
HAL Id: hal-03137962
https://hal.inria.fr/hal-03137962

Submitted on 10 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Concise Binary Object Representation (CBOR)-based
Serialization Format for the Software Updates for

Internet of Things (SUIT) Manifest
Brendan Moran, Hannes Tschofenig, Henk Birkholz, Koen Zandberg

To cite this version:
Brendan Moran, Hannes Tschofenig, Henk Birkholz, Koen Zandberg. A Concise Binary Object Repre-
sentation (CBOR)-based Serialization Format for the Software Updates for Internet of Things (SUIT)
Manifest. Internet Draft, 2020. �hal-03137962�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395676733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03137962
https://hal.archives-ouvertes.fr


SUIT                                                            B. Moran
Internet-Draft                                             H. Tschofenig
Intended status: Standards Track                             Arm Limited
Expires: January 14, 2021                                    H. Birkholz
                                                          Fraunhofer SIT
                                                             K. Zandberg
                                                                   Inria
                                                           July 13, 2020

A Concise Binary Object Representation (CBOR)-based Serialization Format
    for the Software Updates for Internet of Things (SUIT) Manifest
                      draft-ietf-suit-manifest-09

Abstract

   This specification describes the format of a manifest.  A manifest is
   a bundle of metadata about the firmware for an IoT device, where to
   find the firmware, the devices to which it applies, and cryptographic
   information protecting the manifest.  Firmware updates and secure
   boot both tend to use sequences of common operations, so the manifest
   encodes those sequences of operations, rather than declaring the
   metadata.  The manifest also serves as a building block for secure
   boot.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78  and BCP 79 .

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/ .

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 14, 2021.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Moran, et al.           Expires January 14, 2021                [Page 1]

https://tools.ietf.org/pdf/draft-ietf-suit-manifest-09
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
https://datatracker.ietf.org/drafts/current/


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   This document is subject to BCP 78  and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   ( https://trustee.ietf.org/license-info ) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Conventions and Terminology . . . . . . . . . . . . . . . . .   6
   3.  How to use this Document  . . . . . . . . . . . . . . . . . .   8
   4.  Background  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     4.1 .  IoT Firmware Update Constraints . . . . . . . . . . . . .   9
     4.2 .  SUIT Workflow Model . . . . . . . . . . . . . . . . . . .  10
   5.  Metadata Structure Overview . . . . . . . . . . . . . . . . .  11
     5.1 .  Envelope  . . . . . . . . . . . . . . . . . . . . . . . .  12
     5.2 .  Delegation Chains . . . . . . . . . . . . . . . . . . . .  12
     5.3 .  Authentication Block  . . . . . . . . . . . . . . . . . .  13
     5.4 .  Manifest  . . . . . . . . . . . . . . . . . . . . . . . .  13
       5.4.1 .  Critical Metadata . . . . . . . . . . . . . . . . . .  13
       5.4.2 .  Common  . . . . . . . . . . . . . . . . . . . . . . .  13
       5.4.3 .  Command Sequences . . . . . . . . . . . . . . . . . .  14
       5.4.4 .  Integrity Check Values  . . . . . . . . . . . . . . .  14
       5.4.5 .  Human-Readable Text . . . . . . . . . . . . . . . . .  14
     5.5 .  Severable Elements  . . . . . . . . . . . . . . . . . . .  15
     5.6 .  Integrated Dependencies and Payloads  . . . . . . . . . .  15
   6.  Interpreter Behavior  . . . . . . . . . . . . . . . . . . . .  15
     6.1 .  Interpreter Setup . . . . . . . . . . . . . . . . . . . .  16
     6.2 .  Required Checks . . . . . . . . . . . . . . . . . . . . .  17
       6.2.1 .  Minimizing Signature Verifications  . . . . . . . . .  18
     6.3 .  Interpreter Fundamental Properties  . . . . . . . . . . .  19
     6.4 .  Abstract Machine Description  . . . . . . . . . . . . . .  19
     6.5 .  Special Cases of Component Index and Dependency Index . .  21
     6.6 .  Serialized Processing Interpreter . . . . . . . . . . . .  22
     6.7 .  Parallel Processing Interpreter . . . . . . . . . . . . .  22
     6.8 .  Processing Dependencies . . . . . . . . . . . . . . . . .  23
     6.9 .  Multiple Manifest Processors  . . . . . . . . . . . . . .  23
   7.  Creating Manifests  . . . . . . . . . . . . . . . . . . . . .  24
     7.1 .  Compatibility Check Template  . . . . . . . . . . . . . .  25
     7.2 .  Secure Boot Template  . . . . . . . . . . . . . . . . . .  25
     7.3 .  Firmware Download Template  . . . . . . . . . . . . . . .  26
     7.4 .  Install Template  . . . . . . . . . . . . . . . . . . . .  26
     7.5 .  Integrated Payload Template . . . . . . . . . . . . . . .  27
     7.6 .  Load from Nonvolatile Storage Template  . . . . . . . . .  27

Moran, et al.           Expires January 14, 2021                [Page 2]

https://tools.ietf.org/pdf/bcp78
https://trustee.ietf.org/license-info


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

     7.7 .  Load & Decompress from Nonvolatile Storage Template . . .  27
     7.8 .  Dependency Template . . . . . . . . . . . . . . . . . . .  28
       7.8.1 .  Composite Manifests . . . . . . . . . . . . . . . . .  28
     7.9 .  Encrypted Manifest Template . . . . . . . . . . . . . . .  29
     7.10 . A/B Image Template  . . . . . . . . . . . . . . . . . . .  29
   8.  Metadata Structure  . . . . . . . . . . . . . . . . . . . . .  30
     8.1 .  Encoding Considerations . . . . . . . . . . . . . . . . .  31
     8.2 .  Envelope  . . . . . . . . . . . . . . . . . . . . . . . .  31
     8.3 .  Delegation Chains . . . . . . . . . . . . . . . . . . . .  31
     8.4 .  Authenticated Manifests . . . . . . . . . . . . . . . . .  32
     8.5 .  Encrypted Manifests . . . . . . . . . . . . . . . . . . .  32
     8.6 .  Manifest  . . . . . . . . . . . . . . . . . . . . . . . .  32
       8.6.1 .  suit-manifest-version . . . . . . . . . . . . . . . .  33
       8.6.2 .  suit-manifest-sequence-number . . . . . . . . . . . .  33
       8.6.3 .  suit-reference-uri  . . . . . . . . . . . . . . . . .  33
       8.6.4 .  suit-text . . . . . . . . . . . . . . . . . . . . . .  34
     8.7 .  text-version-required . . . . . . . . . . . . . . . . . .  35
       8.7.1 .  suit-coswid . . . . . . . . . . . . . . . . . . . . .  35
       8.7.2 .  suit-common . . . . . . . . . . . . . . . . . . . . .  36
       8.7.3 .  SUIT_Command_Sequence . . . . . . . . . . . . . . . .  37
       8.7.4 .  Reporting Policy  . . . . . . . . . . . . . . . . . .  40
       8.7.5 .  SUIT_Parameters . . . . . . . . . . . . . . . . . . .  41
       8.7.6 .  SUIT_Condition  . . . . . . . . . . . . . . . . . . .  51
       8.7.7 .  SUIT_Directive  . . . . . . . . . . . . . . . . . . .  55
       8.7.8 .  Integrity Check Values  . . . . . . . . . . . . . . .  62
     8.8 .  Severable Elements  . . . . . . . . . . . . . . . . . . .  62
   9.  Access Control Lists  . . . . . . . . . . . . . . . . . . . .  63
   10. SUIT Digest Container . . . . . . . . . . . . . . . . . . . .  63
   11. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  63
     11.1 .  SUIT Commands  . . . . . . . . . . . . . . . . . . . . .  64
     11.2 .  SUIT Parameters  . . . . . . . . . . . . . . . . . . . .  65
     11.3 .  SUIT Text Values . . . . . . . . . . . . . . . . . . . .  67
     11.4 .  SUIT Component Text Values . . . . . . . . . . . . . . .  67
     11.5 .  SUIT Algorithm Identifiers . . . . . . . . . . . . . . .  67
       11.5.1 .  SUIT Digest Algorithm Identifiers  . . . . . . . . .  67
       11.5.2 .  SUIT Compression Algorithm Identifiers . . . . . . .  68
       11.5.3 .  Unpack Algorithms  . . . . . . . . . . . . . . . . .  68
   12. Security Considerations . . . . . . . . . . . . . . . . . . .  69
   13. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  69
   14. References  . . . . . . . . . . . . . . . . . . . . . . . . .  69
     14.1 .  Normative References . . . . . . . . . . . . . . . . . .  69
     14.2 .  Informative References . . . . . . . . . . . . . . . . .  70
     14.3 .  URIs . . . . . . . . . . . . . . . . . . . . . . . . . .  71
   A. Full CDDL  . . . . . . . . . . . . . . . . . . . . . . . . . .  72
   B. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . .  82
     B.1 .  Example 0: Secure Boot  . . . . . . . . . . . . . . . . .  83
     B.2.  Example 1: Simultaneous Download and Installation of
           Payload . . . . . . . . . . . . . . . . . . . . . . . . .  85

Moran, et al.           Expires January 14, 2021                [Page 3]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

     B.3.  Example 2: Simultaneous Download, Installation, Secure
           Boot, Severed Fields  . . . . . . . . . . . . . . . . . .  88
     B.4 .  Example 3: A/B images . . . . . . . . . . . . . . . . . .  92
     B.5 .  Example 4: Load and Decompress from External Storage  . .  96
     B.6 .  Example 5: Two Images . . . . . . . . . . . . . . . . . . 100
   C. Design Rational  . . . . . . . . . . . . . . . . . . . . . . . 103
     C.1 .  C.1 Design Rationale: Envelope  . . . . . . . . . . . . . 104
     C.2 .  C.2 Byte String Wrappers  . . . . . . . . . . . . . . . . 105
   D. Implementation Conformance Matrix  . . . . . . . . . . . . . . 106
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . . 109

1.  Introduction

   A firmware update mechanism is an essential security feature for IoT
   devices to deal with vulnerabilities.  While the transport of
   firmware images to the devices themselves is important there are
   already various techniques available.  Equally important is the
   inclusion of metadata about the conveyed firmware image (in the form
   of a manifest) and the use of a security wrapper to provide end-to-
   end security protection to detect modifications and (optionally) to
   make reverse engineering more difficult.  End-to-end security allows
   the author, who builds the firmware image, to be sure that no other
   party (including potential adversaries) can install firmware updates
   on IoT devices without adequate privileges.  For confidentiality
   protected firmware images it is additionally required to encrypt the
   firmware image.  Starting security protection at the author is a risk
   mitigation technique so firmware images and manifests can be stored
   on untrusted repositories; it also reduces the scope of a compromise
   of any repository or intermediate system to be no worse than a denial
   of service.

   A manifest is a bundle of metadata about the firmware for an IoT
   device, where to find the firmware, the devices to which it applies,
   and cryptographic information protecting the manifest.

   This specification defines the SUIT manifest format and it is
   intended to meet several goals:

   -  Meet the requirements defined in
      [ I-D.ietf-suit-information-model ].

   -  Simple to parse on a constrained node

   -  Simple to process on a constrained node

   -  Compact encoding

   -  Comprehensible by an intermediate system

Moran, et al.           Expires January 14, 2021                [Page 4]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   -  Expressive enough to enable advanced use cases on advanced nodes

   -  Extensible

   The SUIT manifest can be used for a variety of purposes throughout
   its lifecycle, such as:

   -  the Firmware Author to reason about releasing a firmware.

   -  the Network Operator to reason about compatibility of a firmware.

   -  the Device Operator to reason about the impact of a firmware.

   -  the Device Operator to manage distribution of firmware to devices.

   -  the Plant Manager to reason about timing and acceptance of
      firmware updates.

   -  the device to reason about the authority & authenticity of a
      firmware prior to installation.

   -  the device to reason about the applicability of a firmware.

   -  the device to reason about the installation of a firmware.

   -  the device to reason about the authenticity & encoding of a
      firmware at boot.

   Each of these uses happens at a different stage of the manifest
   lifecycle, so each has different requirements.

   It is assumed that the reader is familiar with the high-level
   firmware update architecture [ I-D.ietf-suit-architecture ] and the
   threats, requirements, and user stories in
   [ I-D.ietf-suit-information-model ].

   The design of this specification is based on an observation that the
   vast majority of operations that a device can perform during an
   update or secure boot are composed of a small group of operations:

   -  Copy some data from one place to another

   -  Transform some data

   -  Digest some data and compare to an expected value

   -  Compare some system parameters to an expected value

Moran, et al.           Expires January 14, 2021                [Page 5]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   -  Run some code

   In the SUIT manifest specification, these operations are called
   commands.  Commands are classed as either conditions or directives.
   Conditions have no side-effects, while directives do have side-
   effects.  Conceptually, a sequence of commands is like a script but
   the used language is tailored to software updates and secure boot.

   The available commands support simple steps, such as copying a
   firmware image from one place to another, checking that a firmware
   image is correct, verifying that the specified firmware is the
   correct firmware for the device, or unpacking a firmware.  By using
   these steps in different orders and changing the parameters they use,
   a broad range of use cases can be supported.  The SUIT manifest uses
   this observation to optimize metadata for consumption by constrained
   devices.

   While the SUIT manifest is informed by and optimized for firmware
   update and secure boot use cases, there is nothing in the
   [ I-D.ietf-suit-information-model ] that restricts its use to only
   those use cases.  Other use cases include the management of trusted
   applications in a Trusted Execution Environment (TEE), see
   [ I-D.ietf-teep-architecture ].

2.  Conventions and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14  [ RFC2119] [ RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The following terminology is used throughout this document:

   -  SUIT: Software Update for the Internet of Things, also the IETF
      working group for this standard.

   -  Payload: A piece of information to be delivered.  Typically
      Firmware for the purposes of SUIT.

   -  Resource: A piece of information that is used to construct a
      payload.

   -  Manifest: A manifest is a bundle of metadata about the firmware
      for an IoT device, where to find the firmware, and the devices to
      which it applies.

Moran, et al.           Expires January 14, 2021                [Page 6]

https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc8174


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   -  Envelope: A container with the manifest, an authentication wrapper
      with cryptographic information protecting the manifest,
      authorization information, and severed fields.

   -  Update: One or more manifests that describe one or more payloads.

   -  Update Authority: The owner of a cryptographic key used to sign
      updates, trusted by Recipients.

   -  Recipient: The system, typically an IoT device, that receives and
      processes a manifest.

   -  Manifest Processor: A component of the Recipient that consumes
      Manifests and executes the commands in the Manifest.

   -  Component: An updatable logical block of the Firmware, Software,
      configuration, or data of the Recipient.

   -  Component Set: A group of interdependent Components that must be
      updated simultaneously.

   -  Command: A Condition or a Directive.

   -  Condition: A test for a property of the Recipient or its
      Components.

   -  Directive: An action for the Recipient to perform.

   -  Trusted Execution: A process by which a system ensures that only
      trusted code is executed, for example secure boot.

   -  A/B images: Dividing a Recipient’s storage into two or more
      bootable images, at different offsets, such that the active image
      can write to the inactive image(s).

   -  Record: The result of a Command and any metadata about it.

   -  Report: A list of Records.

   -  Procedure: The process of invoking one or more sequences of
      commands.

   -  Update Procedure: A procedure that updates a Recipient by fetching
      dependencies, software images, and installing them.

   -  Boot Procedure: A procedure that boots a Recipient by verifying
      dependencies and images, loading images, and invoking one or more
      image.

Moran, et al.           Expires January 14, 2021                [Page 7]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   -  Software: Instructions and data that allow a Recipient to perform
      a useful function.

   -  Firmware: Instructions and data that allow a Recipient to perform
      a useful function.  Typically, changed infrequently, stored in
      nonvolatile memory, and small enough to apply to [ RFC7228] Class
      0-2 devices.

   -  Image: Information that a Recipient uses to perform its function,
      typically firmware/software, configuration, or resource data such
      as text or images.  Also, a Payload, once installed is an Image.

   -  Slot: One of several possible storage locations for a given
      Component, typically used in A/B image systems

   -  Abort: The Manifest Processor immediately halts execution of the
      current Procedure.  It creates a Record of an error condition.

3.  How to use this Document

   This specification covers five aspects of firmware update:

   -  Section 4  describes the device constraints, use cases, and design
      principles that informed the structure of the manifest.

   -  Section 5  gives a general overview of the metadata structure to
      inform the following sections

   -  Section 6  describes what actions a Manifest processor should take.

   -  Section 7  describes the process of creating a Manifest.

   -  Section 8  specifies the content of the Envelope and the Manifest.

   To implement an updatable device, see Section 6  and Section 8 .  To
   implement a tool that generates updates, see Section 7  and Section 8 .

   The IANA consideration section, see Section 11 , provides instructions
   to IANA to create several registries.  This section also provides the
   CBOR labels for the structures defined in this document.

   The complete CDDL description is provided in [full-cddl], examples
   are given in [examples] and a design rational is offered in
   [design-rationale].  Finally, [implementation-matrix] gives a
   summarize of the mandatory-to-implement features of this
   specification.

Moran, et al.           Expires January 14, 2021                [Page 8]

https://tools.ietf.org/pdf/rfc7228


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

4.  Background

   Distributing firmware updates to diverse devices with diverse trust
   anchors in a coordinated system presents unique challenges.  Devices
   have a broad set of constraints, requiring different metadata to make
   appropriate decisions.  There may be many actors in production IoT
   systems, each of whom has some authority.  Distributing firmware in
   such a multi-party environment presents additional challenges.  Each
   party requires a different subset of data.  Some data may not be
   accessible to all parties.  Multiple signatures may be required from
   parties with different authorities.  This topic is covered in more
   depth in [ I-D.ietf-suit-architecture ].  The security aspects are
   described in [ I-D.ietf-suit-information-model ].

4.1 .  IoT Firmware Update Constraints

   The various constraints of IoT devices and the range of use cases
   that need to be supported create a broad set of urequirements.  For
   example, devices with:

   -  limited processing power and storage may require a simple
      representation of metadata.

   -  bandwidth constraints may require firmware compression or partial
      update support.

   -  bootloader complexity constraints may require simple selection
      between two bootable images.

   -  small internal storage may require external storage support.

   -  multiple microcontrollers may require coordinated update of all
      applications.

   -  large storage and complex functionality may require parallel
      update of many software components.

   -  extra information may need to be conveyed in the manifest in the
      earlier stages of the device lifecycle before those data items are
      stripped when the manifest is delivery to a constrained device.

   Supporting the requirements introduced by the constraints on IoT
   devices requires the flexibility to represent a diverse set of
   possible metadata, but also requires that the encoding is kept
   simple.

Moran, et al.           Expires January 14, 2021                [Page 9]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

4.2 .  SUIT Workflow Model

   There are several fundamental assumptions that inform the model of
   Update Procedure workflow:

   -  Compatibility must be checked before any other operation is
      performed.

   -  All dependency manifests should be present before any payload is
      fetched.

   -  In some applications, payloads must be fetched and validated prior
      to installation.

   There are several fundamental assumptions that inform the model of
   the Boot Procedure workflow:

   -  Compatibility must be checked before any other operation is
      performed.

   -  All dependencies and payloads must be validated prior to loading.

   -  All loaded images must be validated prior to execution.

   Based on these assumptions, the manifest is structured to work with a
   pull parser, where each section of the manifest is used in sequence.
   The expected workflow for a Recipient installing an update can be
   broken down into five steps:

   1.  Verify the signature of the manifest.

   2.  Verify the applicability of the manifest.

   3.  Resolve dependencies.

   4.  Fetch payload(s).

   5.  Install payload(s).

   When installation is complete, similar information can be used for
   validating and running images in a further three steps:

   1.  Verify image(s).

   2.  Load image(s).

   3.  Run image(s).

Moran, et al.           Expires January 14, 2021               [Page 10]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   If verification and running is implemented in a bootloader, then the
   bootloader MUST also verify the signature of the manifest and the
   applicability of the manifest in order to implement secure boot
   workflows.  The bootloader may add its own authentication, e.g. a
   MAC, to the manifest in order to prevent further verifications.

   When multiple manifests are used for an update, each manifest’s steps
   occur in a lockstep fashion; all manifests have dependency resolution
   performed before any manifest performs a payload fetch, etc.

5.  Metadata Structure Overview

   This section provides a high level overview of the manifest
   structure.  The full description of the manifest structure is in
   Section 8.6

   The manifest is structured from several key components:

   1.  The Envelope (see Section 5.1 ) contains Delegation Chains, the
       Authentication Block, the Manifest, any Severable Elements, and
       any Integrated Payloads or Dependencies.

   2.  Delegation Chains (see Section 5.2 ) allow a Recipient to work
       from one of its Trust Anchors to an authority of the
       Authentication Block.

   3.  The Authentication Block (see Section 5.3 ) contains a list of
       signatures or MACs of the manifest..

   4.  The Manifest (see Section 5.4 ) contains all critical, non-
       severable metadata that the Recipient requires.  It is further
       broken down into:

       1.  Critical metadata, such as sequence number.

       2.  Common metadata, including lists of dependencies and affected
           components.

       3.  Command sequences, directing the Recipient how to install and
           use the payload(s).

       4.  Integrity check values for severable fields.

   5.  Severable fields (see Section 5.5 ).

   6.  Integrated dependencies (see Section 5.6 ).

   7.  Integrated payloads (see Section 5.6 ).

Moran, et al.           Expires January 14, 2021               [Page 11]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   The diagram below illustrates the hierarchy of the Envelope.

   +-------------------------+
   | Envelope                |
   +-------------------------+
   | Delegation Chains       |
   | Authentication Block    |
   | Manifest           ------------> +------------------------------+
   | Severable Elements      |        | Manifest                     |
   | Human-Readable Text     |        +------------------------------+
   | COSWID                  |        | Structure Version            |
   | Integrated Dependencies |        | Sequence Number              |
   | Integrated Payloads     |        | Reference to Full Manifest   |
   +-------------------------+  +------ Common Structure             |
                                | +---- Commands                     |
   +-----------------------+    | |   | Digests of Envelope Elements |
   | Common Structure      | <--+ |   +------------------------------+
   +-----------------------+      |
   | Dependencies          |      +-> +-----------------------+
   | Components IDs        |          | Commands              |
   | Common Commands ---------------> +-----------------------+
   +-----------------------+          | List of ( pairs of (  |
                                      |   * command code      |
                                      |   * argument          |
                                      | ))                    |
                                      +-----------------------+

5.1 .  Envelope

   The SUIT Envelope is a container that encloses Delegation Chains, the
   Authentication Block, the Manifest, any Severable Elements, and any
   integrated payloads or dependencies.  The Envelope is used instead of
   conventional cryptographic envelopes, such as COSE_Envelope because
   it allows modular processing, severing of elements, and integrated
   payloads in a way that would add substantial complexity with existing
   solutions.  See Appendix C.1  for a description of the reasoning for
   this.

   See Section 8.2  for more detail.

5.2 .  Delegation Chains

   Delegation Chains allow a Recipient to validate intermediate Update
   Authorities against long-term a Trust Anchor.  These are lists of
   CWTs, where the first in the list is signed by a Trust Anchor.

   See Section 8.3  for more detail.

Moran, et al.           Expires January 14, 2021               [Page 12]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

5.3 .  Authentication Block

   The Authentication Block contains one or more COSE authentication
   blocks.  These blocks are one of:

   -  COSE_Sign_Tagged

   -  COSE_Sign1_Tagged

   -  COSE_Mac_Tagged

   -  COSE_Mac0_Tagged

   The payload element in each of these COSE elements is a SUIT_Digest
   Section 10 .

   See Section 8.4  for more detail.

5.4 .  Manifest

   The Manifest contains most metadata about one or more images.  The
   Manifest is divided into Critical Metadata, Common Metadata, Command
   Sequences, and Integrity Check Values.

   See Section 8.6  for more detail.

5.4.1 .  Critical Metadata

   Some metadata needs to be accessed before the manifest is processed.
   This metadata can be used to determine which the newest manifest is
   and whether the structure version is supported.  It also MAY provide
   a URI for obtaining a canonical copy of the manifest and Envelope.

   See Section 8.6.1 , Section 8.6.2 , Section 8.6.3  for more detail.

5.4.2 .  Common

   Some metadata is used repeatedly and in more than one command
   sequence.  In order to reduce the size of the manifest, this metadata
   is collected into the Common section.  Common is composed of three
   parts: a list of dependencies, a list of components referenced by the
   manifest, and a command sequence to execute prior to each other
   command sequence.  The common command sequence is typically used to
   set commonly used values and perform compatibility checks.  The
   common command sequence MUST NOT have any side-effects outside of
   setting parameter values.

   See Section 8.7.2 , Section 8.7.2.1  for more detail.

Moran, et al.           Expires January 14, 2021               [Page 13]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

5.4.3 .  Command Sequences

   Command sequences provide the instructions that a Recipient requires
   in order to install or use an image.  These sequences tell a device
   to set parameter values, test system parameters, copy data from one
   place to another, transform data, digest data, and run code.

   Command sequences are broken up into three groups: Common Command
   Sequence (see Section 5.4.2 ), update commands, and secure boot
   commands.

   Update Command Sequences are: Dependency Resolution, Payload Fetch,
   and Payload Installation.  An Update Procedure is the complete set of
   each Update Command Sequence, each preceded by the Common Command
   Sequence.

   Boot Command Sequences are: System Validation, Image Loading, and
   Image Invocation.  A Boot Procedure is the complete set of each Boot
   Command Sequence, each preceded by the Common Command Sequence.

   Command Sequences are grouped into these sets to ensure that there is
   common coordination between dependencies and dependents on when to
   execute each command.

   See Section 8.7.3  for more detail.

5.4.4 .  Integrity Check Values

   To enable Section 5.5 , there needs to be a mechanism to verify
   integrity of any metadata outside the manifest.  Integrity Check
   Values are used to verify the integrity of metadata that is not
   contained in the manifest.  This MAY include Severable Command
   Sequences, CoSWID, or Text data.  Integrated Dependencies and
   Integrated Payloads are integrity-checked using Command Sequences, so
   they do not have Integrity Check Values present in the Manifest.

   See Section 8.7.8  for more detail.

5.4.5 .  Human-Readable Text

   Text is typically a Severable Element ( Section 5.5 ).  It contains all
   the text that describes the update.  Because text is explicitly for
   human consumption, it is all grouped together so that it can be
   Severed easily.  The text section has space both for describing the
   manifest as a whole and for describing each individual component.

   See Section 8.6.4  for more detail.

Moran, et al.           Expires January 14, 2021               [Page 14]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

5.5 .  Severable Elements

   Severable Elements are elements of the Envelope ( Section 5.1 ) that
   have Integrity Check Values ( Section 5.4.4 ) in the Manifest
   ( Section 5.4 ).

   Because of this organisation, these elements can be discarded or
   "Severed" from the Envelope without changing the signature of the
   Manifest.  This allows savings based on the size of the Envelope in
   several scenarios, for example:

   -  A management system Severs the Text and CoSWID sections before
      sending an Envelope to a constrained Recipient, which saves
      Recipient bandwidth.

   -  A Recipient Severs the Installation section after installing the
      Update, which saves storage space.

   See Section 8.8  for more detail.

5.6 .  Integrated Dependencies and Payloads

   In some cases, it is beneficial to include a dependency or a payload
   in the Envelope of a manifest.  For example:

   -  When an update is delivered via a comparatively unconstrained
      medium, such as a removable mass storage device, it may be
      beneficial to bundle updates into single files.

   -  When a manifest requires encryption, it must be referenced as a
      dependency, so a trivial manifest may be used to enclose the
      encrypted manifest.  The encrypted manifest may be contained in
      the dependent manifest’s envelope.

   -  When a manifest transports a small payload, such as an encrypted
      key, that payload may be placed in the manifest’s envelope.

   See Section 7.8.1 , Section 8.5  for more detail.

6.  Interpreter Behavior

   This section describes the behavior of the manifest interpreter and
   focuses primarily on interpreting commands in the manifest.  However,
   there are several other important behaviors of the interpreter:
   encoding version detection, rollback protection, and authenticity
   verification are chief among these.

Moran, et al.           Expires January 14, 2021               [Page 15]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

6.1 .  Interpreter Setup

   Prior to executing any command sequence, the interpreter or its host
   application MUST inspect the manifest version field and fail when it
   encounters an unsupported encoding version.  Next, the interpreter or
   its host application MUST extract the manifest sequence number and
   perform a rollback check using this sequence number.  The exact logic
   of rollback protection may vary by application, but it has the
   following properties:

   -  Whenever the interpreter can choose between several manifests, it
      MUST select the latest valid, authentic manifest.

   -  If the latest valid, authentic manifest fails, it MAY select the
      next latest valid, authentic manifest.

   Here, valid means that a manifest has a supported encoding version
   and it has not been excluded for other reasons.  Reasons for
   excluding typically involve first executing the manifest and may
   include:

   -  Test failed (e.g.  Vendor ID/Class ID).

   -  Unsupported command encountered.

   -  Unsupported parameter encountered.

   -  Unsupported component ID encountered.

   -  Payload not available.

   -  Dependency not available.

   -  Application crashed when executed.

   -  Watchdog timeout occurred.

   -  Dependency or Payload verification failed.

   -  Missing component from a set.

   -  Required parameter not supplied.

   These failure reasons MAY be combined with retry mechanisms prior to
   marking a manifest as invalid.

Moran, et al.           Expires January 14, 2021               [Page 16]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   Following these initial tests, the interpreter clears all parameter
   storage.  This ensures that the interpreter begins without any leaked
   data.

6.2 .  Required Checks

   The RECOMMENDED process is to verify the signature of the manifest
   prior to parsing/executing any section of the manifest.  This guards
   the parser against arbitrary input by unauthenticated third parties,
   but it costs extra energy when a Recipient receives an incompatible
   manifest.

   When validating authenticity of manifests, the interpreter MAY use an
   ACL (see Section 9 ) to determine the extent of the rights conferred
   by that authenticity.  Where a device supports only one level of
   access, it MAY choose to skip signature verification of dependencies,
   since they are referenced by digest.  Where a device supports more
   than one trusted party, it MAY choose to defer the verification of
   signatures of dependencies until the list of affected components is
   known so that it can skip redundant signature verifications.  For
   example, a dependency signed by the same author as the dependent does
   not require a signature verification.  Similarly, if the signer of
   the dependent has full rights to the device, according to the ACL,
   then no signature verification is necessary on the dependency.

   Once a valid, authentic manifest has been selected, the interpreter
   MUST examine the component list and verify that its maximum number of
   components is not exceeded and that each listed component ID is
   supported.

   For each listed component, the interpreter MUST provide storage for
   the supported parameters.  If the interpreter does not have
   sufficient temporary storage to process the parameters for all
   components, it MAY process components serially for each command
   sequence.  See Section 6.6  for more details.

   The interpreter SHOULD check that the common section contains at
   least one vendor ID check and at least one class ID check.

   If the manifest contains more than one component, each command
   sequence MUST begin with a Set Current Component command.

   If a dependency is specified, then the interpreter MUST perform the
   following checks:

   1.  At the beginning of each section in the dependent: all previous
       sections of each dependency have been executed.

Moran, et al.           Expires January 14, 2021               [Page 17]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   2.  At the end of each section in the dependent: The corresponding
       section in each dependency has been executed.

   If the interpreter does not support dependencies and a manifest
   specifies a dependency, then the interpreter MUST reject the
   manifest.

   If a Recipient supports groups of interdependent components (a
   Component Set), then it SHOULD require that all Components in the
   Component Set are specified by one manifest and its dependencies.
   This manifest is called the Root Manifest.

6.2.1 .  Minimizing Signature Verifications

   Signature verification can be energy and time expensive on a
   constrained device.  MAC verification is typically unaffected by
   these concerns.  A Recipient MAY choose to parse and execute only the
   SUIT_Common section of the manifest prior to signature verification,
   if all of the below apply:

   -  The Authentication Block contains a COSE_Sign_Tagged or
      COSE_Sign1_Tagged

   -  The Recipient can receive many incompatible or inapplicable
      manifests, and

   -  The Recipient has a power budget that makes signature verification
      undesirable

   The guidelines in Creating Manifests ( Section 7 ) require that the
   common section contains the applicability checks, so this section is
   sufficient for applicability verification.  The parser MUST restrict
   acceptable commands to: Conditions, Override Parameters, Set
   Parameters, Try-Each, and Run Sequence ONLY.  The manifest parser
   MUST NOT execute any command with side-effects outside the parser
   (for example, Run, Copy, Swap, or Fetch commands) prior to
   authentication and any such command MUST Abort.  The Common Sequence
   MUST be executed again in its entirety after authenticity validation.

   When executing Common prior to authenticity validation, the Manifest
   Processor MUST evaluate the integrity of the manifest using the
   SUIT_Digest present in the authentication block.

   Alternatively, a Recipient MAY rely on network infrastructure to
   filter inapplicable manifests.

Moran, et al.           Expires January 14, 2021               [Page 18]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

6.3 .  Interpreter Fundamental Properties

   The interpreter has a small set of design goals:

   1.  Executing an update MUST either result in an error, or a
       verifiably correct system state.

   2.  Executing a secure boot MUST either result in an error, or a
       booted system.

   3.  Executing the same manifest on multiple Recipients MUST result in
       the same system state.

   NOTE: when using A/B images, the manifest functions as two (or more)
   logical manifests, each of which applies to a system in a particular
   starting state.  With that provision, design goal 3 holds.

6.4 .  Abstract Machine Description

   The heart of the manifest is the list of commands, which are
   processed by an interpreter.  This interpreter can be modeled as a
   simple abstract machine.  This machine consists of several data
   storage locations that are modified by commands.

   There are two types of commands, namely those that modify state
   (directives) and those that perform tests (conditions).  Parameters
   are used as the inputs to commands.  Some directives offer control
   flow operations.  Directives target a specific component or
   dependency.  A dependency is another SUIT_Envelope that describes
   additional components.  Dependencies are identified by digest, but
   referenced in commands by Dependency Index, the index into the array
   of Dependencies.  A component is a unit of code or data that can be
   targeted by an update.  Components are identified by Component
   Identifiers, i.e. arrays of binary strings, but referenced in
   commands by Component Index, the index into the array of Component
   Identifiers.

   Conditions MUST NOT have any side-effects other than informing the
   interpreter of success or failure.  The Interpreter does not Abort if
   the Soft Failure flag is set when a Condition reports failure.

   Directives MAY have side-effects in the parameter table, the
   interpreter state, or the current component.  The Interpreter MUST
   Abort if a Directive reports failure regardless of the Soft Failure
   flag.

   The following table describes the behavior of each command. "params"
   represents the parameters for the current component or dependency.

Moran, et al.           Expires January 14, 2021               [Page 19]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   Most commands operate on either a component or a dependency.  Setting
   the Component Index clears the Dependency Index.  Setting the
   Dependency Index clears the Component Index.

   +-------------------+-----------------------------------------------+
   | Command Name      | Semantic of the Operation                     |
   +-------------------+-----------------------------------------------+
   | Check Vendor      | assert(binary-match(current,                  |
   | Identifier        | current.params[vendor-id]))                   |
   |                   |                                               |
   | Check Class       | assert(binary-match(current,                  |
   | Identifier        | current.params[class-id]))                    |
   |                   |                                               |
   | Verify Image      | assert(binary-match(digest(current),          |
   |                   | current.params[digest]))                      |
   |                   |                                               |
   | Set Component     | current := components[arg]                    |
   | Index             |                                               |
   |                   |                                               |
   | Override          | current.params[k] := v for k,v in arg         |
   | Parameters        |                                               |
   |                   |                                               |
   | Set Dependency    | current := dependencies[arg]                  |
   | Index             |                                               |
   |                   |                                               |
   | Set Parameters    | current.params[k] := v if not k in params for |
   |                   | k,v in arg                                    |
   |                   |                                               |
   | Process           | exec(current[common]); exec(current[current-  |
   | Dependency        | segment])                                     |
   |                   |                                               |
   | Run               | run(current)                                  |
   |                   |                                               |
   | Fetch             | store(current, fetch(current.params[uri]))    |
   |                   |                                               |
   | Use Before        | assert(now() < arg)                           |
   |                   |                                               |
   | Check Component   | assert(offsetof(current) == arg)              |
   | Offset            |                                               |
   |                   |                                               |
   | Check Device      | assert(binary-match(current,                  |
   | Identifier        | current.params[device-id]))                   |
   |                   |                                               |
   | Check Image Not   | assert(not binary-match(digest(current),      |
   | Match             | current.params[digest]))                      |
   |                   |                                               |
   | Check Minimum     | assert(battery >= arg)                        |
   | Battery           |                                               |

Moran, et al.           Expires January 14, 2021               [Page 20]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   |                   |                                               |
   | Check Update      | assert(isAuthorized())                        |
   | Authorized        |                                               |
   |                   |                                               |
   | Check Version     | assert(version_check(current, arg))           |
   |                   |                                               |
   | Abort             | assert(0)                                     |
   |                   |                                               |
   | Try Each          | break if exec(seq) is not error for-each seq  |
   |                   | in arg                                        |
   |                   |                                               |
   | Copy              | store(current, current.params[src-component]) |
   |                   |                                               |
   | Swap              | swap(current, current.params[src-component])  |
   |                   |                                               |
   | Wait For Event    | until event(arg), wait                        |
   |                   |                                               |
   | Run Sequence      | exec(arg)                                     |
   |                   |                                               |
   | Run with          | run(current, arg)                             |
   | Arguments         |                                               |
   +-------------------+-----------------------------------------------+

6.5 .  Special Cases of Component Index and Dependency Index

   The interpreter MUST support a special case of Component Index if
   more than two or more components are supported: setting Component
   Index to True is allowed.  When a command is invoked and the
   Component Index is True, the command MUST be invoked once for each
   Component, in the order listed in the array of Component Identifiers.
   The interpreter MUST support a special case of Dependency Index when
   two or more dependencies are supported.  When a command is invoked
   and the Dependency Index is True, the command MUST be invoked once
   for each Dependency, in the order listed in the array of
   Dependencies.

   This is represented by the following pseudocode.

   if iscomponent(current):
       if current is true:
         cmd(component) for-each component in components
       else:
         cmd(current)
   else:
       if current is true:
         cmd(dependency) for-each dependency in dependencies
       else:
         cmd(current)

Moran, et al.           Expires January 14, 2021               [Page 21]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   Try Each and Run Sequence are affected in the same way as other
   commands: they are invoked once for each possible Component or
   Dependency.  This means that the sequences that are arguments to Try
   Each and Run Sequence are NOT invoked with Component Index = True or
   Dependency Index = True.  They are only invoked with integer indices.
   The interpreter loops over the whole sequence, setting the Component
   Index or Dependency Index to each possible index in turn.

6.6 .  Serialized Processing Interpreter

   In highly constrained devices, where storage for parameters is
   limited, the manifest processor MAY handle one component at a time,
   traversing the manifest tree once for each listed component.  In this
   mode, the interpreter ignores any commands executed while the
   component index is not the current component.  This reduces the
   overall volatile storage required to process the update so that the
   only limit on number of components is the size of the manifest.
   However, this approach requires additional processing power.

   In order to operate in this mode, the manifest processor loops on
   each section for every supported component, simply ignoring commands
   when the current component is not selected.

   When a serialized Manifest Processor encounters a component or
   dependency index of True, it does not ignore any commands.  It
   applies them to the current component or dependency on each
   iteration.

6.7 .  Parallel Processing Interpreter

   Advanced Recipients MAY make use of the Strict Order parameter and
   enable parallel processing of some Command Sequences, or it may
   reorder some Command Sequences.  To perform parallel processing, once
   the Strict Order parameter is set to False, the Recipient may fork a
   process for each command until the Strict Order parameter is returned
   to True or the Command Sequence ends.  Then, it joins all forked
   processes before continuing processing of commands.  To perform out-
   of-order processing, a similar approach is used, except the Recipient
   consumes all commands after the Strict Order parameter is set to
   False, then it sorts these commands into its preferred order, invokes
   them all, then continues processing.

   Under each of these scenarios the parallel processing must halt:

   -  Set Parameters.

   -  Override Parameters.

Moran, et al.           Expires January 14, 2021               [Page 22]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   -  Set Strict Order = True.

   -  Set Dependency Index.

   -  Set Component Index.

   To perform more useful parallel operations, sequences of commands may
   be collected in a suit-directive-run-sequence.  Then, each of these
   sequences may be run in parallel.  Each sequence defaults to Strict
   Order = True.  To isolate each sequence from each other sequence,
   each sequence MUST begin with a Set Component Index directive.  The
   interpreter MUST track each Set Component Index directive, and cause
   an Abort if more than one Set Component Index directive targets the
   same Component Index.  When Strict Order = False, each suit-
   directive-run-sequence MUST begin with a Set Component Index
   directive.  Any further Set Component Index directives MUST cause an
   Abort.  This allows the interpreter that forks suit-directive-run-
   sequence processes to check that the first element is correct, then
   fork a process to handle the remainder of the sequence.

6.8 .  Processing Dependencies

   As described in Section 6.2 , each manifest must invoke each of its
   dependencies sections from the corresponding section of the
   dependent.  Any changes made to parameters by the dependency persist
   in the dependent.

   When a Process Dependency command is encountered, the interpreter
   loads the dependency identified by the Current Dependency Index.  The
   interpreter first executes the common-sequence section of the
   identified dependency, then it executes the section of the dependency
   that corresponds to the currently executing section of the dependent.

   The Manifest Processor MUST also support a Dependency Index of True,
   which applies to every dependency, as described in Section 6.5

   The interpreter also performs the checks described in Section 6.2  to
   ensure that the dependent is processing the dependency correctly.

6.9 .  Multiple Manifest Processors

   When a system has multiple security domains they MAY require
   independent verification of authenticity or security policies.
   Security domains may be divided by separation technology such as Arm
   TrustZone, or Intel SGX.  Security domains may also be divided into
   separate processors and memory spaces, with a communication interface
   between them.

Moran, et al.           Expires January 14, 2021               [Page 23]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   For example, an application processor may have an attached
   communications module that contains a processor.  The communications
   module may require metadata signed by a specific Trust Authority for
   regulatory approval.  This may be a different Trust Authority than
   the application processor.

   When there are two or more security domains, a manifest processor MAY
   be required in each.  The first manifest processor is the normal
   manifest processor as described for the Recipient in Abstract
   Machine.  The second manifest processor only executes sections when
   the first manifest processor requests it.  An API interface is
   provided from the second manifest processor to the first.  This
   allows the first manifest processor to request a limited set of
   operations from the second.  These operations are limited to: setting
   parameters, inserting an Envelope, invoking a Manifest Command
   Sequence.  The second manifest processor declares a prefix to the
   first, which tells the first manifest processor when it should
   delegate to the second.  These rules are enforced by underlying
   separation of privilege infrastructure, such as TEEs, or physical
   separation.

   When the first manifest processor encounters a dependency prefix,
   that informs the first manifest processor that it should provide the
   second manifest processor with the corresponding dependency Envelope.
   This is done when the dependency is fetched.  The second manifest
   processor immediately verifies any authentication information in the
   dependency Envelope.  When a parameter is set for any component that
   matches the prefix, this parameter setting is passed to the second
   manifest processor via an API.  As the first manifest processor works
   through the Procedure (set of command sequences) it is executing,
   each time it sees a Process Dependency command that is associated
   with the prefix declared by the second manifest processor, it uses
   the API to ask the second manifest processor to invoke that
   dependency section instead.

7.  Creating Manifests

   Manifests are created using tools for constructing COSE structures,
   calculating cryptographic values and compiling desired system state
   into a sequence of operations required to achieve that state.  The
   process of constructing COSE structures and the calculation of
   cryptographic values is covered in [ RFC8152].

   Compiling desired system state into a sequence of operations can be
   accomplished in many ways.  Several templates are provided below to
   cover common use-cases.  These templates can be combined to produce
   more complex behavior.

Moran, et al.           Expires January 14, 2021               [Page 24]

https://tools.ietf.org/pdf/rfc8152


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   The Author MUST ensure that all parameters consumed by a command are
   set prior to invoking that command.  Where Component Index = True or
   Dependency Index = True, this means that the parameters consumed by
   each command MUST have been set for each Component or Dependency,
   respectively.

   NOTE: On systems that support only a single component, Set Current
   Component has no effect and can be omitted.

   NOTE: *A digest MUST always be set using Override Parameters, since
   this prevents a less-privileged dependent from replacing the digest.*

7.1 .  Compatibility Check Template

   The compatibility check ensures that Recipients only install
   compatible images.  In this template all information is contained in
   the common block and the following sequence of operations are used:

   -  Set Component Index directive (see Section 8.7.7.1 )

   -  Set Parameters directive (see Section 8.7.7.6 ) for Vendor ID and
      Class ID (see Section 8.7.5 )

   -  Check Vendor Identifier condition (see Section 8.7.5.1 )

   -  Check Class Identifier condication (see Section 8.7.5.1 )

7.2 .  Secure Boot Template

   This template performs a secure boot operation.

   The following operations are placed into the common block:

   -  Set Component Index directive (see Section 8.7.7.1 )

   -  Override Parameters directive (see Section 8.7.7.7 ) for Image
      Digest and Image Size (see Section 8.7.5 )

   Then, the run block contains the following operations:

   -  Set Component Index directive (see Section 8.7.7.1 )

   -  Check Image Match condition (see Section 8.7.6.2 )

   -  Run directive (see Section 8.7.7.13 )

Moran, et al.           Expires January 14, 2021               [Page 25]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   According to Section 6.4 , the Run directive applies to the component
   referenced by the current Component Index.  Hence, the Set Component
   Index directive has to be used to target a specific component.

7.3 .  Firmware Download Template

   This template triggers the download of firmware.

   The following operations are placed into the common block:

   -  Set Component Index directive (see Section 8.7.7.1 )

   -  Override Parameters directive (see Section 8.7.7.7 ) for Image
      Digest and Image Size (see Section 8.7.5 )

   Then, the install block contains the following operations:

   -  Set Component Index directive (see Section 8.7.7.1 )

   -  Set Parameters directive (see Section 8.7.7.6 ) for URI (see
      Section 8.7.5.12 )

   -  Fetch directive (see Section 8.7.7.8 )

   -  Check Image Match condition (see Section 8.7.6.2 )

   The Fetch directive needs the URI parameter to be set to determine
   where the image is retrieved from.  Additionally, the destination of
   where the component shall be stored has to be configured.  The URI is
   configured via the Set Parameters directive while the destination is
   configured via the Set Component Index directive.

7.4 .  Install Template

   This template modifies the Firmware Download template and adds an
   additional sequence.  The Firmware Download operations are moved from
   the Payload Install sequence to the Payload Fetch sequence.

   Then, the Install sequence contains the following operations:

   -  Set Component Index directive (see Section 8.7.7.1 )

   -  Set Parameters directive (see Section 8.7.7.6 ) for Source
      Component (see Section 8.7.5.13 )

   -  Copy directive (see Section 8.7.7.10 )

   -  Check Image Match condition (see Section 8.7.6.2 )

Moran, et al.           Expires January 14, 2021               [Page 26]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

7.5 .  Integrated Payload Template

   This template triggers the installation of a payload included in the
   manifest envelope.  It is identical to Section 7.3  except that it
   places an added restriction on the URI passed to the Set Parameters
   directive.

   An implementor MAY choose to place a payload in the envelope of a
   manifest.  The payload envelope key MAY be a positive or negative
   integer.  The payload envelope key MUST NOT be a value between 0 and
   24 and it MUST NOT be used by any other envelope element in the
   manifest.  The payload MUST be serialized in a bstr element.

   The URI for a payload enclosed in this way MUST be expressed as a
   fragment-only reference, as defined in [RFC3986], Section 4.4 .  The
   fragment identifier is the stringified envelope key of the payload.
   For example, an envelope that contains a payload a key 42 would use a
   URI "#42", key -73 would use a URI "#-73".

7.6 .  Load from Nonvolatile Storage Template

   This directive loads an firmware image from external storage.

   The following operations are placed into the load block:

   -  Set Component Index directive (see Section 8.7.7.1 )

   -  Set Parameters directive (see Section 8.7.7.6 ) for Component Index
      (see Section 8.7.5 )

   -  Copy directive (see Section 8.7.7.10 )

   As outlined in Section 6.4 , the Copy directive needs a source and a
   destination to be configured.  The source is configured via Component
   Index (with the Set Parameters directive) and the destination is
   configured via the Set Component Index directive.

7.7 .  Load & Decompress from Nonvolatile Storage Template

   The following operations are placed into the load block:

   -  Set Component Index directive (see Section 8.7.7.1 )

   -  Set Parameters directive (see Section 8.7.7.6 ) for Source
      Component Index and Compression Info (see Section 8.7.5 )

   -  Copy directive (see Section 8.7.7.10 )

Moran, et al.           Expires January 14, 2021               [Page 27]

https://tools.ietf.org/pdf/rfc3986#section-4.4


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   This template is similar to Section 7.6  but additionally performs
   decompression.  Hence, the only difference is in setting the
   Compression Info parameter.

7.8 .  Dependency Template

   The following operations are placed into the dependency resolution
   block:

   -  Set Dependency Index directive (see Section 8.7.7.2 )

   -  Set Parameters directive (see Section 8.7.7.6 ) for URI (see
      Section 8.7.5 )

   -  Fetch directive (see Section 8.7.7.8 )

   -  Check Image Match condition (see Section 8.7.6.2 )

   -  Process Dependency directive (see Section 8.7.7.5 )

   Then, the validate block contains the following operations:

   -  Set Dependency Index directive (see Section 8.7.7.2 )

   -  Check Image Match condition (see Section 8.7.6.2 )

   -  Process Dependency directive (see Section 8.7.7.5 )

   NOTE: Any changes made to parameters in a dependency persist in the
   dependent.

7.8.1 .  Composite Manifests

   An implementor MAY choose to place a dependency’s envelope in the
   envelope of its dependent.  The dependent envelope key for the
   dependency envelope MUST NOT be a value between 0 and 24 and it MUST
   NOT be used by any other envelope element in the dependent manifest.

   The URI for a dependency enclosed in this way MUST be expressed as a
   fragment-only reference, as defined in [RFC3986], Section 4.4 .  The
   fragment identifier is the stringified envelope key of the
   dependency.  For example, an envelope that contains a dependency at
   key 42 would use a URI "#42", key -73 would use a URI "#-73".

Moran, et al.           Expires January 14, 2021               [Page 28]

https://tools.ietf.org/pdf/rfc3986#section-4.4


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

7.9 .  Encrypted Manifest Template

   To use an encrypted manifest, create a plaintext dependent, and add
   the encrypted manifest as a dependency.  The dependent can include
   very little information.

   The following operations are placed into the dependency resolution
   block:

   -  Set Dependency Index directive (see Section 8.7.7.2 )

   -  Set Parameters directive (see Section 8.7.7.6 ) for

      o  URI (see Section 8.7.5 )

      o  Encryption Info (see Section 8.7.5 )

   -  Fetch directive (see Section 8.7.7.8 )

   -  Check Image Match condition (see Section 8.7.6.2 )

   -  Process Dependency directive (see Section 8.7.7.5 )

   Then, the validate block contains the following operations:

   -  Set Dependency Index directive (see Section 8.7.7.2 )

   -  Check Image Match condition (see Section 8.7.6.2 )

   -  Process Dependency directive (see Section 8.7.7.5 )

   A plaintext manifest and its encrypted dependency may also form a
   composite manifest ( Section 7.8.1 ).

7.10 .  A/B Image Template

   The following operations are placed in the common block:

   -  Set Component Index directive (see Section 8.7.7.1 )

   -  Try Each

      o  First Sequence:

         *  Override Parameters directive (see Section 8.7.7.7 ,
            Section 8.7.5 ) for Offset A

         *  Check Offset Condition (see Section 8.7.6.5 )

Moran, et al.           Expires January 14, 2021               [Page 29]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

         *  Override Parameters directive (see Section 8.7.7.7 ) for
            Image Digest A and Image Size A (see Section 8.7.5 )

      o  Second Sequence:

         *  Override Parameters directive (see Section 8.7.7.7 ,
            Section 8.7.5 ) for Offset B

         *  Check Offset Condition (see Section 8.7.6.5 )

         *  Override Parameters directive (see Section 8.7.7.7 ) for
            Image Digest B and Image Size B (see Section 8.7.5 )

   The following operations are placed in the fetch block or install
   block

   -  Set Component Index directive (see Section 8.7.7.1 )

   -  Try Each

      o  First Sequence:

         *  Override Parameters directive (see Section 8.7.7.7 ,
            Section 8.7.5 ) for Offset A

         *  Check Offset Condition (see Section 8.7.6.5 )

         *  Set Parameters directive (see Section 8.7.7.7 ) for URI A
            (see Section 8.7.5 )

      o  Second Sequence:

         *  Override Parameters directive (see Section 8.7.7.7 ,
            Section 8.7.5 ) for Offset B

         *  Check Offset Condition (see Section 8.7.6.5 )

         *  Set Parameters directive (see Section 8.7.7.7 ) for URI B
            (see Section 8.7.5 )

   -  Fetch

8.  Metadata Structure

   The metadata for SUIT updates is composed of several primary
   constituent parts: the Envelope, Delegation Chains, Authentication
   Information, Manifest, and Severable Elements.

Moran, et al.           Expires January 14, 2021               [Page 30]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   For a diagram of the metadata structure, see Section 5 .

8.1 .  Encoding Considerations

   The map indices in the envelope encoding are reset to 1 for each map
   within the structure.  This is to keep the indices as small as
   possible.  The goal is to keep the index objects to single bytes
   (CBOR positive integers 1-23).

   Wherever enumerations are used, they are started at 1.  This allows
   detection of several common software errors that are caused by
   uninitialised variables.  Positive numbers in enumerations are
   reserved for IANA registration.  Negative numbers are used to
   identify application-specific implementations.

   All elements of the envelope must be wrapped in a bstr to minimize
   the complexity of the code that evaluates the cryptographic integrity
   of the element and to ensure correct serialization for integrity and
   authenticity checks.

8.2 .  Envelope

   The Envelope contains each of the other primary constituent parts of
   the SUIT metadata.  It allows for modular processing of the manifest
   by ordering components in the expected order of processing.

   The Envelope is encoded as a CBOR Map. Each element of the Envelope
   is enclosed in a bstr, which allows computation of a message digest
   against known bounds.

8.3 .  Delegation Chains

   The suit-delegation field MAY carry one or more CBOR Web Tokens
   (CWTs) [ RFC8392], with [ RFC8747] cnf claims.  They can be used to
   perform enhanced authorization decisions.  The CWTs are arranged into
   a list of lists.  Each list starts with CWT authorized by a Trust
   Anchor, and finishes with a key used to authenticate the Manifest
   (see Section 8.4 ).  This allows an Update Authority to delegate from
   a long term Trust Anchor, down through intermediaries, to a delegate
   without any out-of-band updates Trust Anchors.

   A Recipient MAY choose to cache intermediaries and/or delegates.  If
   an Update Distributor knows that a targeted Recipient has cached some
   intermediaries or delegates, it MAY choose to strip any cached
   intermediaries or delegates from the Delegation Chains in order to
   reduce bandwidth and energy.

Moran, et al.           Expires January 14, 2021               [Page 31]

https://tools.ietf.org/pdf/rfc8392
https://tools.ietf.org/pdf/rfc8747


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

8.4 .  Authenticated Manifests

   The suit-authentication-wrapper contains a list of one or more
   cryptographic authentication wrappers for the Manifest.  These are
   implemented as COSE_Mac_Tagged or COSE_Sign_Tagged blocks.  Each of
   these blocks contains a SUIT_Digest of the Manifest.  This enables
   modular processing of the manifest.  The COSE_Mac_Tagged and
   COSE_Sign_Tagged blocks are described in RFC 8152  [ RFC8152].  The
   suit-authentication-wrapper MUST come before any element in the
   SUIT_Envelope, except for the OPTIONAL suit-delegation, regardless of
   canonical encoding of CBOR.  All validators MUST reject any
   SUIT_Envelope that begins with any element other than a suit-
   authentication-wrapper or suit-delegation.

   A SUIT_Envelope that has not had authentication information added
   MUST still contain the suit-authentication-wrapper element, but the
   content MUST be an empty list.

8.5 .  Encrypted Manifests

   To use an encrypted manifest, it must be a dependency of a plaintext
   manifest.  This allows fine-grained control of what information is
   accessible to intermediate systems for the purposes of management,
   while still preserving the confidentiality of the manifest contents.
   This also means that a Recipient can process an encrypted manifest in
   the same way as an encrypted payload, allowing code reuse.

   A template for using an encrypted manifest is covered in Encrypted
   Manifest Template ( Section 7.9 ).

8.6 .  Manifest

   The manifest contains:

   -  a version number (see Section 8.6.1 )

   -  a sequence number (see Section 8.6.2 )

   -  a reference URI (see Section 8.6.3 )

   -  a common structure with information that is shared between command
      sequences (see Section 8.7.2 )

   -  one or more lists of commands that the Recipient should perform
      (see Section 8.7.3 )

   -  a reference to the full manifest (see Section 8.6.3 )

Moran, et al.           Expires January 14, 2021               [Page 32]

https://tools.ietf.org/pdf/rfc8152
https://tools.ietf.org/pdf/rfc8152


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   -  human-readable text describing the manifest found in the
      SUIT_Envelope (see Section 8.6.4 )

   -  a Concise Software Identifier found in the SUIT_Envelope (see
      Section 8.7.1 )

   The CoSWID, Text section, or any Command Sequence of the Update
   Procedure (Dependency Resolution, Image Fetch, Image Installation)
   can be either a CBOR structure or a SUIT_Digest.  In each of these
   cases, the SUIT_Digest provides for a severable field.  Severable
   fields are RECOMMENDED to implement.  In particular, the human-
   readable text SHOULD be severable, since most useful text elements
   occupy more space than a SUIT_Digest, but are not needed by the
   Recipient.  Because SUIT_Digest is a CBOR Array and each severable
   element is a CBOR bstr, it is straight-forward for a Recipient to
   determine whether an element has been severed.  The key used for a
   severable element is the same in the SUIT_Manifest and in the
   SUIT_Envelope so that a Recipient can easily identify the correct
   data in the envelope.  See Section 8.7.8  for more detail.

8.6.1 .  suit-manifest-version

   The suit-manifest-version indicates the version of serialization used
   to encode the manifest.  Version 1 is the version described in this
   document. suit-manifest-version is REQUIRED to implement.

8.6.2 .  suit-manifest-sequence-number

   The suit-manifest-sequence-number is a monotonically increasing anti-
   rollback counter.  It also helps Recipients to determine which in a
   set of manifests is the "root" manifest in a given update.  Each
   manifest MUST have a sequence number higher than each of its
   dependencies.  Each Recipient MUST reject any manifest that has a
   sequence number lower than its current sequence number.  It MAY be
   convenient to use a UTC timestamp in seconds as the sequence number.
   suit-manifest-sequence-number is REQUIRED to implement.

8.6.3 .  suit-reference-uri

   suit-reference-uri is a text string that encodes a URI where a full
   version of this manifest can be found.  This is convenient for
   allowing management systems to show the severed elements of a
   manifest when this URI is reported by a Recipient after installation.

Moran, et al.           Expires January 14, 2021               [Page 33]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

8.6.4 .  suit-text

   suit-text SHOULD be a severable element. suit-text is a map of pairs.
   It MAY contain two different types of pair:

   -  integer => text mappings

   -  SUIT_Component_Identifier => map mappings

   Each SUIT_Component_Identifier => map entry contains a map of integer
   => text values.  All SUIT_Component_Identifiers present in suit-text
   MUST also be present in suit-common ( Section 8.7.2 ) or the suit-
   common of a dependency.

   suit-text contains all the human-readable information that describes
   any and all parts of the manifest, its payload(s) and its
   resource(s).  The text section is typically severable, allowing
   manifests to be distributed without the text, since end-nodes do not
   require text.  The meaning of each field is described below.

   Each section MAY be present.  If present, each section MUST be as
   described.  Negative integer IDs are reserved for application-
   specific text values.

   The following table describes the text fields available in suit-text:

   +--------------------------------+----------------------------------+
   | CDDL Structure                 | Description                      |
   +--------------------------------+----------------------------------+
   | suit-text-manifest-description | Free text description of the     |
   |                                | manifest                         |
   |                                |                                  |
   | suit-text-update-description   | Free text description of the     |
   |                                | update                           |
   |                                |                                  |
   | suit-text-manifest-json-source | The JSON-formatted document that |
   |                                | was used to create the manifest  |
   |                                |                                  |
   | suit-text-manifest-yaml-source | The yaml-formatted document that |
   |                                | was used to create the manifest  |
   +--------------------------------+----------------------------------+

   The following table describes the text fields available in each map
   identified by a SUIT_Component_Identifier.

Moran, et al.           Expires January 14, 2021               [Page 34]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   +---------------------------------+---------------------------------+
   | CDDL Structure                  | Description                     |
   +---------------------------------+---------------------------------+
   | suit-text-vendor-name           | Free text vendor name           |
   |                                 |                                 |
   | suit-text-model-name            | Free text model name            |
   |                                 |                                 |
   | suit-text-vendor-domain         | The domain used to create the   |
   |                                 | vendor-id condition             |
   |                                 |                                 |
   | suit-text-model-info            | The information used to create  |
   |                                 | the class-id condition          |
   |                                 |                                 |
   | suit-text-component-description | Free text description of each   |
   |                                 | component in the manifest       |
   |                                 |                                 |
   | suit-text-component-version     | A text version number           |
   |                                 |                                 |
   | suit-text-version-required      | A text expression of the        |
   |                                 | required version number         |
   +---------------------------------+---------------------------------+

   suit-text is OPTIONAL to implement.

8.7 .  text-version-required

   suit-text-version-required is used to represent a version-based
   dependency on suit-parameter-version as described in Section 8.7.5.17
   and Section 8.7.6.8 .  To describe a version dependency, a Manifest
   Author should populate the suit-text map with a
   SUIT_Component_Identifier key for the dependency component, and place
   in the corresponding map a suit-text-version-required key with a text
   expression that is representative of the version constraints placed
   on the dependency.

   For example, to express a dependency on a component "[’x’, ’y’]",
   where the version should be any v1.x later than v1.2.5, but not v2.0
   or above, the author would add the following structure to the suit-
   text element.  Note that this text is in cbor-diag notation.

   " [h’78’,h’79’] : { 7 : ">=1.2.5,<2" } "

8.7.1 .  suit-coswid

   suit-coswid contains a Concise Software Identifier.  This element
   SHOULD be made severable so that it can be discarded by the Recipient
   or an intermediary if it is not required by the Recipient.

Moran, et al.           Expires January 14, 2021               [Page 35]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   suit-coswid is OPTIONAL to implement.

8.7.2 .  suit-common

   suit-common encodes all the information that is shared between each
   of the command sequences, including: suit-dependencies, suit-
   components, and suit-common-sequence. suit-common is REQUIRED to
   implement.

   suit-dependencies is a list of Section 8.7.2.1  blocks that specify
   manifests that must be present before the current manifest can be
   processed. suit-dependencies is OPTIONAL to implement.

   suit-components is a list of SUIT_Component_Identifier
   ( Section 8.7.2.2 ) blocks that specify the component identifiers that
   will be affected by the content of the current manifest. suit-
   components is REQUIRED to implement; at least one manifest in a
   dependency tree MUST contain a suit-components block.

   suit-common-sequence is a SUIT_Command_Sequence to execute prior to
   executing any other command sequence.  Typical actions in suit-
   common-sequence include setting expected Recipient identity and image
   digests when they are conditional (see Section 8.7.7.4  and
   Section 7.10  for more information on conditional sequences). suit-
   common-sequence is RECOMMENDED to implement.  It is REQUIRED if the
   optimizations described in Section 6.2.1  will be used.  Whenever a
   parameter or try-each is required by more than one Command Sequence,
   suit-common-sequence results in a smaller encoding.

8.7.2.1 .  Dependencies

   SUIT_Dependency specifies a manifest that describes a dependency of
   the current manifest.  The Manifest is identified, however the
   Recipient should expect an Envelope when it acquires the dependency.
   This is because the Manifest is the one invariant element of the
   Envelope, where other elements may change by countersigning, adding
   authentication blocks, or severing elements.

   The suit-dependency-digest specifies the dependency manifest uniquely
   by identifying a particular Manifest structure.  This is identical to
   the digest that would be present as the payload of any suit-
   authentication-block in the dependency’s Envelope.  The digest is
   calculated over the Manifest structure instead of the COSE
   Sig_structure or Mac_structure.  This is necessary to ensure that
   removing a signature from a manifest does not break dependencies due
   to missing signature elements.  This is also necessary to support the
   trusted intermediary use case, where an intermediary re-signs the

Moran, et al.           Expires January 14, 2021               [Page 36]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   Manifest, removing the original signature, potentially with a
   different algorithm, or trading COSE_Sign for COSE_Mac.

   The suit-dependency-prefix element contains a
   SUIT_Component_Identifier (see Section 8.7.2.2 ).  This specifies the
   scope at which the dependency operates.  This allows the dependency
   to be forwarded on to a component that is capable of parsing its own
   manifests.  It also allows one manifest to be deployed to multiple
   dependent Recipients without those Recipients needing consistent
   component hierarchy.  This element is OPTIONAL.

   A dependency prefix can be used with a component identifier.  This
   allows complex systems to understand where dependencies need to be
   applied.  The dependency prefix can be used in one of two ways.  The
   first simply prepends the prefix to all Component Identifiers in the
   dependency.

   A dependency prefix can also be used to indicate when a dependency
   manifest needs to be processed by a secondary manifest processor, as
   described in Section 6.9 .

8.7.2.2 .  SUIT_Component_Identifier

   A component is a unit of code or data that can be targeted by an
   update.  To facilitate composite devices, components are identified
   by a list of CBOR byte strings, which allows construction of
   hierarchical component structures.  A dependency MAY declare a prefix
   to the components defined in the dependency manifest.  Components are
   identified by Component Identifiers, i.e. arrays of binary strings,
   but referenced in commands

   A Component Identifier can be trivial, such as the simple array
   [h’00’].  It can also represent a filesystem path by encoding each
   segment of the path as an element in the list.  For example, the path
   "/usr/bin/env" would encode to [’usr’,’bin’,’env’].

   This hierarchical construction allows a component identifier to
   identify any part of a complex, multi-component system.

8.7.3 .  SUIT_Command_Sequence

   A SUIT_Command_Sequence defines a series of actions that the
   Recipient MUST take to accomplish a particular goal.  These goals are
   defined in the manifest and include:

   1.  Dependency Resolution: suit-dependency-resolution is a
       SUIT_Command_Sequence to execute in order to perform dependency
       resolution.  Typical actions include configuring URIs of

Moran, et al.           Expires January 14, 2021               [Page 37]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

       dependency manifests, fetching dependency manifests, and
       validating dependency manifests’ contents. suit-dependency-
       resolution is REQUIRED to implement and to use when suit-
       dependencies is present.

   2.  Payload Fetch: suit-payload-fetch is a SUIT_Command_Sequence to
       execute in order to obtain a payload.  Some manifests may include
       these actions in the suit-install section instead if they operate
       in a streaming installation mode.  This is particularly relevant
       for constrained devices without any temporary storage for staging
       the update. suit-payload-fetch is OPTIONAL to implement.

   3.  Payload Installation: suit-install is a SUIT_Command_Sequence to
       execute in order to install a payload.  Typical actions include
       verifying a payload stored in temporary storage, copying a staged
       payload from temporary storage, and unpacking a payload. suit-
       install is OPTIONAL to implement.

   4.  Image Validation: suit-validate is a SUIT_Command_Sequence to
       execute in order to validate that the result of applying the
       update is correct.  Typical actions involve image validation and
       manifest validation. suit-validate is REQUIRED to implement.  If
       the manifest contains dependencies, one process-dependency
       invocation per dependency or one process-dependency invocation
       targeting all dependencies SHOULD be present in validate.

   5.  Image Loading: suit-load is a SUIT_Command_Sequence to execute in
       order to prepare a payload for execution.  Typical actions
       include copying an image from permanent storage into RAM,
       optionally including actions such as decryption or decompression.
       suit-load is OPTIONAL to implement.

   6.  Run or Boot: suit-run is a SUIT_Command_Sequence to execute in
       order to run an image. suit-run typically contains a single
       instruction: either the "run" directive for the bootable manifest
       or the "process dependencies" directive for any dependents of the
       bootable manifest. suit-run is OPTIONAL to implement.  Only one
       manifest in an update may contain the "run" directive.

   Goals 1,2,3 form the Update Procedure.  Goals 4,5,6 form the Boot
   Procedure.

   Each Command Sequence follows exactly the same structure to ensure
   that the parser is as simple as possible.

   Lists of commands are constructed from two kinds of element:

Moran, et al.           Expires January 14, 2021               [Page 38]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   1.  Conditions that MUST be true-any failure is treated as a failure
       of the update/load/boot

   2.  Directives that MUST be executed.

   Each condition is a command code identifier, followed by a
   SUIT_Reporting_Policy ( Section 8.7.4 ).

   Each directive is composed of:

   1.  A command code identifier

   2.  An argument block or a reporting policy

   Argument blocks are consumed only by flow-control directives:

   -  Set Component/Dependency Index

   -  Set/Override Parameters

   -  Try Each

   -  Run Sequence

   Reporting policies provide a hint to the manifest processor of
   whether or not to add the success or failure of a command to any
   report that it generates.

   Many conditions and directives apply to a given component, and these
   generally grouped together.  Therefore, a special command to set the
   current component index is provided with a matching command to set
   the current dependency index.  This index is a numeric index into the
   component ID tables defined at the beginning of the document.  For
   the purpose of setting the index, the two component ID tables are
   considered to be concatenated together.

   To facilitate optional conditions, a special directive,
   Section 8.7.7.4 , is provided.  It runs several new lists of
   conditions/directives, one after another, that are contained as an
   argument to the directive.  By default, it assumes that a failure of
   a condition should not indicate a failure of the update/boot, but a
   parameter is provided to override this behavior.  See
   Section 8.7.5.22 .

Moran, et al.           Expires January 14, 2021               [Page 39]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

8.7.4 .  Reporting Policy

   To facilitate construction of Reports that describe the success, or
   failure of a given Procedure, each command is given a Reporting
   Policy.  This is an integer bitfield that follows the command and
   indicates what the Recipient should do with the Record of executing
   the command.  The options are summarized in the table below.

   +-----------------------------+-------------------------------------+
   | Policy                      | Description                         |
   +-----------------------------+-------------------------------------+
   | suit-send-record-on-success | Record when the command succeeds    |
   |                             |                                     |
   | suit-send-record-on-failure | Record when the command fails       |
   |                             |                                     |
   | suit-send-sysinfo-success   | Add system information when the     |
   |                             | command succeeds                    |
   |                             |                                     |
   | suit-send-sysinfo-failure   | Add system information when the     |
   |                             | command fails                       |
   +-----------------------------+-------------------------------------+

   Any or all of these policies may be enabled at once.

   If the component index is set to True when a command is executed with
   a non-zero reporting policy, then the Reporting Engine MUST receive
   one Record for each Component, in the order expressed in the
   Components list.  If the dependency index is set to True when a
   command is executed with a non-zero reporting policy, then the
   Reporting Engine MUST receive one Record for each Dependency, in the
   order expressed in the Dependencies list.

   SUIT does NOT REQUIRE a particular format of Records or Reports.
   SUIT only defines hints to the Reporting engine for which Records it
   should aggregate into the Report.

   For example, a system using DICE certificates MAY use instances of
   suit-send-sysinfo-success to construct its certificates.

   An OPTIONAL Record format, SUIT_Record is defined in [full-cddl].  It
   is encoded as a map, with the following elements.

Moran, et al.           Expires January 14, 2021               [Page 40]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   +---------------------------------+---------------------------------+
   | Element                         | Description                     |
   +---------------------------------+---------------------------------+
   | suit-record-success             | The boolean or integer success  |
   |                                 | or failure code of the command. |
   |                                 |                                 |
   | suit-record-component-id        | The current component when the  |
   |                                 | record was generated.           |
   |                                 |                                 |
   | suit-record-dependency-id       | The current dependency digest   |
   |                                 | when the record was generated.  |
   |                                 |                                 |
   | suit-record-command-sequence-id | The label of the Command        |
   |                                 | Sequence that was executing     |
   |                                 | when the record was generated.  |
   |                                 |                                 |
   | suit-record-command-id          | The label of the command that   |
   |                                 | was in progress when the record |
   |                                 | was generated.                  |
   |                                 |                                 |
   | suit-record-params              | The set of parameters that was  |
   |                                 | consumed by the current         |
   |                                 | command.                        |
   |                                 |                                 |
   | suit-record-actual              | The value against which a suit- |
   |                                 | condition compared a parameter. |
   +---------------------------------+---------------------------------+

   In Secure Boot operations, the Reporting engine MAY aggregate the
   Records produced in a Procedure into the evidence used for an
   attestation report.

8.7.5 .  SUIT_Parameters

   Many conditions and directives require additional information.  That
   information is contained within parameters that can be set in a
   consistent way.  This allows reduction of manifest size and
   replacement of parameters from one manifest to the next.

   Most parameters are scoped to a specific component.  This means that
   setting a parameter for one component has no effect on the parameters
   of any other component.  The only exceptions to this are two Manifest
   Processor parameters: Strict Order and Soft Failure.

   The defined manifest parameters are described below.

   +----------------+----------------------------------+---------------+
   | Name           | CDDL Structure                   | Reference     |

Moran, et al.           Expires January 14, 2021               [Page 41]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   +----------------+----------------------------------+---------------+
   | Vendor ID      | suit-parameter-vendor-identifier | Section 8.7.5  |
   |                |                                  | .2            |
   |                |                                  |               |
   | Class ID       | suit-parameter-class-identifier  | Section 8.7.5  |
   |                |                                  | .3            |
   |                |                                  |               |
   | Image Digest   | suit-parameter-image-digest      | Section 8.7.5  |
   |                |                                  | .5            |
   |                |                                  |               |
   | Image Size     | suit-parameter-image-size        | Section 8.7.5  |
   |                |                                  | .6            |
   |                |                                  |               |
   | Use Before     | suit-parameter-use-before        | Section 8.7.5  |
   |                |                                  | .7            |
   |                |                                  |               |
   | Component      | suit-parameter-component-offset  | Section 8.7.5  |
   | Offset         |                                  | .8            |
   |                |                                  |               |
   | Encryption     | suit-parameter-encryption-info   | Section 8.7.5  |
   | Info           |                                  | .9            |
   |                |                                  |               |
   | Compression    | suit-parameter-compression-info  | Section 8.7.5  |
   | Info           |                                  | .10           |
   |                |                                  |               |
   | Unpack Info    | suit-parameter-unpack-info       | Section 8.7.5  |
   |                |                                  | .11           |
   |                |                                  |               |
   | URI            | suit-parameter-uri               | Section 8.7.5  |
   |                |                                  | .12           |
   |                |                                  |               |
   | Source         | suit-parameter-source-component  | Section 8.7.5  |
   | Component      |                                  | .13           |
   |                |                                  |               |
   | Run Args       | suit-parameter-run-args          | Section 8.7.5  |
   |                |                                  | .14           |
   |                |                                  |               |
   | Device ID      | suit-parameter-device-identifier | Section 8.7.5  |
   |                |                                  | .4            |
   |                |                                  |               |
   | Minimum        | suit-parameter-minimum-battery   | Section 8.7.5  |
   | Battery        |                                  | .15           |
   |                |                                  |               |
   | Update         | suit-parameter-update-priority   | Section 8.7.5  |
   | Priority       |                                  | .16           |
   |                |                                  |               |
   | Version        | suit-parameter-version           | Section 8.7.5  |
   |                |                                  | .17           |

Moran, et al.           Expires January 14, 2021               [Page 42]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   |                |                                  |               |
   | Wait Info      | suit-parameter-wait-info         | Section 8.7.5  |
   |                |                                  | .18           |
   |                |                                  |               |
   | URI List       | suit-parameter-uri-list          | Section 8.7.5  |
   |                |                                  | .19           |
   |                |                                  |               |
   | Fetch          | suit-parameter-fetch-arguments   | Section 8.7.5  |
   | Arguments      |                                  | .20           |
   |                |                                  |               |
   | Strict Order   | suit-parameter-strict-order      | Section 8.7.5  |
   |                |                                  | .21           |
   |                |                                  |               |
   | Soft Failure   | suit-parameter-soft-failure      | Section 8.7.5  |
   |                |                                  | .22           |
   |                |                                  |               |
   | Custom         | suit-parameter-custom            | Section 8.7.5  |
   |                |                                  | .23           |
   +----------------+----------------------------------+---------------+

   CBOR-encoded object parameters are still wrapped in a bstr.  This is
   because it allows a parser that is aggregating parameters to
   reference the object with a single pointer and traverse it without
   understanding the contents.  This is important for modularization and
   division of responsibility within a pull parser.  The same
   consideration does not apply to Directives because those elements are
   invoked with their arguments immediately

8.7.5.1 .  Constructing Identifiers

   Several conditions use identifiers to determine whether a manifest
   matches a given Recipient or not.  These identifiers are defined to
   be RFC 4122  [ RFC4122] UUIDs.  These UUIDs are not human-readable and
   are therefore used for machine-based processing only.

   A Recipient MAY match any number of UUIDs for vendor or class
   identifier.  This may be relevant to physical or software modules.
   For example, a Recipient that has an OS and one or more applications
   might list one Vendor ID for the OS and one or more additional Vendor
   IDs for the applications.  This Recipient might also have a Class ID
   that must be matched for the OS and one or more Class IDs for the
   applications.

   Identifiers are used for compatibility checks.  They MUST NOT be used
   as assertions of identity.  They are evaluated by identifier
   conditions ( Section 8.7.6.1 ).

Moran, et al.           Expires January 14, 2021               [Page 43]

https://tools.ietf.org/pdf/rfc4122
https://tools.ietf.org/pdf/rfc4122


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   A more complete example: Imagine a device has the following physical
   components: 1.  A host MCU 2.  A WiFi module

   This same device has three software modules: 1.  An operating system
   2.  A WiFi module interface driver 3.  An application

   Suppose that the WiFi module’s firmware has a proprietary update
   mechanism and doesn’t support manifest processing.  This device can
   report four class IDs:

   1.  Hardware model/revision

   2.  OS

   3.  WiFi module model/revision

   4.  Application

   This allows the OS, WiFi module, and application to be updated
   independently.  To combat possible incompatibilities, the OS class ID
   can be changed each time the OS has a change to its API.

   This approach allows a vendor to target, for example, all devices
   with a particular WiFi module with an update, which is a very
   powerful mechanism, particularly when used for security updates.

   UUIDs MUST be created according to RFC 4122  [ RFC4122].  UUIDs SHOULD
   use versions 3, 4, or 5, as described in RFC4122.  Versions 1 and 2
   do not provide a tangible benefit over version 4 for this
   application.

   The RECOMMENDED method to create a vendor ID is: Vendor ID =
   UUID5(DNS_PREFIX, vendor domain name)

   The RECOMMENDED method to create a class ID is: Class ID =
   UUID5(Vendor ID, Class-Specific-Information)

   Class-specific information is composed of a variety of data, for
   example:

   -  Model number.

   -  Hardware revision.

   -  Bootloader version (for immutable bootloaders).

Moran, et al.           Expires January 14, 2021               [Page 44]

https://tools.ietf.org/pdf/rfc4122
https://tools.ietf.org/pdf/rfc4122
https://tools.ietf.org/pdf/rfc4122


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

8.7.5.2 .  suit-parameter-vendor-identifier

   A RFC 4122  UUID representing the vendor of the device or component.
   The UUID is encoded as a 16 byte bstr, containing the raw bytes of
   the UUID.  It MUST be constructed as described in Section 8.7.5.1

8.7.5.3 .  suit-parameter-class-identifier

   A RFC 4122  UUID representing the class of the device or component.
   The UUID is encoded as a 16 byte bstr, containing the raw bytes of
   the UUID.  It MUST be constructed as described in Section 8.7.5.1

8.7.5.4 .  suit-parameter-device-identifier

   A RFC 4122  UUID representing the specific device or component.  The
   UUID is encoded as a 16 byte bstr, containing the raw bytes of the
   UUID.  It MUST be constructed as described in Section 8.7.5.1

8.7.5.5 .  suit-parameter-image-digest

   A fingerprint computed over the component itself, encoded in the
   Section 10  structure.  The SUIT_Digest is wrapped in a bstr, as
   required in Section 8.7.5 .

8.7.5.6 .  suit-parameter-image-size

   The size of the firmware image in bytes.  This size is encoded as a
   positive integer.

8.7.5.7 .  suit-parameter-use-before

   An expiry date for the use of the manifest encoded as a POSIX
   timestamp; a positive integer.  Implementations that use this
   parameter MUST use a 64-bit internal representation of the integer.

8.7.5.8 .  suit-parameter-component-offset

   This parameter sets the offset in a component.  Some components
   support multiple possible Slots (offsets into a storage area).  This
   parameter describes the intended Slot to use, identified by its
   offset into the component’s storage area.  This offset MUST be
   encoded as a positive integer.

8.7.5.9 .  suit-parameter-encryption-info

   Encryption Info defines the mechanism that Fetch or Copy should use
   to decrypt the data they transfer.  SUIT_Parameter_Encryption_Info is

Moran, et al.           Expires January 14, 2021               [Page 45]

https://tools.ietf.org/pdf/rfc4122
https://tools.ietf.org/pdf/rfc4122
https://tools.ietf.org/pdf/rfc4122


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   encoded as a COSE_Encrypt_Tagged or a COSE_Encrypt0_Tagged, wrapped
   in a bstr.

8.7.5.10 .  suit-parameter-compression-info

   Compression Info defines any information that is required for a
   Recipient to perform decompression operations.  Typically, this
   includes the algorithm identifier.  This document defines the use of
   ZLIB [ RFC1950], Brotli [ RFC7932], and ZSTD
   [ I-D.kucherawy-rfc8478bis ].

   Additional compression formats can be registered through the IANA-
   maintained registry.

8.7.5.11 .  suit-parameter-unpack-info

   SUIT_Unpack_Info defines the information required for a Recipient to
   interpret a packed format.  This document defines the use of the
   following binary encodings: Intel HEX [ HEX], Motorola S-record
   [ SREC], Executable and Linkable Format (ELF) [ ELF], and Common Object
   File Format (COFF) [ COFF].

   Additional packing formats can be registered through the IANA-
   maintained registry.

8.7.5.12 .  suit-parameter-uri

   A URI from which to fetch a resource.

8.7.5.13 .  suit-parameter-source-component

   This parameter sets the source component to be used with either
   Section 8.7.7.10  or with Section 8.7.7.14 .  The current Component, as
   set by suit-directive-set-component-index defines the destination,
   and suit-parameter-source-component defines the source.

8.7.5.14 .  suit-parameter-run-args

   This parameter contains an encoded set of arguments for
   Section 8.7.7.11 .  The arguments MUST be provided as an
   implementation-defined bstr.

8.7.5.15 .  suit-parameter-minimum-battery

   This parameter sets the minimum battery level in mWh.  This parameter
   is encoded as a positive integer.  Used with Section 8.7.6.6 .

Moran, et al.           Expires January 14, 2021               [Page 46]

https://tools.ietf.org/pdf/rfc1950
https://tools.ietf.org/pdf/rfc7932


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

8.7.5.16 .  suit-parameter-update-priority

   This parameter sets the priority of the update.  This parameter is
   encoded as an integer.  It is used along with suit-condition-update-
   authorized [ 1] to ask an application for permission to initiate an
   update.  This does not constitute a privilege inversion because an
   explicit request for authorization has been provided by the Update
   Authority in the form of the suit-condition-update-authorized
   command.

   Applications MAY define their own meanings for the update priority.
   For example, critical reliability & vulnerability fixes MAY be given
   negative numbers, while bug fixes MAY be given small positive
   numbers, and feature additions MAY be given larger positive numbers,
   which allows an application to make an informed decision about
   whether and when to allow an update to proceed.

8.7.5.17 .  suit-parameter-version

   Indicates allowable versions for the specified component.  Allowable
   versions can be specified, either with a list or with range matching.
   This parameter is compared with version asserted by the current
   component when Section 8.7.6.8  is invoked.  The current component may
   assert the current version in many ways, including storage in a
   parameter storage database, in a metadata object, or in a known
   location within the component itself.

   The component version can be compared as:

   -  Greater.

   -  Greater or Equal.

   -  Equal.

   -  Lesser or Equal.

   -  Lesser.

   Versions are encoded as a CBOR list of integers.  Comparisons are
   done on each integer in sequence.  Comparison stops after all
   integers in the list defined by the manifest have been consumed OR
   after a non-equal match has occurred.  For example, if the manifest
   defines a comparison, "Equal [ 1]", then this will match all version
   sequences starting with 1.  If a manifest defines both "Greater or
   Equal [ 1,0]" and "Lesser [ 1,10]", then it will match versions 1.0.x
   up to, but not including 1.10.

Moran, et al.           Expires January 14, 2021               [Page 47]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   While the exact encoding of versions is application-defined, semantic
   versions map conveniently.  For example,

   -  1.2.3 = [ 1,2,3].

   -  1.2-rc3 = [ 1,2,-1,3].

   -  1.2-beta = [ 1,2,-2].

   -  1.2-alpha = [ 1,2,-3].

   -  1.2-alpha4 = [ 1,2,-3,4].

   suit-condition-version is OPTIONAL to implement.

   Versions SHOULD be provided as follows:

   1.  The first integer represents the major number.  This indicates
       breaking changes to the component.

   2.  The second integer represents the minor number.  This is
       typically reserved for new features or large, non-breaking
       changes.

   3.  The third integer is the patch version.  This is typically
       reserved for bug fixes.

   4.  The fourth integer is the build number.

   Where Alpha (-3), Beta (-2), and Release Candidate (-1) are used,
   they are inserted as a negative number between Minor and Patch
   numbers.  This allows these releases to compare correctly with final
   releases.  For example, Version 2.0, RC1 should be lower than Version
   2.0.0 and higher than any Version 1.x.  By encoding RC as -1, this
   works correctly: [2,0,-1,1] compares as lower than [2,0,0].
   Similarly, beta (-2) is lower than RC and alpha (-3) is lower than
   RC.

8.7.5.18 .  suit-parameter-wait-info

   suit-directive-wait Section 8.7.7.12  directs the manifest processor
   to pause until a specified event occurs.  The suit-parameter-wait-
   info encodes the parameters needed for the directive.

   The exact implementation of the pause is implementation-defined.  For
   example, this could be done by blocking on a semaphore, registering
   an event handler and suspending the manifest processor, polling for a

Moran, et al.           Expires January 14, 2021               [Page 48]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   notification, or aborting the update entirely, then restarting when a
   notification is received.

   suit-parameter-wait-info is encoded as a map of wait events.  When
   ALL wait events are satisfied, the Manifest Processor continues.  The
   wait events currently defined are described in the following table.

   +--------------------------------------+----------+-----------------+
   | Name                                 | Encoding | Description     |
   +--------------------------------------+----------+-----------------+
   | suit-wait-event-authorization        | int      | Same as Section |
   |                                      |          |  8.7.5.16       |
   |                                      |          |                 |
   | suit-wait-event-power                | int      | Wait until      |
   |                                      |          | power state     |
   |                                      |          |                 |
   | suit-wait-event-network              | int      | Wait until      |
   |                                      |          | network state   |
   |                                      |          |                 |
   | suit-wait-event-other-device-version | See      | Wait for other  |
   |                                      | below    | device to match |
   |                                      |          | version         |
   |                                      |          |                 |
   | suit-wait-event-time                 | uint     | Wait until time |
   |                                      |          | (POSIX          |
   |                                      |          | timestamp)      |
   |                                      |          |                 |
   | suit-wait-event-time-of-day          | uint     | Wait until      |
   |                                      |          | seconds since   |
   |                                      |          | 00:00:00        |
   |                                      |          |                 |
   | suit-wait-event-day-of-week          | uint     | Wait until days |
   |                                      |          | since Sunday    |
   +--------------------------------------+----------+-----------------+

   suit-wait-event-other-device-version reuses the encoding of suit-
   parameter-version-match.  It is encoded as a sequence that contains
   an implementation-defined bstr identifier for the other device, and a
   list of one or more SUIT_Parameter_Version_Match.

8.7.5.19 .  suit-parameter-uri-list

   Indicates a list of URIs from which to fetch a resource.  The URI
   list is encoded as a list of tstr, in priority order.  The Recipient
   should attempt to fetch the resource from each URI in turn, ruling
   out each, in order, if the resource is inaccessible or it is
   otherwise undesirable to fetch from that URI. suit-parameter-uri-list
   is consumed by Section 8.7.7.9 .

Moran, et al.           Expires January 14, 2021               [Page 49]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

8.7.5.20 .  suit-parameter-fetch-arguments

   An implementation-defined set of arguments to Section 8.7.7.8 .
   Arguments are encoded in a bstr.

8.7.5.21 .  suit-parameter-strict-order

   The Strict Order Parameter allows a manifest to govern when
   directives can be executed out-of-order.  This allows for systems
   that have a sensitivity to order of updates to choose the order in
   which they are executed.  It also allows for more advanced systems to
   parallelize their handling of updates.  Strict Order defaults to
   True.  It MAY be set to False when the order of operations does not
   matter.  When arriving at the end of a command sequence, ALL commands
   MUST have completed, regardless of the state of
   SUIT_Parameter_Strict_Order.  If SUIT_Parameter_Strict_Order is
   returned to True, ALL preceding commands MUST complete before the
   next command is executed.

   See Section 6.7  for behavioral description of Strict Order.

8.7.5.22 .  suit-parameter-soft-failure

   When executing a command sequence inside Section 8.7.7.4  or
   Section 8.7.7.13  and a condition failure occurs, the manifest
   processor aborts the sequence.  For suit-directive-try-each, if Soft
   Failure is True, the next sequence in Try Each is invoked, otherwise
   suit-directive-try-each fails with the condition failure code.  In
   suit-directive-run-sequence, if Soft Failure is True the suit-
   directive-run-sequence simply halts with no side-effects and the
   Manifest Processor continues with the following command, otherwise,
   the suit-directive-run-sequence fails with the condition failure
   code.

   suit-parameter-soft-failure is scoped to the enclosing
   SUIT_Command_Sequence.  Its value is discarded when
   SUIT_Command_Sequence terminates.  It MUST NOT be set outside of
   suit-directive-try-each or suit-directive-run-sequence.

   When suit-directive-try-each is invoked, Soft Failure defaults to
   True.  An Update Author may choose to set Soft Failure to False if
   they require a failed condition in a sequence to force an Abort.

   When suit-directive-run-sequence is invoked, Soft Failure defaults to
   False.  An Update Author may choose to make failures soft within a
   suit-directive-run-sequence.

Moran, et al.           Expires January 14, 2021               [Page 50]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

8.7.5.23 .  suit-parameter-custom

   This parameter is an extension point for any proprietary, application
   specific conditions and directives.

8.7.6 .  SUIT_Condition

   Conditions are used to define mandatory properties of a system in
   order for an update to be applied.  They can be pre-conditions or
   post-conditions of any directive or series of directives, depending
   on where they are placed in the list.  All Conditions specify a
   Reporting Policy as described Section 8.7.4 .  Conditions include:

Moran, et al.           Expires January 14, 2021               [Page 51]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   +----------------+----------------------------------+---------------+
   | Name           | CDDL Structure                   | Reference     |
   +----------------+----------------------------------+---------------+
   | Vendor         | suit-condition-vendor-identifier | Section 8.7.6  |
   | Identifier     |                                  | .1            |
   |                |                                  |               |
   | Class          | suit-condition-class-identifier  | Section 8.7.6  |
   | Identifier     |                                  | .1            |
   |                |                                  |               |
   | Device         | suit-condition-device-identifier | Section 8.7.6  |
   | Identifier     |                                  | .1            |
   |                |                                  |               |
   | Image Match    | suit-condition-image-match       | Section 8.7.6  |
   |                |                                  | .2            |
   |                |                                  |               |
   | Image Not      | suit-condition-image-not-match   | Section 8.7.6  |
   | Match          |                                  | .3            |
   |                |                                  |               |
   | Use Before     | suit-condition-use-before        | Section 8.7.6  |
   |                |                                  | .4            |
   |                |                                  |               |
   | Component      | suit-condition-component-offset  | Section 8.7.6  |
   | Offset         |                                  | .5            |
   |                |                                  |               |
   | Minimum        | suit-condition-minimum-battery   | Section 8.7.6  |
   | Battery        |                                  | .6            |
   |                |                                  |               |
   | Update         | suit-condition-update-authorized | Section 8.7.6  |
   | Authorized     |                                  | .7            |
   |                |                                  |               |
   | Version        | suit-condition-version           | Section 8.7.6  |
   |                |                                  | .8            |
   |                |                                  |               |
   | Custom         | SUIT_Condition_Custom            | Section 8.7.6  |
   | Condition      |                                  | .9            |
   +----------------+----------------------------------+---------------+

   The abstract description of these conditions is defined in
   Section 6.4 .

   Conditions compare parameters against properties of the system.
   These properties may be asserted in many different ways, including:
   calculation on-demand, volatile definition in memory, static
   definition within the manifest processor, storage in known location
   within an image, storage within a key storage system, storage in One-
   Time-Programmable memory, inclusion in mask ROM, or inclusion as a
   register in hardware.  Some of these assertion methods are global in
   scope, such as a hardware register, some are scoped to an individual

Moran, et al.           Expires January 14, 2021               [Page 52]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   component, such as storage at a known location in an image, and some
   assertion methods can be either global or component-scope, based on
   implementation.

   Each condition MUST report a result code on completion.  If a
   condition reports failure, then the current sequence of commands MUST
   terminate.  A subsequent command or command sequence MAY continue
   executing if Section 8.7.5.22  is set.  If a condition requires
   additional information, this MUST be specified in one or more
   parameters before the condition is executed.  If a Recipient attempts
   to process a condition that expects additional information and that
   information has not been set, it MUST report a failure.  If a
   Recipient encounters an unknown condition, it MUST report a failure.

   Condition labels in the positive number range are reserved for IANA
   registration while those in the negative range are custom conditions
   reserved for proprietary use.  See Section 11  for more details.

8.7.6.1 .  suit-condition-vendor-identifier, suit-condition-class-
          identifier, and suit-condition-device-identifier

   There are three identifier-based conditions: suit-condition-vendor-
   identifier, suit-condition-class-identifier, and suit-condition-
   device-identifier.  Each of these conditions match a RFC 4122
   [ RFC4122] UUID that MUST have already been set as a parameter.  The
   installing Recipient MUST match the specified UUID in order to
   consider the manifest valid.  These identifiers are scoped by
   component in the manifest.  The Recipient MAY treat them as scoped by
   component or as global identifiers.

   The Recipient uses the ID parameter that has already been set using
   the Set Parameters directive.  If no ID has been set, this condition
   fails. suit-condition-class-identifier and suit-condition-vendor-
   identifier are REQUIRED to implement. suit-condition-device-
   identifier is OPTIONAL to implement.

   Each identifier condition compares the corresponding identifier
   parameter to a parameter asserted to the Manifest Processor by the
   Recipient.  Identifiers MUST be known to the Manifest Processor in
   order to evaluate compatibility.

   Globally-scoped identifiers MUST match, regardless of current
   component index.  Component-scoped identifiers match only when the
   current component index resolves to the component associated with the
   component-scoped identifier.

Moran, et al.           Expires January 14, 2021               [Page 53]

https://tools.ietf.org/pdf/rfc4122
https://tools.ietf.org/pdf/rfc4122


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

8.7.6.2 .  suit-condition-image-match

   Verify that the current component matches the Section 8.7.5.5  for the
   current component.  The digest is verified against the digest
   specified in the Component’s parameters list.  If no digest is
   specified, the condition fails. suit-condition-image-match is
   REQUIRED to implement.

8.7.6.3 .  suit-condition-image-not-match

   Verify that the current component does not match the Section 8.7.5.5 .
   If no digest is specified, the condition fails. suit-condition-image-
   not-match is OPTIONAL to implement.

8.7.6.4 .  suit-condition-use-before

   Verify that the current time is BEFORE the specified time. suit-
   condition-use-before is used to specify the last time at which an
   update should be installed.  The recipient evaluates the current time
   against the suit-parameter-use-before parameter ( Section 8.7.5.7 ),
   which must have already been set as a parameter, encoded as a POSIX
   timestamp, that is seconds after 1970-01-01 00:00:00.  Timestamp
   conditions MUST be evaluated in 64 bits, regardless of encoded CBOR
   size. suit-condition-use-before is OPTIONAL to implement.

8.7.6.5 .  suit-condition-component-offset

   Verify that the offset of the current component matches the offset
   set in Section 8.7.5.8 .  This condition allows a manifest to select
   between several images to match a target offset.

8.7.6.6 .  suit-condition-minimum-battery

   suit-condition-minimum-battery provides a mechanism to test a
   Recipient’s battery level before installing an update.  This
   condition is primarily for use in primary-cell applications, where
   the battery is only ever discharged.  For batteries that are charged,
   suit-directive-wait is more appropriate, since it defines a "wait"
   until the battery level is sufficient to install the update. suit-
   condition-minimum-battery is specified in mWh. suit-condition-
   minimum-battery is OPTIONAL to implement. suit-condition-minimum-
   battery consumes Section 8.7.5.15 .

8.7.6.7 .  suit-condition-update-authorized

   Request Authorization from the application and fail if not
   authorized.  This can allow a user to decline an update.
   Section 8.7.5.16  provides an integer priority level that the

Moran, et al.           Expires January 14, 2021               [Page 54]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   application can use to determine whether or not to authorize the
   update.  Priorities are application defined. suit-condition-update-
   authorized is OPTIONAL to implement.

8.7.6.8 .  suit-condition-version

   suit-condition-version allows comparing versions of firmware.
   Verifying image digests is preferred to version checks because
   digests are more precise. suit-condition-version examines a
   component’s version against the version info specified in
   Section 8.7.5.17

8.7.6.9 .  SUIT_Condition_Custom

   SUIT_Condition_Custom describes any proprietary, application specific
   condition.  This is encoded as a negative integer, chosen by the
   firmware developer.  If additional information must be provided to
   the condition, it should be encoded in a custom parameter (a nint) as
   described in Section 8.7.5 .  SUIT_Condition_Custom is OPTIONAL to
   implement.

8.7.7 .  SUIT_Directive

   Directives are used to define the behavior of the recipient.
   Directives include:

Moran, et al.           Expires January 14, 2021               [Page 55]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   +---------------+-------------------------------------+-------------+
   | Name          | CDDL Structure                      | Reference   |
   +---------------+-------------------------------------+-------------+
   | Set Component | suit-directive-set-component-index  | Section 8.7  |
   | Index         |                                     | .7.1        |
   |               |                                     |             |
   | Set           | suit-directive-set-dependency-index | Section 8.7  |
   | Dependency    |                                     | .7.2        |
   | Index         |                                     |             |
   |               |                                     |             |
   | Abort         | suit-directive-abort                | Section 8.7  |
   |               |                                     | .7.3        |
   |               |                                     |             |
   | Try Each      | suit-directive-try-each             | Section 8.7  |
   |               |                                     | .7.4        |
   |               |                                     |             |
   | Process       | suit-directive-process-dependency   | Section 8.7  |
   | Dependency    |                                     | .7.5        |
   |               |                                     |             |
   | Set           | suit-directive-set-parameters       | Section 8.7  |
   | Parameters    |                                     | .7.6        |
   |               |                                     |             |
   | Override      | suit-directive-override-parameters  | Section 8.7  |
   | Parameters    |                                     | .7.7        |
   |               |                                     |             |
   | Fetch         | suit-directive-fetch                | Section 8.7  |
   |               |                                     | .7.8        |
   |               |                                     |             |
   | Copy          | suit-directive-copy                 | Section 8.7  |
   |               |                                     | .7.10       |
   |               |                                     |             |
   | Run           | suit-directive-run                  | Section 8.7  |
   |               |                                     | .7.11       |
   |               |                                     |             |
   | Wait For      | suit-directive-wait                 | Section 8.7  |
   | Event         |                                     | .7.12       |
   |               |                                     |             |
   | Run Sequence  | suit-directive-run-sequence         | Section 8.7  |
   |               |                                     | .7.13       |
   |               |                                     |             |
   | Swap          | suit-directive-swap                 | Section 8.7  |
   |               |                                     | .7.14       |
   |               |                                     |             |
   | Fetch URI     | suit-directive-fetch-uri-list       | Section 8.7  |
   | list          |                                     | .7.9        |
   +---------------+-------------------------------------+-------------+

   The abstract description of these commands is defined in Section 6.4 .

Moran, et al.           Expires January 14, 2021               [Page 56]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   When a Recipient executes a Directive, it MUST report a result code.
   If the Directive reports failure, then the current Command Sequence
   MUST terminate.

8.7.7.1 .  suit-directive-set-component-index

   Set Component Index defines the component to which successive
   directives and conditions will apply.  The supplied argument MUST be
   either a boolean or an unsigned integer index into suit-components.
   If the following commands apply to ALL components, then the boolean
   value "True" is used instead of an index.  If the following commands
   apply to NO components, then the boolean value "False" is used.  When
   suit-directive-set-dependency-index is used, suit-directive-set-
   component-index = False is implied.  When suit-directive-set-
   component-index is used, suit-directive-set-dependency-index = False
   is implied.

   If component index is set to True when a command is invoked, then the
   command applies to all components, in the order they appear in suit-
   common-components.  When the Manifest Processor invokes a command
   while the component index is set to True, it must execute the command
   once for each possible component index, ensuring that the command
   receives the parameters corresponding to that component index.

8.7.7.2 .  suit-directive-set-dependency-index

   Set Dependency Index defines the manifest to which successive
   directives and conditions will apply.  The supplied argument MUST be
   either a boolean or an unsigned integer index into the dependencies.
   If the following directives apply to ALL dependencies, then the
   boolean value "True" is used instead of an index.  If the following
   directives apply to NO dependencies, then the boolean value "False"
   is used.  When suit-directive-set-component-index is used, suit-
   directive-set-dependency-index = False is implied.  When suit-
   directive-set-dependency-index is used, suit-directive-set-component-
   index = False is implied.

   If dependency index is set to True when a command is invoked, then
   the command applies to all dependencies, in the order they appear in
   suit-common-components.  When the Manifest Processor invokes a
   command while the dependency index is set to True, it must execute
   the command once for each possible dependency index, ensuring that
   the command receives the parameters corresponding to that dependency
   index.

   Typical operations that require suit-directive-set-dependency-index
   include setting a source URI or Encryption Information, invoking

Moran, et al.           Expires January 14, 2021               [Page 57]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   "Fetch," or invoking "Process Dependency" for an individual
   dependency.

8.7.7.3 .  suit-directive-abort

   Unconditionally fail.  This operation is typically used in
   conjunction with suit-directive-try-each.

8.7.7.4 .  suit-directive-try-each

   This command runs several SUIT_Command_Sequence, one after another,
   in a strict order.  Use this command to implement a "try/catch-try/
   catch" sequence.  Manifest processors MAY implement this command.

   Section 8.7.5.22  is initialized to True at the beginning of each
   sequence.  If one sequence aborts due to a condition failure, the
   next is started.  If no sequence completes without condition failure,
   then suit-directive-try-each returns an error.  If a particular
   application calls for all sequences to fail and still continue, then
   an empty sequence (nil) can be added to the Try Each Argument.

   The argument to suit-directive-try-each is a list of
   SUIT_Command_Sequence. suit-directive-try-each does not specify a
   reporting policy.

8.7.7.5 .  suit-directive-process-dependency

   Execute the commands in the common section of the current dependency,
   followed by the commands in the equivalent section of the current
   dependency.  For example, if the current section is "fetch payload,"
   this will execute "common" in the current dependency, then "fetch
   payload" in the current dependency.  Once this is complete, the
   command following suit-directive-process-dependency will be
   processed.

   If the current dependency is False, this directive has no effect.  If
   the current dependency is True, then this directive applies to all
   dependencies.  If the current section is "common," this directive
   MUST have no effect.

   When SUIT_Process_Dependency completes, it forwards the last status
   code that occurred in the dependency.

8.7.7.6 .  suit-directive-set-parameters

   suit-directive-set-parameters allows the manifest to configure
   behavior of future directives by changing parameters that are read by
   those directives.  When dependencies are used, suit-directive-set-

Moran, et al.           Expires January 14, 2021               [Page 58]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   parameters also allows a manifest to modify the behavior of its
   dependencies.

   Available parameters are defined in Section 8.7.5 .

   If a parameter is already set, suit-directive-set-parameters will
   skip setting the parameter to its argument.  This provides the core
   of the override mechanism, allowing dependent manifests to change the
   behavior of a manifest.

   suit-directive-set-parameters does not specify a reporting policy.

8.7.7.7 .  suit-directive-override-parameters

   suit-directive-override-parameters replaces any listed parameters
   that are already set with the values that are provided in its
   argument.  This allows a manifest to prevent replacement of critical
   parameters.

   Available parameters are defined in Section 8.7.5 .

   suit-directive-override-parameters does not specify a reporting
   policy.

8.7.7.8 .  suit-directive-fetch

   suit-directive-fetch instructs the manifest processor to obtain one
   or more manifests or payloads, as specified by the manifest index and
   component index, respectively.

   suit-directive-fetch can target one or more manifests and one or more
   payloads. suit-directive-fetch retrieves each component and each
   manifest listed in component-index and dependency-index,
   respectively.  If component-index or dependency-index is True,
   instead of an integer, then all current manifest components/manifests
   are fetched.  The current manifest’s dependent-components are not
   automatically fetched.  In order to pre-fetch these, they MUST be
   specified in a component-index integer.

   suit-directive-fetch typically takes no arguments unless one is
   needed to modify fetch behavior.  If an argument is needed, it must
   be wrapped in a bstr and set in suit-parameter-fetch-arguments.

   suit-directive-fetch reads the URI parameter to find the source of
   the fetch it performs.

   The behavior of suit-directive-fetch can be modified by setting one
   or more of SUIT_Parameter_Encryption_Info,

Moran, et al.           Expires January 14, 2021               [Page 59]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   SUIT_Parameter_Compression_Info, SUIT_Parameter_Unpack_Info.  These
   three parameters each activate and configure a processing step that
   can be applied to the data that is transferred during suit-directive-
   fetch.

8.7.7.9 .  suit-directive-fetch-uri-list

   suit-directive-fetch-uri-list uses the same semantics as
   Section 8.7.7.8 , however it iterates over the URI List
   ( Section 8.7.5.19 ) to select a URI to fetch from.

8.7.7.10 .  suit-directive-copy

   suit-directive-copy instructs the manifest processor to obtain one or
   more payloads, as specified by the component index. suit-directive-
   copy retrieves each component listed in component-index,
   respectively.  If component-index is True, instead of an integer,
   then all current manifest components are copied.  The current
   manifest’s dependent-components are not automatically copied.  In
   order to copy these, they MUST be specified in a component-index
   integer.

   The behavior of suit-directive-copy can be modified by setting one or
   more of SUIT_Parameter_Encryption_Info,
   SUIT_Parameter_Compression_Info, SUIT_Parameter_Unpack_Info.  These
   three parameters each activate and configure a processing step that
   can be applied to the data that is transferred during suit-directive-
   copy.

   suit-directive-copy reads its source from Section 8.7.5.13 .

8.7.7.11 .  suit-directive-run

   suit-directive-run directs the manifest processor to transfer
   execution to the current Component Index.  When this is invoked, the
   manifest processor MAY be unloaded and execution continues in the
   Component Index.  Arguments are provided to suit-directive-run
   through suit-parameter-run-arguments ( Section 8.7.5.14 ) and are
   forwarded to the executable code located in Component Index in an
   application-specific way.  For example, this could form the Linux
   Kernel Command Line if booting a Linux device.

   If the executable code at Component Index is constructed in such a
   way that it does not unload the manifest processor, then the manifest
   processor may resume execution after the executable completes.  This
   allows the manifest processor to invoke suitable helpers and to
   verify them with image conditions.

Moran, et al.           Expires January 14, 2021               [Page 60]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

8.7.7.12 .  suit-directive-wait

   suit-directive-wait directs the manifest processor to pause until a
   specified event occurs.  Some possible events include:

   1.  Authorization

   2.  External Power

   3.  Network availability

   4.  Other Device Firmware Version

   5.  Time

   6.  Time of Day

   7.  Day of Week

8.7.7.13 .  suit-directive-run-sequence

   To enable conditional commands, and to allow several strictly ordered
   sequences to be executed out-of-order, suit-directive-run-sequence
   allows the manifest processor to execute its argument as a
   SUIT_Command_Sequence.  The argument must be wrapped in a bstr.

   When a sequence is executed, any failure of a condition causes
   immediate termination of the sequence.

   When suit-directive-run-sequence completes, it forwards the last
   status code that occurred in the sequence.  If the Soft Failure
   parameter is true, then suit-directive-run-sequence only fails when a
   directive in the argument sequence fails.

   Section 8.7.5.22  defaults to False when suit-directive-run-sequence
   begins.  Its value is discarded when suit-directive-run-sequence
   terminates.

8.7.7.14 .  suit-directive-swap

   suit-directive-swap instructs the manifest processor to move the
   source to the destination and the destination to the source
   simultaneously.  Swap has nearly identical semantics to suit-
   directive-copy except that suit-directive-swap replaces the source
   with the current contents of the destination in an application-
   defined way.  If SUIT_Parameter_Compression_Info or
   SUIT_Parameter_Encryption_Info are present, they MUST be handled in a
   symmetric way, so that the source is decompressed into the

Moran, et al.           Expires January 14, 2021               [Page 61]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   destination and the destination is compressed into the source.  The
   source is decrypted into the destination and the destination is
   encrypted into the source. suit-directive-swap is OPTIONAL to
   implement.

8.7.8 .  Integrity Check Values

   When the CoSWID, Text section, or any Command Sequence of the Update
   Procedure is made severable, it is moved to the Envelope and replaced
   with a SUIT_Digest.  The SUIT_Digest is computed over the entire bstr
   enclosing the Manifest element that has been moved to the Envelope.
   Each element that is made severable from the Manifest is placed in
   the Envelope with an identical key, so that it matches the key of the
   corresponding Integrity Check Value.

   Each Integrity Check Value covers the corresponding Envelope Element
   as described in Section 8.8 .

8.8 .  Severable Elements

   Because the manifest can be used by different actors at different
   times, some parts of the manifest can be removed or "Severed" without
   affecting later stages of the lifecycle.  Severing of information is
   achieved by separating that information from the signed container so
   that removing it does not affect the signature.  This means that
   ensuring integrity of severable parts of the manifest is a
   requirement for the signed portion of the manifest.  Severing some
   parts makes it possible to discard parts of the manifest that are no
   longer necessary.  This is important because it allows the storage
   used by the manifest to be greatly reduced.  For example, no text
   size limits are needed if text is removed from the manifest prior to
   delivery to a constrained device.

   Elements are made severable by removing them from the manifest,
   encoding them in a bstr, and placing a SUIT_Digest of the bstr in the
   manifest so that they can still be authenticated.  The SUIT_Digest
   typically consumes 4 bytes more than the size of the raw digest,
   therefore elements smaller than (Digest Bits)/8 + 4 SHOULD NOT be
   severable.  Elements larger than (Digest Bits)/8 + 4 MAY be
   severable, while elements that are much larger than (Digest Bits)/8 +
   4 SHOULD be severable.

   Because of this, all command sequences in the manifest are encoded in
   a bstr so that there is a single code path needed for all command
   sequences.

Moran, et al.           Expires January 14, 2021               [Page 62]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

9.  Access Control Lists

   To manage permissions in the manifest, there are three models that
   can be used.

   First, the simplest model requires that all manifests are
   authenticated by a single trusted key.  This mode has the advantage
   that only a root manifest needs to be authenticated, since all of its
   dependencies have digests included in the root manifest.

   This simplest model can be extended by adding key delegation without
   much increase in complexity.

   A second model requires an ACL to be presented to the Recipient,
   authenticated by a trusted party or stored on the Recipient.  This
   ACL grants access rights for specific component IDs or component ID
   prefixes to the listed identities or identity groups.  Any identity
   may verify an image digest, but fetching into or fetching from a
   component ID requires approval from the ACL.

   A third model allows a Recipient to provide even more fine-grained
   controls: The ACL lists the component ID or component ID prefix that
   an identity may use, and also lists the commands that the identity
   may use in combination with that component ID.

10.  SUIT Digest Container

   RFC 8152  [ RFC8152] provides containers for signature, MAC, and
   encryption, but no basic digest container.  The container needed for
   a digest requires a type identifier and a container for the raw
   digest data.  Some forms of digest may require additional parameters.
   These can be added following the digest.

   The SUIT digest is a CBOR List containing two elements: a suit-
   digest-algorithm-id and a bstr containing the bytes of the digest.

11.  IANA Considerations

   IANA is requested to:

   -  allocate a CBOR tag for the SUIT Envelope and another for the SUIT
      Manifest.

   -  allocate a media type for suit: application/suit-envelope

   -  setup several registries as described below

Moran, et al.           Expires January 14, 2021               [Page 63]

https://tools.ietf.org/pdf/rfc8152
https://tools.ietf.org/pdf/rfc8152


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   IANA is requested to setup a registry for SUIT manifests.  Several
   registries defined in the subsections below need to be created.

   For each registry, values 0-23 are Standards Action, 24-255 are IETF
   Review, 256-65535 are Expert Review, and 65536 or greater are First
   Come First Served.

   Negative values -23 to 0 are Experimental Use, -24 and lower are
   Private Use.

11.1 .  SUIT Commands

                     +-------+----------------------+
                     | Label | Name                 |
                     +-------+----------------------+
                     | 1     | Vendor Identifier    |
                     |       |                      |
                     | 2     | Class Identifier     |
                     |       |                      |
                     | 3     | Image Match          |
                     |       |                      |
                     | 4     | Use Before           |
                     |       |                      |
                     | 5     | Component Offset     |
                     |       |                      |
                     | 12    | Set Component Index  |
                     |       |                      |
                     | 13    | Set Dependency Index |
                     |       |                      |
                     | 14    | Abort                |
                     |       |                      |
                     | 15    | Try Each             |
                     |       |                      |
                     | 16    | Reserved             |
                     |       |                      |
                     | 17    | Reserved             |
                     |       |                      |
                     | 18    | Process Dependency   |
                     |       |                      |
                     | 19    | Set Parameters       |
                     |       |                      |
                     | 20    | Override Parameters  |
                     |       |                      |
                     | 21    | Fetch                |
                     |       |                      |
                     | 22    | Copy                 |
                     |       |                      |
                     | 23    | Run                  |

Moran, et al.           Expires January 14, 2021               [Page 64]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

                     |       |                      |
                     | 24    | Device Identifier    |
                     |       |                      |
                     | 25    | Image Not Match      |
                     |       |                      |
                     | 26    | Minimum Battery      |
                     |       |                      |
                     | 27    | Update Authorized    |
                     |       |                      |
                     | 28    | Version              |
                     |       |                      |
                     | 29    | Wait For Event       |
                     |       |                      |
                     | 30    | Fetch URI List       |
                     |       |                      |
                     | 31    | Swap                 |
                     |       |                      |
                     | 32    | Run Sequence         |
                     |       |                      |
                     | nint  | Custom Condition     |
                     +-------+----------------------+

11.2 .  SUIT Parameters

Moran, et al.           Expires January 14, 2021               [Page 65]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

                       +-------+------------------+
                       | Label | Name             |
                       +-------+------------------+
                       | 1     | Vendor ID        |
                       |       |                  |
                       | 2     | Class ID         |
                       |       |                  |
                       | 3     | Image Digest     |
                       |       |                  |
                       | 4     | Use Before       |
                       |       |                  |
                       | 5     | Component Offset |
                       |       |                  |
                       | 12    | Strict Order     |
                       |       |                  |
                       | 13    | Soft Failure     |
                       |       |                  |
                       | 14    | Image Size       |
                       |       |                  |
                       | 18    | Encryption Info  |
                       |       |                  |
                       | 19    | Compression Info |
                       |       |                  |
                       | 20    | Unpack Info      |
                       |       |                  |
                       | 21    | URI              |
                       |       |                  |
                       | 22    | Source Component |
                       |       |                  |
                       | 23    | Run Args         |
                       |       |                  |
                       | 24    | Device ID        |
                       |       |                  |
                       | 26    | Minimum Battery  |
                       |       |                  |
                       | 27    | Update Priority  |
                       |       |                  |
                       | 28    | Version          |
                       |       |                  |
                       | 29    | Wait Info        |
                       |       |                  |
                       | 30    | URI List         |
                       |       |                  |
                       | 31    | Component Index  |
                       |       |                  |
                       | nint  | Custom           |
                       +-------+------------------+

Moran, et al.           Expires January 14, 2021               [Page 66]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

11.3 .  SUIT Text Values

                     +-------+----------------------+
                     | Label | Name                 |
                     +-------+----------------------+
                     | 1     | Manifest Description |
                     |       |                      |
                     | 2     | Update Description   |
                     |       |                      |
                     | 3     | Manifest JSON Source |
                     |       |                      |
                     | 4     | Manifest YAML Source |
                     |       |                      |
                     | nint  | Custom               |
                     +-------+----------------------+

11.4 .  SUIT Component Text Values

                  +-------+----------------------------+
                  | Label | Name                       |
                  +-------+----------------------------+
                  | 1     | Vendor Name                |
                  |       |                            |
                  | 2     | Model Name                 |
                  |       |                            |
                  | 3     | Vendor Domain              |
                  |       |                            |
                  | 4     | Model Info                 |
                  |       |                            |
                  | 5     | Component Description      |
                  |       |                            |
                  | 6     | Component Version          |
                  |       |                            |
                  | 7     | Component Version Required |
                  |       |                            |
                  | nint  | Custom                     |
                  +-------+----------------------------+

11.5 .  SUIT Algorithm Identifiers

11.5.1 .  SUIT Digest Algorithm Identifiers

Moran, et al.           Expires January 14, 2021               [Page 67]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

                           +-------+----------+
                           | Label | Name     |
                           +-------+----------+
                           | 1     | SHA224   |
                           |       |          |
                           | 2     | SHA256   |
                           |       |          |
                           | 3     | SHA384   |
                           |       |          |
                           | 4     | SHA512   |
                           |       |          |
                           | 5     | SHA3-224 |
                           |       |          |
                           | 6     | SHA3-256 |
                           |       |          |
                           | 7     | SHA3-384 |
                           |       |          |
                           | 8     | SHA3-512 |
                           +-------+----------+

11.5.2 .  SUIT Compression Algorithm Identifiers

                            +-------+--------+
                            | Label | Name   |
                            +-------+--------+
                            | 1     | zlib   |
                            |       |        |
                            | 2     | Brotli |
                            |       |        |
                            | 3     | zstd   |
                            +-------+--------+

11.5.3 .  Unpack Algorithms

                             +-------+------+
                             | Label | Name |
                             +-------+------+
                             | 1     | HEX  |
                             |       |      |
                             | 2     | ELF  |
                             |       |      |
                             | 3     | COFF |
                             |       |      |
                             | 4     | SREC |
                             +-------+------+

Moran, et al.           Expires January 14, 2021               [Page 68]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

12.  Security Considerations

   This document is about a manifest format describing and protecting
   firmware images and as such it is part of a larger solution for
   offering a standardized way of delivering firmware updates to IoT
   devices.  A detailed security treatment can be found in the
   architecture [ I-D.ietf-suit-architecture ] and in the information
   model [ I-D.ietf-suit-information-model ] documents.

13.  Acknowledgements

   We would like to thank the following persons for their support in
   designing this mechanism:

   -  Milosch Meriac

   -  Geraint Luff

   -  Dan Ros

   -  John-Paul Stanford

   -  Hugo Vincent

   -  Carsten Bormann

   -  Oeyvind Roenningstad

   -  Frank Audun Kvamtroe

   -  Krzysztof Chru&#347;ci&#324;ski

   -  Andrzej Puzdrowski

   -  Michael Richardson

   -  David Brown

   -  Emmanuel Baccelli

14.  References

14.1 .  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14 , RFC 2119 ,
              DOI 10.17487/RFC2119, March 1997,
              < https://www.rfc-editor.org/info/rfc2119 >.

Moran, et al.           Expires January 14, 2021               [Page 69]

https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986 , DOI 10.17487/RFC3986, January 2005,
              < https://www.rfc-editor.org/info/rfc3986 >.

   [RFC4122]  Leach, P., Mealling, M., and R. Salz, "A Universally
              Unique IDentifier (UUID) URN Namespace", RFC 4122 ,
              DOI 10.17487/RFC4122, July 2005,
              < https://www.rfc-editor.org/info/rfc4122 >.

   [RFC8152]  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152 , DOI 10.17487/RFC8152, July 2017,
              < https://www.rfc-editor.org/info/rfc8152 >.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119  Key Words", BCP 14 , RFC 8174 , DOI 10.17487/RFC8174,
              May 2017, < https://www.rfc-editor.org/info/rfc8174 >.

14.2 .  Informative References

   [COFF]     Wikipedia, ., "Common Object File Format (COFF)", 2020,
              < https://en.wikipedia.org/wiki/COFF >.

   [ELF]      Wikipedia, ., "Executable and Linkable Format (ELF)",
              2020, < https://en.wikipedia.org/wiki/
              Executable_and_Linkable_Format >.

   [HEX]      Wikipedia, ., "Intel HEX", 2020,
              < https://en.wikipedia.org/wiki/Intel_HEX >.

   [I-D.ietf-suit-architecture]
              Moran, B., Tschofenig, H., Brown, D., and M. Meriac, "A
              Firmware Update Architecture for Internet of Things",
              draft-ietf-suit-architecture-11  (work in progress), May
              2020.

   [I-D.ietf-suit-information-model]
              Moran, B., Tschofenig, H., and H. Birkholz, "An
              Information Model for Firmware Updates in IoT Devices",
              draft-ietf-suit-information-model-07  (work in progress),
              June 2020.

   [I-D.ietf-teep-architecture]
              Pei, M., Tschofenig, H., Thaler, D., and D. Wheeler,
              "Trusted Execution Environment Provisioning (TEEP)
              Architecture", draft-ietf-teep-architecture-11  (work in
              progress), July 2020.

Moran, et al.           Expires January 14, 2021               [Page 70]

https://tools.ietf.org/pdf/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://tools.ietf.org/pdf/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://tools.ietf.org/pdf/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://en.wikipedia.org/wiki/COFF
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Intel_HEX
https://tools.ietf.org/pdf/draft-ietf-suit-architecture-11
https://tools.ietf.org/pdf/draft-ietf-suit-information-model-07
https://tools.ietf.org/pdf/draft-ietf-teep-architecture-11


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   [I-D.kucherawy-rfc8478bis]
              Collet, Y. and M. Kucherawy, "Zstandard Compression and
              the application/zstd Media Type", draft-kucherawy-
              rfc8478bis-05  (work in progress), April 2020.

   [RFC1950]  Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
              Specification version 3.3", RFC 1950 ,
              DOI 10.17487/RFC1950, May 1996,
              < https://www.rfc-editor.org/info/rfc1950 >.

   [RFC7228]  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
              Constrained-Node Networks", RFC 7228 ,
              DOI 10.17487/RFC7228, May 2014,
              < https://www.rfc-editor.org/info/rfc7228 >.

   [RFC7932]  Alakuijala, J. and Z. Szabadka, "Brotli Compressed Data
              Format", RFC 7932 , DOI 10.17487/RFC7932, July 2016,
              < https://www.rfc-editor.org/info/rfc7932 >.

   [RFC8392]  Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
              "CBOR Web Token (CWT)", RFC 8392 , DOI 10.17487/RFC8392,
              May 2018, < https://www.rfc-editor.org/info/rfc8392 >.

   [RFC8747]  Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
              Tschofenig, "Proof-of-Possession Key Semantics for CBOR
              Web Tokens (CWTs)", RFC 8747 , DOI 10.17487/RFC8747, March
              2020, < https://www.rfc-editor.org/info/rfc8747 >.

   [SREC]     Wikipedia, ., "SREC (file format)", 2020,
              < https://en.wikipedia .org/wiki/SREC_(file_format)>.

14.3 .  URIs

   [1] suit-condition-update-authorized

Moran, et al.           Expires January 14, 2021               [Page 71]

https://tools.ietf.org/pdf/draft-kucherawy-rfc8478bis-05
https://tools.ietf.org/pdf/draft-kucherawy-rfc8478bis-05
https://tools.ietf.org/pdf/rfc1950
https://www.rfc-editor.org/info/rfc1950
https://tools.ietf.org/pdf/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://tools.ietf.org/pdf/rfc7932
https://www.rfc-editor.org/info/rfc7932
https://tools.ietf.org/pdf/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://tools.ietf.org/pdf/rfc8747
https://www.rfc-editor.org/info/rfc8747
https://en.wikipedia/


 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

A.  Full CDDL

   In order to create a valid SUIT Manifest document the structure of
   the corresponding CBOR message MUST adhere to the following CDDL data
   definition.

SUIT_Envelope = {
  ? suit-delegation => bstr .cbor SUIT_Delegation,
  ? suit-authentication-wrapper => bstr .cbor SUIT_Authentication,
  suit-manifest  => bstr .cbor SUIT_Manifest,
  SUIT_Severable_Manifest_Members,
  * $$SUIT_Envelope_Extensions,
  (int => bstr)
}

SUIT_Delegation = [ + [ + bstr .cbor CWT ] ]

CWT = SUIT_Authentication_Block

SUIT_Authentication = [ + bstr .cbor SUIT_Authentication_Block ]

SUIT_Authentication_Block /= COSE_Mac_Tagged
SUIT_Authentication_Block /= COSE_Sign_Tagged
SUIT_Authentication_Block /= COSE_Mac0_Tagged
SUIT_Authentication_Block /= COSE_Sign1_Tagged

SUIT_Severable_Manifest_Members = (
  ? suit-dependency-resolution => bstr .cbor SUIT_Command_Sequence,
  ? suit-payload-fetch => bstr .cbor SUIT_Command_Sequence,
  ? suit-install => bstr .cbor SUIT_Command_Sequence,
  ? suit-text => bstr .cbor SUIT_Text_Map,
  ? suit-coswid => bstr .cbor concise-software-identity,
  * $$SUIT_severable-members-extensions,
)

COSE_Mac_Tagged = any
COSE_Sign_Tagged = any
COSE_Mac0_Tagged = any
COSE_Sign1_Tagged = any
COSE_Encrypt_Tagged = any
COSE_Encrypt0_Tagged = any

SUIT_Digest = [
  suit-digest-algorithm-id : suit-digest-algorithm-ids,
  suit-digest-bytes : bstr,
  * $$SUIT_Digest-extensions
]

Moran, et al.           Expires January 14, 2021               [Page 72]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

; Named Information Hash Algorithm Identifiers
suit-digest-algorithm-ids /= algorithm-id-sha224
suit-digest-algorithm-ids /= algorithm-id-sha256
suit-digest-algorithm-ids /= algorithm-id-sha384
suit-digest-algorithm-ids /= algorithm-id-sha512
suit-digest-algorithm-ids /= algorithm-id-sha3-224
suit-digest-algorithm-ids /= algorithm-id-sha3-256
suit-digest-algorithm-ids /= algorithm-id-sha3-384
suit-digest-algorithm-ids /= algorithm-id-sha3-512

algorithm-id-sha224 = 1
algorithm-id-sha256 = 2
algorithm-id-sha384 = 3
algorithm-id-sha512 = 4
algorithm-id-sha3-224 = 5
algorithm-id-sha3-256 = 6
algorithm-id-sha3-384 = 7
algorithm-id-sha3-512 = 8

SUIT_Manifest = {
    suit-manifest-version         => 1,
    suit-manifest-sequence-number => uint,
    suit-common                   => bstr .cbor SUIT_Common,
    ? suit-reference-uri          => tstr,
    SUIT_Severable_Members,
    SUIT_Severable_Members_Digests,
    SUIT_Unseverable_Members,
    * $$SUIT_Manifest_Extensions,
}

SUIT_Unseverable_Members = (
  ? suit-validate => bstr .cbor SUIT_Command_Sequence,
  ? suit-load => bstr .cbor SUIT_Command_Sequence,
  ? suit-run => bstr .cbor SUIT_Command_Sequence,
  * $$unserverble-manifest-member-extensions,
)

SUIT_Severable_Members_Digests = (
  ? suit-dependency-resolution-digest => SUIT_Digest,
  ? suit-payload-fetch-digest => SUIT_Digest,
  ? suit-install-digest => SUIT_Digest,
  ? suit-text-digest => SUIT_Digest,
  ? suit-coswid-digest => SUIT_Digest,
  * $$severable-manifest-members-digests-extensions
)

SUIT_Common = {
    ? suit-dependencies           => SUIT_Dependencies,

Moran, et al.           Expires January 14, 2021               [Page 73]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

    ? suit-components             => SUIT_Components,
    ? suit-common-sequence        => bstr .cbor SUIT_Common_Sequence,
    * $$SUIT_Common-extensions,
}

SUIT_Dependencies         = [ + SUIT_Dependency ]
SUIT_Components           = [ + SUIT_Component_Identifier ]

concise-software-identity = any

SUIT_Dependency = {
    suit-dependency-digest => SUIT_Digest,
    ? suit-dependency-prefix => SUIT_Component_Identifier,
    * $$SUIT_Dependency-extensions,
}

SUIT_Component_Identifier =  [* bstr]

SUIT_Component_Reference = {
    suit-component-identifier => SUIT_Component_Identifier,
    suit-component-dependency-index => uint
}

SUIT_Common_Sequence = [
    + ( SUIT_Condition // SUIT_Common_Commands )
]

SUIT_Common_Commands //= (suit-directive-set-component-index,  uint/bool)
SUIT_Common_Commands //= (suit-directive-set-dependency-index, uint/bool)
SUIT_Common_Commands //= (suit-directive-run-sequence,
    bstr .cbor SUIT_Command_Sequence)
SUIT_Common_Commands //= (suit-directive-try-each,
    SUIT_Directive_Try_Each_Argument)
SUIT_Common_Commands //= (suit-directive-set-parameters,
    {+ SUIT_Parameters})
SUIT_Common_Commands //= (suit-directive-override-parameters,
    {+ SUIT_Parameters})

SUIT_Command_Sequence = [ + (
    SUIT_Condition // SUIT_Directive // SUIT_Command_Custom
) ]

SUIT_Command_Custom = (suit-command-custom, bstr/tstr/int/nil)
SUIT_Condition //= (suit-condition-vendor-identifier, SUIT_Reporting_Policy)
SUIT_Condition //= (suit-condition-class-identifier,  SUIT_Reporting_Policy)
SUIT_Condition //= (suit-condition-device-identifier, SUIT_Reporting_Policy)

Moran, et al.           Expires January 14, 2021               [Page 74]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

SUIT_Condition //= (suit-condition-image-match,       SUIT_Reporting_Policy)
SUIT_Condition //= (suit-condition-image-not-match,   SUIT_Reporting_Policy)
SUIT_Condition //= (suit-condition-use-before,        SUIT_Reporting_Policy)
SUIT_Condition //= (suit-condition-minimum-battery,   SUIT_Reporting_Policy)
SUIT_Condition //= (suit-condition-update-authorized, SUIT_Reporting_Policy)
SUIT_Condition //= (suit-condition-version,           SUIT_Reporting_Policy)
SUIT_Condition //= (suit-condition-component-offset,  SUIT_Reporting_Policy)

SUIT_Directive //= (suit-directive-set-component-index,  uint/bool)
SUIT_Directive //= (suit-directive-set-dependency-index, uint/bool)
SUIT_Directive //= (suit-directive-run-sequence,
    bstr .cbor SUIT_Command_Sequence)
SUIT_Directive //= (suit-directive-try-each,
    SUIT_Directive_Try_Each_Argument)
SUIT_Directive //= (suit-directive-process-dependency,   SUIT_Reporting_Policy)
SUIT_Directive //= (suit-directive-set-parameters,
    {+ SUIT_Parameters})
SUIT_Directive //= (suit-directive-override-parameters,
    {+ SUIT_Parameters})
SUIT_Directive //= (suit-directive-fetch,                SUIT_Reporting_Policy)
SUIT_Directive //= (suit-directive-copy,                 SUIT_Reporting_Policy)
SUIT_Directive //= (suit-directive-swap,                 SUIT_Reporting_Policy)
SUIT_Directive //= (suit-directive-run,                  SUIT_Reporting_Policy)
SUIT_Directive //= (suit-directive-wait,                 SUIT_Reporting_Policy)
SUIT_Directive //= (suit-directive-abort,                SUIT_Reporting_Policy)
SUIT_Directive //= (suit-directive-fetch-uri-list,       SUIT_Reporting_Policy)

SUIT_Directive_Try_Each_Argument = [
    + bstr .cbor SUIT_Command_Sequence,
    nil / bstr .cbor SUIT_Command_Sequence
]

SUIT_Reporting_Policy = uint .bits suit-reporting-bits

suit-reporting-bits = &(
    suit-send-record-success : 0,
    suit-send-record-failure : 1,
    suit-send-sysinfo-success : 2,
    suit-send-sysinfo-failure : 3
)

SUIT_Command_ID /= suit-command-custom
SUIT_Command_ID /= suit-condition-vendor-identifier
SUIT_Command_ID /= suit-condition-class-identifier
SUIT_Command_ID /= suit-condition-image-match
SUIT_Command_ID /= suit-condition-use-before
SUIT_Command_ID /= suit-condition-component-offset
SUIT_Command_ID /= suit-condition-device-identifier

Moran, et al.           Expires January 14, 2021               [Page 75]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

SUIT_Command_ID /= suit-condition-image-not-match
SUIT_Command_ID /= suit-condition-minimum-battery
SUIT_Command_ID /= suit-condition-update-authorized
SUIT_Command_ID /= suit-condition-version
SUIT_Command_ID /= suit-directive-set-component-index
SUIT_Command_ID /= suit-directive-set-dependency-index
SUIT_Command_ID /= suit-directive-abort
SUIT_Command_ID /= suit-directive-try-each
;SUIT_Command_ID /= suit-directive-do-each
;SUIT_Command_ID /= suit-directive-map-filter
SUIT_Command_ID /= suit-directive-process-dependency
SUIT_Command_ID /= suit-directive-set-parameters
SUIT_Command_ID /= suit-directive-override-parameters
SUIT_Command_ID /= suit-directive-fetch
SUIT_Command_ID /= suit-directive-copy
SUIT_Command_ID /= suit-directive-run
SUIT_Command_ID /= suit-directive-wait
SUIT_Command_ID /= suit-directive-run-sequence
SUIT_Command_ID /= suit-directive-swap
SUIT_Command_ID /= suit-directive-fetch-uri-list

suit-record = {
  suit-record-success             => bool/int,
  ? suit-record-component-id      => SUIT_Component_ID,
  ? suit-record-dependency-id     => SUIT_Digest,
  ? suit-record-command-sequence-id => (
      suit-common-sequence /
      suit-dependency-resolution /
      suit-payload-fetch /
      suit-install /
      suit-validate /
      suit-load /
      suit-run /
      * $$suit-command-sequence-list-extensions
  ),
  ? suit-record-interpeter-offset => uint,
  ? suit-record-command-id        => SUIT_Command_ID,
  ? suit-record-params            => SUIT_Parameters,
  ? suit-record-actual            => SUIT_Parameters,
  * $$suit-record-extensions
}

SUIT_Wait_Event = { + SUIT_Wait_Events }

SUIT_Wait_Events //= (suit-wait-event-authorization => int)
SUIT_Wait_Events //= (suit-wait-event-power => int)
SUIT_Wait_Events //= (suit-wait-event-network => int)
SUIT_Wait_Events //= (suit-wait-event-other-device-version

Moran, et al.           Expires January 14, 2021               [Page 76]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

    => SUIT_Wait_Event_Argument_Other_Device_Version)
SUIT_Wait_Events //= (suit-wait-event-time => uint); Timestamp
SUIT_Wait_Events //= (suit-wait-event-time-of-day
    => uint); Time of Day (seconds since 00:00:00)
SUIT_Wait_Events //= (suit-wait-event-day-of-week
    => uint); Days since Sunday

SUIT_Wait_Event_Argument_Other_Device_Version = [
    other-device: bstr,
    other-device-version: [ + SUIT_Parameter_Version_Match ]
]

SUIT_Parameters //= (suit-parameter-vendor-identifier => RFC4122_UUID)
SUIT_Parameters //= (suit-parameter-class-identifier => RFC4122_UUID)
SUIT_Parameters //= (suit-parameter-image-digest
    => bstr .cbor SUIT_Digest)
SUIT_Parameters //= (suit-parameter-image-size => uint)
SUIT_Parameters //= (suit-parameter-use-before => uint)
SUIT_Parameters //= (suit-parameter-component-offset => uint)

SUIT_Parameters //= (suit-parameter-encryption-info
    => bstr .cbor SUIT_Encryption_Info)
SUIT_Parameters //= (suit-parameter-compression-info
    => bstr .cbor SUIT_Compression_Info)
SUIT_Parameters //= (suit-parameter-unpack-info
    => bstr .cbor SUIT_Unpack_Info)

SUIT_Parameters //= (suit-parameter-uri => tstr)
SUIT_Parameters //= (suit-parameter-source-component => uint)
SUIT_Parameters //= (suit-parameter-run-args => bstr)

SUIT_Parameters //= (suit-parameter-device-identifier => RFC4122_UUID)
SUIT_Parameters //= (suit-parameter-minimum-battery => uint)
SUIT_Parameters //= (suit-parameter-update-priority => uint)
SUIT_Parameters //= (suit-parameter-version =>
    SUIT_Parameter_Version_Match)
SUIT_Parameters //= (suit-parameter-wait-info =>
    bstr .cbor SUIT_Wait_Event)

SUIT_Parameters //= (suit-parameter-custom => int/bool/tstr/bstr)

SUIT_Parameters //= (suit-parameter-strict-order => bool)
SUIT_Parameters //= (suit-parameter-soft-failure => bool)

SUIT_Parameters //= (suit-parameter-uri-list =>
    bstr .cbor SUIT_URI_List)

RFC4122_UUID = bstr .size 16

Moran, et al.           Expires January 14, 2021               [Page 77]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

SUIT_Parameter_Version_Match = [
    suit-condition-version-comparison-type:
        SUIT_Condition_Version_Comparison_Types,
    suit-condition-version-comparison-value:
        SUIT_Condition_Version_Comparison_Value
]
SUIT_Condition_Version_Comparison_Types /=
    suit-condition-version-comparison-greater
SUIT_Condition_Version_Comparison_Types /=
    suit-condition-version-comparison-greater-equal
SUIT_Condition_Version_Comparison_Types /=
    suit-condition-version-comparison-equal
SUIT_Condition_Version_Comparison_Types /=
    suit-condition-version-comparison-lesser-equal
SUIT_Condition_Version_Comparison_Types /=
    suit-condition-version-comparison-lesser

suit-condition-version-comparison-greater = 1
suit-condition-version-comparison-greater-equal = 2
suit-condition-version-comparison-equal = 3
suit-condition-version-comparison-lesser-equal = 4
suit-condition-version-comparison-lesser = 5

SUIT_Condition_Version_Comparison_Value = [+int]

SUIT_Encryption_Info = COSE_Encrypt_Tagged/COSE_Encrypt0_Tagged
SUIT_Compression_Info = {
    suit-compression-algorithm => SUIT_Compression_Algorithms,
    * $$SUIT_Compression_Info-extensions,
}

SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_zlib
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_brotli
SUIT_Compression_Algorithms /= SUIT_Compression_Algorithm_zstd

SUIT_Compression_Algorithm_zlib = 1
SUIT_Compression_Algorithm_brotli = 2
SUIT_Compression_Algorithm_zstd = 3

SUIT_Unpack_Info = {
    suit-unpack-algorithm => SUIT_Unpack_Algorithms,
    * $$SUIT_Unpack_Info-extensions,

}

SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Hex
SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Elf
SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Coff

Moran, et al.           Expires January 14, 2021               [Page 78]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

SUIT_Unpack_Algorithms /= SUIT_Unpack_Algorithm_Srec

SUIT_Unpack_Algorithm_Hex = 1
SUIT_Unpack_Algorithm_Elf = 2
SUIT_Unpack_Algorithm_Coff = 3
SUIT_Unpack_Algorithm_Srec = 4

SUIT_URI_List = [+ tstr ]

SUIT_Text_Map = {
    ? suit-text-components =>
    [
        + {
            1 => SUIT_Component_Identifier
            SUIT_Text_Component_Keys
        }
    ],
    SUIT_Text_Keys
}

SUIT_Text_Component_Keys = (
    ? suit-text-vendor-name           => tstr,
    ? suit-text-model-name            => tstr,
    ? suit-text-vendor-domain         => tstr,
    ? suit-text-model-info            => tstr,
    ? suit-text-component-description => tstr,
    ? suit-text-component-version     => tstr,
    ? suit-text-version-required      => tstr,
    * $$suit-text-component-key-extensions
)

SUIT_Text_Keys = (
    ? suit-text-manifest-description => tstr,
    ? suit-text-update-description   => tstr,
    ? suit-text-manifest-json-source => tstr,
    ? suit-text-manifest-yaml-source => tstr,
    * $$suit-text-key-extensions
)

suit-delegation = 1
suit-authentication-wrapper = 2
suit-manifest = 3

suit-manifest-version = 1
suit-manifest-sequence-number = 2
suit-common = 3
suit-reference-uri = 4
suit-dependency-resolution = 7

Moran, et al.           Expires January 14, 2021               [Page 79]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

suit-payload-fetch = 8
suit-install = 9
suit-validate = 10
suit-load = 11
suit-run = 12
suit-text = 13
suit-coswid = 14

suit-dependencies = 1
suit-components = 2
suit-dependency-components = 3
suit-common-sequence = 4

suit-dependency-digest = 1
suit-dependency-prefix = 2

suit-component-identifier = 1
suit-component-dependency-index = 2

suit-command-custom = nint

suit-condition-vendor-identifier = 1
suit-condition-class-identifier  = 2
suit-condition-image-match       = 3
suit-condition-use-before        = 4
suit-condition-component-offset  = 5

suit-condition-device-identifier        = 24
suit-condition-image-not-match          = 25
suit-condition-minimum-battery          = 26
suit-condition-update-authorized        = 27
suit-condition-version                  = 28

suit-directive-set-component-index      = 12
suit-directive-set-dependency-index     = 13
suit-directive-abort                    = 14
suit-directive-try-each                 = 15
;suit-directive-do-each                  = 16 ; TBD
;suit-directive-map-filter               = 17 ; TBD
suit-directive-process-dependency       = 18
suit-directive-set-parameters           = 19
suit-directive-override-parameters      = 20
suit-directive-fetch                    = 21
suit-directive-copy                     = 22
suit-directive-run                      = 23

suit-directive-wait                     = 29
suit-directive-fetch-uri-list           = 30

Moran, et al.           Expires January 14, 2021               [Page 80]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

suit-directive-swap                     = 31
suit-directive-run-sequence             = 32

suit-wait-event-authorization = 1
suit-wait-event-power = 2
suit-wait-event-network = 3
suit-wait-event-other-device-version = 4
suit-wait-event-time = 5
suit-wait-event-time-of-day = 6
suit-wait-event-day-of-week = 7

suit-parameter-vendor-identifier = 1
suit-parameter-class-identifier  = 2
suit-parameter-image-digest      = 3
suit-parameter-use-before        = 4
suit-parameter-component-offset  = 5

suit-parameter-strict-order      = 12
suit-parameter-soft-failure      = 13
suit-parameter-image-size        = 14

suit-parameter-encryption-info   = 18
suit-parameter-compression-info  = 19
suit-parameter-unpack-info       = 20
suit-parameter-uri               = 21
suit-parameter-source-component  = 22
suit-parameter-run-args          = 23

suit-parameter-device-identifier = 24
suit-parameter-minimum-battery   = 26
suit-parameter-update-priority   = 27
suit-parameter-version           = 28
suit-parameter-wait-info         = 29
suit-parameter-uri-list          = 30

suit-parameter-custom = nint

suit-compression-algorithm = 1
suit-compression-parameters = 2

suit-unpack-algorithm  = 1
suit-unpack-parameters = 2

suit-text-manifest-description  = 1
suit-text-update-description    = 2
suit-text-manifest-json-source  = 3
suit-text-manifest-yaml-source  = 4

Moran, et al.           Expires January 14, 2021               [Page 81]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

suit-text-vendor-name           = 1
suit-text-model-name            = 2
suit-text-vendor-domain         = 3
suit-text-model-info            = 4
suit-text-component-description = 5
suit-text-component-version     = 6
suit-text-version-required      = 7

B.  Examples

   The following examples demonstrate a small subset of the
   functionality of the manifest.  However, despite this, even a simple
   manifest processor can execute most of these manifests.

   The examples are signed using the following ECDSA secp256r1 key:

   -----BEGIN PRIVATE KEY-----
   MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgApZYjZCUGLM50VBC
   CjYStX+09jGmnyJPrpDLTz/hiXOhRANCAASEloEarguqq9JhVxie7NomvqqL8Rtv
   P+bitWWchdvArTsfKktsCYExwKNtrNHXi9OB3N+wnAUtszmR23M4tKiW
   -----END PRIVATE KEY-----

   The corresponding public key can be used to verify these examples:

   -----BEGIN PUBLIC KEY-----
   MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhJaBGq4LqqvSYVcYnuzaJr6qi/Eb
   bz/m4rVlnIXbwK07HypLbAmBMcCjbazR14vTgdzfsJwFLbM5kdtzOLSolg==
   -----END PUBLIC KEY-----

   Each example uses SHA256 as the digest function.

   Note that reporting policies are declared for each non-flow-control
   command in these examples.  The reporting policies used in the
   examples are described in the following tables.

                +-----------------------------+----------+
                | Policy                      | Label    |
                +-----------------------------+----------+
                | suit-send-record-on-success | Rec-Pass |
                |                             |          |
                | suit-send-record-on-failure | Rec-Fail |
                |                             |          |
                | suit-send-sysinfo-success   | Sys-Pass |
                |                             |          |
                | suit-send-sysinfo-failure   | Sys-Fail |
                +-----------------------------+----------+

Moran, et al.           Expires January 14, 2021               [Page 82]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   +----------------------------+--------+---------+---------+---------+
   | Command                    | Sys-   | Sys-    | Rec-    | Rec-    |
   |                            | Fail   | Pass    | Fail    | Pass    |
   +----------------------------+--------+---------+---------+---------+
   | suit-condition-vendor-     | 1      | 1       | 1       | 1       |
   | identifier                 |        |         |         |         |
   |                            |        |         |         |         |
   | suit-condition-class-      | 1      | 1       | 1       | 1       |
   | identifier                 |        |         |         |         |
   |                            |        |         |         |         |
   | suit-condition-image-match | 1      | 1       | 1       | 1       |
   |                            |        |         |         |         |
   | suit-condition-component-  | 0      | 1       | 0       | 1       |
   | offset                     |        |         |         |         |
   |                            |        |         |         |         |
   | suit-directive-fetch       | 0      | 0       | 1       | 0       |
   |                            |        |         |         |         |
   | suit-directive-copy        | 0      | 0       | 1       | 0       |
   |                            |        |         |         |         |
   | suit-directive-run         | 0      | 0       | 1       | 0       |
   +----------------------------+--------+---------+---------+---------+

B.1 .  Example 0: Secure Boot

   This example covers the following templates:

   -  Compatibility Check ( Section 7.1 )

   -  Secure Boot ( Section 7.2 )

   It also serves as the minimum example.

  {
      / authentication-wrapper / 2:h’81588fd28443a10126a0584482025840356
  3303937656636346266336262396234393465373165316632343138656566386434363
  6636339303266363339613835356563396166336539656464623939584093347ceebc1
  209a2d660bfbbe78e461079f1952c614e1ae8f734ff0ea438110d056c1a0cce6b0599d
  b54e6704847de49efe60e9a7b821215d83368a2c8c7c088’ / [
          h’d28443a10126a05844820258403563303937656636346266336262396234
  3934653731653166323431386565663864343636636339303266363339613835356563
  396166336539656464623939584093347ceebc1209a2d660bfbbe78e461079f1952c61
  4e1ae8f734ff0ea438110d056c1a0cce6b0599db54e6704847de49efe60e9a7b821215
  d83368a2c8c7c088’ / 18([
                  / protected / h’a10126’ / {
                      / alg / 1:-7 / "ES256" /,
                  } /,
                  / unprotected / {
                  },

Moran, et al.           Expires January 14, 2021               [Page 83]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

                  / payload / h’8202584035633039376566363462663362623962
  3439346537316531663234313865656638643436366363393032663633396138353565
  63396166336539656464623939’ / [
                      / algorithm-id / 2 / "sha256" /,
                      / digest-bytes / h’3563303937656636346266336262396
  2343934653731653166323431386565663864343636636339303266363339613835356
  563396166336539656464623939’
                  ] /,
                  / signature / h’93347ceebc1209a2d660bfbbe78e461079f195
  2c614e1ae8f734ff0ea438110d056c1a0cce6b0599db54e6704847de49efe60e9a7b82
  1215d83368a2c8c7c088’
              ]) /
      ] /,
      / manifest / 3:h’a50101020003585fa202818141000458568614a40150fa6b4
  a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248
  202582000112233445566778899aabbccddeeff0123456789abcdeffedcba987654321
  00e1987d0010f020f0a4382030f0c43821702’ / {
          / manifest-version / 1:1,
          / manifest-sequence-number / 2:0,
          / common / 3:h’a202818141000458568614a40150fa6b4a53d5ad5fdfbe9
  de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45035824820258200011223
  3445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f0
  20f’ / {
              / components / 2:[
                  [h’00’]
              ],
              / common-sequence / 4:h’8614a40150fa6b4a53d5ad5fdfbe9de663
  e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582482025820001122334455
  66778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f020f’
  / [
                  / directive-override-parameters / 20,{
                      / vendor-id /
  1:h’"fa6b4a53d5ad5fdfbe9de663e4d41ffe"’ / fa6b4a53-d5ad-5fdf-
  be9d-e663e4d41ffe /,
                      / class-id /
  2:h’"1492af1425695e48bf429b2d51f2ab45"’ /
  1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
                      / image-digest / 3:h’8202582000112233445566778899a
  abbccddeeff0123456789abcdeffedcba9876543210’ / [
                          / algorithm-id / 2 / "sha256" /,
                          / digest-bytes /
  h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
                      ] /,
                      / image-size / 14:34768,
                  } ,
                  / condition-vendor-identifier / 1,15 ,
                  / condition-class-identifier / 2,15
              ] /,

Moran, et al.           Expires January 14, 2021               [Page 84]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

          } /,
          / validate / 10:h’82030f’ / [
              / condition-image-match / 3,15
          ] /,
          / run / 12:h’821702’ / [
              / directive-run / 23,2
          ] /,
      } /,
  }

   Total size of Envelope without COSE authentication object: 117

   Envelope:

   a1035871a50101020003585fa202818141000458568614a40150fa6b4a53
   d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
   0358248202582000112233445566778899aabbccddeeff0123456789abcd
   effedcba98765432100e1987d0010f020f0a4382030f0c43821702

   Total size of Envelope with COSE authentication object: 266

   Envelope with COSE authentication object:

   a202589281588fd28443a10126a058448202584035633039376566363462
   663362623962343934653731653166323431386565663864343636636339
   303266363339613835356563396166336539656464623939584093347cee
   bc1209a2d660bfbbe78e461079f1952c614e1ae8f734ff0ea438110d056c
   1a0cce6b0599db54e6704847de49efe60e9a7b821215d83368a2c8c7c088
   035871a50101020003585fa202818141000458568614a40150fa6b4a53d5
   ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab4503
   58248202582000112233445566778899aabbccddeeff0123456789abcdef
   fedcba98765432100e1987d0010f020f0a4382030f0c43821702

B.2 .  Example 1: Simultaneous Download and Installation of Payload

   This example covers the following templates:

   -  Compatibility Check ( Section 7.1 )

   -  Firmware Download ( Section 7.3 )

   Simultaneous download and installation of payload.  No secure boot is
   present in this example to demonstrate a download-only manifest.

  {
      / authentication-wrapper / 2:h’81588fd28443a10126a0584482025840393
  8376565633835666139396664333164333332333831623938313066393062303563326
  530643466323834613666343231313230376564303066666637353058404931df82e15

Moran, et al.           Expires January 14, 2021               [Page 85]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

  3bf1e3af5a59800216d8a47c33a37839e7d63d9f526fd369aa8359daae18f7619c9591
  23e7f7f928ee92a9893afedd35d06a936d6ed3d5843bf2a’ / [
          h’d28443a10126a05844820258403938376565633835666139396664333164
  3333323338316239383130663930623035633265306434663238346136663432313132
  30376564303066666637353058404931df82e153bf1e3af5a59800216d8a47c33a3783
  9e7d63d9f526fd369aa8359daae18f7619c959123e7f7f928ee92a9893afedd35d06a9
  36d6ed3d5843bf2a’ / 18([
                  / protected / h’a10126’ / {
                      / alg / 1:-7 / "ES256" /,
                  } /,
                  / unprotected / {
                  },
                  / payload / h’8202584039383765656338356661393966643331
  6433333233383162393831306639306230356332653064346632383461366634323131
  32303765643030666666373530’ / [
                      / algorithm-id / 2 / "sha256" /,
                      / digest-bytes / h’3938376565633835666139396664333
  1643333323338316239383130663930623035633265306434663238346136663432313
  132303765643030666666373530’
                  ] /,
                  / signature / h’4931df82e153bf1e3af5a59800216d8a47c33a
  37839e7d63d9f526fd369aa8359daae18f7619c959123e7f7f928ee92a9893afedd35d
  06a936d6ed3d5843bf2a’
              ]) /
      ] /,
      / manifest / 3:h’a50101020103585fa202818141000458568614a40150fa6b4
  a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248
  202582000112233445566778899aabbccddeeff0123456789abcdeffedcba987654321
  00e1987d0010f020f0958258613a115781b687474703a2f2f6578616d706c652e636f6
  d2f66696c652e62696e1502030f0a4382030f’ / {
          / manifest-version / 1:1,
          / manifest-sequence-number / 2:1,
          / common / 3:h’a202818141000458568614a40150fa6b4a53d5ad5fdfbe9
  de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45035824820258200011223
  3445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f0
  20f’ / {
              / components / 2:[
                  [h’00’]
              ],
              / common-sequence / 4:h’8614a40150fa6b4a53d5ad5fdfbe9de663
  e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582482025820001122334455
  66778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f020f’
  / [
                  / directive-override-parameters / 20,{
                      / vendor-id /
  1:h’"fa6b4a53d5ad5fdfbe9de663e4d41ffe"’ / fa6b4a53-d5ad-5fdf-
  be9d-e663e4d41ffe /,
                      / class-id /

Moran, et al.           Expires January 14, 2021               [Page 86]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

  2:h’"1492af1425695e48bf429b2d51f2ab45"’ /
  1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
                      / image-digest / 3:h’8202582000112233445566778899a
  abbccddeeff0123456789abcdeffedcba9876543210’ / [
                          / algorithm-id / 2 / "sha256" /,
                          / digest-bytes /
  h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
                      ] /,
                      / image-size / 14:34768,
                  } ,
                  / condition-vendor-identifier / 1,15 ,
                  / condition-class-identifier / 2,15
              ] /,
          } /,
          / install / 9:h’8613a115781b687474703a2f2f6578616d706c652e636f
  6d2f66696c652e62696e1502030f’ / [
              / directive-set-parameters / 19,{
                  / uri / 21:’http://example.com/file.bin’,
              } ,
              / directive-fetch / 21,2 ,
              / condition-image-match / 3,15
          ] /,
          / validate / 10:h’82030f’ / [
              / condition-image-match / 3,15
          ] /,
      } /,
  }

   Total size of Envelope without COSE authentication object: 152

   Envelope:

   a1035894a50101020103585fa202818141000458568614a40150fa6b4a53
   d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
   0358248202582000112233445566778899aabbccddeeff0123456789abcd
   effedcba98765432100e1987d0010f020f0958258613a115781b68747470
   3a2f2f6578616d706c652e636f6d2f66696c652e62696e1502030f0a4382
   030f

   Total size of Envelope with COSE authentication object: 301

   Envelope with COSE authentication object:

Moran, et al.           Expires January 14, 2021               [Page 87]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   a202589281588fd28443a10126a058448202584039383765656338356661
   393966643331643333323338316239383130663930623035633265306434
   66323834613666343231313230376564303066666637353058404931df82
   e153bf1e3af5a59800216d8a47c33a37839e7d63d9f526fd369aa8359daa
   e18f7619c959123e7f7f928ee92a9893afedd35d06a936d6ed3d5843bf2a
   035894a50101020103585fa202818141000458568614a40150fa6b4a53d5
   ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab4503
   58248202582000112233445566778899aabbccddeeff0123456789abcdef
   fedcba98765432100e1987d0010f020f0958258613a115781b687474703a
   2f2f6578616d706c652e636f6d2f66696c652e62696e1502030f0a438203
   0f

B.3 .  Example 2: Simultaneous Download, Installation, Secure Boot,
      Severed Fields

   This example covers the following templates:

   -  Compatibility Check ( Section 7.1 )

   -  Secure Boot ( Section 7.2 )

   -  Firmware Download ( Section 7.3 )

   This example also demonstrates severable elements ( Section 5.5 ), and
   text ( Section 8.6.4 ).

  {
      / authentication-wrapper / 2:h’81588fd28443a10126a0584482025840373
  5363835353739613833626162643731656338656632326661343961633837336637386
  13730386134336136373465373832616433306236353938643137615840faca70796c3
  19ce6dae69690a64ced3ab91b9bb7f3e9a5004122d629d2816216a870448424ce4410d
  658b80215185e32d8ec6feb15c7275d64437c36418463e4’ / [
          h’d28443a10126a05844820258403735363835353739613833626162643731
  6563386566323266613439616338373366373861373038613433613637346537383261
  6433306236353938643137615840faca70796c319ce6dae69690a64ced3ab91b9bb7f3
  e9a5004122d629d2816216a870448424ce4410d658b80215185e32d8ec6feb15c7275d
  64437c36418463e4’ / 18([
                  / protected / h’a10126’ / {
                      / alg / 1:-7 / "ES256" /,
                  } /,
                  / unprotected / {
                  },
                  / payload / h’8202584037353638353537396138336261626437
  3165633865663232666134396163383733663738613730386134336136373465373832
  61643330623635393864313761’ / [
                      / algorithm-id / 2 / "sha256" /,
                      / digest-bytes / h’3735363835353739613833626162643
  7316563386566323266613439616338373366373861373038613433613637346537383

Moran, et al.           Expires January 14, 2021               [Page 88]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

  261643330623635393864313761’
                  ] /,
                  / signature / h’faca70796c319ce6dae69690a64ced3ab91b9b
  b7f3e9a5004122d629d2816216a870448424ce4410d658b80215185e32d8ec6feb15c7
  275d64437c36418463e4’
              ]) /
      ] /,
      / manifest / 3:h’a70101020203585fa202818141000458568614a40150fa6b4
  a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248
  202582000112233445566778899aabbccddeeff0123456789abcdeffedcba987654321
  00e1987d0010f020f09820258203ee96dc79641970ae46b929ccf0b72ba9536dd84602
  0dbdc9f949d84ea0e18d20a4382030f0c438217020d8202582023f48b2e2838650f43c
  144234aee18401ffe3cce4733b23881c3a8ae2d2b66e8’ / {
          / manifest-version / 1:1,
          / manifest-sequence-number / 2:2,
          / common / 3:h’a202818141000458568614a40150fa6b4a53d5ad5fdfbe9
  de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45035824820258200011223
  3445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f0
  20f’ / {
              / components / 2:[
                  [h’00’]
              ],
              / common-sequence / 4:h’8614a40150fa6b4a53d5ad5fdfbe9de663
  e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582482025820001122334455
  66778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f020f’
  / [
                  / directive-override-parameters / 20,{
                      / vendor-id /
  1:h’"fa6b4a53d5ad5fdfbe9de663e4d41ffe"’ / fa6b4a53-d5ad-5fdf-
  be9d-e663e4d41ffe /,
                      / class-id /
  2:h’"1492af1425695e48bf429b2d51f2ab45"’ /
  1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
                      / image-digest / 3:h’8202582000112233445566778899a
  abbccddeeff0123456789abcdeffedcba9876543210’ / [
                          / algorithm-id / 2 / "sha256" /,
                          / digest-bytes /
  h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
                      ] /,
                      / image-size / 14:34768,
                  } ,
                  / condition-vendor-identifier / 1,15 ,
                  / condition-class-identifier / 2,15
              ] /,
          } /,
          / install / 9:[
              / algorithm-id / 2 / "sha256" /,
              / digest-bytes /

Moran, et al.           Expires January 14, 2021               [Page 89]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

  h’3ee96dc79641970ae46b929ccf0b72ba9536dd846020dbdc9f949d84ea0e18d2’
          ],
          / validate / 10:h’82030f’ / [
              / condition-image-match / 3,15
          ] /,
          / run / 12:h’821702’ / [
              / directive-run / 23,2
          ] /,
          / text / 13:[
              / algorithm-id / 2 / "sha256" /,
              / digest-bytes /
  h’23f48b2e2838650f43c144234aee18401ffe3cce4733b23881c3a8ae2d2b66e8’
          ],
      } /,
      / install / 9:h’8613a1157832687474703a2f2f6578616d706c652e636f6d2f
  766572792f6c6f6e672f706174682f746f2f66696c652f66696c652e62696e1502030f
  ’ / [
          / directive-set-parameters / 19,{
              / uri /
  21:’http://example.com/very/long/path/to/file/file.bin’,
          } ,
          / directive-fetch / 21,2 ,
          / condition-image-match / 3,15
      ] /,
      / text / 13:h’a1814100a2036761726d2e636f6d0578525468697320636f6d70
  6f6e656e7420697320612064656d6f6e7374726174696f6e2e20546865206469676573
  7420697320612073616d706c65207061747465726e2c206e6f742061207265616c206f
  6e652e’ / {
          [h’00’]:{
                  / vendor-domain / 3:’arm.com’,
                  / component-description / 5:’This component is a
  demonstration. The digest is a sample pattern, not a real one.’,
              }
      } /,
  }

   Total size of the Envelope without COSE authentication object or
   Severable Elements: 191

   Envelope:

   a10358bba70101020203585fa202818141000458568614a40150fa6b4a53
   d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
   0358248202582000112233445566778899aabbccddeeff0123456789abcd
   effedcba98765432100e1987d0010f020f09820258203ee96dc79641970a
   e46b929ccf0b72ba9536dd846020dbdc9f949d84ea0e18d20a4382030f0c
   438217020d8202582023f48b2e2838650f43c144234aee18401ffe3cce47
   33b23881c3a8ae2d2b66e8

Moran, et al.           Expires January 14, 2021               [Page 90]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   Total size of the Envelope with COSE authentication object but
   without Severable Elements: 340

   Envelope:

   a202589281588fd28443a10126a058448202584037353638353537396138
   336261626437316563386566323266613439616338373366373861373038
   6134336136373465373832616433306236353938643137615840faca7079
   6c319ce6dae69690a64ced3ab91b9bb7f3e9a5004122d629d2816216a870
   448424ce4410d658b80215185e32d8ec6feb15c7275d64437c36418463e4
   0358bba70101020203585fa202818141000458568614a40150fa6b4a53d5
   ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab4503
   58248202582000112233445566778899aabbccddeeff0123456789abcdef
   fedcba98765432100e1987d0010f020f09820258203ee96dc79641970ae4
   6b929ccf0b72ba9536dd846020dbdc9f949d84ea0e18d20a4382030f0c43
   8217020d8202582023f48b2e2838650f43c144234aee18401ffe3cce4733
   b23881c3a8ae2d2b66e8

   Total size of Envelope with COSE authentication object: 923

   Envelope with COSE authentication object:

Moran, et al.           Expires January 14, 2021               [Page 91]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   a402589281588fd28443a10126a058448202584037353638353537396138
   336261626437316563386566323266613439616338373366373861373038
   6134336136373465373832616433306236353938643137615840faca7079
   6c319ce6dae69690a64ced3ab91b9bb7f3e9a5004122d629d2816216a870
   448424ce4410d658b80215185e32d8ec6feb15c7275d64437c36418463e4
   0358bba70101020203585fa202818141000458568614a40150fa6b4a53d5
   ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab4503
   58248202582000112233445566778899aabbccddeeff0123456789abcdef
   fedcba98765432100e1987d0010f020f09820258203ee96dc79641970ae4
   6b929ccf0b72ba9536dd846020dbdc9f949d84ea0e18d20a4382030f0c43
   8217020d8202582023f48b2e2838650f43c144234aee18401ffe3cce4733
   b23881c3a8ae2d2b66e809583c8613a1157832687474703a2f2f6578616d
   706c652e636f6d2f766572792f6c6f6e672f706174682f746f2f66696c65
   2f66696c652e62696e1502030f0d590204a20179019d2323204578616d70
   6c6520323a2053696d756c74616e656f757320446f776e6c6f61642c2049
   6e7374616c6c6174696f6e2c2053656375726520426f6f742c2053657665
   726564204669656c64730a0a2020202054686973206578616d706c652063
   6f766572732074686520666f6c6c6f77696e672074656d706c617465733a
   0a202020200a202020202a20436f6d7061746962696c6974792043686563
   6b20287b7b74656d706c6174652d636f6d7061746962696c6974792d6368
   65636b7d7d290a202020202a2053656375726520426f6f7420287b7b7465
   6d706c6174652d7365637572652d626f6f747d7d290a202020202a204669
   726d7761726520446f776e6c6f616420287b7b6669726d776172652d646f
   776e6c6f61642d74656d706c6174657d7d290a202020200a202020205468
   6973206578616d706c6520616c736f2064656d6f6e737472617465732073
   6576657261626c6520656c656d656e747320287b7b6f76722d7365766572
   61626c657d7d292c20616e64207465787420287b7b6d616e69666573742d
   6469676573742d746578747d7d292e814100a2036761726d2e636f6d0578
   525468697320636f6d706f6e656e7420697320612064656d6f6e73747261
   74696f6e2e205468652064696765737420697320612073616d706c652070
   61747465726e2c206e6f742061207265616c206f6e652e

B.4 .  Example 3: A/B images

   This example covers the following templates:

   -  Compatibility Check ( Section 7.1 )

   -  Secure Boot ( Section 7.2 )

   -  Firmware Download ( Section 7.3 )

   -  A/B Image Template ( Section 7.10 )

  {
      / authentication-wrapper / 2:h’81588fd28443a10126a0584482025840616
  5306331656136383963393830306138343335353066333837393662366664626435326
  1306337386265356432363031316438653738346461343364343763584010222ddbce4

Moran, et al.           Expires January 14, 2021               [Page 92]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

  e82a85f6ec7b72db34d7c5be8d2e822e4b2d099a4cf1d08aa2174c56c2e93bf20c785b
  ca298900208d92d352faf86e6cddc902a726bbc443c21ff’ / [
          h’d28443a10126a05844820258406165306331656136383963393830306138
  3433353530663338373936623666646264353261306337386265356432363031316438
  653738346461343364343763584010222ddbce4e82a85f6ec7b72db34d7c5be8d2e822
  e4b2d099a4cf1d08aa2174c56c2e93bf20c785bca298900208d92d352faf86e6cddc90
  2a726bbc443c21ff’ / 18([
                  / protected / h’a10126’ / {
                      / alg / 1:-7 / "ES256" /,
                  } /,
                  / unprotected / {
                  },
                  / payload / h’8202584061653063316561363839633938303061
  3834333535306633383739366236666462643532613063373862653564323630313164
  38653738346461343364343763’ / [
                      / algorithm-id / 2 / "sha256" /,
                      / digest-bytes / h’6165306331656136383963393830306
  1383433353530663338373936623666646264353261306337386265356432363031316
  438653738346461343364343763’
                  ] /,
                  / signature / h’10222ddbce4e82a85f6ec7b72db34d7c5be8d2
  e822e4b2d099a4cf1d08aa2174c56c2e93bf20c785bca298900208d92d352faf86e6cd
  dc902a726bbc443c21ff’
              ]) /
      ] /,
      / manifest / 3:h’a5010102030358aaa202818141000458a18814a20150fa6b4
  a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450f82583
  68614a105198400050514a20358248202582000112233445566778899aabbccddeeff0
  123456789abcdeffedcba98765432100e1987d0583a8614a1051a00084400050514a20
  35824820258200123456789abcdeffedcba987654321000112233445566778899aabbc
  cddeeff0e1a00012c22010f020f095861860f82582a8613a105198400050513a115781
  c687474703a2f2f6578616d706c652e636f6d2f66696c65312e62696e582c8613a1051
  a00084400050513a115781c687474703a2f2f6578616d706c652e636f6d2f66696c653
  22e62696e1502030f0a4382030f’ / {
          / manifest-version / 1:1,
          / manifest-sequence-number / 2:3,
          / common / 3:h’a202818141000458a18814a20150fa6b4a53d5ad5fdfbe9
  de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450f8258368614a10519840
  0050514a20358248202582000112233445566778899aabbccddeeff0123456789abcde
  ffedcba98765432100e1987d0583a8614a1051a00084400050514a2035824820258200
  123456789abcdeffedcba987654321000112233445566778899aabbccddeeff0e1a000
  12c22010f020f’ / {
              / components / 2:[
                  [h’00’]
              ],
              / common-sequence / 4:h’8814a20150fa6b4a53d5ad5fdfbe9de663
  e4d41ffe02501492af1425695e48bf429b2d51f2ab450f8258368614a1051984000505
  14a20358248202582000112233445566778899aabbccddeeff0123456789abcdeffedc

Moran, et al.           Expires January 14, 2021               [Page 93]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

  ba98765432100e1987d0583a8614a1051a00084400050514a203582482025820012345
  6789abcdeffedcba987654321000112233445566778899aabbccddeeff0e1a00012c22
  010f020f’ / [
                  / directive-override-parameters / 20,{
                      / vendor-id /
  1:h’"fa6b4a53d5ad5fdfbe9de663e4d41ffe"’ / fa6b4a53-d5ad-5fdf-
  be9d-e663e4d41ffe /,
                      / class-id /
  2:h’"1492af1425695e48bf429b2d51f2ab45"’ /
  1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
                  } ,
                  / directive-try-each / 15,[
                      h’8614a105198400050514a203582482025820001122334455
  66778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d0’ / [
                          / directive-override-parameters / 20,{
                              / offset / 5:33792,
                          } ,
                          / condition-component-offset / 5,5 ,
                          / directive-override-parameters / 20,{
                              / image-digest / 3:h’820258200011223344556
  6778899aabbccddeeff0123456789abcdeffedcba9876543210’ / [
                                  / algorithm-id / 2 / "sha256" /,
                                  / digest-bytes /
  h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
                              ] /,
                              / image-size / 14:34768,
                          }
                      ] / ,
                      h’8614a1051a00084400050514a20358248202582001234567
  89abcdeffedcba987654321000112233445566778899aabbccddeeff0e1a00012c22’
  / [
                          / directive-override-parameters / 20,{
                              / offset / 5:541696,
                          } ,
                          / condition-component-offset / 5,5 ,
                          / directive-override-parameters / 20,{
                              / image-digest / 3:h’820258200123456789abc
  deffedcba987654321000112233445566778899aabbccddeeff’ / [
                                  / algorithm-id / 2 / "sha256" /,
                                  / digest-bytes /
  h’0123456789abcdeffedcba987654321000112233445566778899aabbccddeeff’
                              ] /,
                              / image-size / 14:76834,
                          }
                      ] /
                  ] ,
                  / condition-vendor-identifier / 1,15 ,
                  / condition-class-identifier / 2,15

Moran, et al.           Expires January 14, 2021               [Page 94]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

              ] /,
          } /,
          / install / 9:h’860f82582a8613a105198400050513a115781c68747470
  3a2f2f6578616d706c652e636f6d2f66696c65312e62696e582c8613a1051a00084400
  050513a115781c687474703a2f2f6578616d706c652e636f6d2f66696c65322e62696e
  1502030f’ / [
              / directive-try-each / 15,[
                  h’8613a105198400050513a115781c687474703a2f2f6578616d70
  6c652e636f6d2f66696c65312e62696e’ / [
                      / directive-set-parameters / 19,{
                          / offset / 5:33792,
                      } ,
                      / condition-component-offset / 5,5 ,
                      / directive-set-parameters / 19,{
                          / uri / 21:’http://example.com/file1.bin’,
                      }
                  ] / ,
                  h’8613a1051a00084400050513a115781c687474703a2f2f657861
  6d706c652e636f6d2f66696c65322e62696e’ / [
                      / directive-set-parameters / 19,{
                          / offset / 5:541696,
                      } ,
                      / condition-component-offset / 5,5 ,
                      / directive-set-parameters / 19,{
                          / uri / 21:’http://example.com/file2.bin’,
                      }
                  ] /
              ] ,
              / directive-fetch / 21,2 ,
              / condition-image-match / 3,15
          ] /,
          / validate / 10:h’82030f’ / [
              / condition-image-match / 3,15
          ] /,
      } /,
  }

   Total size of Envelope without COSE authentication object: 288

   Envelope:

Moran, et al.           Expires January 14, 2021               [Page 95]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   a10359011ba5010102030358aaa202818141000458a18814a20150fa6b4a
   53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab
   450f8258368614a105198400050514a20358248202582000112233445566
   778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d058
   3a8614a1051a00084400050514a2035824820258200123456789abcdeffe
   dcba987654321000112233445566778899aabbccddeeff0e1a00012c2201
   0f020f095861860f82582a8613a105198400050513a115781c687474703a
   2f2f6578616d706c652e636f6d2f66696c65312e62696e582c8613a1051a
   00084400050513a115781c687474703a2f2f6578616d706c652e636f6d2f
   66696c65322e62696e1502030f0a4382030f

   Total size of Envelope with COSE authentication object: 437

   Envelope with COSE authentication object:

   a202589281588fd28443a10126a058448202584061653063316561363839
   633938303061383433353530663338373936623666646264353261306337
   386265356432363031316438653738346461343364343763584010222ddb
   ce4e82a85f6ec7b72db34d7c5be8d2e822e4b2d099a4cf1d08aa2174c56c
   2e93bf20c785bca298900208d92d352faf86e6cddc902a726bbc443c21ff
   0359011ba5010102030358aaa202818141000458a18814a20150fa6b4a53
   d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
   0f8258368614a105198400050514a2035824820258200011223344556677
   8899aabbccddeeff0123456789abcdeffedcba98765432100e1987d0583a
   8614a1051a00084400050514a2035824820258200123456789abcdeffedc
   ba987654321000112233445566778899aabbccddeeff0e1a00012c22010f
   020f095861860f82582a8613a105198400050513a115781c687474703a2f
   2f6578616d706c652e636f6d2f66696c65312e62696e582c8613a1051a00
   084400050513a115781c687474703a2f2f6578616d706c652e636f6d2f66
   696c65322e62696e1502030f0a4382030f

B.5 .  Example 4: Load and Decompress from External Storage

   This example covers the following templates:

   -  Compatibility Check ( Section 7.1 )

   -  Secure Boot ( Section 7.2 )

   -  Firmware Download ( Section 7.3 )

   -  Install ( Section 7.4 )

   -  Load & Decompress ( Section 7.7 )

  {
      / authentication-wrapper / 2:h’81588fd28443a10126a0584482025840346
  2346337633863306664613736633963393539316139646231363039313865326233633

Moran, et al.           Expires January 14, 2021               [Page 96]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

  93661353862306135653439383466643465386639333539613932385840d7063361f65
  3d57e63691e1bd9c856058c773b94e488bff58d599c45277788e90eb92fbef666f584e
  8d35b3b20ceef50a69b94dcff12beee92e426a06ea31320’ / [
          h’d28443a10126a05844820258403462346337633863306664613736633963
  3935393161396462313630393138653262336339366135386230613565343938346664
  3465386639333539613932385840d7063361f653d57e63691e1bd9c856058c773b94e4
  88bff58d599c45277788e90eb92fbef666f584e8d35b3b20ceef50a69b94dcff12beee
  92e426a06ea31320’ / 18([
                  / protected / h’a10126’ / {
                      / alg / 1:-7 / "ES256" /,
                  } /,
                  / unprotected / {
                  },
                  / payload / h’8202584034623463376338633066646137366339
  6339353931613964623136303931386532623363393661353862306135653439383466
  64346538663933353961393238’ / [
                      / algorithm-id / 2 / "sha256" /,
                      / digest-bytes / h’3462346337633863306664613736633
  9633935393161396462313630393138653262336339366135386230613565343938346
  664346538663933353961393238’
                  ] /,
                  / signature / h’d7063361f653d57e63691e1bd9c856058c773b
  94e488bff58d599c45277788e90eb92fbef666f584e8d35b3b20ceef50a69b94dcff12
  beee92e426a06ea31320’
              ]) /
      ] /,
      / manifest / 3:h’a801010204035867a20283814100814102814101045858880
  c0014a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2
  d51f2ab450358248202582000112233445566778899aabbccddeeff0123456789abcde
  ffedcba98765432100e1987d0010f020f085827880c0113a115781b687474703a2f2f6
  578616d706c652e636f6d2f66696c652e62696e1502030f094b880c0013a1160116020
  30f0a45840c00030f0b583a880c0213a4035824820258200123456789abcdeffedcba9
  87654321000112233445566778899aabbccddeeff0e1a00012c22130116001602030f0
  c45840c021702’ / {
          / manifest-version / 1:1,
          / manifest-sequence-number / 2:4,
          / common / 3:h’a20283814100814102814101045858880c0014a40150fa6
  b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582
  48202582000112233445566778899aabbccddeeff0123456789abcdeffedcba9876543
  2100e1987d0010f020f’ / {
              / components / 2:[
                  [h’00’] ,
                  [h’02’] ,
                  [h’01’]
              ],
              / common-sequence / 4:h’880c0014a40150fa6b4a53d5ad5fdfbe9d
  e663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248202582000112233
  445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f02

Moran, et al.           Expires January 14, 2021               [Page 97]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

  0f’ / [
                  / directive-set-component-index / 12,0 ,
                  / directive-override-parameters / 20,{
                      / vendor-id /
  1:h’"fa6b4a53d5ad5fdfbe9de663e4d41ffe"’ / fa6b4a53-d5ad-5fdf-
  be9d-e663e4d41ffe /,
                      / class-id /
  2:h’"1492af1425695e48bf429b2d51f2ab45"’ /
  1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
                      / image-digest / 3:h’8202582000112233445566778899a
  abbccddeeff0123456789abcdeffedcba9876543210’ / [
                          / algorithm-id / 2 / "sha256" /,
                          / digest-bytes /
  h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
                      ] /,
                      / image-size / 14:34768,
                  } ,
                  / condition-vendor-identifier / 1,15 ,
                  / condition-class-identifier / 2,15
              ] /,
          } /,
          / payload-fetch / 8:h’880c0113a115781b687474703a2f2f6578616d70
  6c652e636f6d2f66696c652e62696e1502030f’ / [
              / directive-set-component-index / 12,1 ,
              / directive-set-parameters / 19,{
                  / uri / 21:’http://example.com/file.bin’,
              } ,
              / directive-fetch / 21,2 ,
              / condition-image-match / 3,15
          ] /,
          / install / 9:h’880c0013a116011602030f’ / [
              / directive-set-component-index / 12,0 ,
              / directive-set-parameters / 19,{
                  / source-component / 22:1 / [h’02’] /,
              } ,
              / directive-copy / 22,2 ,
              / condition-image-match / 3,15
          ] /,
          / validate / 10:h’840c00030f’ / [
              / directive-set-component-index / 12,0 ,
              / condition-image-match / 3,15
          ] /,
          / load / 11:h’880c0213a4035824820258200123456789abcdeffedcba98
  7654321000112233445566778899aabbccddeeff0e1a00012c22130116001602030f’
  / [
              / directive-set-component-index / 12,2 ,
              / directive-set-parameters / 19,{
                  / image-digest / 3:h’820258200123456789abcdeffedcba987

Moran, et al.           Expires January 14, 2021               [Page 98]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

  654321000112233445566778899aabbccddeeff’ / [
                      / algorithm-id / 2 / "sha256" /,
                      / digest-bytes /
  h’0123456789abcdeffedcba987654321000112233445566778899aabbccddeeff’
                  ] /,
                  / image-size / 14:76834,
                  / source-component / 22:0 / [h’00’] /,
                  / compression-info / 19:1 / "gzip" /,
              } ,
              / directive-copy / 22,2 ,
              / condition-image-match / 3,15
          ] /,
          / run / 12:h’840c021702’ / [
              / directive-set-component-index / 12,2 ,
              / directive-run / 23,2
          ] /,
      } /,
  }

   Total size of Envelope without COSE authentication object: 245

   Envelope:

   a10358f1a801010204035867a20283814100814102814101045858880c00
   14a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48
   bf429b2d51f2ab450358248202582000112233445566778899aabbccddee
   ff0123456789abcdeffedcba98765432100e1987d0010f020f085827880c
   0113a115781b687474703a2f2f6578616d706c652e636f6d2f66696c652e
   62696e1502030f094b880c0013a116011602030f0a45840c00030f0b583a
   880c0213a4035824820258200123456789abcdeffedcba98765432100011
   2233445566778899aabbccddeeff0e1a00012c22130116001602030f0c45
   840c021702

   Total size of Envelope with COSE authentication object: 394

   Envelope with COSE authentication object:

Moran, et al.           Expires January 14, 2021               [Page 99]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   a202589281588fd28443a10126a058448202584034623463376338633066
   646137366339633935393161396462313630393138653262336339366135
   3862306135653439383466643465386639333539613932385840d7063361
   f653d57e63691e1bd9c856058c773b94e488bff58d599c45277788e90eb9
   2fbef666f584e8d35b3b20ceef50a69b94dcff12beee92e426a06ea31320
   0358f1a801010204035867a20283814100814102814101045858880c0014
   a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf
   429b2d51f2ab450358248202582000112233445566778899aabbccddeeff
   0123456789abcdeffedcba98765432100e1987d0010f020f085827880c01
   13a115781b687474703a2f2f6578616d706c652e636f6d2f66696c652e62
   696e1502030f094b880c0013a116011602030f0a45840c00030f0b583a88
   0c0213a4035824820258200123456789abcdeffedcba9876543210001122
   33445566778899aabbccddeeff0e1a00012c22130116001602030f0c4584
   0c021702

B.6 .  Example 5: Two Images

   This example covers the following templates:

   -  Compatibility Check ( Section 7.1 )

   -  Secure Boot ( Section 7.2 )

   -  Firmware Download ( Section 7.3 )

   Furthermore, it shows using these templates with two images.

  {
      / authentication-wrapper / 2:h’81588fd28443a10126a0584482025840323
  1306231323835306332333930393164386538326330653965393130363632623638616
  33834323435386136343138653333663637303165643538333432635840b5b8cb30c2b
  bb646c4d32426d72768668d6d6af54c26ac46c4020ca37ada47b9468340b4d0b2ddd15
  db824a7e6b0bc233e753940dfb7131fa145ddc456da3cf6’ / [
          h’d28443a10126a05844820258403231306231323835306332333930393164
  3865383263306539653931303636326236386163383432343538613634313865333366
  3637303165643538333432635840b5b8cb30c2bbb646c4d32426d72768668d6d6af54c
  26ac46c4020ca37ada47b9468340b4d0b2ddd15db824a7e6b0bc233e753940dfb7131f
  a145ddc456da3cf6’ / 18([
                  / protected / h’a10126’ / {
                      / alg / 1:-7 / "ES256" /,
                  } /,
                  / unprotected / {
                  },
                  / payload / h’8202584032313062313238353063323339303931
  6438653832633065396539313036363262363861633834323435386136343138653333
  66363730316564353833343263’ / [
                      / algorithm-id / 2 / "sha256" /,
                      / digest-bytes / h’3231306231323835306332333930393

Moran, et al.           Expires January 14, 2021              [Page 100]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

  1643865383263306539653931303636326236386163383432343538613634313865333
  366363730316564353833343263’
                  ] /,
                  / signature / h’b5b8cb30c2bbb646c4d32426d72768668d6d6a
  f54c26ac46c4020ca37ada47b9468340b4d0b2ddd15db824a7e6b0bc233e753940dfb7
  131fa145ddc456da3cf6’
              ]) /
      ] /,
      / manifest / 3:h’a601010205035895a202828141008141010458898c0c0014a
  40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2a
  b450358248202582000112233445566778899aabbccddeeff0123456789abcdeffedcb
  a98765432100e1987d0010f020f0c0114a2035824820258200123456789abcdeffedcb
  a987654321000112233445566778899aabbccddeeff0e1a00012c2209584f900c0013a
  115781c687474703a2f2f6578616d706c652e636f6d2f66696c65312e62696e1502030
  f0c0113a115781c687474703a2f2f6578616d706c652e636f6d2f66696c65322e62696
  e1502030f0a49880c00030f0c01030f0c47860c0017021702’ / {
          / manifest-version / 1:1,
          / manifest-sequence-number / 2:5,
          / common / 3:h’a202828141008141010458898c0c0014a40150fa6b4a53d
  5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab4503582482025
  82000112233445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1
  987d0010f020f0c0114a2035824820258200123456789abcdeffedcba9876543210001
  12233445566778899aabbccddeeff0e1a00012c22’ / {
              / components / 2:[
                  [h’00’] ,
                  [h’01’]
              ],
              / common-sequence / 4:h’8c0c0014a40150fa6b4a53d5ad5fdfbe9d
  e663e4d41ffe02501492af1425695e48bf429b2d51f2ab450358248202582000112233
  445566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f02
  0f0c0114a2035824820258200123456789abcdeffedcba987654321000112233445566
  778899aabbccddeeff0e1a00012c22’ / [
                  / directive-set-component-index / 12,0 ,
                  / directive-override-parameters / 20,{
                      / vendor-id /
  1:h’"fa6b4a53d5ad5fdfbe9de663e4d41ffe"’ / fa6b4a53-d5ad-5fdf-
  be9d-e663e4d41ffe /,
                      / class-id /
  2:h’"1492af1425695e48bf429b2d51f2ab45"’ /
  1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
                      / image-digest / 3:h’8202582000112233445566778899a
  abbccddeeff0123456789abcdeffedcba9876543210’ / [
                          / algorithm-id / 2 / "sha256" /,
                          / digest-bytes /
  h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
                      ] /,
                      / image-size / 14:34768,
                  } ,

Moran, et al.           Expires January 14, 2021              [Page 101]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

                  / condition-vendor-identifier / 1,15 ,
                  / condition-class-identifier / 2,15 ,
                  / directive-set-component-index / 12,1 ,
                  / directive-override-parameters / 20,{
                      / image-digest / 3:h’820258200123456789abcdeffedcb
  a987654321000112233445566778899aabbccddeeff’ / [
                          / algorithm-id / 2 / "sha256" /,
                          / digest-bytes /
  h’0123456789abcdeffedcba987654321000112233445566778899aabbccddeeff’
                      ] /,
                      / image-size / 14:76834,
                  }
              ] /,
          } /,
          / install / 9:h’900c0013a115781c687474703a2f2f6578616d706c652e
  636f6d2f66696c65312e62696e1502030f0c0113a115781c687474703a2f2f6578616d
  706c652e636f6d2f66696c65322e62696e1502030f’ / [
              / directive-set-component-index / 12,0 ,
              / directive-set-parameters / 19,{
                  / uri / 21:’http://example.com/file1.bin’,
              } ,
              / directive-fetch / 21,2 ,
              / condition-image-match / 3,15 ,
              / directive-set-component-index / 12,1 ,
              / directive-set-parameters / 19,{
                  / uri / 21:’http://example.com/file2.bin’,
              } ,
              / directive-fetch / 21,2 ,
              / condition-image-match / 3,15
          ] /,
          / validate / 10:h’880c00030f0c01030f’ / [
              / directive-set-component-index / 12,0 ,
              / condition-image-match / 3,15 ,
              / directive-set-component-index / 12,1 ,
              / condition-image-match / 3,15
          ] /,
          / run / 12:h’860c0017021702’ / [
              / directive-set-component-index / 12,0 ,
              / directive-run / 23,2 ,
              / directive-run / 23,2
          ] /,
      } /,
  }

   Total size of Envelope without COSE authentication object: 264

   Envelope:

Moran, et al.           Expires January 14, 2021              [Page 102]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   a103590103a601010205035895a202828141008141010458898c0c0014a4
   0150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf42
   9b2d51f2ab450358248202582000112233445566778899aabbccddeeff01
   23456789abcdeffedcba98765432100e1987d0010f020f0c0114a2035824
   820258200123456789abcdeffedcba987654321000112233445566778899
   aabbccddeeff0e1a00012c2209584f900c0013a115781c687474703a2f2f
   6578616d706c652e636f6d2f66696c65312e62696e1502030f0c0113a115
   781c687474703a2f2f6578616d706c652e636f6d2f66696c65322e62696e
   1502030f0a49880c00030f0c01030f0c47860c0017021702

   Total size of Envelope with COSE authentication object: 413

   Envelope with COSE authentication object:

   a202589281588fd28443a10126a058448202584032313062313238353063
   323339303931643865383263306539653931303636326236386163383432
   3435386136343138653333663637303165643538333432635840b5b8cb30
   c2bbb646c4d32426d72768668d6d6af54c26ac46c4020ca37ada47b94683
   40b4d0b2ddd15db824a7e6b0bc233e753940dfb7131fa145ddc456da3cf6
   03590103a601010205035895a202828141008141010458898c0c0014a401
   50fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b
   2d51f2ab450358248202582000112233445566778899aabbccddeeff0123
   456789abcdeffedcba98765432100e1987d0010f020f0c0114a203582482
   0258200123456789abcdeffedcba987654321000112233445566778899aa
   bbccddeeff0e1a00012c2209584f900c0013a115781c687474703a2f2f65
   78616d706c652e636f6d2f66696c65312e62696e1502030f0c0113a11578
   1c687474703a2f2f6578616d706c652e636f6d2f66696c65322e62696e15
   02030f0a49880c00030f0c01030f0c47860c0017021702

C.  Design Rational

   In order to provide flexible behavior to constrained devices, while
   still allowing more powerful devices to use their full capabilities,
   the SUIT manifest encodes the required behavior of a Recipient
   device.  Behavior is encoded as a specialized byte code, contained in
   a CBOR list.  This promotes a flat encoding, which simplifies the
   parser.  The information encoded by this byte code closely matches
   the operations that a device will perform, which promotes ease of
   processing.  The core operations used by most update and trusted
   execution operations are represented in the byte code.  The byte code
   can be extended by registering new operations.

   The specialized byte code approach gives benefits equivalent to those
   provided by a scripting language or conventional byte code, with two
   substantial differences.  First, the language is extremely high
   level, consisting of only the operations that a device may perform
   during update and trusted execution of a firmware image.  Second, the
   language specifies linear behavior, without reverse branches.

Moran, et al.           Expires January 14, 2021              [Page 103]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   Conditional processing is supported, and parallel and out-of-order
   processing may be performed by sufficiently capable devices.

   By structuring the data in this way, the manifest processor becomes a
   very simple engine that uses a pull parser to interpret the manifest.
   This pull parser invokes a series of command handlers that evaluate a
   Condition or execute a Directive.  Most data is structured in a
   highly regular pattern, which simplifies the parser.

   The results of this allow a Recipient to implement a very small
   parser for constrained applications.  If needed, such a parser also
   allows the Recipient to perform complex updates with reduced
   overhead.  Conditional execution of commands allows a simple device
   to perform important decisions at validation-time.

   Dependency handling is vastly simplified as well.  Dependencies
   function like subroutines of the language.  When a manifest has a
   dependency, it can invoke that dependency’s commands and modify their
   behavior by setting parameters.  Because some parameters come with
   security implications, the dependencies also have a mechanism to
   reject modifications to parameters on a fine-grained level.

   Developing a robust permissions system works in this model too.  The
   Recipient can use a simple ACL that is a table of Identities and
   Component Identifier permissions to ensure that operations on
   components fail unless they are permitted by the ACL.  This table can
   be further refined with individual parameters and commands.

   Capability reporting is similarly simplified.  A Recipient can report
   the Commands, Parameters, Algorithms, and Component Identifiers that
   it supports.  This is sufficiently precise for a manifest author to
   create a manifest that the Recipient can accept.

   The simplicity of design in the Recipient due to all of these
   benefits allows even a highly constrained platform to use advanced
   update capabilities.

C.1 .  C.1 Design Rationale: Envelope

   The Envelope is used instead of a COSE structure for several reasons:

   1.  This enables the use of Severable Elements ( Section 8.8 )

   2.  This enables modular processing of manifests, particularly with
       large signatures.

   3.  This enables multiple authentication schemes.

Moran, et al.           Expires January 14, 2021              [Page 104]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   4.  This allows integrity verification by a dependent to be
       unaffected by adding or removing authentication structures.

   Modular processing is important because it allows a Manifest
   Processor to iterate forward over an Envelope, processing Delegation
   Chains and Authentication Blocks, retaining only intermediate values,
   without any need to seek forward and backwards in a stream until it
   gets to the Manifest itself.  This allows the use of large, Post-
   Quantum signatures without requiring retention of the signature
   itself, or seeking forward and back.

   Four authentication objects are supported by the Envelope:

   -  COSE_Sign_Tagged

   -  COSE_Sign1_Tagged

   -  COSE_Mac_Tagged

   -  COSE_Mac0_Tagged

   The SUIT Envelope allows an Update Authority or intermediary to mix
   and match any number of different authentication blocks it wants
   without any concern for modifying the integrity of another
   authentication block.  This also allows the addition or removal of an
   authentication blocks without changing the integrity check of the
   Manifest, which is important for dependency handling.  See
   Section 6.2

C.2 .  C.2 Byte String Wrappers

   Byte string wrappers are used in several places in the suit manifest.
   The primary reason for wrappers it to limit the parser extent when
   invoked at different times, with a possible loss of context.

   The elements of the suit envelope are wrapped both to set the extents
   used by the parser and to simplify integrity checks by clearly
   defining the length of each element.

   The common block is re-parsed in order to find components identifiers
   from their indices, to find dependency prefixes and digests from
   their identifiers, and to find the common sequence.  The common
   sequence is wrapped so that it matches other sequences, simplifying
   the code path.

   A severed SUIT command sequence will appear in the envelope, so it
   must be wrapped as with all envelope elements.  For consistency,
   command sequences are also wrapped in the manifest.  This also allows

Moran, et al.           Expires January 14, 2021              [Page 105]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   the parser to discern the difference between a command sequence and a
   SUIT_Digest.

   Parameters that are structured types (arrays and maps) are also
   wrapped in a bstr.  This is so that parser extents can be set
   correctly using only a reference to the beginning of the parameter.
   This enables a parser to store a simple list of references to
   parameters that can be retrieved when needed.

D.  Implementation Conformance Matrix

   This section summarizes the functionality a minimal implementation
   needs to offer to claim conformance to this specification, in the
   absence of an application profile standard specifying otherwise.

   The subsequent table shows the conditions.

         +-------------------+-----------------+----------------+
         | Name              | Reference       | Implementation |
         +-------------------+-----------------+----------------+
         | Vendor Identifier | Section 8.7.5.1  | REQUIRED       |
         |                   |                 |                |
         | Class Identifier  | Section 8.7.5.1  | REQUIRED       |
         |                   |                 |                |
         | Device Identifier | Section 8.7.5.1  | OPTIONAL       |
         |                   |                 |                |
         | Image Match       | Section 8.7.6.2  | REQUIRED       |
         |                   |                 |                |
         | Image Not Match   | Section 8.7.6.3  | OPTIONAL       |
         |                   |                 |                |
         | Use Before        | Section 8.7.6.4  | OPTIONAL       |
         |                   |                 |                |
         | Component Offset  | Section 8.7.6.5  | OPTIONAL       |
         |                   |                 |                |
         | Minimum Battery   | Section 8.7.6.6  | OPTIONAL       |
         |                   |                 |                |
         | Update Authorized | Section 8.7.6.7  | OPTIONAL       |
         |                   |                 |                |
         | Version           | Section 8.7.6.8  | OPTIONAL       |
         |                   |                 |                |
         | Custom Condition  | Section 8.7.6.9  | OPTIONAL       |
         +-------------------+-----------------+----------------+

   The subsequent table shows the directives.

Moran, et al.           Expires January 14, 2021              [Page 106]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

   +-------------------+----------------+------------------------------+
   | Name              | Reference      | Implementation               |
   +-------------------+----------------+------------------------------+
   | Set Component     | Section 8.7.7 . | REQUIRED if more than one    |
   | Index             | 1              | component                    |
   |                   |                |                              |
   | Set Dependency    | Section 8.7.7 . | REQUIRED if dependencies     |
   | Index             | 2              | used                         |
   |                   |                |                              |
   | Abort             | Section 8.7.7 . | OPTIONAL                     |
   |                   | 3              |                              |
   |                   |                |                              |
   | Try Each          | Section 8.7.7 . | OPTIONAL                     |
   |                   | 4              |                              |
   |                   |                |                              |
   | Process           | Section 8.7.7 . | OPTIONAL                     |
   | Dependency        | 5              |                              |
   |                   |                |                              |
   | Set Parameters    | Section 8.7.7 . | OPTIONAL                     |
   |                   | 6              |                              |
   |                   |                |                              |
   | Override          | Section 8.7.7 . | REQUIRED                     |
   | Parameters        | 7              |                              |
   |                   |                |                              |
   | Fetch             | Section 8.7.7 . | REQUIRED for Updater         |
   |                   | 8              |                              |
   |                   |                |                              |
   | Copy              | Section 8.7.7 . | OPTIONAL                     |
   |                   | 10             |                              |
   |                   |                |                              |
   | Run               | Section 8.7.7 . | REQUIRED for Bootloader      |
   |                   | 11             |                              |
   |                   |                |                              |
   | Wait For Event    | Section 8.7.7 . | OPTIONAL                     |
   |                   | 12             |                              |
   |                   |                |                              |
   | Run Sequence      | Section 8.7.7 . | OPTIONAL                     |
   |                   | 13             |                              |
   |                   |                |                              |
   | Swap              | Section 8.7.7 . | OPTIONAL                     |
   |                   | 14             |                              |
   |                   |                |                              |
   | Fetch URI List    | Section 8.7.7 . | OPTIONAL                     |
   |                   | 9              |                              |
   +-------------------+----------------+------------------------------+

   The subsequent table shows the parameters.

Moran, et al.           Expires January 14, 2021              [Page 107]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

      +------------------+------------------+----------------------+
      | Name             | Reference        | Implementation       |
      +------------------+------------------+----------------------+
      | Vendor ID        | Section 8.7.5.2   | REQUIRED             |
      |                  |                  |                      |
      | Class ID         | Section 8.7.5.3   | REQUIRED             |
      |                  |                  |                      |
      | Image Digest     | Section 8.7.5.5   | REQUIRED             |
      |                  |                  |                      |
      | Image Size       | Section 8.7.5.6   | REQUIRED             |
      |                  |                  |                      |
      | Use Before       | Section 8.7.5.7   | RECOMMENDED          |
      |                  |                  |                      |
      | Component Offset | Section 8.7.5.8   | OPTIONAL             |
      |                  |                  |                      |
      | Encryption Info  | Section 8.7.5.9   | RECOMMENDED          |
      |                  |                  |                      |
      | Compression Info | Section 8.7.5.10  | RECOMMENDED          |
      |                  |                  |                      |
      | Unpack Info      | Section 8.7.5.11  | RECOMMENDED          |
      |                  |                  |                      |
      | URI              | Section 8.7.5.12  | REQUIRED for Updater |
      |                  |                  |                      |
      | Source Component | Section 8.7.5.13  | OPTIONAL             |
      |                  |                  |                      |
      | Run Args         | Section 8.7.5.14  | OPTIONAL             |
      |                  |                  |                      |
      | Device ID        | Section 8.7.5.4   | OPTIONAL             |
      |                  |                  |                      |
      | Minimum Battery  | Section 8.7.5.15  | OPTIONAL             |
      |                  |                  |                      |
      | Update Priority  | Section 8.7.5.16  | OPTIONAL             |
      |                  |                  |                      |
      | Version Match    | Section 8.7.5.17  | OPTIONAL             |
      |                  |                  |                      |
      | Wait Info        | Section 8.7.5.18  | OPTIONAL             |
      |                  |                  |                      |
      | URI List         | Section 8.7.5.19  | OPTIONAL             |
      |                  |                  |                      |
      | Strict Order     | Section 8.7.5.21  | OPTIONAL             |
      |                  |                  |                      |
      | Soft Failure     | Section 8.7.5.22  | OPTIONAL             |
      |                  |                  |                      |
      | Custom           | Section 8.7.5.23  | OPTIONAL             |
      +------------------+------------------+----------------------+

Moran, et al.           Expires January 14, 2021              [Page 108]



 
Internet-Draft          CBOR-based SUIT Manifest               July 2020

Authors’ Addresses

   Brendan Moran
   Arm Limited

   EMail: Brendan.Moran@arm.com

   Hannes Tschofenig
   Arm Limited

   EMail: hannes.tschofenig@arm.com

   Henk Birkholz
   Fraunhofer SIT

   EMail: henk.birkholz@sit.fraunhofer.de

   Koen Zandberg
   Inria

   EMail: koen.zandberg@inria.fr

Moran, et al.           Expires January 14, 2021              [Page 109]


