
HAL Id: hal-03139672
https://hal.inria.fr/hal-03139672

Submitted on 12 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

About Low DFR for QC-MDPC Decoding
Nicolas Sendrier, Valentin Vasseur

To cite this version:
Nicolas Sendrier, Valentin Vasseur. About Low DFR for QC-MDPC Decoding. PQCrypto 2020 - Post-
Quantum Cryptography 11th International Conference, Sep 2020, Paris / Virtual, France. pp.20–34,
�10.1007/978-3-030-44223-1_2�. �hal-03139672�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395676672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03139672
https://hal.archives-ouvertes.fr

About Low DFR for QC-MDPC Decoding?

Nicolas Sendrier1 and Valentin Vasseur12

1 Inria, Paris, France
FirstName.LastName@inria.fr,

2 Université de Paris, Paris, France.

Abstract McEliece-like code-based key exchange mechanisms using QC-
MDPC codes can reach IND-CPA security under hardness assumptions
from coding theory, namely quasi-cyclic syndrome decoding and quasi-
cyclic codeword finding. To reach higher security requirements, like IND-
CCA security, it is necessary in addition to prove that the decoding
failure rate (DFR) is negligible, for some decoding algorithm and a
proper choice of parameters. Getting a formal proof of a low DFR is a
difficult task. Instead, we propose to ensure this low DFR under some
additional security assumption on the decoder. This assumption relates
to the asymptotic behavior of the decoder and is supported by several
other works. We define a new decoder, Backflip, which features a low
DFR. We evaluate the Backflip decoder by simulation and extrapolate
its DFR under the decoder security assumption. We also measure the
accuracy of our simulation data, in the form of confidence intervals, using
standard techniques from communication systems.

1 Introduction

Moderate Density Parity Check (MDPC) codes were introduced for cryptography3

in [17]. They are related to Low Density Parity Check (LDPC) codes, but instead
of admitting a sparse parity check matrix (with rows of small constant weight) they
admit a somewhat sparse parity check matrix, typically with rows of Hamming
weight O(

√
n) and length n. Together with a quasi-cyclic structure they allow

the design of a McEliece-like public-key encryption scheme [16] with reasonable
key size and a security that provably reduces to generic hard problems over
quasi-cyclic codes, namely the hardness of decoding and the hardness of finding
low weight codewords.

Because of these features, QC-MDPC have attracted a lot of interest from the
cryptographic community. In particular, the BIKE suite of key exchange mechan-
isms has been selected to the second round of the NIST call for standardization of
quantum safe cryptographic primitives 4. The second round BIKE document [1]

? This work was supported by the ANR CBCRYPT project, grant ANR-17-CE39-0007
of the French Agence Nationale de la Recherche.

3 MDPC were previously defined, in a different context, by Ouzan and Be’ery in 2009,
http://arxiv.org/abs/0911.3262

4 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

1

mentions the Backflip decoder, a new variant of bit flipping decoding, as well as
claims about its DFR. The low DFR is an essential feature to achieve IND-CCA
security, and incidentally to resist to the GJS key recovery attack [11] which
exploits decoding failures.

The Backflip algorithm and its DFR claims were never fully described in
an academic work. We provide here the rationale and a precise description of
Backflip as well as a justification and a description of the simulation methodology
and assumptions that were used for estimating the DFR.

The decoding of MDPC codes can be achieved, as for LDPC codes, with
iterative decoders [10] and in particular with the (hard decision) bit flipping
algorithm. The Backflip algorithm will introduce soft information (i.e. reliability
information) by flipping coordinates for a limited time which depends on the
confidence we have in each flipping decision. This confidence is measured from
quantities that were already computed in bit flipping decoders and are thus avail-
able at no extra cost. This way, the new decoder will use soft decision decoding,
as in [2,14] for instance, while keeping the very simple logic and arithmetic which
makes it suited to hardware and embedded device implementations [13].

No theoretical argument is known to guaranty a low DFR for the Backflip
decoder. We will resort to simulation. However proving a very low DFR (e.g.
2−128) cannot be achieved by simulation alone. Instead, we will use simulation
data to extrapolate the DFR in a region of parameters where it is too small to
be estimated by simulation. This extrapolation technique for the DFR is valid
under an additional assumption on the asymptotic behavior of the decoder.

The paper is organized as follows. The §2 will state and comment the security
assumption related to decoding. The §3 will describe the Backflip algorithm and
explain its rationale. The §4 will explain, under the decoder security assumption,
how to obtain DFR estimates with accurate simulation data.

Notation. For any binary vector v, we denote vi its i-th coordinate and |v| its
Hamming weight. Moreover, we will identify v with its support, that is i ∈ v if
and only if vi = 1. Given two binary vectors u and v of same length, we will
denote u ∩ v the set of all indices that belong to both u and v, or equivalently
their component-wise product as vectors.

1.1 Previous Works

A binary Quasi-Cyclic Moderate Density Parity Check (QC-MDPC) code, is a
quasi-cyclic code which admits a parity check matrix of density proportional to
1/
√
n where n is the code length. A QC-MDPC code can efficiently correct an

error of Hamming weight t proportional to
√
n thanks to bit flipping decoding

(Algorithm 1). A (2r, r, w, t)-QC-MDPC-McEliece is an instance of the McEliece
scheme [16] using an QC-MDPC code of index 2 correcting t errors. Such a code
admits a parity check matrix consisting of two sparse circulant blocks of size
r × r and row weight w/2 proportional to

√
n.

We denote R = F2[x]/(xr − 1). The ring R is isomorphic to r × r circulant
matrices. The scheme is fully described by the knowledge of the error weight t

2

and of two polynomials h0, h1 of R of Hamming weight w/2. Its security relates
to the following hard problems.

Problem 1. (2, 1)-QC Syndrome Decoding
Instance: s, h in R, an integer t > 0.
Property: There exists e0, e1 in R such that |e0|+ |e1| ≤ t and e0 + e1h = s.

Problem 2. (2, 1)-QC Codeword Finding
Instance: h in R, an integer w > 0.
Property: There exists h0, h1 in R such that |h0|+ |h1| = w and h1 + h0h = 0.

In the rest of §1.1 we will consider an instance of a (2r, r, w, t)-QC-MDPC-
McEliece scheme. The code length is n = 2r, its dimension is k = r, and we will
denote d = w/2.

Security Assumptions. The security of QC-MDPC-McEliece for QC codes of
index 2 (and rate 1/2) relies on two assumptions.

Assumption 1 Problem 1 is hard on average over s, h in R.

Assumption 2 Problem 2 is hard on average over h in R.

The above assumptions are enough to guaranty the one-wayness of the underlying
encryption primitive. With the ad-hoc conversion they will also be enough to
prove that the related Key Encapsulation Mechanism (KEM) is IND-CPA (see [1]).
To go further and design and prove an IND-CCA KEM, a further assumption on
the decoding failure rate (DFR) is required. This will be examined later in the
paper.

Tightness and Best Known Attacks. The security proofs for QC-MDPC
code-based schemes are tight in the following sense: the proofs require the
decisional versions of Problem 1 and 2 to be hard on average for the size (r, t)
and (r, w) while the best known attacks only require to solve the search version of
either Problem 1 or 2 for the same size (r, t) or (r, w). Note that there is a search
to decision reduction for Syndrome Decoding [9] but it has not been transferred so
far to the quasi-cyclic case. The best solvers for Problem 1 and 2 use Information
Set Decoding (ISD). As explained in [17], it is possible to make use of the quasi-
cyclicity together with the multitarget variant of ISD [20] to slightly improve the
decoding. If WF(n, k, t) is the expected cost of the best ISD solver for the decoding
t errors in a binary linear [n, k] code, the cost of the best solver for Problem 1

and Problem 2 is upper bounded respectively by WF(2r,r,t)√
r

and WF(2r,r,w)
r . When

t � r, which is the case here, it was shown in [4] that asymptotically the
complexity exponent of all variants of ISD was equivalent to the complexity
exponent of Prange algorithm [18], that is WF(n, k, t) = 2t log2

n
n−k (1+o(1)). In

particular, the value WF(2r, r, t) = 2t(1+o(1)) does not depend, for its first order
term, on the block size r.

3

QC-MDPC-McEliece Practical Security. The security of an instance of the
(2r, r, w, t)-QC-MDPC-McEliece scheme reduces to Problem 1 with parameters
(r, t) and Problem 2 with parameters (r, w). We give in Table 1 the security ex-

ponents for the message and key securities, respectively WF(2r,r,t)√
r

and WF(2r,r,w)
r

when the workfactor is computed for the BJMM variant of ISD [3] using the
methodology described in [12]. We remark that, as expected, the security expo-

Problem 2 Problem 1
(r, w, t) key security message security

BIKE level 1
(10163, 142, 134) 129.5 128.6
(11779, 142, 134) 129.8 128.9

BIKE level 3
(19853, 206, 199) 191.6 192.1
(24821, 206, 199) 192.4 193.0

BIKE level 5
(32749, 274, 264) 258.0 255.9
(40597, 274, 264) 258.8 256.9

Table 1. Security exponent of (2r, r, w, t)-QC-MDPC-McEliece (BIKE parameters)

nent grows very slowly with the block size r. The parameters of Table 1 are those
of the NIST proposal BIKE [1]. For each security level, the first and second rows
correspond respectively to the IND-CPA and IND-CCA variants.

Bit Flipping Decoding. All decoders for QC-MDPC codes derive from the
bit flipping decoder given in Algorithm 1 in its syndrome decoding variant. In
Algorithm 1, the counter |s′ ∩ hj | is the number of unsatisfied equations involving
j. Positions with high counter values are flipped. If s′ = s− eHᵀ for some (e, s′),
with H, s′ and e sparse enough, then the algorithm return e with high probability.
The variant presented allows noisy syndrome with u > 0 (as needed for BIKE-3),

Algorithm 1 Bit Flipping Algorithm, (Noisy-)Syndrome Decoding Variant

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , integer u ≥ 0 //u > 0 for noisy syndrome

Ensure:
∣∣s− e′H

ᵀ∣∣ ≤ u or time > max time
e′ ← 0 ; time← 1
while

∣∣s− e′H
ᵀ∣∣ > u and time ≤ max time do

time← time + 1
s′ ← s− e′H

ᵀ

T ← threshold(context)
for j ∈ {0, . . . , n− 1} do

if |s′ ∩ hj | ≥ T then //hj the j-th column of H
e′j ← 1− e′j

return e′

else if u = 0, it defines the usual QC-MDPC decoding (used by BIKE-1/2).

4

Threshold Selection. Selecting the proper threshold is an essential step of the
bit flipping algorithm. In the current state of the art [5,21] the optimal threshold
is given as a function of the syndrome weight and of the error weight. We consider
an execution of Algorithm 1. At any time, let e denote the (remaining) error
vector, the syndrome is s′ = eHᵀ = s− e′Hᵀ. The optimal threshold is defined as

T = threshold(S, t′) is the smallest integer T such that

(n− t′)
(
d
T

)
πT0 (1− π0)d−T ≤

{
t′
(
d
T

)
πT1 (1− π1)d−T if π1 < 1

1 else

where

π1 =
S +X(S, t′)

t′d
, π0 =

(w − 1)S −X(S, t′)

(n− t′)d
and

X(S, t′) =

S
∑
` odd

(`− 1)ρ`(t
′)∑

` odd

ρ`(t
′)

with ρ`(t
′) =

(
w
`

)(
n−w
t′−`

)(
n
t′

) .

Figure 1. Threshold function

in Figure 1 with the call threshold(|eHᵀ| , |e|). Note that the syndrome weight
S = |eHᵀ| = |s− e′Hᵀ| is always known by the the decoder while the error weight
t′ = |e| is only known at the first iteration, since |e| = t by design. Later on
the exact error weight is unknown and a value for t′ has to be chosen somehow.
One possibility is to guess it by using the fact that the expected value of S is
a fonction of t′, E(S) = r

∑
ρ2`+1(t′). Though this identity is only exact at the

first iteration, it provides a good enough estimate of t′ as a function of S. Finally,
even though the procedure for computing the threshold seems involved, it is not
the case in practice. For a given set of parameters, the threshold is a function
of S which can be precomputed and is usually well approximated by an affine
function.

Attacks on the Decoder. The bit flipping algorithm is iterative and probab-
ilistic. In particular, it has a small but positive Decoding Failure Rate (DFR).
This is not an issue if the scheme uses ephemeral keys (e.g. TLS using BIKE
specification) but creates a threat when static keys are used. It was shown in [11]
how to exploit the decoding failures to recover the secret key. This stresses the
importance of reducing the DFR to a negligible value. This is mandatory to
reach CCA security and requires an evolution of the decoder, an increase of the
parameters, an accurate estimate of the DFR, and arguments to support the
accuracy of this estimate.

The GJS technique was later extended [8] to efficiently recover the secret key
if the adversary has access to the number of effective decoding iterations. The

5

latter attack stresses the need of a constant-time implementation when static
keys are used. Allowing constant-time implementation may in turn require an
evolution of the decoder and of the system parameters.

1.2 Related Works

The Backflip decoding algorithm and claims about its DFR were given in [1].
The purpose of this work is to detail and support those claims. A simplified bit
flipping variant, the step-by-step decoder, is modelled with a Markov chain in [21],
the model has a DFR which decreases provably exponentially with the block
size. The asymptotic analysis of [22] of QC-MPDC also predicts an exponential
decrease in the range of interest for cryptography, but the analysis is made in a
specific setting and cannot be directly applied to practical BIKE decoder and
parameters. Another recent work [7] explores another decoder variant for BIKE
to reach simultaneously a low DFR and a constant-time implementation.

2 An Additional Security Assumption

Preliminary: Tangent Extrapolation. When observing the plot of the logarithm
of the simulated DFR versus the block size r (the other parameters w and t are
fixed), one observes that it is always concave. It seems rather natural to assume
that it will remain so and to extrapolate the DFR accordingly. The strategy
will then consist in making a simulation for the largest possible r to accurately
measure the tangent of the lowest possible point of the curve. For instance in

r

log2(DFR)

−128

r′r

−s

−25

Figure 2. DFR Tangent Extrapolation

Figure 2, suppose the low curve (blue) is giving the log2(DFR) and we are able to
make accurate simulation as long as the DFR is above 2−25 (black dots). Taking
the tangent at the last point gives us the red line from which we derive an upper
bound r′ for a block size with a DFR below 2−128 as well as an upper bound 2−s

for the DFR for a given block size r.

6

2.1 Target Parameters

We will consider here three levels of security named according to the NIST
postquantum security nomenclature. For each security level λ below, we denote
rCPA

λ the block size of the IND-CPA variants of BIKE (1 and 2).

Level 1: (w, t) = (142, 134) for λ = 128 bits of classical security, rCPA

λ = 10 163
Level 3: (w, t) = (206, 199) for λ = 192 bits of classical security, rCPA

λ = 19 853
Level 5: (w, t) = (274, 264) for λ = 256 bits of classical security, rCPA

λ = 32 749

As mentionned previously, the security of the (2r, r, w, t)-QC-MDPC-McEliece
scheme only marginally depends of the block size r. To reach IND-CCA security
the block size must be increased slightly, at most 25% [1]. To allow constant-time
implementation, the current state-of-art [7] suggests an extra 10%. We thus
expect that for any security level λ the values of interest for the block size r lie
in the interval [rCPA

λ , 2rCPA

λ].

2.2 The Decoder Security Assumption

By decoder, say we denote it D, we mean a family of decoding algorithms which
can be applied to QC-MDPC codes corresponding to various security levels λ,
including the three levels above, and to any block size rCPA

λ /2 ≤ r ≤ 2rCPA

λ .
For a given security level λ, corresponding to a value of (w, t), we will denote
DFRD,λ(r) the decoding failure rate when the decoder D is applied to an instance
of (2r, r, w, t)-QC-MDPC-McEliece.

Assumption 3 For a given decoder D, and a given security level λ, the function
r 7→ log(DFRD,λ(r)) is decreasing and is concave if DFRD,λ(r) ≥ 2−λ.

2.3 Validity of the Concavity Assumption

Error Floors for QC-MDPC. The mapping r 7→ log(DFRD,λ(r)) cannot be
concave in the whole range r ∈ [0,∞[. As explained in appendix, there is an
additive term Pλ(r) in DFRD,λ(r), coming from the code weight distribution,
whose logarithm is asymptotically equivalent to Cλ − (w/2− 1) log2 r. This term
will dominate when r grows but only for very large values of r. We have

λ = 128, log2 Pλ(rCPA

λ) = −396.8, and log2 Pλ(r) ≈ 535.0− 70 log2 r
λ = 192, log2 Pλ(rCPA

λ) = −618.5, and log2 Pλ(r) ≈ 837.8− 102 log2 r
λ = 256, log2 Pλ(rCPA

λ) = −868.7, and log2 Pλ(r) ≈ 1171.2− 136 log2 r

and this will not affect the DFR for values of r relevant for Assumption 3.

Theoretical Models for the Decoder. In [21] A Markovian model is given for
a simple variant of bit flipping, the step-by-step decoder. This decoder corrects
less errors than other bit flipping variants, however it uses the same ingredients:
computing counters and flipping the corresponding positions if they are above

7

some threshold. The model can be computed for arbitrary large values of r and
we observe that in the range of interest for r the log(DFR) is first strictly concave
and eventually decreases linearly with r. This observation is consistent with
Assumption 3. Note that the model does not capture the contribution of the
weight distribution to the DFR.

Another work explores the asymptotic behavior of QC-MDPC decoding [22].
The asymptotic formula it provides for the DFR cannot be used directly because
the setting is different (w and t vary with r), and also the conditions under which
it can be proven are not relevant for decoders and parameters of practical interest.
However the indication provided by the formula is consistent, the dominant term
in the exponent decreases linearly with r.

To conclude this section, the Assumption 3 is and remains an assumption
in the current state-of-the-art. We point out though that, for all variants of bit
flipping decoding, every related theoretical and simulation results are consistent
with it.

3 Backflip: a New Decoder for QC-MDPC Codes Using
Reliability

Design Rationale: Positions with higher counters in Algorithm 1 have higher
probabilities to be erroneous. Positions are flipped when the counter is above a
threshold, how much above doesn’t matter and a part of the reliability information
is lost. Better performance are achieved with soft-decision decoders such as
the belief propagation algorithm for LDPC codes. These decoders work by
propagating probabilities back and forth between variable nodes and check nodes
in the Tanner graph until the confidence on all values is high enough. Their logic
and arithmetic are more complex though. See [2,14] for examples of soft-decision
MDPC decoding. The idea of Backflip is to use the reliability information while
keeping the simplicity of the bit flipping decoder.

Among the flip decisions, most are good (an error is removed) and some are
bad (an error is added). Bad decisions tend to induce more bad decisions and
may lead to a failure. To exploit the reliability information a decoder could lessen
the impact of the least reliable decisions and strengthen the impact of the most
reliable ones. We propose Backflip, a new bit flipping algorithm which uses time
to leverage the reliability information given by the counters on each flip. Every
flip gets a (finite) time-to-live (an iteration count). When its time is over, the
flip is canceled. Positions with a higher counter stay flipped for a longer time
than positions with a counter just above the threshold. The design of Backflip is
based on the following principles:

– the most reliable decisions will have more influence in the decoding process,
– all bad decisions will be cancelled at some point,
– conservative threshold selection hinders bad decisions in cascade.

In addition, it is readily seen that, compared to Algorithm 1, the Algorithm 2 only
requires a few more operations (in blue) to manage a delay table D. Moreover, as

8

for the threshold, the ttl is very well approximated by an affine fonction for
any fixed set of parameters and its computation has a negligible cost in practice.

Algorithm 2 Backflipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , integer u ≥ 0 //u > 0 for noisy syndrome

Ensure:
∣∣s− e′H

ᵀ∣∣ ≤ u or time > max time
e′ ← 0 ; time← 1 ; D← 0 //Dj = time-of-death of j
while

∣∣s− e′H
ᵀ∣∣ > u and time ≤ max time do //here max time is 100, 10 or 11

for j such that Dj = time do e′j ← 0 //Undo flips at time-of-death
time← time + 1
s′ ← s− e′H

ᵀ

T ← threshold(|s′| , t− |e′|)
for j ∈ {0, . . . , n− 1} do

if |s′ ∩ hj | ≥ T then //hj the j-th column of H
e′j ← 1− e′j ; Dj ← time + ttl(|s′ ∩ hj | − T)

return e′

Threshold Selection Rule threshold(S, t′). As the time-to-live of a flip is
always finite, a bad flip will always be canceled eventually. However, it is necessary
to avoid adding more bad flips during the period during which it remains flipped.
To achieve this, thresholds from Figure 1 are used with S = |s′| and t′ = t− |e′|.
This is the best case estimate for the error weight, it supposes that every flip
removed an error. When many errors were added, the corresponding threshold is
higher than for the usual bit flipping algorithm, this will slow down the decoding
process, leaving time to cancel the bad decisions while making only very reliable
new flips. In the typical case, most flip decisions were good, the threshold is close
to optimal, and the decoding converges quickly.

Time-to-live Rule ttl(δ). Empirically, it appears that the time-to-live should
be increasing with the difference δ between the position’s counter and the iteration
threshold. It should also be finite because otherwise outlier counter values could
lead to adding errors that are harder to detect: correct positions with a high
counter will become errors with a low counter once flipped, their counter will
have to change drastically before it is corrected by an algorithm relying solely on
a threshold. The ttl function depends on the code parameters (especially w and
t) as well as the maximum number of iterations of the decoder. In practice, a
saturating affine function in δ can be used.

ttl(δ) = max(1,min(max ttl, bα δ + βc)) .

To determine a suitable function, w, t, and the number of iterations are fixed.
The block size r is chosen so that a sufficiently precise measure of the DFR can
be made with a reasonable number of samples (≈ 108). A nonlinear optimization

9

method (such as Nelder-Mead’s) is then used to find values for α and β that
minimize the DFR.

Iteration count λ (w, t) (α, β) max ttl

100
128 (142, 134) (0.45, 1.1) 5
192 (206, 199) (0.36, 1.41) 5
256 (274, 264) (0.45, 1) 5

10,11
128 (142, 134) (1, 1) 5
192 (206, 199) (1, 1) 5
256 (274, 264) (1, 1) 5

Table 2. ttl function parameters

Complexity and Constant Time Implementation. Backflip was primarily
designed to work with a maximum of 100 iterations. Reducing this number to 10
is possible and requires an adjustment to the ttl function. However it increases
significantly the estimated DFR (see §4). Nevertheless, in both cases, the average
number of iterations is much smaller, between 2.03 for (r, w, t) = (24821, 206, 199)
and 4.38 for (r, w, t) = (32749, 274, 264).

The interest of reducing max time is to allow constant time implementation.
The Backflip iteration can be implemented in constant time [7], but to mask the
effective number of iterations and keep the DFR claims, the algorithm has to
execute exactly max time iterations.

4 Estimating the DFR from Simulation

Under Assumption 3 for a decoder D and a security level λ, we may extrapolate
the DFR by accurately estimating the tangent of the function r 7→ log2(DFR(r))
for some value of r. We obtain an estimate of the tangent by taking the line
joining the values for two points r1 < r2. Note that, except for a possible lack of
accuracy (discussed below), this will provide upper bounds for the extrapolated
DFRs. Results are presented in Table 3, we denote rD,λ the smallest r such
that DFRD,λ(r) ≤ 2−λ. We denote rCPA

λ and rCCA

λ the blocks sizes in BIKE for
CPA and CCA security. Known asymptotic analysis [21, 22] indicate that the
log2(DFR) is ultimately decreasing linearly, but this linear regime probably starts
much beyond the simulated region. Thus it is best to choose r1, r2 as large as
possible, but not too large else we would decrease the accuracy.

Finally note that a significant computational effort was needed to compute
the data of Table 4, a total of several years of CPU time (on a single core).

Accurary of Simulated DFRs. The decoding failure is a Bernoulli trial of prob-
ability p. If we observe F failures out of N trials our estimate is p̂ = F/N . The

10

#iter λ r1 r2 log2(p1) log2(p2) rD,λ rCCA
λ log2(rCCA

λ) rCPA
λ log2(rCPA

λ)

100
128 9200 9350 -21.4 -27.7 11717 11779 -130.7 10163 -62.2
192 18200 18300 -23.0 -25.6 24665 24821 -196.1 19853 -66.2
256 30250 30400 -23.3 -26.2 42418 40597 -221.2 32749 -71.1

10
128 10000 10050 -22.7 -24.6 12816 11779 -89.2 10163 -28.8
192 19550 19650 -23.5 -25.7 26939 24821 -143.7 19853 -30.4
256 32250 32450 -22.9 -26.6 44638 40597 -180.0 32749 -32.3

11
128 10000 10050 -25.1 -27.1 12573 11779 -96.3 10163 -31.6
192 19550 19650 -25.9 -28.6 25580 24821 -171.1 19853 -34.2
256 32250 32450 -25.1 -29.5 42706 40597 -209.4 32749 -36.1

Table 3. DFR estimation for Backflip limited to max time iterations.

normal distribution gives a good approximation of this distribution in which the
standard deviation for F is

√
p(1− p)N . For p � 1 (the case of interest) we

have
∣∣∣ p̂−pp ∣∣∣ ≤ ε = z/

√
pN with probability 1−α ≈ 0.68, 0.95, 0.997 for z = 1, 2, 3

respectively. We observe that the precision decreases as z/
√
F where F is the

number of failures observed and z will be determined by the confidence we wish
to achieve. Note that for the same confidence, |log p̂− log p| ≤ ε. In our case, we
use Clopper–Pearson intervals [6] which are exact (they use the correct bino-
mial distribution and not an approximation). Those intervals are not symmetric,
the confidence interval is ε− below and ε+ above the measured values. In the

#iter λ r1 F1 N1 log2 p1 ε− ε+ r2 F2 N2 log2 p2 ε− ε+

100
128 9200 1253 3.45 109 -21.4 0.107 0.104 9350 102 2.30 1010 -27.7 0.390 0.361
192 18200 499 4.13 109 -23.0 0.171 0.165 18300 90 4.57 109 -25.6 0.416 0.383
256 30250 282 2.96 109 -23.3 0.229 0.219 30400 80 6.14 109 -25.3 0.443 0.407

10
128 10000 1074 7.29 109 -22.7 0.115 0.113 10050 282 6.99 109 -24.6 0.229 0.219
192 19550 440 5.08 109 -23.5 0.182 0.176 19650 81 4.55 109 -25.7 0.440 0.404
256 32250 513 3.91 109 -22.9 0.168 0.163 32450 37 3.83 109 -26.6 0.673 0.591

11
128 10000 200 7.29 109 -25.1 0.274 0.259 10050 48 6.99 109 -27.1 0.584 0.522
192 19550 83 5.08 109 -25.9 0.435 0.399 19650 11 4.55 109 -28.6 1.348 1.054
256 32250 109 3.91 109 -25.1 0.376 0.350 32450 5 3.83 109 -29.5 2.214 1.501

Table 4. Raw simulation data with confidence intervals (α = 0.01)

simulation for max time = 10 we let the decoder run up to 50 iterations and
store the number of effective iterations. We are thus able to measure the DFR
for 11 iterations of Backflip. We observe in Table 3 a significant improvement in
the DFR, but a lower confidence (Table 4) because the block sizes were chosen
for 10 iterations. Nevertheless, this suggests that increasing max time could

11

provide interesting trade-offs between complexity and DFR for constant time
implementations.

Additional Comments. In [21], the BIKE round 1 algorithm was estimated to have
a DFR around 2−47.5 for (r, w, t) = (32 749, 274, 264). A significant improvement
is made with Backflip as its DFR is estimated around 2−71.1 for the same
parameters, with a smaller complexity on average.

Finally, note that the suggested parameters for the CCA variant of BIKE
Level 5 (λ = 256) have not been correctly estimated. The extrapolated block size
to reach a DFR of 2−256 is 42418 rather than 40597 in [1]. This is due to the
imprecision of the measures at the time. To mitigate this issue, it is very likely
that the tangent we are using is pessimistic and that the actual DFR is much
lower than the extrapolated value given here.

5 Conclusion

We have given in this paper the description and the rationale of the Backflip
decoder of BIKE [1]. We also explain how the DFR claims were obtained by
extrapolating simulation data. To justify the extrapolation technique we introduce
a new security assumption, related to the decoder, under which the DFR claims
are valid. The assumption is supported by other works analyzing the asymptotic
behavior of the bit flipping decoding for QC-MDPC codes. Under this additional
assumption, it is possible to prove that the BIKE KEMs, derived from QC-MDPC
codes, are IND-CCA. Doing this requires extensive simulations in order to obtain
accurate simulation data.

Backflip with 100 iterations would hardly produce efficient constant time
implementations. Reducing the number of iterations to 10 increases the DFR
and would require larger block size to reach a low enough DFR for IND-CCA
security. This was remarked in another independent work [7] which considers
another variant of the bit flipping algorithm, closer to the round 1 BIKE decoder,
and which is more efficient when the number of iterations is bounded to a small
number. The methodology we develop here is valid for other variants of bit
flipping and can be used to justify the conclusions of [7]: we may produce efficient
constant time variants of BIKE with provably low DFR (under Assumption 3)
but it requires a small increase of the block size, in the order of 5% to 10%.

Finally, there is one extra feature of the tangent extrapolation technique.
With a larger amount a computational effort for the simulation, it should be
possible, under the same assumptions, to get the same security guaranty (e.g.
IND-CCA) for a smaller block size.

12

References

1. Carlos Aguilar Melchor, Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Löıc Bidoux,
Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim
Güneysu, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich,
and Gilles Zémor. BIKE. Second round submission to the NIST post-quantum
cryptography call, April 2019.

2. Marco Baldi, Paolo Santini, and Franco Chiaraluce. Soft mceliece: MDPC code-
based mceliece cryptosystems with very compact keys through real-valued inten-
tional errors. In Proc. IEEE Int. Symposium Inf. Theory - ISIT, pages 795–799.
IEEE Press, 2016.

3. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set
decoding. In Advances in Cryptology - EUROCRYPT 2012, LNCS. Springer, 2012.

4. Rodolfo Canto-Torres and Nicolas Sendrier. Analysis of information set decoding
for a sub-linear error weight. In Post-Quantum Cryptography 2016, LNCS, pages
144–161, Fukuoka, Japan, February 2016.

5. Julia Chaulet. Étude de cryptosystèmes à clé publique basés sur les codes MDPC
quasi-cycliques. PhD thesis, University Pierre et Marie Curie, March 2017.

6. C. J. Clopper and E. S. Pearson. The Use of Confidence or Fiducial Limits
Illustrated in the case of the Binomial. Biometrika, 26(4):404–413, 12 1934.

7. Nir Drucker, Shay Gueron, and Dusan Kostic. On constant-time QC-MDPC
decoding with negligible failure rate. Cryptology ePrint Archive, Report 2019/1289,
2019. https://eprint.iacr.org/2019/1289.

8. Edward Eaton, Matthieu Lequesne, Alex Parent, and Nicolas Sendrier. QC-MDPC:
A timing attack and a CCA2 KEM. In Post-Quantum Cryptography - 9th Interna-
tional Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018,
Proceedings, pages 47–76, 2018.

9. Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator
provably as secure as syndrome decoding. In Ueli Maurer, editor, Advances in
Cryptology - EUROCRYPT’96, volume 1070 of LNCS, pages 245–255. Springer,
1996.

10. Robert G. Gallager. Low Density Parity Check Codes. M.I.T. Press, Cambridge,
Massachusetts, 1963.

11. Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on
MDPC with CCA security using decoding errors. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology - ASIACRYPT 2016, volume 10031 of
LNCS, pages 789–815, 2016.

12. Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of inform-
ation set decoding. IACR Cryptology ePrint Archive, Report2013/162, 2013.
http://eprint.iacr.org/2013/162.

13. Stefan Heyse, Ingo von Maurich, and Tim Güneysu. Smaller keys for code-based
cryptography: QC-MDPC McEliece implementations on embedded devices. In
Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and
Embedded Systems - CHES 2013, volume 8086 of LNCS, pages 273–292. Springer,
2013.

14. Gianluigi Liva and Hannes Bartz. Protograph-based quasi-cyclic MDPC codes for
mceliece cryptosystems. In ISTC, pages 1–5, Hong Kong, China, December 2018.
IEEE.

13

15. David J. C. MacKay and Michael S. Postol. Weaknesses of margulis and ramanujan-
margulis low-density parity-check ccodes. Electr. Notes Theor. Comput. Sci.,
74:97–104, 2002.

16. Robert J. McEliece. A Public-Key System Based on Algebraic Coding Theory, pages
114–116. Jet Propulsion Lab, 1978. DSN Progress Report 44.

17. Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
MDPC-McEliece: New McEliece variants from moderate density parity-check codes.
In Proc. IEEE Int. Symposium Inf. Theory - ISIT, pages 2069–2073, 2013.

18. Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

19. Tom Richardson. Error floors of LDPC codes. In Proc. of the 41th Annual Allerton
Conf. on Communication, Control, and Computing, 2003.

20. Nicolas Sendrier. Decoding one out of many. In Post-Quantum Cryptography 2011,
volume 7071 of LNCS, pages 51–67, 2011.

21. Nicolas Sendrier and Valentin Vasseur. On the decoding failure rate of QC-MDPC
bit-flipping decoders. In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum
Cryptography 2019, volume 11505 of LNCS, pages 404–416, Chongquing, China,
May 2019. Springer.

22. Jean-Pierre Tillich. The decoding failure probability of MDPC codes. In 2018
IEEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA,
June 17-22, 2018, pages 941–945, 2018.

A Error Floors For QC-MDPC

The DFR study we are making here differs from what is done for communication
systems where the code is fixed and the signal to noise ratio increases (i.e. the
bit error probability decreases). We expect to observe the same kind of DFR
behavior here for QC-MDPC when we fix (w, t) and let r grow. Some classes of
error correcting codes, namely turbo-codes and LDPC codes to which MDPC
codes are akin, suffer from a phenomenon known as error floor. The log(DFR)
curve is first concave and quickly decreasing (the waterfall). Then at some point
the concavity changes and the DFR decreases much more slowly, this is known as
the error floor [15, 19]. This could contradict the Assumption 3, but fortunately
error floors usually occur very low in DFR curves. The error floors are due to
the existence of low weight codewords, in the case of turbo codes, or, for LDPC
codes, to the existence of specific error configurations known as near-codewords.
An (u, v)-near-codeword is an error pattern of relatively small weight u with a
syndrome of small weight v (the syndrome is computed with the sparse parity
check matrix). Intuitively, it can be seen as a cluster of errors which are less
visible because, together, they only invalidate a few parity equations. If the initial
error pattern contains a near-codeword the decoder is more prone to fail. If many
near-codewords exist it may cause an error floor.

Error Floors From Near-Codewords. To affect decoding in a (2r, r, w, t)-
QC-MDPC-McEliece scheme, an (u, v)-near-codewords (see definition above)
must be such that u is smaller than t, and v significantly smaller than the typical

14

syndrome weight. The probability that such a near-codeword exists when the
QC-MDPC is chosen at random is extremely small. A very small number of
QC-MDPC codes may admit such words, but if they do there will be few of them.
Moreover, the decoding of the few error patterns containing near-codewords will
not automatically fail, the DFR will just increase a bit, with little impact on the
average DFR. Unless there is an algebraic structure which is not immediately
apparent, we do not expect near-codewords to have an impact on QC-MDPC
DFR.

Error Floors From Low Weight Codewords. Regardless of the algorithm,
the decoding of a noisy codeword will almost certainly fail if the noisy codeword
comes closer to a codeword c1 different from the original one c0. For a given error
e of weight t, and two codewords c0 and c1 at distance w from one another, the
decoding will fail if |c0 + e− c1| ≤ |e|, which happens with probability

Pw =

w∑
i=w/2

(
w
i

)(
n−w
t−i
)(

n
t

) . (1)

An index 2 QC-MDPC code with block size r and parity check matrix row weight
w will generally have exactly r codewords of weight w. If H = (H0 | H1) is the
sparse parity check matrix, with two circulant blocks H0,H1, then G = (Hᵀ

1 | H
ᵀ
0)

is a generator matrix of the code. With overwhelming probability, the r rows
of that generator matrix are the only minimal weight codewords. Let us denote
Pλ(r) ≈ rPw the failure probability due to those codewords. A simple analysis
shows that log2 Pλ(r) ∼r→∞ Cλ − (w/2− 1) log2 r where Cλ only depends of w
and t. We have DFRD,λ(r) ≥ Pλ(r) for any decoder, this term will dominate
when r grows and thus the logarithm of the DFR is not concave in the whole
range r ∈ [0,∞[. However the change of slope only happens for very large values
of r. We have

λ = 128, log2 Pλ(rCPA

λ) = −396.8, and log2 Pλ(r) ≈ 535.0− 70 log2 r
λ = 192, log2 Pλ(rCPA

λ) = −618.5, and log2 Pλ(r) ≈ 837.8− 102 log2 r
λ = 256, log2 Pλ(rCPA

λ) = −868.7, and log2 Pλ(r) ≈ 1171.2− 136 log2 r

and this will not affect the DFR for values of r relevant for Assumption 3. Finally
note that the sum of two (or more) rows of G may also contribute to the DFR.
However, it is easily observed that the contribution of those codewords is even
smaller.

15

