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Abstract

We consider two covering variants of the network design problem. We are given a set of origin/destination

(O/D) pairs and each such O/D pair is covered if there exists a path in the network from the origin

to the destination whose length is not larger than a given threshold. In the first problem, called the

maximal covering network design problem, one must determine a network that maximizes the total

demand of the covered O/D pairs subject to a budget constraint on the design costs of the network. In

the second problem, called the partial covering network design problem, the design cost is minimized

while a lower bound is set on the total demand covered.

After presenting formulations, we develop a Benders decomposition approach to solve the problems.

Further, we consider two different stabilization methods to determine the Benders cuts as well as the

addition of cut-set inequalities to the master problem. Computational experiments show the efficiency

of these different aspects.

Keywords: Benders decomposition, Network Design, Rapid Transit Network

1. Introduction

Infrastructure network design constitutes a major step in the planning of a transportation network

since the performance, efficiency, robustness, and other features strongly depend on the selected points

and the way of connecting them, see Guihaire & Hao (2008). For instance, the main purpose of a

rapid transit network is to improve the mobility of the inhabitants of a city or metropolitan area.

This improvement could lead to lower journey times, less pollution and/or less energy consumption

which drives the communities to a more sustainable mobility.

Since it is generally too expensive to connect all the existing facilities, one must determine a

subnetwork that serves at best the traffic demand. Depending on the application, different optimality

measures are considered. In particular, in the field of transportation, and especially in the area of
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passengers transportation, the aim is to get the infrastructure close to potential customers. In this

framework, Schmidt & Schöbel (2014) propose to minimize the maximum routing cost for an origin-

destination pair when using the new network. Alternatively, the traffic between an origin and a

destination may be considered as captured if the cost or travel time when using the network is not

larger than the cost or travel time of the best alternative solution (not using the new network). In this

case, Perea et al. (2020) and Garćıa-Archilla et al. (2013) propose to select a sub(network) from an

underlying network with the aim of capturing or covering as much traffic for a reasonable construction

cost. This paper is devoted to this problem, called the Maximum Covering Network Design Problem

(MC) as well as to the closely related problem called, Partial Covering Network Design Problem (PC),

in which one minimizes the network design cost for building the network under the constraint that a

minimum percentage of the total traffic demand is covered.

When designing an infrastructure network, the demand is given by pairs of origin-destination

points, called O/D pairs, and each such pair has an associated weight indicating the traffic between

the origin and the destination. Usually this demand is encoded using an origin-destination matrix.

When planning a new network, often there exists a network already functioning and offering its service

to the same set of origin-destination pairs. For example, in order to improve the mobility of a big

city or metropolitan area, a new rapid transit systems is planned. The current transit system could

be more dense than the rapid transit planned but slower since uses the same right-of-way than the

private traffic. Thus, in some way both systems compete with each other and both compete with

the private mode of transportation. A similar effect occurs with mobile telecommunication operators.

Therefore, the traffic between an origin and a destination is distributed among the several systems

that provide the service.

There are mainly two ways of allocating the share of each mode. The first one is the binary all-or-

nothing way, where the demand is covered by each mode only if the mode covers the demand point

within a range of quality service, as in Church & ReVelle (1974). The second one is some continuous

function, for example multi-logit probability distributions, as in Cascetta (2009). Both mode-share

are based on the comparison of distances, times, costs, generalized costs or utilities. In this paper,

we consider a binary one, where each O/D pair is covered only if the time spent into the network is

below a threshold. This threshold represents the comparison between the time spent in the proposed

network and a private mode assigning the full share to the most beneficial one.

Since most network design problems are NP-hard (see e.g. Perea et al. (2020)), recent research

efforts have been oriented to apply metaheuristic algorithms to obtain good solutions in a reasonable

computational time. Thus, in the field of transportation network design, Genetic Algorithms (Król

& Król (2019)), Greedy Randomized Adaptive Search Procedures (Garćıa-Archilla et al. (2013)),

Adaptive Large Neighborhood Searchs (Canca et al. (2017)) and Matheuristics (Canca et al. (2019))
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have been applied to rapid transit network design problems with applications to medium-size instances.

In this article, after presenting models for problems (MC) and (PC), we propose exact methods

based on Benders decomposition. This type of decomposition has been applied to many problems

in different fields, see Rahmaniani et al. (2017) for a recent literature review on the use of Benders

decomposition in combinatorial optimization. One remarkable recent contribution applied to set

covering and maximal covering location problems appears in Cordeau et al. (2019).

Benders decomposition for network design problems have been studied since the 80s. In Magnanti

et al. (1986), authors minimize the total building cost of an uncapacitated network subject to the

constraints that all O/D pairs must be covered. Given the structure of the problem, the Benders

reformulation is stated with one sub-problem for each O/D pair. A Benders decomposition for a

multi-layer network design problem is presented in Fortz & Poss (2009). Benders decomposition were

also applied in Botton et al. (2013) in the context of designing survivable networks. Authors in Costa

et al. (2009) have studied multi-commodity capacitated network design and the strength of different

Benders cuts; in Maŕın & Jaramillo (2009) a multi-objective approach is solved through Benders

decomposition where coverage is maximized, but at the same time total cost design is minimized. To

best of our knowledge, this is the first time that a branch-and-Benders-cut approach is applied to

network design coverage problems. We also study for the first time in this context the inclusion of

facet-defining cuts (Conforti & Wolsey, 2019).

This paper provides several contributions. First we present new mathematical integer formulations

for the network design problems (MC) and (PC). The formulation for (MC) is stronger than a previ-

ously proposed one, see e.g. Maŕın & Jaramillo (2009) and Garćıa-Archilla et al. (2013) (although the

proposed formulation is not the main purpose of these papers), while (PC) was never studied to the

best of our knowledge. Our second contribution consists of polyhedral properties that are useful from

the algorithmic point of view. A third contribution is the study of exact algorithms for the network

design based on different Benders implementations. We propose a normalization technique and we

study the facet-define cuts. Our computational experiments show that our Benders implementations

are competitive with exact and non-exact methods in the literature.

All our computational experiments were performed on a computer equipped with a Intel Core

i5-7300 CPU processor, with 2.50 gigahertz 4-core, and 16 gigabytes of RAM memory. The operating

system is 64-bit Windows 10. Codes were implemented in Python 3.8. These experiments have been

carried out through CPLEX 12.10 solver, named CPLEX, using its Python interface. CPLEX parameters

were set to their default values and the models were optimized in a single threaded mode. We used

their LazyConstraintCallback function to separate integer solution and the UserCutCallback to

separate fractional ones.

In tables reporting these results, t denotes the average values for solution times given in seconds,
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gap denotes the relative optimality gap in percent, LP gap denotes the LP gap in percent and cuts

is the number of cuts generated.

The structure of the paper is as follows. In Section 2, we state the mixed integer formulation

for (MC) and (PC). We also study some polyhedral properties of the formulation and propose a

simple algorithm to find an initial feasible solution for both problems. In Section 3, we study different

Benders implementations and some algorithmic enhancements. Also we discuss some improvements

based on cut-set inequalities. A computational study is detailed in Section 4. Finally, our conclusions

are presented in Section 5.

2. Problem formulations and some properties

In this section we present mixed integer formulations for the Maximal Covering Network Design

Problem (MC) and the Partial Set Covering Network Design Problem (PC). We also describe some

pre-processing methods and finish with some polyhedral properties. We first introduce some notation.

We consider an undirected graph denoted by N = (N,E), where N and E are the sets of potential

nodes and edges that can be built. Each element e ∈ E is denoted by {i, j}, with i, j ∈ N . We use

the notation i ∈ e if node i is a terminal node of e.

The mobility patterns in the metropolitan area are represented by a set W ⊂ N × N of ori-

gin/destination pairs named as O/D pairs. Each w = (ws, wt) ∈ W is defined by an origin node

ws ∈ N , a destination node wt ∈ N , an associated demand gw > 0 and a private utility uw > 0. This

parameter translates the fact that there already exists a different mode of transportation, referenced

as private mode, competing with the network to be built in an all or nothing way. In other words, an

O/D pair (ws, wt) will travel on the newly built network if it contains a path between ws and wt of

length shorter than the private utility uw. We then say that the O/D pair is covered.

Costs for building nodes, i ∈ N , and edges, e ∈ E, are denoted by bi and ce, respectively. The

total building cost cannot exceed the budget Cmax.

For each e = {i, j} ∈ E, we define two arcs: a = (i, j) and â = (j, i). The resulting set of arcs

is denoted by A. The length of arc a ∈ A is denoted by da. For each O/D pair w ∈ W we define a

subgraph Nw = (Nw, Ew) containing all feasible nodes and edges for w, i.e. that belong to a path in

N whose total length is lower than or equal to uw. We also denote Aw as the set of feasible arcs. In

Section 2.2, we describe how to construct these subgraphs. We use notation δ+w (i) (δ−w (i) respectively)

to denote the set of arcs going out (in respectively) of node i ∈ Nw. In particular, δ−w (ws) = ∅ and

δ+w (wt) = ∅. We also denote by δw(i) the set of edges incident to node i in graph Nw.
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2.1. Mixed Integer Formulations

We first present a formulation of the Maximal Covering Network Design Problem (MC), whose

aim is to design an infrastructure network maximizing the total demand covered subject to a budget

constraint:

(MC) max
x,y,z,f

∑
w∈W

gwzw (2.1)

s.t.
∑
e∈E

cexe +
∑
i∈N

biyi ≤ Cmax, (2.2)

xe ≤ yi, e ∈ E, i ∈ e, (2.3)

∑
a∈δ+w(i)

fwa −
∑

a∈δ−w (i)

fwa =


zw, if i = ws,

−zw, if i = wt,

0, otherwise,

w ∈W, i ∈ Nw, (2.4)

fwa + fwâ ≤ xe, w ∈W, e = {i, j} ∈ Ew : a = (i, j), â = (j, i), (2.5)∑
a∈Aw

daf
w
a ≤ uwzw, w ∈W, (2.6)

yi, xe, z
w ∈ {0, 1}, i ∈ N, e ∈ Ew, w ∈W, (2.7)

fwa ∈ {0, 1}, a ∈ Aw, w ∈W, (2.8)

where yi and xe represent the binary design decision of building node i and edge e, respectively. Mode

choice variables zw take value 1 if the O/D pair w is covered and 0 otherwise. Variables fwa are used

to model a path between ws and wt, if possible. Variable fwa takes value 1 if arc a belongs to the path

from ws to wt, and 0 otherwise. For each fwa such that a /∈ Aw, this variable is set to zero.

The objective function (2.1) maximizes the demand covered. Constraint (2.2) limits the total

building cost. For each pair w, expressions (2.4), (2.5) and (2.6) guarantee demand conservation and

link flow variables fwa with decision variables zw and design variables xe. Constraints (2.6) upper

bound the length of the path for each pair w. Variable zw will take value 1 only if there exists a path

between ws and wt with length shorter than uw. This path is represented by variables fwa . Finally,

constraints (2.7) and (2.8) state that variables are binary.

The Partial Covering Network Design Problem (PC), which minimizes the total building cost of

the network subject to a minimum coverage level of the total demand, can be formulated as follows:

(PC) min
x,y,z,f

∑
i∈N

biyi +
∑
e∈E

cexe (2.9)

s.t.
∑
w∈W

gwzw ≥ β Ztotal (2.10)

Constraints (2.3), (2.4), (2.5), (2.6), (2.7), (2.8)
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where β ∈ (0, 1] and Ztotal =
∑
w∈W

gw. Here, the objective function (2.9) minimizes the design cost.

Constraint (2.10) imposes that a proportion β of the total demand is covered.

In previous works by Maŕın & Jaramillo (2009) and Garćıa-Archilla et al. (2013) , constraints

(2.5) and (2.6) are written in a different way. For example, in Garćıa-Archilla et al. (2013), these

constraints were written as

fwa + zw − 1 ≤ xa, w ∈W, e = {i, j} ∈ Ew : a = (i, j), (2.11)∑
a∈Aw

daf
w
a +M(zw − 1) ≤ uwzw, w ∈W, (2.12)

where the design variable xa is defined per arc. Given that zw − 1 ≤ 0, expressions (2.5) and (2.6)

are stronger than (2.11) and (2.12), respectively.

In addition, constraint (2.12) involves a “big-M” constant. Our proposed formulation does not need

it, which avoids the numerical instability generated by this constant. In Table 1, we compare both

formulations for (MC). We use CPLEX to solve some instances described in Subsection 4.1. Average

solution times in seconds and percent LP gaps are shown for instances with 10 and 20 nodes. We also

tested instances with 40 nodes but most of them were not solved to optimality within one hour. In

that case, we provide the optimality gap instead of the solution time. We consider 5 instances of each

size. Note that constraints (2.12) are equivalent to constraints (2.6) by setting M = 0. We tested

several positive values for M . We observed that our proposed formulation is not only stronger than

the one proposed in Garćıa-Archilla et al. (2013), but it is also more computationally efficient.

Network
Formulation using (2.5)-(2.6) Formulation using (2.11)-(2.12)

t LP gap t LP gap

N10 0.17 43.21 0.26 96.43

N20 5.78 56.33 228.22 106.71

gap LP gap gap LP gap

N40 11.74 68.15 54.85 137.13

Table 1: Comparing the performance of the two different types of mode choice and capacity constraints for (MC) within

a time limit of 1 hour. The majority of N40 instances were not solved to optimality, then the average gap is shown.

2.2. Preprocessing methods

In this section we describe some methods to clean up instances before solving. First, we describe

how to build each subgraph Nw = (Nw, Ew). Then for each problem, (MC) and (PC), we sketch a

method to eliminate O/D pairs which will never be covered.

To create Nw we only consider useful nodes and edges from N . For each O/D pair w, we eliminate

all the nodes i ∈ Nw that do not belong to any path from ws to wt shorter than uw. Then, we define
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Ew as the set of edges in E incident to the non eliminated nodes. Finally, the set Aw is defined

with the duplicated directed version of edges in Ew with the exception of arcs in the form (i, ws) and

(wt, i). We describe this procedure in Algorithm 1.

We assume that there are no nodes or edges which cannot be built because their construction cost

is higher than the budget.

Algorithm 1 Preprocessing I

for w ∈W do

Nw = N

for i ∈ N do

compute the shortest path for the O/D pairs (ws, i) and (i, wt)

if the sum of the lengths of these paths is greater than uw then

Nw = Nw \ {i}

Ew = Ew \ δ(i)

end if

end for

Aw = {(i, j) ∈ A : {i, j} ∈ Ew, j 6= ws, i 6= wt}

end for

return {Nw = (Nw, Ew), Aw}w∈W

Next, we focus on (MC). We can eliminate an O/D pair w that is too expensive to be covered.

That means, the O/D pair w is deleted from W if there is no path between ws and wt satisfying: i.

its building cost is less than Cmax; or ii. its length is less than uw.

This can be checked by solving a shortest path problem with resource constraints that can be

done in a pseudo-polynomial time. Desrochers (1988) shows how to adapt Bellman-Ford algorithm to

solve it. However, for the size of graphs that we are considering, we solve it as a feasibility problem.

For each w, we consider the feasibility problem associated to constraints (2.2) (2.3), (2.4), (2.5), (2.6)

and (2.7), with zw fixed to 1. If this problem is infeasible, then the O/D pair w is deleted from

W . Otherwise, there exists a feasible path denoted by Pathw. We denote by (Ẽw, Ñw) the subgraph

induced by Pathw.

2.3. Polyhedral properties

Both formulations (MC) and (PC) involve flow variables fwa whose number can be huge when the

number of O/D pairs is large. To circumvent this drawback we use a Benders decomposition approach

for solving (MC) and (PC).

In this subsection, we present properties of the two formulations that allow us to apply such
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a decomposition in an efficient way. The first proposition shows that we can relax the integrality

constraints on the flow variables fwa .

Let (MC-R) and (PC-R) denote the formulations (MC) and (PC) in which constraints (2.8) are

replaced by nonegativity constraints, i.e.

fwa ≥ 0, w ∈W,a ∈ A. (2.13)

We denote the set of feasible points to a formulation F by F(F ). Further, let Q be a set of points

(x, z) ∈ Rq × Rp. Then the projection of Q onto the x-space, denoted ProjxQ, is the set of points

given by ProjxQ = {x ∈ Rq : (x, z) ∈ Q for some z ∈ Rp}.

Proposition 1. Projx,y,zF(MC) = Projx,y,zF(MC −R) and Projx,y,zF(PC) = Projx,y,zF(PC −

R).

Proof. We provide the proof for (MC), the other one being identical.

First, F(MC) ⊆ F(MC −R) implies Projx,y,zF(MC) ⊆ Projx,y,zF(MC −R).

Second, let (x, y, z) be a point belonging to Projx,y,zF(MC − R). For every O/D pair w ∈ W

such that zw = 0, fw = 0. In the case where zw = 1, there exists a flow fwa ≥ 0 satisfying (2.4) and

(2.5) that can be decomposed into a convex combination of flows on paths from ws to wt and cycles.

Given that the flow fwa also satisfies (2.6), then a flow of value 1 on one of the paths in the convex

combination must satisfy this constraint. Hence by taking fwa equal to 1 for the arcs belonging to this

path and to 0 otherwise, we show that (x, y, z) also belongs to Projx,y,zF(MC).

Based on Proposition 1, we propose a Benders decomposition where variables fwa are projected

out from the model and replaced by Benders feasibility cuts. As we will see in Section 3.3, we

also consider the Benders facet-defining cuts proposed in Conforti & Wolsey (2019). To apply this

technique it is necessary to get an interior point of the convex hull of Projx,y,zF(MC − R) (resp.

Projx,y,zF(PC − R)). The following property give us an algorithmic tool to apply this technique to

(MC).

Proposition 2. After pre-processing, the convex hull of Projx,y,zF(MC −R) is full-dimensional.

Proof. To prove the result, we exhibit |N |+ |E|+ |W |+ 1 affinely independent feasible points:

• The 0 vector is feasible.

• For each i ∈ N , the points:

yi = 1, yi′ = 0, i′ ∈ N \ {i}, xe = 0, e ∈ E, zw = 0, w ∈W
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• For each e = {i, j} ∈ E, the points:

yk = 1, k ∈ e, yk = 0, k ∈ N \ {i, j}, xe = 1, xe′ = 0, e′ ∈ E \ {e}, zw = 0, w ∈W

• For each w ∈W , the points:

yi = 1, i ∈ Ñw, yi = 0, i ∈ N \ Ñw, xe = 1, e ∈ Ẽw, xe = 0, e ∈ E \ Ẽw,

zw = 1, zw
′

= 0, w′ ∈W \ {w}

Clearly these points are feasible and affinely independent. Thus the polytope is full-dimensional.

The proof of Proposition 2 gives us a way to compute an interior point of the convex hull of

Projx,y,z(F(MC − R)). The average of these |N | + |E| + |W | + 1 points is indeed such an interior

point.

This is not the case for (PC) as we show in Example 1.

Example 1. Consider the instance of (PC) given by the data presented in Table 2 and Figure 1. We

take the case where half of the population at least must be covered, that is β = 0.5. In order to satisfy

the trip coverage constraint (2.10), the O/D pair W = (1, 4) must be covered. That is z(1,4) = 1 is

an implicit equality. Furthermore, the only path with a length is less than or equal to u(1,4) = 15

is composed of edges {1,2} and {2,4}. Hence, x{1,2}, x{2,4}, y1, y2 and y4 must take value 1. In

consequence, the polytope associated to (PC) is not full-dimensional.

Origin Destination uw gw

1 4 15 200

2 4 10 50

3 4 15 50

Table 2: Data in Example 1. We consider β = 0.5.

1

2

3

4

d =
10 d = 5

d = 10 d =
10

Figure 1: Graph of Example 1.

We can compute the dimension of the convex hull of Projx,y,zF(PC−R) in an algorithmic fashion.

We find feasible affinely independent points and at the same time we detect O/D pairs which must

be covered in any feasible solution. Due to the latter, there are a subset of nodes and a subset of edges

that have to be built in any feasible solution. This means that there is a subset of design variables

yi, i ∈ N , xe, e ∈ E and mode choice variables zw, w ∈W that must take value 1. At the opposite to

(MC), a solution to (PC) with all variables set to 0 is not feasible. However, the solution obtained by

serving all O/D pairs and building all nodes and edges is feasible. Therefore, we start with a solution

with all variables in x,y, z set to 1 and we check, one by one, if it is feasible to set them to 0. By
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setting one variable xe or yi to 0, it may become impossible to cover some O/D pair w. In this case,

we say that edge e and node i is essential for w. To simplify the notation, we introduce the binary

parameters θwe and θwi taking value 1 if edge e (respectively node i) is essential for w. These new

points are stored in a set L. Each time the algorithm finds a variable that cannot be set to 0, we

store it in sets N̄ , Ē, W̄ , respectively. At the end of the algorithm, the dimension of the convex hull

of Projx,y,zF(PC −R) is

dim(Px,y,z) = |N |+ |E|+ |W | − (|N̄ |+ |Ē|+ |W̄ |).

This procedure is depicted in Algorithm 2.

Algorithm 2 allows : i) to set some binary variables equal to 1, decreasing the problem size; and ii)

to compute a relative interior point of the convex hull of Projx,y,zF(PC−R), necessary for the facet-

defining cuts, as explained below in Section 3.3. The relative interior point is given by the average of

the points in set L.

Example 1 cont. Regarding the previous example and following Algorithm 2, the O/D pair (1, 4) must

be covered, z(1,4) = 1. Due to that, as its shortest path in the networks (N (1,4), E(1,4) \ {{1, 2}}) and

(N (1,4), E(1,4) \ {{2, 4}}) is greater than u(1,4) = 15, variables x{1,2}, x{2,4}, y1, y2, y4 are set to 1.

Finally, the dimension of this polyhedron is

dim(Px,y,z) = 4 + 4 + 3− (3 + 2 + 1) = 5.

The relative interior point computed is:

x{1,2} = 1, x{2,4} = 1, x{1,3} =
5

6
, x{3,4} =

2

3
, y1 = 1, y2 = 1, y3 =

5

6
, y4 =

5

6
,

z(1,4) = 1, z(2,4) =
5

6
, z(3,4) =

1

2
.

2.4. Setting an initial solution

We determine an initial feasible solution for (MC) and (PC) with a simple greedy heuristic in

which we sequentially select O/D pairs with best ratio demand over building cost. More precisely,

given the potential network N = (N,E), we compute for each O/D pair w the ratio rw = gw

C(Pathw)
,

where C(Pathw) is the cost of a feasible path for w. We order these ratios decreasingly. We use this

initial order in the heuristic both for (MC) and (PC). For (MC) the method proceeds as follows. It

starts with an empty list of nodes and edges built, an empty list of O/D pairs covered, and a total cost

set to 0. For each O/D pair w, in decreasing order of rw, the heuristic tries to build Pathw considering

edges and nodes that are already built. If the additional cost plus the current cost is less than the

budget Cmax, nodes and edges in Pathw are built and the O/D pair w is covered (i.e. zw = 1). The

10



Algorithm 2 Computing the dimension of the polytope of (PC)

Initialization: Set N̄ = ∅, Ē = ∅, W̄ = ∅ and L = ∅

Add to set L: (yi = 1, i ∈ N, xe = 1, e ∈ E, zw = 1, w ∈W ) .

for w′ ∈W do

if
∑

w∈W\{w′}
gw ≥ β Ztotal then

Add to set L:
(
yi = 1, i ∈ N, xe = 1, e ∈ E, zw

′
= 0, zw = 1, w ∈W \ {w′}

)
.

else

W̄ = W̄ ∪ {w′}

for e = {i, j} ∈ E do

Compute shortest path between w′s and w′t in the graph (Nw′ , Ew
′ \ {e}).

if the length of the shortest path is greater than uw
′
or There is no path between ws and

wt then

Ē = Ē ∪ {e} and N̄ = N̄ ∪ {i, j}

end if

end for

end if

end for

for e′ ∈ E \ Ē do

Add to set L: (yi = 1, i ∈ N, xe = 1, e ∈ E \ {e′}, xe′ = 0, zw = 1− θwe′ , w ∈W ) .

end for

for i′ ∈ N \ N̄ do

Add to set L:(
yi′ = 0, yi = 1, i ∈ N \ {i′}, xe = 0, i′ ∈ e, xe = 1, i′ /∈ e, zw = 1− θwi′ , w ∈W

)
.

end for

dim(Px,y,z) = |N |+ |E|+ |W | − (|N̄ |+ |Ē|+ |W̄ |).

return N̄ , Ē, W̄ , L and dim(conv(Px,y,z)).
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total cost, the lists of nodes and edges built are updated. Otherwise we proceed with the next O/D

pair. At the end of the algorithm we have an initial feasible solution.

To get an initial solution for (PC) we start with a list of all the O/D pairs covered and the amount

of population covered equal to Ztotal. For each O/D pair w, in decreasing order of rw, the algorithm

checks if by deleting the O/D pair w from the list, the coverage constraint (2.10) is satisfied. If so,

the O/D pair w is deleted from the list and the amount of population covered is updated. Finally,

the algorithm builds the union of the subgraphs (Ñw, Ẽw) induced by Pathw for all the O/D pairs

covered.

Pseudo-codes for both routines are provided in Appendix A. In Section 4, we will show the

efficiency of adding this initial solution at the beginning of the branch-and-benders-cut procedure.

3. Benders Implementations

In the following, we describe different Benders implementations for (MC) and (PC) obtained by

projecting out variables fwa . These implementations are used as sub-routines in a branch-and-Benders-

cut scheme. This scheme cuts infeasible solutions along the branch-and-bound tree. Depending on

the implementation, solutions can be cut whenever an integer solution is found or at any node in the

tree. In the case of (MC), the master problem that we solve is:

(M - MC) max
x,y,z

∑
w∈W

gwzw (3.1)

s.t. (2.2), (2.3), (2.7)

+ {Benders Cuts (x,y, z)}

The master problem for (PC), named (M - PC), is stated analogously.

In Section 3.1, we discuss the standard Benders cuts obtained by dualizing the respective feasibility

subproblem. Then, in Section 3.2 we propose a way of generating normalized subproblems, we named

them normalized Benders cuts. In Section 3.3, we apply facet-defining cuts in order to get stronger

cuts, as it is proposed in Conforti & Wolsey (2019). Finally, we discuss an implementation where at

the beginning cut-set inequalities are added to enhance the link between z and x, and then Benders

cuts are added.

3.1. LP feasibility cuts

Since the structure of the model allows it, we consider a feasibility subproblem made of constraints

(2.4), (2.5), (2.6) and (2.13) for each commodity w ∈ W , denoted by (SP)w. As it is clear from the

context, we remove the index w from the notation. The dual of each feasibility subproblem can be
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expressed as:

(DSP)
w

max
α,σ,υ

z αws −
∑
e∈E

xe σe − u z υ (3.2)

s.t. αi − αj − σe − da υ ≤ 0, a = (i, j) ∈ A : e = {i, j} (3.3)

σe, υ ≥ 0, e ∈ E (3.4)

where vector α is related to constraints (2.4), σ is the dual variable vector corresponding to the set

of constraints (2.5) and υ is the dual variable of constraint (2.6). Since one of constraints in (2.4) is

linearly dependent, we set αwt = 0. Given a solution of the master problem (x,y, z), there are two

possible outcomes for (SP)w:

1. (SP)w is infeasible and (DSP)w is unbounded. Then, there exists an increasing direction (α,σ,υ)

with positive cost. In this case, the solution (x,y, z) is cut by:

(αws − u υ) z −
∑
e∈E

σe xe ≤ 0 (3.5)

2. (SP)w is feasible and consequently, (DSP)w has an optimal objective value equal to zero. In this

case, no cut is added.

3.2. Normalized Benders cuts

The overall branch-and-Benders-cut performance heavily relies on how the cuts are implemented.

It is known that feasibility cuts may have poor performance due to the lack of ability of selecting a

good extreme ray (see for example Fischetti et al. (2010); Ljubić et al. (2012)). However, normalization

techniques are known to be efficient to overcome this drawback Magnanti & Wong (1981); Balas &

Perregaard (2002, 2003). The main idea is to transform extreme rays in extreme points of a suitable

polytope. In this section we study three ways to normalize the dual subproblem described above.

First, we note that the feasibility subproblem can be reformulated as a min cost flow problem in

Nw with capacities x and arc costs da.

(NSP)w min
x,y,z,f

∑
a∈A

da fa (3.6)

s.t (2.4), (2.5), (2.13)

The associated dual subproblem is:

(DNSP)w max
α,σ

z αws −
∑
e∈E

σexe (3.7)

s.t αi − αj − σe ≤ da, a = (i, j) ∈ A : e = {i, j} (3.8)

σe ≥ 0, e ∈ E (3.9)
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Whenever z > 0, the primal subproblem (NSP)w may be infeasible. Subproblems (NSP)w are no

longer feasibility problems, although some of their respective dual forms can be unbounded. As

splitting demand constraint has to be satisfied there are two kind of cuts to add:

1. (NSP)w is infeasible and (DNSP)w is unbounded. In this case, the solution (x,y, z) is cut by

the constraint:

αws z −
∑
e∈E

σe xe ≤ 0 (3.10)

2. (NSP)w is feasible and (DNSP)w has optimal solution. Consequently, if their solutions (α,σ)

and (x,y, z) satisfy that αws z −
∑
e∈E σe xe > uz then, the following cut is added

(αws − u) z −
∑
e∈E

σe xe ≤ 0. (3.11)

We refer to this implementation BD Norm1.

In this situation, there still exists dual subproblems (DNSP)w with extreme rays. We refer to

BD Norm2 as second dual normalization obtained by adding the dual constraint αws = u + 1. In this

case, every extreme ray of (SP)w correspond to one of the extreme points of (NSP)w. A cut is added

whenever the optimal dual objective function is positive. This cut is in the form:

z −
∑
e∈E

σe xe ≤ 0 (3.12)

We finally tested a third dual normalization, BD Norm3, by adding constraints

σe ≤ 1, e ∈ E, (3.13)

directly in (DSP)w.

Network
BD Norm1 BD Norm2 BD Norm3

t cuts t cuts t cuts

N10 0.21 44 0.22 47 0.24 104

N20 2.83 362 5.76 595 5.22 1418

N40 687.88 2904 * * * *

Table 3: Comparing the performance of the three dual normalization within a time limit of 1 hour for (MC). N10,

N20 and N40 are refereed to networks with 10, 20 and 40 nodes respectively. In results marked with ’*’, four over five

instances were not solved within 1 hour.

We tested the three dual normalizations described above for (MC) using randomly generated

networks with 10, 20 and 40 nodes, as described in Subsection 4.1. Table 3 shows average values

obtained for solution time in seconds and number of cuts needed for this experiment. The only one
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that seems competitive is BD Norm1. We observed that cut coefficients generated with BD Norm1 are

mainly 0’s or 1’s. In the case of BD Norm2 and BD Norm3 we observe that coefficients generated are

larger than the ones generated by BD Norm1, so they may induce numerical instability. This situation

is similar for the case of (PC).

3.3. Facet-defining Benders cuts

Here we describe how to generate Benders cuts for (MC) based on the ideas exposed in Conforti

& Wolsey (2019). The procedure for (PC) is the same. Given an interior point or core point, named

as (xin,yin, zin), of the convex hull of feasible solutions and a solution of the LP relaxation of the

current restricted master problem, an exterior point, named (xout,yout, zout), a cut that defines a facet

or an improper face of the polyhedron defined by the LP relaxation of Projx,y,zF(MC) is generated.

We denote the difference xout − xin by ∆x. Analogously we define ∆y and ∆z. The idea is to

find the furthest point from the core point, feasible to the LP-relaxation of Projx,y,zF(MC) and

lying on the segment line between the core point and the exterior point. This point is of the form

(xsep,ysep, zsep) = (xout,yout, zout)− λ(∆x,∆y,∆z). The problem of generating cuts like this reads

as follows:

(SP - CW)
w

min
f,λ

λ (3.14)

s.t.
∑

a∈δ+w(i)

fa −
∑

a∈δ−w (i)

fa =

z
out − λ∆z, if i = ws,

0, otherwise,

(3.15)

fa + fâ ≤ xoute − λ∆xe, e = {i, j} ∈ E : a = (i, j), â = (j, i), (3.16)∑
a∈A

da fa ≤ u zout − u∆z λ, (3.17)

0 ≤ λ ≤ 1, (3.18)

fa ≥ 0, a ∈ A (3.19)

In order to get the Benders feasibility cut we solve its associated dual:

(DSP - CW)
w

max
α,σ,υ

zout αws −
∑
e∈E

xoute σe − u zout υ (3.20)

s.t. ∆z αws −
∑
e∈E

∆xe σe − u∆z υ ≤ 1, (3.21)

αi − αj − σe − da υ ≤ 0, a = (i, j) ∈ A : e = {i, j},

σe, υ ≥ 0, e ∈ E

Given that (SP-CW)w is always feasible (λ = 1 is feasible) and that its optimal value is lower bounded

by 0, then, both (SP - CW)w and (DSP-CW)w have always finite optimal solutions. Whenever the
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optimal value of λ is 0, (xout,yout, zout) is feasible. Cuts are added if the optimal value of (DSP-CW)w

is strictly greater than 0. The new cut has the same form as in (3.5). Note that this problem can be

seen as a dual normalized version of (SP)w with the dual constraint (3.21).

Core points for both formulations can be obtained by computing the average of the points described

in the proof of Proposition 2 for (MC) and the average of the points in list L obtained by applying

Algorithm 2.

3.4. Cut-set inequalities

By projecting out variable vector f, information regarding the link between vectors x and z is lost.

Cut-set inequalities represent the information lost regarding the connectivity for the O/D pair w in

the solution given by design variable vector x. Let (S, SC) a (ws, wt)-partition of Nw for a fixed O/D

pair w. That is (S, SC) satisfies: i. ws ∈ S; ii. wt ∈ SC , with SC = N \ S its complement. A cut-set

inequalities is defined as

zw ≤
∑

{i,j}∈Ew:

i∈S, j∈SC

x{i,j}, p ∈ P, (S, SC) a (ws, wt)-partition of Nw (3.22)

This type of constraints have been studied in several articles, for instance Barahona (1996); Koster

et al. (2013); Costa et al. (2009). Note that is easy to see that cut-set inequalities belong to the

LP-based Benders family. Let (S, SC) be a (ws, wt)-partition in the graph Nw for w ∈ W . We take

the following dual solution:

• αi = 1 if i ∈ S; αi = 0 if i ∈ SC .

• σe = 1 if e = {i, j} ∈ Ew, i ∈ S, j ∈ SC ; σe = 0, otherwise.

• υ = 0.

Note that this solution is feasible to (DSP)w and it induces a cut as in (3.22). In order to improve

computational performance, we test two approaches to include these inequalities:

1. We implement a modification of the Benders callback algorithm with the following idea. First, for

each w ∈W , using the solution vector (x,y) from the master, the algorithm generates a network

(Nw, Ew) with capacity 1 for each edge built. Then, a Depth-First Search (DFS) algorithm is

applied to obtain the connected component containing ws. If the connected component does not

contain wt, a cut in the form (3.22) is added. Otherwise, we generate a Benders cut as before.

This routine is depicted in Algorithm 3.

We tested this implementation with subproblems in the form (DSP-CW)w. We observe that by

using Algorithm 3 with CW the convergence is slower and we generate more cuts. This might
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Algorithm 3 Callback implementation with cut-set inequalities.

Require: (xe, e ∈ E, zw, w ∈W ) from the master vector solution (x,y, z).

for w ∈W do

Build graph (Nw(x), Ew(x)) induced by the solution vector x from the master.

Compute the connected component S in (Nw(x), Ew(x)) containing ws.

if wt is included in S then

Add the cut zw ≤
∑
{i,j}∈Ew:

i∈S, j∈SC

x{i,j}

else

Solve the corresponding subproblem ((DSP)w, (DNSP)w, (DSP-CW)w) and add cut if it is

necessary.

end if

end for

return Cut.

be due to the fact that these cuts do not include information about the length of the path in

the graph, but only information regarding the existence of the path. These preliminary results

are shown in Table 4, which shows average values obtained for solution times in seconds and the

number of cuts needed.

Network
BD CW Algorithm 3+BD CW

t cuts t cuts

N10 0.23 48 0.15 46

N20 2.47 411 2.53 500

N40 619.31 3486 722.02 3554

Table 4: Comparing the performance of the Algorithm 3. N10, N20 and N40 refer to networks with 10, 20 and 40 nodes

respectively.

2. We add to the Master Problem the cut-set inequalities at the origin and at the destination of

each O/D pair w ∈ W at the beginning of the algorithm. In particular, this valid inequalities

has the form:


zw ≤

∑
e∈δ(ws)

xe,

zw ≤
∑

e∈δ(wt)

xe,

(3.23)

This means that for each O/D pair to be covered, there should exist at least one edge incident
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to its origin and one edge incident to its destination, i.e. each O/D pair should have at least

one arc going out of its origin and another one coming in its destination.

4. Computational Results

In this section, we compare the performance of the different families of Benders cuts presented in

Section 3 using the branch-and-Benders-cut algorithm (noted B&BC).

4.1. Data sets: benchmark networks and random instances

We divide the tested instances into two groups: benchmarks instances and random instances. Our

benchmarks instances are composed by the Sevilla Garćıa-Archilla et al. (2013) and Sioux networks

”Hellman (Accessed June 16th, 2020).

The Sevilla instance is composed partially by the real data given by the authors of Garćıa-Archilla

et al. (2013). From this data, we have used the topology of the underlying network, cost and distance

vector for each arc and the demand matrix. This network is composed of 49 nodes and 119 edges.

Originally, the set of O/D pairs W was formed by all possible ones (49 · 48 = 2352). However, some

entries in the demand matrix of this instance are 0 and we exclude them from the analysis. We

consider as private utility u twice the shortest path in the underlying network. Each node cost is

generated according to an uniform distribution U(2000, 4000). The available budget has been fixed as

30% of the cost of building the whole underlying network and the minimum demand to be covered as

β = 0.5.

For the Sioux instance, the topology of the network is described by 24 nodes and 38 edges. Set W

is also formed by all possible O/D pairs (38 · 37 = 1406). With respect to the parameters, they have

been chosen in the same manner as for random instances.

We generate our random instances as follows. We consider planar networks with a set of n nodes,

with n ∈ {10, 20, 40, 60}. Nodes are placed in a grid of n square cells, each one of 10 units side. For

each cell, a point is randomly generated close to the center of the cell. For each setting of nodes we

consider a planar graph with its maximum number of edges, deleting each edge with probability 0.3.

We replicated this procedure 10 times for each n, so that the number of nodes is the same while that

the number of edges may vary. Therefore, there are 40 different underlying networks. We name these

instances as N10, N20, N40 and N60. We provide the average cycle availability, connectivity and

density for random instances networks in Table 5. A couple of them are depicted in Figure 2.
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Figure 2: Example of underlying networks with |N |=20 and |N |=40.

Network Cycle availability Connectivity Density

|E|−|N |+1
2|N |−5

|E|
|N |

|E|
3(|N |−2)

N10 0.11 1.05 0.44

N20 0.11 1.12 0.41

N40 0.13 1.22 0.43

N60 0.16 1.29 0.45

Overall 0.12 1.17 0.43

Table 5: Cycle availability, connectivity and density parameters for the underlying networks in random instances.

Construction costs bi, i ∈ N , are randomly generated according to an uniform distribution U(7, 13).

Then, each node costs 10 monetary units on average. Construction cost of each edge e ∈ E, ce, is set

to its Euclidean length. These two parameters are rounded to integer numbers. It means that building

the links cost 1 monetary unit per length unit. We set Cmax equal to 50% of the cost of building the

whole underlying network considered. We denote this total cost as TC, so Cmax = 0.5TC.

To build set W , we randomly pick each possible O/D pair of nodes with probability 0.5. In

consequence, this set has n(n−1)
2 pairs on average. Parameter uw is set to 2 times the length of the

shortest path between ws and wt. We name this shortest distance SPw. Finally, the demand gw for

each O/D pair w is randomly generated according to the uniform distribution U(10, 300).

4.2. Algorithmic setting

Our preliminary experiments have shown that including cuts only in integer nodes is more efficient

than including them in nodes with fractional solutions. Thus, in our experiments we only separate

integer solutions unless we specify the opposite. We study the different implementations of B&BC

proposed in Sections Sections 3.1, 3.2 and 3.3. We name them with the following nomenclature:

• BD Trd: B&BC algorithm using the feasibility subproblems structure (DSP)w, and its correspond-

ing feasibility cuts (3.5).
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• BD Norm: B&BC algorithm using the normalized subproblems structure (DNSP)w, and its corre-

sponding cuts (3.10) and (3.11).

• BD CW: B&BC algorithm using the subproblems structure (DSP - CW)w, and feasibility cuts (3.5).

We compare our algorithms with the direct use of CPLEX, and the automatic benders proposed

by CPLEX, noted by AUTO BD. CPLEX provides different implementations of its automatic Benders

depending on the information that the user provides to the solver: i. CPLEX attempts to decompose

the model strictly according to the decomposition provided by the user; ii. CPLEX decomposes the

model by using this information as a hint and then refines the decomposition whenever possible; iii.

CPLEX automatically decomposes the model, ignoring any information supplied by the user. We tested

these three possible settings, and the only competitive was the first one.

Furthermore we tested the following features:

• CS: If we include cut-set inequalities at each origin and destination as in (3.23).

• IS: If we provide an initial solution to the solver.

• RNC: If we add Benders cuts at the root node.

4.3. Performance of algorithms on random instances

All the experiments were performed with one hour CPU time limit. Tables in this section show

average values obtained for solution times in seconds, percent relative gaps, and number of cuts needed.

We consider in the average only the instances solved at optimality for all the algorithms.

First, we compare the performance of CPLEX for formulations (MC) and (PC) and the different

B&BC implementations. All the algorithms are able to solve at optimality instances N10 and N20 in

less than 7 seconds for (MC) and (PC). Instances in set N40 were not all solved at optimality neither

for (MC) nor (PC) (see first block rows in Table 7 and Table 11). For (MC) the fastest algorithm

was BD CW in sets N10, N20 and N40 for the instances solved at optimality. This does not happen for

(PC), since we can observe that AUTO BD is slightly faster. AUTO BD solved more instances for both,

(MC) and (PC). This trend is confirmed in (MC) for instances in set N60 were the optimality gap

obtained after one hour is smaller in AUTO BD as it is shown in Table 8. However, for (PC) the gap

after one hour for BD CW is slightly better than the other methods in this family (see Table 12).

Now we refer to the effect in the performance by including CS. In general, solution times decrease

as the amount of cuts required as well when CS is considered. The only exception occurs with BD Norm

for (MC) where the computing time is slightly larger. Despite the fact that BD CW generates a larger

amount of cuts, this is the most efficient method in terms of computational times for (MC) and (PC)

in families N10, N20 and N40. In contrast to the case without CS, by adding these initial cuts BD Trd,

20



BD Norm and BD CW are able to solve all the instances in N40 within the time limit for both problems.

For problems in set N60, we also have better gaps after one hour in comparison with AUTO BD. This

difference is significant in (MC) with a reduction of more than 5%, but it is less significant for (PC).

For N60 we compare the performance by setting an initial feasible solution IS and adding cuts at

the root node RNC. We perform this experiment by computing the optimality gap after one hour limit.

First we note that we obtain worse solutions by adding RNC in both problems with all the algorithms

tested. For (MC) we observe that adding an initial solution is only profitable for BD CW+CS, obtaining

in average a 3.5% better optimality gap. The impact of adding an initial solution for (PC) is significant

for BD Trd+CS, BD Norm+CS and BD CW+CS obtaining in average solutions with a gap around 4% smaller.

This improvement is not significant for BD Auto. In summary, in the set of instances N60 we have

that the best algorithms are BD CW+CS+IS for (MC) and BD CW+CS+IS and BD Norm+CS+IS for (PC).

Network
CPLEX Auto BD BD Trd BD Norm BD CW

t t cuts t cuts t cuts t cuts

N10 0.18 0.43 27 0.25 92 0.24 91 0.19 94

N20 6.77 4.51 273 3.89 620 3.18 590 3.34 641

N40 1646.93 617.85 1967 1095.25 3990 541.03 3677 457.81 4137

Network
Auto BD+CS BD Trd+CS BD Norm+CS BD CW +CS

t cuts t cuts t cuts t cuts

N10 0.32 12 0.21 49 0.28 52 0.23 54

N20 3.94 178 2.29 382 2.50 383 1.85 416

N40 484.95 1248 637.49 2378 575.87 2530 272.39 3186

Table 6: Comparing the performance of the three algorithms for (MC).

CPLEX Auto BD BD Trd BD Norm BD CW

without CS 3 10 9 8 8

+CS - 10 10 10 10

Table 7: Instances N40 solved for (MC) within a time limit of 1 hour.

In the following, we analyze the performance of algorithms BD Norm+CS BD CW+CS when changing

parameters Cmax, β and u in the corresponding models. In Tables 14 and 15, we report average solution

times and cuts needed to obtain optimal solutions for N40 for different values of these parameters.

The instances are grouped by the three different increasing values of the available budget Cmax (Table

14.a) or β (Table 15.a) and private utility u (Tables 14.b and 15.b). It is observed that for (MC) the
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Auto BD BD Trd BD Norm BD CW

gap cuts gap cuts gap cuts gap cuts

without CS 38.54 6545 45.68 14068 44.53 13340 43.77 16707

+CS 30.06 3729 24.27 8754 22.17 8912 25.76 11378

Table 8: Computing gaps to solve N60 (MC) instances comparing the performance of three families of Benders cuts.

AUTO BD+CS+IS BD Trd+CS+IS BD Norm+CS+IS BD CW+CS+IS

gap cuts gap cuts gap cuts gap cuts

without RNC 32.90 4987 27.23 9038 26.94 9469 22.27 11151

+RNC - 37.88 8054 37.92 8230 33.58 10834

Table 9: Computing gaps to solve N60 (MC) instances comparing the performance of three families of Benders cuts.

Network
CPLEX Auto BD BD Trd BD Norm BD CW

t t cuts t cuts t cuts t cuts

N10 0.1765 0.29 16 0.24 92 0.28 89 0.20 91

N20 6.7281 4.87 305 3.55 607 4.68 681 2.15 606

N40 2153.1458 504.06 1752 657.59 4470 514.42 4246 837.41 4412

Network
Auto BD+CS BD Trd+CS BD Norm+CS BD CW+CS

t cuts t cuts t cuts t cuts

N10 0.28 11 0.16 56 0.20 57 0.145 54

N20 4.12 213 3.11 497 3.43 495 2.070 461

N40 439.23 1527 261.74 3528 323.21 3583 197.55 3949

Table 10: Comparing the performance of the three algorithms for (PC).

CPLEX Auto BD BD Trd BD Norm BD CW

without CS 3 9 8 8 8

+CS - 10 10 10 10

Table 11: Instances N40 solved for (MC) within a time limit of 1 hour.

Auto BD BD Trd BD Norm BD CW

gap cuts gap cuts gap cuts gap cuts

without CS 20.49 7009 20.40 14784 21.41 15501 19.93 15116

+CS 15.92 5109 14.89 12354 14.09 11687 14.50 11744

Table 12: Computing gaps to solve N60 (PC) instances comparing the performance of three families of Benders cuts
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AUTO BD+CS+IS BD Trd+CS+IS BD Norm+CS+IS BD CW+CS+IS

gap cuts gap cuts gap cuts gap cuts

without RNC 15.86 4372 11.06 8961 10.47 8490 10.44 9683

+RNC - 20.93 10971 21.28 11449 19.94 11053

Table 13: Computing gaps to solve N60 (PC) instances comparing the performance of three families of Benders cuts.

bigger the values of Cmax the shorter is the average solution time. Table 14.b. shows that the larger

is the parameter u the shorter is the solution time for BD Norm+CS. This behavior seems to be different

if we are using BD CW+CS, which takes less time if the difference between both types of transport is

smaller or larger than 2SP .

Cmax
BD Norm+CS BD CW+CS

t cuts t cuts

0.3TC 1053.56 1580 873.58 2017

0.5TC 622.45 2634 375.30 3358

0.7TC 151.24 3970 177.90 5035

a.

u
BD Norm+CS BD CW+CS

t cuts t cuts

1.5SP 802.05 2792 495.84 3041

2SP 622.46 2634 375.30 3358

3SP 591.02 2674 490.28 3173

b.

Table 14: Sensitivity analysis for (MC) with |N | = 40.

For (PC), Table 15.a shows that for β = 0.7 both algorithms take less time to solve at optimality

in comparison with β = 0.3 and β = 0.5. BD CW+CS is 5 minutes faster in average than BD Norm+CS

with β = 0.5. For β = 0.3 the result is the opposite, BD Norm+CS is 100 seconds faster in average

than BD CW+CS. By varying u, we observe that the less the difference between public and private mode

distances in the underlying network, the longer it will take to get optimality.

β
BD Norm+CS BD CW+CS

t cuts t cuts

0.3 640.28 2675 744.95 2848

0.5 697.87 3673 387.40 3914

0.7 273.53 3873 242.04 4460

a.

u
BD Norm+CS BD CW+CS

t cuts t cuts

1.5SP 653.47 3625 620.79 3613

2SP 697.87 3673 387.40 3914

3SP 561.43 3521 378.11 3643

b.

Table 15: Sensitivity analysis for (PC) with |N | = 40.

4.4. Performance of algorithms in benchmark instances

We start analyzing the Sevilla instance. Tables 17 and 18 show some results for this instance

solved with BD CW+CS. Based on this case, figures in Tables 17 and 18 show the solution graphs for
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different parameter values. Points not connected in these graphs refer to those nodes that have not

been built. The O/D pairs involving some of these nodes are thus not covered. They have been drawn

to represent these not covered areas. Data corresponding to each case are collected at the bottom

of its figure, in which v(ILP) refer to objective value. For model (MC), parameter cost represents

the cost of the network built, and, for (PC), Z makes reference to the demand covered. For (MC)

we see that the solution times vary from 21 seconds to 2243 seconds depending on the parameters

Cmax and u. For (PC) these times are in the range of 353 seconds to 1358 seconds. We observe that

smaller values of Cmax carry bigger solution times as in random instances. We also observe that, as

opposite to random instances, higher values of β are translated in larger solution times. Besides, in

this instance, for both models, the shorter is the parameter u the larger are the solution times.

Furthermore, we compare the performance of the GRASP algorithm from Garćıa-Archilla et al.

(2013) and our implementation BD CW+CS. We implemented the GRASP algorithm to run 5 times and

return the best solution. Table 16 shows solution times, best value for GRASP (Best Value), the

optimality gap, and the optimal value computed with BD CW+CS. On the one hand, we observed that

the more time BD CW+CS takes to compute the optimal solution the larger is the gap of the solution

returned by GRASP. This happens for smaller values of the budget Cmax and utility u. On the other

hand, for problems where GRASP obtains small optimality gap, BD CW+CS is more efficient to compute

the optimal solution. In other words, since GRASP is a constructive algorithm, it is not competitive

for instances whose optimal solution captures most of the demand.

Finally we discuss the results for the Sioux instance. They have also been obtained by using

BD CW+CS. We observe for (MC), as in the Sevilla network, that smaller values of Cmax and u the

larger solution times. The same is true varying β in (PC), but not for u. It takes less time if

the difference between both modes of transport is smaller or larger than 2SP . These results are

summarized in Tables B.19 and B.20 in Appendix B.

Our exact method is able to get the best quality solution, with a certificate of optimality in

reasonable times. Given that network design problems are strategic decisions, having the best quality

decision is often more important than the computational times. However, having efficient exact

methods as the proposed in this article, allows decision makers to perform sensitivity analysis with

optimality guarantees in reasonable times.

5. Conclusions

In this article, we have studied two variants of the Network Design Problem: Maximal Covering

Network Design Problem where we maximize the population covered under a budget constraint; and

Partial Set Covering Network Design Problem where the total building cost is minimized satisfying

24



Cmax u
GRASP BD CW+CS

t Best Value gap t v(ILP)

0.2TC

2SP

110.829 48629 6.97 1036.11 52274

0.3TC 260.220 59828 3.96 313.07 62294

0.4TC 396.226 63546 0.72 21.36 64011

0.3TC
1.5SP 267.275 55778 6.97 2243.83 59958

3SP 225.312 62049 0.99 113.88 62670

Table 16: Sensitivity analysis for GRASP algorithm Garćıa-Archilla et al. (2013) with Sevilla instance.

a lower bound in the total population covered. We state integer programming formulations that

are stronger than existing ones for both problems. We provide some polyhedral properties of these

formulations useful from the algorithmic point of view. We develop exact methods based on Benders

decomposition. We also discuss some preprocessing routines to scale-up the instances solved. This

preprocessing techniques play a key role in order to get information about the instances and to get

better algorithmic performance. Our computational results show that the techniques developed in

this article allow to obtain better solutions in less time than the techniques in the existing literature.
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Vı́ctor Bucarey and Martine Labbé have been partially supported by the Fonds de la Recherche

Scientifique - FNRS under Grant(s) no PDR T0098.18. Natividad González-Blanco and Juan A. Mesa
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Cordeau, J.-F., Furini, F., & Ljubić, I. (2019). Benders decomposition for very large scale partial set

covering and maximal covering location problems. European Journal of Operational Research, 275 ,

882–896.

Costa, A. M., Cordeau, J.-F., & Gendron, B. (2009). Benders, metric and cutset inequalities for

multicommodity capacitated network design. Computational Optimization and Applications, 42 ,

371–392.

Desrochers, M. (1988). An algorithm for the shortest path problem with resource constraints. École
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Appendix A. Pseudo-code for initial feasible solutions

In this section we provide the pseudo-codes to get an initial feasible solution for (MC) and (PC)

described in Section 2.4. We denote as Ns, Es and Ws the set of indices of design and mode choice

variables set to 1 at the end of each algorithm.

Algorithm 4 Initial Feasible Solution for (MC)

Initialization: Set Ns = ∅, Es = ∅ and Ws = ∅ and IC = 0.

Compute ratio rw = gw

C(Pathw)
:

for w ∈W in decreasing order of rw do

C̄ = C(Pathw)−
∑
e∈Es∩Ẽw ce −

∑
i∈Ns∩Ñw bi.

if IC + C̄ ≤ Cmax then

Ws ←Ws ∪ {w}.

Es ← Es ∪ Ẽw.

Ns ← Ns ∪ Ñw.

IC ← IC + C̄.

end if

end for

xe = 1 for e ∈ Es, 0 otherwise.

yi = 1 for i ∈ Ns, 0 otherwise.

zw = 1 for w ∈Ws, 0 otherwise.

return (x, y, z)

Algorithm 5 Initial Feasible Solution for (PC)

Initialization: Set W̄s = W and Zs = Ztotal.

Compute ratio rw = gw

C(Pathw)
:

for w ∈W in decreasing order of rw do

if Zs − gw ≥ β Ztotal then

Ws ←Ws \ {w}.

Zs ← Zs − gw.

end if

end for

xe = 1 if e ∈
⋃
w∈Ws

Ẽw, 0 otherwise.

yi = 1 if i ∈
⋃
w∈Ws

Ñw, 0 otherwise.

zw = 1 for w ∈Ws, 0 otherwise.

return (x, y, z)
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Appendix B. Results for SIOUX networks

Underlying Network Cmax = 0.5TC, u = 2SP

TC = 4171, Ztotal = 84437 t = 22.85, cuts = 3496

cost = 2070, v(ILP) = 75488

Cmax = 0.3TC, u = 2SP Cmax = 0.7TC, u = 2SP

t= 458.84, cuts = 3056 t = 2.73, cuts = 801

cost = 1237, v(ILP) = 35039 cost = 2870, v(ILP) = 82699

Cmax = 0.5TC, u = 1.5SP Cmax = 0.5TC, u = 3SP

t= 60.31, cuts = 3460 t = 14.17, cuts = 2641

cost = 2080, v(ILP) = 68227 cost = 2070, v(ILP) = 75488

Table B.19: Sensitivity analysis Sioux Network with (MC).
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Underlying Network β = 0.5, u = 2SP

TC = 4171, Ztotal = 84437 t = 429.85, cuts = 3306

Z = 44112, v(ILP) = 1411

β = 0.3, u = 2SP β = 0.7, u = 2SP

t = 925.68, cuts = 2783 t = 136.06, cuts = 3674

Z = 24588, v(ILP) = 1058 Z = 60276, v(ILP) = 1726

β = 0.5, u = 1.5SP β = 0.5, u = 3SP

t = 1471.84, cuts = 3793 t = 1149.26, cuts = 3128

Z = 43599, v(ILP) = 1491 Z = 42331, v(ILP) = 1411

Table B.20: Sensitivity analysis Sioux Network with (PC).

32


	Introduction
	Problem formulations and some properties
	Mixed Integer Formulations
	Preprocessing methods
	Polyhedral properties
	Setting an initial solution

	Benders Implementations
	LP feasibility cuts
	Normalized Benders cuts
	Facet-defining Benders cuts
	Cut-set inequalities

	Computational Results
	Data sets: benchmark networks and random instances
	Algorithmic setting
	Performance of algorithms on random instances
	Performance of algorithms in benchmark instances

	Conclusions
	Bibliography
	Pseudo-code for initial feasible solutions
	Results for SIOUX networks

