ ActNGi [v \ u]} are still dominated in Gi+1 since the
addition of [ux′] only adds neighbors to NGi [x

′] and NGi [u]. Also, x is still dominated
in Gi+1 as well. Since the only vertex whose domination can change is the one that
was dominated by v and the contraction {u, v} 7→ u transfers the neighborhood of v
to u and therefore x would now be dominated by u.

Removing all the dominated vertices in NGi [v \ u] thus provides a sequence of ele-
mentary strong collapses both in Ki+1 and Ki+1. By performing all such elementary
strong collapses, Ki+1 is eventually transformed into a complex K0

i+1, Ki+1 ↘↘ K0
i+1

and Ki+1 to K′i+1, Ki+1 ↘↘ K′i+1. See Figure 4.2 for an example of all the graphs
associated to the complexes defined here.

By doing so, in Gi+1 we have removed all the dominated vertices from NGi [v \ u] and
added edges between u and the non dominated vertices that are in NGi [v \ u]. This
implies that v is dominated by u in K0

i+1. The elementary strong collapse of v onto u,
implies K0

i+1 ↘↘ K′i+1 and therefore Ki+1 ↘↘ K′i+1.
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FIGURE 4.2 – An example of the graphs associated to the complexes
defined in the proof of Lemma 4.2.1. Vertices in red are dominated

(inactive) and in green are active.

Lemma 4.2.2. Let fi : Ki
{u,v}7→u−−−−−→ Ki+1 be the first elementary contraction in the tower

T : K0
f0−→ K1

f1−→ ...
fm−1−−→ Km. Then the following diagram commutes

Hp(Ki) Hp(Ki+1)

Hp(Ki+1)

f ∗i

i∗k
φ∗i+1

and φ∗i+1 is an isomorphism.

Here φi+1 := i′ ◦ r : Ki+1
r−→ K′i+1

i′
↪−→ Ki+1 is the composition of the retraction r and the

inclusion i′ associated to corresponding strong collapses as defined in Lemma 4.2.1. i∗k , f ∗i
and φ∗i+1 are homomorphisms induced by the corresponding simplicial maps.

Proof. Using the fact that fi is the first contraction, we have the inclusion Ki = Ki ⊆
Ki+1. Let K0

i+1 and K′i+1 be the complexes as defined in the proof of Lemma 4.2.1.
Consider the following diagram of simplicial complexes, and note that i′ = i1 ◦ i0
where i0 and i1 are both inclusions induced by the respective strong collapses and

r ◦ fi := Ki
fi−→ Ki+1

r−→ K′i+1.
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Ki K′i+1

Ki+1 K0
i+1

r◦ fi

ik i0

i1

We claim that the maps φi+1 ◦ fi and ik are in the same contiguity class, which we
denote φi+1 ◦ fi ∼ ik.

Let r0 and r1 be the retraction maps associated with the strong collapses K0
i+1 ↘↘

K′i+1 and Ki+1 ↘↘ K0
i+1 respectively. We have i1 ◦ i0 ◦ r0 ◦ r1 ∼ 1Ki+1 [3], where 1Ki+1

is the identity over Ki+1.

Now we observe that the retraction map r0 is the same as fi as it is the elementary
contraction {u, v} 7→ u. And the retraction map r1 : Ki+1 → K0

i+1 is the same as the
retraction map r : Ki+1 → K′i+1 expect for any vertex x that is dominated by v in Ki+1.
For such x, r1(x) = v and r(x) = u as x is dominated by u in Ki+1 and is mapped to
u through the map r [see proof of Lemma 4.2.1]. This implies that, the composition
r0 ◦ r1 = r ◦ fi for all vertices in Ki or Ki+1 (Ki and Ki+1 have the same vertex set), see
Figure 4.2 for an illustration.

By replacing i1 ◦ i0 by i′ and r0 ◦ r1 by r ◦ fi, we have i1 ◦ i0 ◦ r0 ◦ r1 = i′ ◦ r ◦ fi ∼ 1Ki+1 .
Now since Ki ⊆ Ki+1 and Ki and Ki+1 have the same vertex set ik = 1Ki+1 also by
definition φi+1 = i′ ◦ r, therefore φi+1 ◦ fi ∼ ik. Since maps in the same contiguity
class are homotopic at the level of geometric realizations, the diagram in the lemma
commutes.

It follows directly from the definition that φ∗i+1 is an isomorphism as φ∗i+1 = (i′)∗ ◦ r∗

and (i′)∗ and r∗ both are isomorphism since (i′) and r are inclusion and retraction
maps associated to strong collapse.

Proceeding by induction, Lemma 4.2.1 then immediately implies the following result.

Lemma 4.2.3. Given a tower T : K0
f0−→ K1

f1−→ ...
fm−1−−→ Km. For each 0 ≤ i ≤ m , there

exists a map φi : Ki → Ki that is an isomorphism, where φi is a composition of retraction
and inclusion associated to strong collapse.

Again, using an inductive argument along with Lemmas 4.2.2 and 4.2.3, we can
deduce the following result.

Theorem 4.2.1. The following diagram commutes and all the vertical maps φ∗i are isomor-
phisms.

Hp(K1) Hp(K2) · · · Hp(Km−1) Hp(Km)

Hp(K1) Hp(K2) · · · Hp(Km−1) Hp(Km)

f ∗1

φ∗1

f ∗2

φ∗2

f ∗m−1

φ∗m−1 φ∗m

∗ ∗ ∗

As a consequence, the tower T : K0
f0−→ K1

f1−→ ...
fm−1−−→ Km and the constructed filtration

F : K0 ↪→ K1 ↪→ ... ↪→ Km have the same persistence diagram.
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Here φi is a composition of retraction map and inclusion map associated to strong collapse
(as defined in Lemma 4.2.1) and therefore an isomorphism for each i ∈ {0, · · · , m} and ∗
indicates the induced homomorphisms.

We summarize our result in the following theorem. We write T : K0
f0−→ K1

f1−→
...

fm−1−−→ Km for the given flag tower where, w.l.o.g., K0 = ∅. and each fi is either an
inclusion or an elementary contraction. The inclusions are not necessarily elementary
but corresponds to an elementary inclusion on the graphs Gi. We denote by d
the maximal dimension of the Kis in T , and by n the total number of elementary
inclusions of simplices in T , by nc the total number of elementary contractions and
by n0 the number of vertex inclusions in T .

Theorem 4.2.2. There exists a filtration F : K0 ↪→ K1 ↪→ ... ↪→ Km, where the inclusions
are not necessarily elementary, such that T and F have the same persistence diagram and the
size of the filtration |Km| is at most O(d ∗ n ∗ log n0). Moreover, F is a flag filtration which
can be computed from T using only the 1-skeletons Gis of the Kis. The time complexity of the
algorithm to compute the 1-skeleton of F is O(|Gm|+ nc ∗ k3) time and its space complexity
O(n0 ∗ k), where Gm denotes the 1-skeleton of Km and k is an upper bound on the degree of
the vertices in Gm.

4.3 Computational experiments

Next we describe the complete pre-processing pipeline for a tower and a general
approximation scheme for any tower and then perform experiments on Rips filtra-
tions, similar to what we did in the previous chapter. However, we use the approach
developed in this chapter for our experiments.

The pre-processing pipeline. Let T : {K1
f1−→ K2

f2−→ · · ·
f(m−1)−−−→ Km} be a flag tower

of which we want to compute the persistence diagram. We first strong collapse the
various complexes Ki, i = 1, ..., m as suggested in Section 3.4. As each Ki is a flag
complex, the computation of its core is computed much more efficiently using only
its 1-skeleton.

We then compute a core tower that connects the Kc
i s through induced simplicial maps.

This is again an adaptation of what has been done in Chapter 3 for general simplicial
complexes to the case of flag complexes. Lastly, we compute a flag filtration with the
same PH as the core tower, using our approach detailed in Section 4.2. This filtration
can then be sent to any algorithm that computes the persistence homology of a flag
filtration [41, 4, 5, 30].

An approximation scheme. Using the above approach we compute the exact PH of
the input flag tower T . However, instead of considering all the Kis and the associated
simplicial maps, we can select some of the Kis we rename K′1, ..., K′q, and compose the
original maps f1, ..., fm−1 to obtain simplicial maps f ′1, ..., f ′q−1 connecting the selected
complexes. We thus obtain a sub-tower T ′ and the algorithm will then compute the
exact PH of T ′. An application of this idea has been presented for Rips filtrations in
Section 3.5 of the previous chapter, which we describe again below.
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Recall that, for Rips filtrations, the filtration value of a simplex is the length of the
longest edge of the simplex. Given a Rips filtration, one can choose to collapse the
original complexes after each edge inclusion. However, we can also choose to strong
collapse the complexes less often, i.e. after several edge inclusions rather than just
one. This will result in a faster algorithm but comes with a cost: the computed PD is
then only approximate. We call snapshots the values of the scale parameter at which
we choose to strong collapse the complex. The difference between two consecutive
snapshots is called a step. We approximate the filtration value of a simplex as the
value of the snapshot at which it first appears. We can observe that our algorithm
will report all persistence pairs that are separated by at least one snapshot. Hence if
all steps are equal to some ε > 0, we will compute all the persistence pairs whose
lengths are at least ε. It follows that the l∞-bottleneck distance between the computed
PD and the exact one is at most ε. If instead the ratio between any two consecutive
steps is taken to a constant ρ > 1, the l∞-bottleneck distance will be at most log ρ after
reparameterizing the filtrations on a log-log-scale [45].

Experimental setup : Our algorithm has been implemented for Rips filtrations as a
C++ module named VertexCollapser. VertexCollapser takes as input a Rips filtration
and returns the reduced flag filtration. VertexCollapser can be used in two modes: in
the exact mode, the output filtration has the same PD as the input filtration while, in
the approximate mode to be described above, a certified approximation is returned.
The output filtration can then be sent to any software that computes the PD of a Rips
filtration such as the Gudhi library (the one we chose for our experiments) [30] or
Ripser [4]. Therefore VertexCollapser is to be considered as an ad-on to software
computing PD. VertexCollapser will be available as an open-source package of a next
release of the Gudhi library.

We present results on five datasets netw-sc, senate, eleg, HIV and drag 1 that are
publicly available [18]. Each dataset is given as the interpoint distance matrix. The
reported time includes the time of VertexCollapser and the time to compute the
persistent diagram (PD). The time of VertexCollapser includes: 1. The time taken to
compute the largest 1-skeleton associated to the maximum threshold value, 2. The
time taken to collapse all the sub-skeletons and assemble their cores. 3. To transform
them into an equivalent flag-filtration.

The code has been compiled using the compiler ‘clang-900.0.38’ and all computations
were performed on a ‘2.8 GHz Intel Core i5’ machine with 16 GB of available RAM. We
took all steps to be equal. Parameter Step controls the quality of the approximation,
if Step = 0, we obtain the exact PD, otherwise Step is an upper bound on the l∞-
bottleneck distance between the output diagram and the exact one. VertexCollapser
works irrespective of the dimension of the input complexes. However, the size of
the complexes in the reduced filtration, even if much smaller than in the original
filtration, might exceed the capacities of the PD computation algorithm. For this
reason, we introduced a parameter dim and restricts PD computation to dimension at
most dim.

Some experimental results are reported in Table 4.1, some of them are the same as
done in Table 3.2 of Chapter 3. As previously observed in Chapter 3 the reduction
done by VertexCollapser is enormous as well, same as before. However, the main
point to observe is that VertexCollapser is extremely fast due to its ability to work
with only the 1-skeleton. The reduced complexes are small and of low dimension
(column Size/Dim) compared to the input Rips complexes which are of dimensions
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respectively 57, 54 and 105 for the first three datasets netw-sc, senate and eleg.
We also observe that, while the time taken by VertexCollapser is large for exact
persistence computation, very good approximations can be obtained fast. Moreover
the computing time mildly increases with the number of snapshots. This suggests that
implementing the collapses in parallel would lead to further substantial improvement.

Data Pnt Thrsld
VertexCollapser +PD

Size/Dim dim Pre-Time Tot-Time Step Snaps
netw-sc 379 5.5 155/3 ∞ 7.28 7.38 0.02 263

” ” ” 155/3 ∞ 13.93 14.03 0.01 531
” ” ” 175/3 ∞ 366.46 366.56 0 8420

senate 103 0.415 405/4 ∞ 2.53 2.54 0.001 403
” ” ” 417/4 ∞ 15.96 15.98 0 2728

eleg 297 0.3 577K/15 ∞ 11.65 26.02 0.001 284
” ” ” 835K/16 ∞ 518.36 540.40 0 9850

HIV 1088 1050 127.3M/? 4 660 3,955 4 184
drag1 1000 0.05 478.3M/? 4 687 14,170 0.0002 249

TABLE 4.1 – The columns are, from left to right: dataset (Data), num-
ber of points (Pnt), maximum value of the scale parameter (Thrsld),
number of simplices (Size) and dimension of the final filtration (Dim),
parameter (dim), time (in seconds) taken by VertexCollapser, total time
(in seconds) including PD computation (Tot-Time), parameter Step and
the number of snapshots used (Snaps). K and M in the size columns

are thousands and millions respectively.
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Comparison with Ripser: We again compare our results with Ripser. As mentioned
before in Chapter 3, Ripser [4] is the state of the art software to compute persistent
diagrams of Rips filtrations. It computes the exact PD associated to the input filtration
up to dimension dim. Although VertexCollapser is more complementary to Ripser
than a competitor, we run Ripser1 on the same datasets as in Table 4.1 to demonstrate
the benefit of using VertexCollapser.

Results are presented in Table 4.2. The main observation is that Ripser performs quite
well in low dimensions but its ability to handle higher dimensions is limited.

Data Pnt Threshold
Val Val Val

dim Time dim Time dim Time
netw-sc 379 5.5 4 25.3 5 231.2 6 ∞
senate 103 0.415 3 0.52 4 5.9 5 52.3

” ” ” 6 406.8 7 ∞
eleg 297 0.3 3 8.9 4 217 5 ∞
HIV 1088 1050 2 31.35 3 ∞

drag1 1000 0.05 3 249 4 ∞

TABLE 4.2 – The columns are, from left to right: dataset (Data), num-
ber of points (Pnt), maximum value of the scale parameter (Thrsld),
parameter (dim), Time is the total time (in seconds) taken by Ripser. ∞
means that the experiment ran longer than 12 hours or crashed due to

memory overload.

This chapter was based on our work reported in [9].

1We used the command <./ripser inputData –format distances –threshold inputTh –dim inputDim >.
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Chapter 5

Edge Collapse And Persistence

In this chapter, we extend the notions of dominated vertex and strong collapse of a
simplicial complex discussed and used for PH computation in the previous chapters.
We say that a simplex (of any dimension) is dominated if its link is a simplicial cone.
Domination of edges appear to be very powerful and we study it in the case of
flag complexes in more detail. We show that edge collapse (removal of dominated
edges) in a flag complex can be performed using only the 1-skeleton of the complex.
Furthermore, the residual complex is a flag complex as well.

Edge collapses do not have an associate simplicial maps like strong collapses. How-
ever, we show that similar to the case of strong collapses, we can use edge collapse
to reduce a flag filtration F to a smaller flag filtration F c with the same persistence.
Here again, we only use the 1-skeletons of the complexes. To be able to use edge
collapse to simplify a filtration, we prove a much more general result and show that
simple collapses preserves persistence, a result that could be seen as an extension of
Theorem 3.4.1 of Chapter 3.

The resulting method to compute F c is simple and extremely efficient and, when
used as a preprocessing for persistence computation, leads to gains of several orders
of magnitude with respect to the state-of-the-art methods (including our previous
approach using strong collapse). The method is exact, irrespective of dimension, and
improves performance of persistence computation even in low dimensions. Again
this is demonstrated by numerous experiments on publicly available data.

In Section 5.1 we define Edge collapse and discuss some of its theoretical and algorith-
mic properties. In Section 5.2 we prove that simple collapse preserves the persistence
of a sequence of simplicial complex. The algorithm to simplify a flag filtration to a
smaller flag filtration using edge collapse is described in Section 5.3. In Section 5.4
we provide some computational experiments.

5.1 Edge Collapse

In this section, we first extend the definition of a dominated vertex introduced in [3]
to simplices of any dimension. Given a simplex σ ∈ K, we denote by Σσ the set of
maximal simplices of K that contain σ. The intersection of all the maximal simplices
in Σσ will be denoted as

⋂
Σσ :=

⋂
τ∈Σσ

τ.

Dominated simplex. A simplex σ in K is called a dominated simplex if the link
lkK(σ) of σ in K is a simplicial cone, i.e. if there exists a vertex v′ /∈ σ and a subcomplex
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L of K, such that lkK(σ) = v′L. We say that the vertex v′ is dominating σ and that σ is
dominated by v′, which we denote as σ ≺ v′.

k-collapse. Given a complex K, the action of removing a dominated k-simplex σ

from K is called an elementary k-collapse, denoted as K↘↘k{K \ σ}. A series of
elementary k-collapses is called a k-collapse, denoted as K↘↘k L. We further call
a complex K k-collapse minimal if it does not have any dominated k simplices. A
subcomplex Kk of K is called a k-core if K↘↘k Kk and Kk is k-collapse minimal.

The notion of k-collapse is the same as the notion of extended collapse introduced in [2].
We give it a different name to indicate the dependency on the dimension. A 0-collapse
is a strong collapse as introduced in [3]. A 1-collapse will be called an edge collapse.
It is not hard to see that an elementary simple collapse of a k-simplex σ is a k-collapse,
as it is dominated by the vertex v = τ \ σ, where τ is the unique coface containing σ.
Each k-collapse can be decomposed into a sequence of elementary simple collapses
and therefore k-collapses preserve the simple homotopy type [46, Lemma 2.7] and [2,
Lemma 8]. Therefore, like simple collapses, k-collapses induce a strong deformation
retract as well on the geometric realization.

The following lemma extends a result in [3] to general k-collapse. It shows that the
domination of a simplex can be characterized in terms of maximal simplices.

Lemma 5.1.1. A simplex σ ∈ K is dominated by a vertex v′ ∈ K, v′ /∈ σ, if and only if all
the maximal simplices of K that contain σ also contain v′, i.e. v′ ∈ ⋂Σσ.

Proof. If σ ≺ v′ then lkK(σ) = v′L by definition. This implies that for any maximal
simplex τ in stK(σ), v′ ∈ τ. Therefore, v′ ∈ ⋂Σσ. For the reverse direction, let v′ ∈⋂

Σσ. Hence, for any maximal simplex τ in stK(σ), we have v′ ∈ τ. Now as v′ /∈ σ, v′

belong to all the simplices τ \ σ, and thus lkK(σ) = v′L where L = (τ \ σ) \ v′. Hence
σ ≺ v′ iff v′ ∈ ⋂Σσ.

Lemma 5.1.1 has important algorithmic consequences. To perform a k-collapse, one
simply needs to store the adjacency matrix between the k-simplices and the maximal
simplices of K.

Next we study the special case of a flag complex K and characterize the domination
of a simplex σ of a flag complex K in terms of its neighborhood.

Lemma 5.1.2. Let σ be a simplex of a flag complex K. Then σ will be dominated by a vertex
v′ if and only if NG[σ] ⊆ NG[v′].

Proof. Assume that NG[σ] ⊆ NG[v′] and let τ be a maximal simplex of K that contains
σ. For a vertex x ∈ τ and for any vertex v ∈ σ, the edge [x, v] ∈ τ. Therefore
x ∈ NG[σ] ⊆ NG[v′]. Every vertex in τ is thus linked by an edge to v′ and, since K is
a flag complex and τ is maximal, v′ must be in τ. This implies that all the maximal
simplices that contains σ also contain v′. Hence σ is dominated by v′.

Consider the other direction. If σ ≺ v′, by Lemma 5.1.1, all the maximal simplices
that contain σ also contain v′. This implies NG[σ] ⊆ NG[v′].

Lemma 5.1.2 is a generalisation of Lemma 1 in [9]. The next lemma, though elemen-
tary, is of crucial significance. Both lemmas show that edge collapses are well-suited
to flag complexes.
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Lemma 5.1.3. Let K be a flag complex and let L be any subcomplex of K obtained by edge
collapse. Then L is also a flag complex.
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FIGURE 5.1 – The above complex does not have any dominated vertex
and thus cannot be 0-collapsed. However, by proceeding from the
boundary edges, one can edge collapse this complex to a 1-dimensional
complex. The 1-core obtained in this way is collapsible to a point using

0-collapse.

Efficiency of reduction. As will be demonstrated in Section 5.4, edge collapse
appears to be a very efficient tool to reduce the size of a complex while preserving its
homotopy type. A simple example will help giving some intuition why edge collapse
can be superior to vertex collapse. See Figure 5.1.
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FIGURE 5.2 – The complex on the left has two different 1-cores, the
one in the middle is obtained after removing the inner edges [1, 3] and
[4, 6], and the one in the right by removing the outer edges [1, 2] and
[4, 5]. Note that the one in the right can be further strong collapsed.

5.2 Simple Collapse and Persistence

In this section, we turn our attention to the general case of simple collapses (of which
k-collapses are a special case) and provide one of the main result of this chapter. This
can be seen as a generalization of Theorem 2 of [10].

Theorem 5.2.1. Let f : K → L be a simplicial map between two complexes K and L and let
K′ ⊂ K and L′ ⊂ L be subcomplexes of K and L such that K ↘ K′ and L↘ L′. Then there
exists a map f ′ : K′ → L′, induced by f , such that the persistence of f ∗ : Hp(K)→ Hp(L)
and f ′

∗
: Hp(K′)→ Hp(L′) are the same for any integer p ≥ 0. The induced map f ′ may not

be simplicial. Nevertheless, it can be expressed as a combination of inclusions, contractions
and removals of simplices.
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Proof. Let us consider the following diagram between the geometric realizations of
the complex |K|, |L|, |K′| and |L′|.

|K| |L|

|K′| |L′|

| f |

|rk | |rl |
| f ′|

|ik | |il |

and the associated diagram after computing the p-th singular homology groups

Ho
p(|K|) Ho

p(|L|)

Ho
p(|K′|) Ho

p(|L′|)

| f |∗

|rk |∗ |rl |∗

| f ′|∗
|ik |∗ |il |∗

Here |rk| and |rl | are the deformation retractions on the geometric realizations associ-
ated with the simple collapse and |ik| and |il | are the inclusion maps. Ho

p() denotes the
singular homology and * is the induced homomorphisms by the corresponding contin-
uous maps. The map | f ′| is defined as | f ′| := |rl || f ||ik|. Hence | f ′||rk| = |rl || f ||ik||rk|.
Now observe that, since |rk| is a deformation retraction, |ik||rk| is homotopic to the
identity over |K|. It follows that |rl || f ||ik||rk| is homotopic to |rl || f |. Since homotopic
maps induce identical homomorphisms on the corresponding homology groups [31,
Proposition 2.19], we deduce that | f ′|∗|rk|∗ = |rl |∗| f |∗ (commutativity). Also, since
|rk|∗ and |rl |∗ are induced by deformation retractions, they are isomorphisms on their
respective singular homology groups. We have thus proved that the above diagram
commutes and that the vertical maps |rk| and |rl | are isomorphisms. This implies that
the two maps | f | : |K| → |L| and | f ′| : |K′| → |L′| have the same singular persistent
homology.

The map | f ′| induces a map f ′ := rl ◦ f ◦ ik between the simplicial complexes K′

and L′. Note that f ′ can be expressed as a composition of inclusions, contrac-
tions and removals of simplices, as ik is an inclusion, f is simplicial and rl is a
simple collapse. Also, for simplicial complexes, singular homology is isomorphic
to simplicial homology [31, Theorem 2.27]. This implies that the persistent singu-
lar homology | f ′|∗ : Ho

p(|K′|) → Ho
p(|L′|) and the persistent simplicial homology

f ′
∗

: Hp(K′)→ Hp(L′) are equivalent. Therefore, the persistent simplicial homologies
f ∗ : Hp(K)→ Hp(L) and f ′

∗
: Hp(K′)→ Hp(L′) are equivalent.

The use of singular homology in the proof is due to the lack of a simplicial map
associated with the retraction (|r|) of a simple collapse. Due to the same reason,
the induced map f ′ : K′ → L′ may not be necessarily simplicial. However, as
mentioned in the above proof the map f ′ can be expressed as a combination of
inclusions, contractions and removals of simplices. When a sequence of simplicial
complexes contains removals of simplices, it is called a zigzag sequence. There are
algorithms [41, 37] to compute zigzag persistence but they are not as efficient as the
usual algorithms for filtrations and towers.

In the next section, we consider the case of flag filtrations and show that we can
restrict the way the edge collapses are performed so that the reduced filtration is also
a flag filtration.
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5.3 Edge collapse of a flag filtration

In Section 5.1, we have introduced edge collapse for general simplicial complexes
and provided an easy criterion for edge-domination in a flag complex using only the
1-skeleton of the complex. In this section, we provide an algorithm to simplify a flag
filtration using edge collapse and again using only the 1-skeleton of the complex.

We define a notion of removable edge to help explain how our algorithm works
(Algorithm 4) and to prove its correctness. Let G be a graph and K be the associated
flag complex. We say that an edge e in a graph G is removable either if it is dominated
in K or if there exists a sequence of edge collapses K↘↘1Kc such that e is dominated
in the reduced complex Kc. Our algorithm is based on the fact that the flag complexes
K and Kc are homotopy equivalent [46, Lemma 2.7] and [2, Lemma 8]. If e = [u, v],
we define the edge-neighborhood of an edge e ∈ G as the set ENG(e) := {[x, y], x ∈
{u, v}, y ∈ NG([uv])}.

Algorithm. Let F : K1 ↪→ K2 ↪→ · · · ↪→ Kn be a flag filtration and GF : G1 ↪→
G2 ↪→ · · · ↪→ Gn be the associated sequence of 1-skeletons. We further assume that
Gi ↪→ Gi+1 is an elementary inclusion, namely the inclusion of a single edge we name
ei+1. The edges in E := {e1, ..., en} are thus indexed by their order in the filtration
and we denote by Gi the subset {e1, ..., ei}. Our algorithm computes a subset of edges
Ec ⊆ E and attach to each edge in Ec a new index. We thus obtain a new sequence of
flag complexes F c corresponding to Ec, we call the core sequence. The construction of
Ec and of the new indices is done so that F c has the same persistence diagram as F .

Let’s give an intuitive presentation of the algorithm first. The central idea is to identify
edges that appear to be non-removable at some point in the algorithm. We store such
edges in a set Ec. To be more specific, consider the case of the inclusion of an edge

Gi−1
ei
↪−→ Gi such that ei is dominated in Gi : ei is thus removable in Gi and is not

included in Ec. Suppose first that all further edges es are dominated in Gs, i < s ≤ n.
Then ei remains removable and will never be put in Ec. This is consistent with the
fact that ei does not change the topology of the complexes Ks and is therefore not
required when computing persistence.

Assume now that some edge ep, i < p ≤ n, is non-dominated in Gp. The status of ei,
that was removable in all Gs for s < p, may change to non-removable in Gp. Therefore,
we check whether ei is non-removable in Gp (by proceeding in the reverse filtration
order) and, in the affirmative, include ei in Ec. In turn, the fact that ei changed from
removable to non removable may change the status of the edges with smaller indices
which could become non-removable after the inclusion of ei. If such edges are found,
they are also included in Ec.

Before describing the algorithm in detail, two remarks are in order. First, we do not
change the status of an edge from non-removable to removable even if it has become
removable: this will enforce the output sequence to be a filtration. Second, we change
the filtration values of some edges: the new filtration value of an edge is the first
index at which it is found to be non-removable. The second point leads to faster
computation of Ec, otherwise one has to proceed backward recursively to search for
new non-removable edges.

We now explain how to compute Ec. See [Algorithm 4] for the pseudo-code. The main
for loop on line 6 (called the forward loop) iterates over the edges in the filtration F
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by increasing filtration values, i.e. in the forward direction, and check whether or not
the current edge ei is dominated in the graph Gi. If not, we insert ei in Ec and keep its
original index i.

After the insertion of an edge ei in Ec, we proceed to the so-called backward loop
([Lines 9-26]) and look for new non-dominated edges in Gi, considering the edges
by decreasing filtration values. We assign Gi to a temporary graph G, and we assign
the edge-neighborhood of ei in the graph Gi to Enbd [Line 9-10]. As established in
Lemma 5.3.1, the search for new non-dominated edges can be restricted to Enbd. If an
edge ej is not in Ec and not in Enbd [Line 13-14], ej is still dominated : we then remove
it from G [Line 22]. If ej 6∈ Ec and ej ∈ Enbd, then we check whether it is dominated
or not. If ej is dominated, we remove it from G [Line 19]. Otherwise, we insert ej in
Ec and assign to it the new index i, i.e. the index of the edge ei that has triggered the
backward search in Gi. Next we enlarge the edge-neighborhood Enbd by inserting
the edge-neighbors of ej in G. We repeat this process until the last index j = 1. Upon
termination of the forward loop [Line 6-30], we output Ec as the final set.

Algorithm 4 Core flag filtration algorithm

1: procedure CORE-FLAG-FILTRATION(E)
2: input : set of edges E of GF sorted by filtration value.
3: Ec ← ∅; i← 1;
4: Enbd ← ∅
5: G ← ∅
6: for ei ∈ E do . For i = 1, ..., n in increasing order
7: if ei is non-dominated in Gi then
8: Insert {ei, i} in Ec.
9: G ← Gi

10: Enbd ← ENGi(ei)
11: j← i− 1
12: for ej in Gi do . For j = (i− 1), ..., 1 in decreasing order
13: if ej /∈ Ec then
14: if ej ∈ Enbd then
15: if ej is non-dominated in G then
16: Insert {ej, i} in Ec.
17: Enbd ← Enbd ∪ ENG(ej)
18: else
19: G ← G \ ej
20: end if
21: else
22: G ← G \ ej
23: end if
24: end if
25: j← j− 1
26: end for
27: end if
28: G ← ∅
29: i← i + 1
30: end for
31: return Ec . Ec is the 1-skeleton of the core flag filtration.
32: end procedure
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The computation of non-removable edges (the set Ec) is dependent on the order in
which we do the backward search (the backward loop). In Algorithm 4 we chose to
proceed in the reverse order of the filtration. A different choice of order might result
in a different set of non-removable edges since edge collapses are order dependent as
mentioned in Section 5.1.

We now prove the correctness of the above algorithm after some more definitions.

Critical Edges: Edges in Ec are called critical while edges in E \ Ec are called non-
critical. All edges have an original index i given by the insertion order in the input
filtration F . The critical edges received a second index j, called their critical index,
when they are inserted in Ec. By convention, if an edge is not critical and thus has
never been inserted in Ec, we will set its critical index to be ∞. Hence, at the end of
Algorithm 4, each edge e ∈ E has two indices, an original and a critical index. To
make this explicit, we denote e as ej

i . Clearly i ≤ j. We further distinguish the cases
i = j and i < j. If i = j, ei has been put in Ec during the forward loop and we call ei a
primary critical edge. If i < j, ei has been put in Ec during the backward loop and
we call it a secondary critical edge.

For i = 1, ..., n, we define the critical graph at index i, denoted Gc
i , as the graph whose

edges are the edges in Ec with a critical index at most i. We denote the associated flag
complex as Kc

i .

Correctness. We now prove some lemmas to certify the correctness of our algorithm.

The following lemma justifies the fact that the search for new critical edges during
the backward loop of Algorithm 4 is restricted to the neighborhood of already found
critical edges.

Lemma 5.3.1. Let e be an edge in a graph G and let e′ be a new edge and G′ := G ∪ e′. If e
is dominated in G and e /∈ ENG′(e′), then e is dominated in G′.

Proof. Let e ≺ v′ in G, then NG[e] ⊆ NG[v′]. Plainly, NG[v′] ⊆ NG′ [v′] and, since
e /∈ ENG′(e′), NG′ [e] = NG[e]. Therefore, NG′ [e] = NG[e] ⊆ NG′ [v′] implies e ≺ v′ in
G′.

The following lemma says that a non-critical edge is always removable and that a
critical edge is removable until it becomes critical.

Lemma 5.3.2. Let ej
i be an edge with i < j, then it is removable in all Gt, i ≤ t <

min(n + 1, j).

Proof. According to the algorithm, if i < j, ej
i is dominated in Gi (j being finite or not).

1. Let us first consider the case j = ∞. Note that e∞
i is non-critical and let ji be the

smallest primary critical index greater than i. If no such index exists, set ji = n + 1.
We show by induction that e∞

i remains removable in all Gt, i ≤ t < n + 1. As shown
above, it is true for t = i since ej

i is dominated in Gi. So assume that ej
i is removable

in Gt−1 and consider the insertion of et in Gt, for some t < ji. By definition of ji, et is
dominated in Gt, which implies that ej

i is removable in Gt (in the backward sequence
et, et−1, . . . , ei).
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Consider now t = ji. Since eji is a primary critical edge, it is non-dominated in Gji .
According to the algorithm, a backward loop has been triggered at ji. During this
backward loop, e∞

i has not been inserted in Ec since its second critical index is ∞.
This is only possible because e∞

i has been found to be dominated in G. Since G is
initialized as Gji , it follows that e∞

i is removable in Gji . We can now proceed in a
similar way for all t, ji < t < n + 1.

2. The proof is very similar for the case i < j ≤ n. As ej
i has not been inserted

in Ec until the backward loop triggered at index j, ej
i remains removable in all Gt,

i ≤ t < j.

Note that our statement does not imply that a critical edge ej
i , i < j ≤ n, can never be

removable in Gt, t ≥ j. It just means that we are sure that it will remain removable
until the point it becomes critical.

Lemma 5.3.3. For each i, Algorithm 4 produces a sequence of elementary edge collapses such
that Ki ↘↘1 Kc

i .

Proof. By definition, Gi \ Gc
i = {em

t | t ≤ i, m > i} is the set of edges of Gi whose
critical index m is greater than i, which includes the non-critical edges (m = ∞). Any
edge em

t ∈ Gi \ Gc
i is removable in all Kj, j < m by Lemma 5.3.2.

The proof of the following theorem certifying the correctness of our algorithm follows
directly through the application of Lemma 5.3.3 and Theorem 5.2.1.

Theorem 5.3.1. Let F : K1 ↪→ K2 ↪→ · · · ↪→ Kn be a flag filtration and GF : G1 ↪→ G2 ↪→
· · · ↪→ Gn be the associated sequence of 1-skeletons, such that Gi ↪→ Gi+1 is an elementary
inclusion of an edge ei+1. Let Gc

i be the critical graph and Kc
i be its flag complex as defined

before. Then the associated flag filtration of the critical edges, F c : Kc
1 ↪→ Kc

2 ↪→ · · · ↪→ Kc
n

has the same persistence diagram as F .

Proof. Let us consider the following diagram of the geometric realizations of the flag
complexes for any i ∈ {1, ..., n}, where Kc

i is the flag complex of the critical graph Gc
i .

|Ki| |Ki+1|

|Kc
i | |Kc

i+1|

|ri | |ri+1|

Using Lemma 5.3.3, there is an edge collapse and therefore a simple collapse from
Ki to Kc

i and from Ki+1 to Kc
i+1. And |ri| and |ri+1| are the deformation retractions

induced by the corresponding edge collapses. The equivalence of the persistence
modules then follows directly from the application of Theorem 5.2.1.

Complexity: Write nv for the total number of vertices, n for the total number of
edges and k for the maximum degree of a vertex in Gn. We represent each graph Gi as
an adjacency list, where every vertex stores a sorted list of at most k adjacent vertices.
Additionally, we store the set of edges (E and Ec) as a separate data structure.
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The cost of inserting and removing an edge from such an adjacency list is O(k). Since
the size of NG[v] is at most k for any vertex v, the cost of computing NG[e] for an
edge e is O(k). Checking if an edge e is dominated by a vertex v ∈ NG[e] reduces to
checking whether NG[e] ⊆ NG[v], see Lemma 5.1.2. Since all the lists are sorted, this
operation takes O(k) time per vertex v, hence O(k2) time in total.

Let us now analyze the worst-case time complexity of Algorithm 4. At each step i
of the forward loop [Line 6], either ei is dominated (which can be checked in O(k2)
time) or a backward loop is triggered [Line 12]. The backward loop will consider all
edges with (original) index at most i and check whether they are dominated or not.
Writing nc for the number of primary critical edges, the worst-case time complexity is
nk2 + ∑nc

i=1 n k2 = O(nnck2). The space complexity is O(n). In practice, nc is a small
fraction of n (see Table 5.1).

5.4 Computational Experiments

Our algorithm [Algorithm 4] has been implemented for Rips filtrations as a C++
module named EdgeCollapser. Our previous preprocessing method described in
Chapter 4 to simplify Rips filtrations using strong collapse is called the VertexCol-
lapser. Both EdgeCollapser and VertexCollapser take as input a Rips filtration and
return the reduced flag filtration according to their respective algorithms.

We present results on five datasets netw-sc, senate, eleg, HIV and torus. The first
four datasets are publicly available [18] and are given as the interpoint distance matrix
of the points. The last dataset torus has 2000 points sampled in a spiraled fashion
on a torus embedded in a 3-sphere of R4 [32]. The reported time includes the time
of EdgeCollapser/VertexCollapser and the time to compute the persistence diagram
(PD) using the Gudhi library [30].

The code has been compiled using the compiler ‘clang-900.0.38’ and all computations
were performed on a ‘2.8 GHz Intel Core i5’ machine with 16 GB of available RAM.
Both EdgeCollapser and VertexCollapser work irrespective of the dimension of the
complexes associated to the input datasets. However, the size of the complexes in the
reduced filtration, even if much smaller than in the original filtration, might exceed
the capacities of the PD computation algorithm. For this reason, we introduced, as
in Ripser, a parameter dim and restricts the expansion of the flag complexes to a
maximal dimension dim.

The experimental results using EdgeCollapser are summarized in Table 5.1. Observe
that the reduction in the number of edges done by EdgeCollapser is quite significant.
The ratio between the number of initial edges and the number of critical edges is
approximately 20. If the number of edges in a graph is |E| then the size of the (k + 1)-
cliques O(|E|k). Therefore the reduction in the size of k-simplices can be as large as
O(20k). This is verified experimentally too, as the reduced complexes are small and
of low dimension (column Size/Dim) compared to the input Rips-complexes which
are of dimensions respectively 57, 54 and 105 for the first three datasets netw-sc,
senate and eleg. 1

Comparison with VertexCollapser. The same set of experimental results using
VertexCollapser are summarized in Table 5.2, which is a subset of the experiments

1The sizes of the complexes are so big that we could not compute the exact number of simplices.
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reported in the previous chapter in Table 4.1. As mentioned before VertexCollapser
can be used in two modes: in the exact mode (step=0), the output filtration has the
same PD as the input filtration while, in the approximate mode (step>0), a certified
approximation is returned. For comparison, we use the results in Table 5.2 are of
exact mode, for experiments in approximate mode please refer to Table 4.1.

It can be seen that EdgeCollapser is faster than VertexCollapser by approximately two
orders of magnitude. The main reason for this is the efficient preprocessing algorithm
behind EdgeCollapser. As it can be noticed in some cases, the reduction obtained
using by VertexCollapser is better than using EdgeCollapser, but even in those cases
EdgeCollapser is faster than VertexCollapser.

In terms of size reduction, EdgeCollapser either outperforms VertexCollapser by a big
amount or is comparable. Some intuition can be gained from the case of torus. This is
a well distributed point sets sampled from a manifold without boundary. The fact
that there is no boundary implies that there are only few dominated vertices, which
dramatically reduces the capacity of VertexCollapser to collapse. At appropriate
scale the flag complex of such point sets does not contain many dominated vertices.
It is due to the fact that usually the vertices that are first dominated, lie towards a
boundary. So, intuitively a strong collapse begins from a boundary of the manifold
and retracts homotopically towards ‘center’. To better grasp this fact, one can play
with examples of well distributed points on a circle or a sphere (without boundary)
and on a disk (with boundary). Remarkably, EdgeCollapser does not face this problem.
The experimental finding confirms our intuition and EdgeCollapser performs much
better than VertexCollapser in this case.

EdgeCollapser computes the exact PD of the input filtration while VertexCollapser
has an exact and an approximate modes, Results in Table 5.2 are obtained using the
exact mode of VertexCollapser, while results in Table 4.1 of Chapter 4 are obtained
using the approximate mode. In both cases, EdgeCollapser performs much better
than VertexCollapser. It would be easy to implement an approximate version of
EdgeCollapser similarly to what has been done for VertexCollapser. Instead of
triggering the backward loop of the algorithm [Line12-26] at each primary critical
edge we find, we can trigger the backward loop at certain snapshot values only.
See Section 4.3 of Chapter 4 for more details on the approximate methodology and
description of snapshot.

Data Pnt Thrsld
EdgeCollapser +PD

Edge(I)/Edge(C) Size/Dim dim Pre-Time Tot-Time
netw-sc 379 5.5 8.4K/417 1K/6 ∞ 0.62 0.73
senate 103 0.415 2.7K/234 663/4 ∞ 0.21 0.24
eleg 297 0.3 9.8K/562 1.8K/6 ∞ 1.6 1.7
HIV 1088 1050 182K/6.9K 86.9M/? 6 491 2789
torus 2000 1.5 428K/14K 44K/3 ∞ 288 289

TABLE 5.1 – The columns are, from left to right: dataset (Data), number
of points (Pnt), maximum value of the scale parameter (Thrsld), Initial
number of edges/Critical (final) number of edges Edge(I)/Edge(C),
number of simplices (Size) and dimension of the final filtration (Dim),
parameter (dim), time (in seconds) taken by Edge-Collapser and total
time (in seconds) including PD computation (Tot-Time). K and M in

the size columns are thousands and millions respectively.
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Data Pnt Thrsld
VertexCollapser +PD

Size/Dim dim Pre-Time Tot-Time Step Snaps
netw-sc 379 5.5 175/3 ∞ 366.46 366.56 0 8420
senate 103 0.415 417/4 ∞ 15.96 15.98 0 2728
eleg 297 0.3 835K/16 ∞ 518.36 540.40 0 9850
HIV 1088 1050 127.3M/? 4 660 3,955 4 184
torus 2000 1.5 4 ∞* ∞ 0 428K

TABLE 5.2 – The columns are, from left to right: dataset (Data), num-
ber of points (Pnt), maximum value of the scale parameter (Thrsld),
number of simplices (Size) and dimension of the final filtration (Dim),
parameter (dim), time (in seconds) taken by VertexCollapser, total time
(in seconds) including PD computation (Tot-Time), parameter Step (lin-
ear approximation factor) and the number of snapshots used (Snaps).
*The last experiment (torus) could not finish (>12hrs) the preprocess-
ing due to large number of snapshots and the size of the complex. K
and M in the size columns are thousands and millions respectively.

Comparison with Ripser. As in both previous chapters (Chapter 3 and Chapter 4
we provide the same experimental results using Ripser [4]. Ripser computes the exact
PD associated to the input filtration up to dimension dim. Again EdgeCollapser (as
well as VertexCollapser) are not really competitors of Ripser since they act more as
a preprocessing of the input filtration and do not compute Persistence Homology.
Hence they can be associated to any software computing flag filtrations. Nevertheless,
we again mention the results using Ripser2 to demonstrate the benefit of using
EdgeCollapser.

Results are presented in Table 5.3. The main observation is that, in most of the cases,
EdgeCollapser computes PD in all dimensions and outperforms Ripser, even when
we restrict the dimension of the input filtration given to Ripser.

Data Pnt Threshold
Val Val Val

dim Time dim Time dim Time
netw-sc 379 5.5 4 25.3 5 231.2 6 ∞
senate 103 0.415 3 0.52 4 5.9 5 52.3

” ” ” 6 406.8 7 ∞
eleg 297 0.3 3 8.9 4 217 5 ∞
HIV 1088 1050 2 31.35 3 ∞
torus 2000 1.5 2 193 3 ∞

TABLE 5.3 – The first three columns are as in Table 5.2 and then, from
left to right: parameter (dim), Time is the total time (in seconds) taken
by Ripser. ∞ means that the experiment ran longer than 12 hours or

crashed due to memory overload.

2We used the command <./ripser inputData –format distances –threshold inputTh –dim inputDim >.
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5.5 Discussion

In this chapter, we introduced the notion of k-collapse which is an extension of the
notion of strong collapse. We studied the special case of edge collapses in more detail
and provided a novel approach to simplify a flag filtration to a smaller flag filtration
using edge collapse. Through experiments we show that our approach outperforms
all other approaches including the strong collapse approach described in previous
chapters.

The algorithm (Algorithm 4) described in this chapter performs exact reduction of
a flag filtration to a flag filtration. However, as we have mentioned it can be easily
adapted to perform an approximate reduction. Such an adaptation should lead to
even more efficient computation of PH.

Similarly as in the case of strong collapses in general it seems difficult to provide a
theoretical bound on the amount of reduction done by edge collapse. And we would
like to explore this question specially in the setting of random simplicial complexes
as a future research topic.

This chapter is based on an article accepted in the proceedings of "36th International
Symposium on Computational Geometry (SoCG), 2020".
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Chapter 6

Conclusion

We briefly summarize the approaches developed in this thesis and discuss some
possible future work.

We introduced two new approaches to improve the computation of the PH of a given
sequence of simplicial complexes (either a filtration, a tower, or a zigzag sequence).
Both approaches are closely related,

1. We used the notion of strong collapse introduced by J. Barmak and E. Minian [3] to
simplify the complexes of the input sequence.

2. We extended the notion of domination of a vertex to any k-simplex and then used
edge collapses to simplify flag filtrations.

Numerous experiments performed on publicly available data showed that both
methods beat the state of the art methods to compute persistent homology. Our
experiments show that our approach using edge collapses performs the best among
all approaches. However, both methods can be used in combination as they are
complementary. In case of general simplicial complexes our methods require a
representation of the complexes consisting only of the maximal simplices. And in the
case of flag complexes they can be performed over the 1-skeleton. The gain in time
by applying our method is enormous especially in high dimensions.

Futute Work. Both strong collapse and edge collapse have shown promises to
solve computational problems in Topology. Again their strength comes from their
characterization in terms of maximal simplices or the neighborhoods of a graph (in
case of flag complex). Below we mention a few problems which we think should be
considered as future work.

–As mentioned in the discussion section of Chapter 3 and Chapter 5, we would like
to have a theoretical bound on the reduction size of both strong collapse and edge
collapse. Obtaining such bounds in general seems difficult. A possibly easier goal
would be to estimate the size reduction in the case of random simplicial complexes
[33]. There are many different models of random simplicial complexes, each model
should provide a different insight about reduction capabilities of these collapses.
Many variants of this problem have been studied in the case of simple collapse [33].

–As shown in Section 5.1 of Chapter 5, the 1-core corresponding to edge collapse is
not unique. We conjecture that it is NP-complete to compute an optimal 1-core. And
therefore the problem of computing an approximate 1-core by some constant factor
of the optimal 1-core could be well defined and appropriate for providing theoretical
guarantees about the reduction achieved by edge collapse.
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