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Abstract. We define a notion of relevance of a clause for proving a par-
ticular entailment by the resolution calculus. We think that our notion of
relevance is useful for explaining why an entailment holds. A clause is rel-
evant if there is no proof of the entailment without it. It is semi-relevant
if there is a proof of the entailment using it. It is irrelevant if it is not
needed in any proof. By using well-known translations of description log-
ics to first-order clause logic, we show that all three notions of relevance
are decidable for a number of description logics, including EL and ALC.
We provide effective tests for (semi-)relevance. The (semi-)relevance of a
DL axiom is defined with respect to the (semi-)relevance of the respective
clauses resulting from the translation.

1 Introduction

The motivation for this work comes in particular from complexity management
in the car industry [22,5]. Here, the set of all buildable cars is described by logical
formulas. The formulas encode the available car parts and the rules how to put
these parts together on a certain level of abstraction. The different models of the
conjunction of the overall set of formulas correspond to all individual buildable
cars. A build of a concrete car is performed by proving its entailment with respect
to its specification. For example, we may prove that a car with a specific engine,
body trim, and suspension can be built. An important question that arises in
this context is the overall importance of a rule or a part in a specific car or the
space of all cars. This means given some rule or part, we want to know whether
there is a car where the part, rule is used for its build. Obviously, if this is not
the case, then the part, rule is not used anymore and can be removed from the
overall set of logical formulas. The car portfolio permanently changes. Therefore,
an inherent part of the engineering is to detect superfluous parts or rules. On
the formula level, this question is reflected by our notion of semi-relevance, i.e.,
is there a proof of an entailment (e.g., a concrete built of a car) using a specific
formula (part, rule). Our notion of relevance captures all parts, rules that are
mandatory for the existence of a car. This information is very useful for a product
car engineer to understand the overall car portfolio and its dependencies.
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mons License Attribution 4.0 International (CC BY 4.0).



The paper is organized as follows: in Section 2 we introduce first-order logic,
clausal resolution and translation techniques for description logics to first-order
logic up to the expressivity of ALC [9]. Then, in Section 3, we introduce our no-
tion of relevance on the basis of first-order clauses. With respect to a DL ontology
relevance of an axiom is defined with respect to relevance of the clauses out of
the translation. Section 4 develops effective tests for our notions of relevance. Ba-
sically, relevance can be decided by resolution and semi-relevance by resolution
with a set-of-support strategy. For any logic enjoying the finite model property
for which an a priori bound on the size of models can be computed, the test
for (semi-)relevance is decidable. Section 5 is devoted to a detailed comparison
between our notion of relevance and already existing notions in the DL context.
The paper ends with a discussion on directions of further work, in Section 6.

2 Preliminaries

We consider a first-order language over a set of variables V and a signature
Σ = (Ω,Π) where Ω is an infinite set of function symbols and Π is a finite
non-empty set of predicate symbols. Terms, atoms, literals, clauses and formulas
are defined in the usual way. We write x, y for variables, a, b for constants, P ,
Q, R for predicate symbols, t, s for terms, A, B for atoms, L, K for literals and
C, D for clauses, all possibly indexed and with or without arguments depending
on the context. Given a literal L, comp(L) = ¬A if L = A and comp(L) = A if
L = ¬A. As usual, a term not containing any variable is called a ground term.

Substitutions σ, λ map variables to terms and are the identity on all but
finitely many variables. They are homomorphically extended to terms, literals,
clauses, and sets, sequences thereof. Two terms s, t are unifiable if there is a
substitution σ with sσ = tσ. A most general substitution with respect to in-
stantiation is called a most general unifier, or mgu. The notion of unification is
extended to atoms and literals as usual.

The resolution calculus consists of the two inference rules resolution and
factoring operating on two sets of clauses N and S:

Resolution (N,S)⇒RES (N,S ∪ {(D ∨ C)σ})
if the clauses D ∨A and ¬B ∨ C are either both in S or one is in S
and one is in N and if σ = mgu(A,B)

Factoring (N,S ] {C ∨ L ∨K})⇒RES (N,S ∪ {C ∨ L ∨K} ∪ {(C ∨ L)σ})
if σ = mgu(L,K)

The clauses D ∨ A and ¬B ∨ C are the parents of (D ∨ C)σ and the clause
C ∨ L ∨K is the parent of (C ∨ L)σ.

Given a set of clauses N , the start state (∅, N) initializes the above rules for
the application of the classical resolution calculus. Given a set of clauses N =
N1 ] N2, the start state (N1, N2) initializes the above rules for the application
of the set-of-support (SOS) strategy with set-of-support N2.
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Theorem 1 (Soundness and Completeness of Resolution [19,23]). The
resolution calculus is sound and refutationally complete. The SOS strategy for an
unsatisfiable clause set N = N1]N2 is refutationally complete if N1 is satisfiable
and N2 is the SOS.

A number of description logics can be expressed in first-order logic via a
suitable translation. Furthermore, there is a close relationship between certain
modal logics and description logics. Table 1, following [9], shows the translation
of ALC to first-order logic where in [9] this was shown for a modal logic that can
express ALC. We leave out the definitional form from [9] as it is not needed for
the examples presented here. A translation of a DL ontology is the conjunction
of all translated axioms in the TBox and ABox. Also, we use τ similarly to
translate concepts, roles, TBox, ABox, and the whole ontology. Note that, our
relevance notion is defined on the clausified axioms. For simplicity, we do not
show its clausification in Table 1. The later DL examples have a translation
which is almost in clause form.

Table 1: ALC First-Order Translation

Concepts
τ(>, x) = >
τ(A, x) = A(x)

τ(C uD,x) = τ(C, x) ∧ τ(D,x)

τ(∀r.C, x) = ∀y.(τ(r, x, y))→ τ(C, x))

τ(⊥, x) = ⊥
τ(¬C, x) = ¬τ(C, x)

τ(C tD,x) = τ(C, x) ∨ τ(D,x)

τ(∃r.C, x) = ∃y.(τ(r, x, y) ∧ τ(C, x))
Roles

τ(r, x, y) = r(x, y)

TBox Axioms
τ(C v D) = ∀x.(π(C, x)→ τ(D,x))

τ(C ≡ D) = ∀x.(τ(C, x)↔ τ(D,x))
ABox Axioms

τ(C(d)) = τ(C, d)

τ(r(d1, d2)) = r(d1, d2)

3 A Notion of Relevance

A derivation of a clause C from a clause setN is a finite sequence π = [C1, . . . , Cn]
with Cn = C such that for each Ci ∈ π either: (i) Ci ∈ N or (ii) there is a clause
Cj ∈ π, j < i such that Ci is the result of a Factoring inference from Cj or
(iii) there are clauses Cj , Ck ∈ π, j < k < i such that Ci is the result of a
Resolution inference from Cj and Ck. The derivation π is called connected if in
addition every clause is in π is connected, where connectedness in π is defined
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by Cn = C is connected, and a clause Ci ∈ π is connected if it is the parent of
a connected clause. A connected derivation of ⊥ out of N is a refutation (proof)
of N .

A derivation π = [C1, . . . , Cn] is an SOS derivation from (N,S) if (N,S)⇒∗RES

(N,S′) and Ci ∈ (N ∪ S′) for all i.

Definition 2 (Relevance). Given an unsatisfiable set of clauses N , a clause
C ∈ N is relevant if for all refutations π of N it holds that C ∈ π. A clause
C ∈ N is semi-relevant if there exists a refutation π of N in which C ∈ π. A
clause C ∈ N is irrelevant if there is no refutation π of N in which C ∈ π.

A different notion of relevance was previously defined in the context of propo-
sitional abduction [4]. The authors provide algorithms and complexity results for
various abduction settings in the propositional logic context. In addition to the
fact that our notion of relevance is defined with respect to first-order clauses, in
their context of propositional abduction, if a propositional variable is relevant,
it must be satisfiability preserving when added to the theory (clause set). In our
case, if a clause C ∈ N is (semi-)relevant, then N is unsatisfiable and N \ {C}
may be unsatisfiable as well.

With respect to the first-order translation of DL ontologies, see Table 1, the
above definition on clauses translates as follows. Whenever we want to prove the
entailment of a DL axiom φ from an ontology O, O |= φ, we refute τ(O)∪ τ(¬φ)
via resolution. A DL axiom is then relevant in deriving some entailment, if any
refutation of the negation of the entailment after the respective translations
contains at least one clause out of the translation of the axiom. A DL axiom is
semi-relevant in deriving some entailment, if there is a refutation of the negation
of the entailment after the respective translation that contains one clause out of
the translation of the axiom. It is irrelevant if there is no such refutation that
contains a clause out of the axiom. Note that a relevant DL axiom may translate
into several clauses consisting of more than one semi-relevant clauses which are
not relevant individually.

It may happen that different DL axioms produce the very same clause. In
this case we silently assume a labelling of clauses, where all versions of the same
clause but different labels are kept [13].

Example 3. As an illustration for our notion of relevance in the DL context, we
consider an ALC ontology O = T ∪ A, where

T = {LuxurySedan u ∃hasEngine.HighPerformanceEngine v PerformanceCar,

LuxurySedan t PerformanceCar v ExecutiveCar}

The first concept inclusion says, a luxurious sedan with a high performance
engine is a performance car. The second one expresses that luxurious sedans
and performance cars are executive cars. In addition, we consider the following
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ABox:

A = { LuxurySedan(mercedes),

hasEngine(mercedes, v8),

HighPerformanceEngine(v8)

PerformanceCar(lamborghini)}.

The first-order translation of T according to Table 1 results in

¬LuxurySedan(x) ∨ ¬hasEngine(x, z) ∨ ¬HighPerformanceEngine(z) ∨ PerformanceCar(x)

(¬LuxurySedan(x) ∧ ¬PerformanceCar(x)) ∨ ExecutiveCar(x)

and we want to prove the entailment O |= ExecutiveCar(mercedes). To find (semi-
)relevant axioms for this entailment, we consider ¬ExecutiveCar(mercedes) and
the translation of O to first-order logic. A refutation of the obtained formula is
the following:

π1 = [(1) : ¬LuxurySedan(x) ∨
¬hasEngine(x, z) ∨ ¬HighPerformanceEngine(z) ∨
PerformanceCar(x),

(2) : ¬PerformanceCar(x) ∨ ExecutiveCar(x)

(3) : LuxurySedan(mercedes),

(4) : hasEngine(mercedes, v8), (5) : HighPerformanceEngine(v8),

(6) : ¬LuxurySedan(x) ∨
¬hasEngine(x, z) ∨ ¬HighPerformanceEngine(z) ∨
ExecutiveCar(x),

(7) : ¬hasEngine(mercedes, z) ∨ ¬HighPerformanceEngine(z) ∨
ExecutiveCar(mercedes),

(8) : ¬HighPerformanceEngine(v8) ∨ ExecutiveCar(mercedes),

(9) : ExecutiveCar(mercedes)

(10) : ¬ExecutiveCar(mercedes)

(11) : ⊥].

The clauses (1) to (5) are the initial clauses where we simply perform consecutive
resolution steps between clause (1) and the other clauses (2) to (5) from τ(A).
This will result in the respective clauses (6) to (9). Clause (9) is then refuted
by the negated conjecture, (10), resulting in ⊥. Additionally, π2 is the only
alternative proof for O |= ExecutiveCar(mercedes) with different initial clauses.

π2 = [(1) : ¬LuxurySedan(x) ∨ ExecutiveCar(x)

(2) : LuxurySedan(mercedes),

(3) : ExecutiveCar(mercedes)

(4) : ¬ExecutiveCar(mercedes)

(5) : ⊥].
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The concept inclusion LuxurySedantPerformanceCar v ExecutiveCar is there-
fore relevant since both proofs must contain at least one clause out of its first-
order translation. The ABox axiom LuxurySedan(mercedes) is also relevant. More-
over, the TBox axioms LuxurySedan u ∃hasEngine.(HighPerformanceEngine) v
PerformanceCar and the ABox axioms LuxurySedan(mercedes), hasEngine(mercedes, v8),
and HighPerformanceEngine(v8) are semi-relevant but not relevant. Finally, the
ABox axiom PerformanceCar(lamborghini) is irrelevant.

4 Testing for Relevance

Our notion of relevance can be effectively tested for a number of description
logics, including EL and ALC.

Lemma 4 (Relevant Clauses). Given an unsatisfiable set of clauses N , C ∈
N is relevant if and only if N \ {C} is satisfiable.

Proof. If N \ {C} is satisfiable then clearly C is contained in any refutation. On
the over hand, if C is relevant then, by definition, there cannot be a refutation of
N without C. Because of refutational completeness N \ {C} must be satisfiable.

The characterization of semi-relevant clauses that are not relevant is more
complicated. In the sequel we will prove that given an unsatisfiable clause set
N , a clause C ∈ N is semi-relevant if there exists an SOS refutation with set-
of-support set {C}, i.e., a derivation (N \ {C}, {C})⇒∗RES (N ′, S′ ∪ {⊥}). This
result is not a consequence of Theorem 1 because if C is semi-relevant but
not relevant then N \ {C} is still unsatisfiable. Thus, there is no completeness
guarantee for a refutation with set-of-support {C} so far. The idea of our proof
is to transform a (non-SOS) refutation using C into an SOS refutation with
set-of-support {C}.

As an example, consider the unsatisfiable clause set:

N = { (1) : ¬B(b, a) ∨B(x1, f(x6)), (2) : ¬B(x3, f(a)) ∨A(f(a)),

(3) : ¬A(x4) ∨ ¬B(b, x4), (4) : B(b, x2) ∨ C(x2), (5) : ¬C(x5)},

where the clause (1) is semi-relevant but not relevant. We attach unique numbers
to clauses for reference and indicate resolution (factoring) steps by writing nRm
(respectively nF ) meaning that the clause is a result of a resolvent between clause
n and clause m (respectively a factor out of clause n). A refutation including
clause (1) is:

π1 = [ (2), (3), 2R3 (6) : ¬B(x3, f(a)) ∨ ¬B(b, f(a)), 6F (7) : ¬B(b, f(a)),

(1), (4), 1R4 (8) : B(x1, f(x6)) ∨ C(a), 8R7 (9) : C(a), (5), 9R5 (10) : ⊥],

where the inference 1R4 (8) is an SOS step with set-of-support {¬B(b, a) ∨
B(x1, f(x6))} while the inference 2R3 (6) and 6F (7) are not SOS steps. The
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refutation is depicted in the graph in Figure 1 where shaded clauses mark clauses
contained in an respective SOS when started with SOS {(1)}.

(10):⊥

(9):C(a)

(7):¬B(b,f(a))

(6):¬B(x3,f(a)) ∨ ¬B(b,f(a))

(3):¬A(x4) ∨ ¬B(b,x4)(2):¬B(x3,f(a)) ∨A(f(a))

(8):B(x1,f(x6)) ∨ C(a)

(4):B(b,x2) ∨ C(x2)(1):¬B(b,a) ∨B(x1,f(x6))

(5):¬C(x5)

{x3 7→ b}

{x4 7→ f(a)}

{x1 7→ b, x6 7→ a}

{x2 7→ a}

{x5 7→ a}

Fig. 1. Non-SOS Refutation with ¬B(b, a) ∨B(x1, f(x6))

Tracing back the literals in the original clause set resolved by B(x1, f(x6))
out of clause (8), the idea of our completeness proof is to start with these steps;
for the example, resolving B(x1, f(x6)) in clause (1) with the appropriate literals
from clauses (2) and (3). This then already leads to the following SOS refutation

π2 = [ (1), (4), 1R4(8) : B(x1, f(x6)) ∨ C(a), (2), 2R8(11) : A(f(a)) ∨ C(a),

3R8(12) : ¬A(f(x6)) ∨ C(a), 11R12(13) : C(a) ∨ C(a), 13F (14) : C(a),

(5), 14R5(15) : ⊥].

also depicted in the following graph, where shaded clauses mark clauses contained
in the SOS.

(15):⊥

(14):C(a)

(13):C(a) ∨ C(a)

(12):¬A(f(x6)) ∨ C(a)

(3):¬A(x4) ∨ ¬B(b,x4)(8):B(x1,f(x6)) ∨ C(a))

(4):B(b,x2) ∨ C(x2)(1):¬B(b,a) ∨B(x1,f(x6))

(11):A(f(a)) ∨ C(a)

(2):¬B(x3,f(a)) ∨A(f(a))

(5):¬C(x5)

{x6 7→ a}

{x4 7→ f(x6)}{x1 7→ b}

{x2 7→ a}

{x3 7→ x1}

{x5 7→ a}

{x6 7→ a}

Fig. 2. SOS refutation with ¬B(b, a) ∨B(x1, f(x6))
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The transformation from the non-SOS refutation π1 to the SOS refutation
of π2 is exactly the idea of the proof below of Theorem 5.

Clause (1) is not relevant, because there is also a refutation without it:

π3 = [ (4), (5), 4R5(16) : B(b, x2), (2), 2R16(17) : A(f(a)),

(3), 3R17(18) : ¬B(b, f(a)), 16R18(19) : ⊥]

Theorem 5 (Semi-Relevance Test). Given an unsatisfiable clause set N ]
{C}, the clause C is semi-relevant if and only if (N, {C}) ⇒∗RES (N,S′ ∪ {⊥})
via SOS.

Proof. (Sketch) The backward implication holds by definition. To prove the for-
ward implication let us assume the clause C is semi-relevant. We need to show
that (N, {C})⇒∗RES (N,S′ ∪ {⊥}) via SOS. By definition, there is a resolution
refutation π (without SOS) containing C. If π is also an SOS refutation we are
done. If not, we subsequently transform π into an SOS proof via an inductive
argument. For simplicity and without loss of generality, we assume that π has
a tree structure, i.e., each clause is used exactly once in the refutation, and all
clauses taken from N ] {C} are variable disjoint. Therefore, there is a unique
overall substitution σ such that πσ is also a refutation where all mgus are iden-
tities. The underlying well-founded ordering for the inductive argument is the
multiset of all distances (number of steps) from any clause C ∈ π to ⊥ where C is
not generated by the SOS strategy. Now we pick a clause nRm (l) : D in π, where
n,m < l, l minimal, and m is contained in the SOS, but clause n is not in N and
has not been generated by an SOS derivation. Let L be the literal of m resolved
upon. Then we trace back comp(L) in π to the clauses out of N eventually gen-
erating the clause n. Now we resolve all these clauses first with variable-disjoint
copies of m on comp(L). For each copy, σ is extended accordingly, i.e., the fresh
extra variables are mapped to the same terms as their originals. Then we redo
the derivation of n following exactly the steps out of π, resulting in π′. This
derivation will then generate the clause D via SOS, possibly after some extra
factoring steps. Thus π′ gets strictly smaller with respect to the well-founded
above defined measure. This transformation is possible, because any mgu occur-
ring in π or in π′ can always be instantiated to σ. Our transformation does not
change the starting overall contradicting substitution σ.

Corollary 6 ((Semi)-Relevance Decidability). If resolution is a decision
procedure for some class of clause sets, then (semi-)relevance is decidable.

Many description logics enjoy the finite model property, where the relevant
finite model for some clause set can be explicitly a priori generated [9]. In this
case the logics enjoy the bounded model property. In particular, if resolution is
not a decision procedure for the logic under consideration, an explicit bound on
the Herbrand universe is needed. In [9], the bounded model property of EL, ALC
and other logics is used to provide for a translation-based decision procedure for
these logics. In general, this approach can however be used for many description
logic that have the finite model property, including more expressive description
logics such as SHOI.
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Lemma 7 ((Semi)-Relevance Decidability in Description Logics). For
ontologies in a DL that enjoys the bounded model property, (semi-)relevance of
an axiom for a given property is decidable.

Proof. We translate both the (negated) property and the ontology to first-order
logic. For relevance, we first check satisfiability of the resulting clause set without
the clauses from the axiom via resolution using the bounded model property. This
terminates because we only have to consider terms out of the finite Herbrand
base generated by these logics [9]. If the clause set is unsatisfiable, the axiom is
either irrelevant or semi-relevant but not relevant. If this clause set is satisfiable
the axiom is either relevant or irrelevant because then semi-relevance implies
relevance. In both cases testing for semi-relevance provides the final classification
of the axiom.

To test for semi-relevance, we perform an SOS resolution proof attempt where
the set of support contains the clauses corresponding to the axiom. If this results
in a refutation, the axiom is semi-relevant or relevant for the property depending
on the previous test, otherwise it is irrelevant.

All resolution proof attempts terminate, because they can be stopped once
the generated terms exceed the expected bounded Herbrand universe.

Example 8. We illustrate how the semi-relevant clauses may be lifted to semi-
relevance on TBox axioms. Consider the ontology O = T ∪ A where:

T = {A v B u F, (B u C) tG v D,B tD v E},
A = {A(a), C(a)},

and consider the entailment O |= E(a). The TBox T is translated into:

τ(A v B u F ) = {¬A(x) ∨B(x),¬A(x) ∨ F (x)},
τ((B u C) tG v D) = {¬B(x) ∨ ¬C(x) ∨D(x),¬G(x) ∨D(x)},

τ(B tD v E) = {¬B(x) ∨ E(x),¬D(x) ∨ E(x)}.

For the above clauses, the bounded Herbrand universe consists of a single ele-
ment: {a}. Either this clause set has a model with domain {a} or it does not
have a model at all. Furthermore, for this particular clause set resolution is al-
ready a decision procedure. Then the axioms A v B u F and B t D v E are
relevant because any refutation of E(a) will always contain at least one clauses
from τ(A v BuF ) and τ(BtD v E) respectively. Moreover (BuC)tG v D is
semi-relevant because we can find a refutation where either ¬B(x)∨¬C(x)∨D(x)
or ¬G(x) ∨D(x) do not exist.

Note that here, relevance in clausal form differs when it is lifted to DL axiom.
The axiom BtD v E is relevant but its translation consists of only semi-relevant
(but not relevant) clauses.
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5 Relations to Other Notions in Description Logics and
Beyond

The notions relevant axioms and semi-relevant axioms are related to two prob-
lems in description logics: justifications and repairs. Given an ontology O and
an axiom α s.t. O |= α, a justification for O |= α is a subset-minimal set J ⊆ O
s.t. J |= α [10,20]. A generalisation of justifications is the concept of a MinA [1],
which denotes a minimal axiom set preserving some given property. The process
of computing justifications and MinAs is known as axiom pinpointing. Justifi-
cations are classically used for explaining entailments observed by a reasoner,
for which they are used for example in the ontology editor Protégé [14]. Axioms
that occur in at least one justification have also been studied under the name
MinA-relevant axioms [1,17]. In addition to MinA-relevancy, they even study
a corresponding counting problem #minA-relevance which is to count the
number of MinAs in which a given axiom occurs. MinA-relevant axioms corre-
spond to the case where this count is 1 or more, and MinA-irrelevant axioms
are those whose count is 0, but the count can give a more detailed account on
the relevance of axioms. If the count correspond to the number of MinAs for the
entailment (the corresponding counting problem #minA is also studied in [17]),
then it occurs in every justification.

If an axiom occurs in a justification for α, in the translation into first order
logic, the axiom will be involved in some proof for O |= α. Thus, every axiom
in a justification is semi-relevant for this entailment. One may be tempted to
identify MinA-relevant axioms with semi-relevant ones. Though in most cases,
these notions will coincide, it is in fact possible for an axiom to be semi-relevant
even if it does not occur in any justification, as the following example shows.

Example 9. Consider the ontology O = T ∪ A consisting of the TBox:

T = {A v B,B u C v D,B tD v E}

and the ABox A = {A(a), C(a)}; and consider the entailment O |= E(a). There
is only one justification for this entailment, namely {A v B,B tD v E,A(a)},
so that only those axioms are MinA-relevant for E(a). In contrast, all axioms in
the ontology are semi-relevant for E(a). A first proof in first-order logic uses, in
addition to the negation of E(a) the axioms A(a), A v B and B tD v E:

[A(a),¬A(x) ∨B(x), B(a),¬B(x) ∨ E(x), E(a),¬E(a),⊥].

A second proof also uses A(a), A v B and BtD v E, but additionally includes
C(a) and B u C v D:

[A(a),¬A(x) ∨B(x), B(a),¬B(x) ∨ ¬C(x) ∨D(x),¬C(a) ∨D(a), C(a),

D(a),¬D(x) ∨ E(x), E(a),¬E(a),⊥].

As the example illustrates, our notion of relevance captures connections be-
tween axioms and entailments that are not captured by the classical notion of
justification or MinA-relevance.

10



The notion of relevant axioms is also related to what has been studied in
the field of propositional satisfiability under the name of lean kernels [11,12]:
given an unsatisfiable set F of propositional clauses, the lean kernel Na(F ) ⊆ N
consists exactly of those clauses that are involved in at least one refutation proof
of N in the resolution calculus, and thus, in our terminology, the set of semi-
relevant clauses. This notion has been extended to description logics in [16],
not only considering resolution as an inference procedure, but even arbitrary
consequence-based reasoning procedures. [16] also discuss a generalisation of lean
kernels called MinA-preserving module: given an ontology O and an axiom α, a
MinA-preserving module for α in O is a subsetM⊆ O s.t. every justification for
O |= α is a subset of M. There is no minimality requirement, that is, a MinA-
preserving module may contain axioms that do not occur in any justification.
Because every axiom in a justification is also semi-relevant, the set of all semi-
relevant axioms is also a MinA-preserving module. However, as we illustrated
with the previous example, the set of semi-relevant axioms may capture more
relations than a MinA-preserving module.

As semi-relevance is determined on the level of first-order clauses, there is
also a connection to laconic justifications [7]. A laconic justification departs from
a justification in that it does not have to be a subset of the original ontology, but
may contain axioms that are the result of simplifying axioms in a justification,
for instance by removing conjuncts and disjuncts that are irrelevant for the
entailment. When considering the set of semi-relevant clauses instead of axioms,
we obtain a similar level of precision as with laconic justifications.

Example 10. Consider the ontology:

O = {A v B u C,D tB v E}.

The whole ontology is a justification for O |= A v E. However, the concepts C
and D are superfluous, i.e., they are not needed for the entailment, so that the
axioms would be simplified for the laconic justification. The laconic justification
is thus J = {A v B,B v E}.

Now consider the first-order translation of O.

¬A(x) ∨B(x),¬A(x) ∨ C(x),¬D(x) ∨ E(x),¬B(x) ∨ E(x) (1)

Here, our notion would categorize {¬A(x) ∨ B(x),¬B(x) ∨ E(x)} as relevant,
while the clauses {¬A(x)∨C(x),¬D(x)∨E(x)} would be irrelevant. The relevant
clauses correspond to the axioms in the laconic justification. It remains to check
whether this always holds or not, which we leave as future work.

While axioms in justifications correspond to semi-relevant axioms, an axiom
that occurs in all justifications corresponds to a relevant axiom. When exhibiting
justifications, it is helpful to understand whether they occur only in one justi-
fication or in several. This is for instance reflected in the visual presentation of
justifications in Protégé [15], that indicates for each axiom in a justification in
how many justifications it is included, or whether it is included in every justifi-
cation.

11



Another important connection however is from relevant axioms to repairs. In
ontology repair, the aim is to remove an unwanted entailment from an ontology.
Specifically, a repair for an entailment O |= α is a subset-minimal set R ⊆ O
s.t. O \ R 6|= α [8]. A repair for O |= α always contains one axiom from every
justification for O |= α, a fact that is used in the method for computing repairs
based on Reiter’s Minimal Hitting Set Algorithm [18]. It is not hard to see
that a relevant axiom corresponds to the special case of a repair consisting of
exactly one element. Rather than computing these repairs through the detour of
justifications, our method provides a way of computing these repairs directly.

Two final formalisms worth mentioning are provenance semirings and axiom
pinpointing formulas, as they both are often used to link inferences to entail-
ments. Given an entailment α and an ontology O, a pinpointing formula is a
monotone propositional formula φ over the axioms in O (as propositional sym-
bols) s.t. every model of the formula entails α, and the set of justifications
corresponds exactly to the set of minimal models of φ. Thus, pinpointing for-
mulas can be used to generate justifications, but also have other applications.
Similar to our approach for computing semi-relevant axioms, there are methods
for computing pinpointing formulas by intercepting reasoning procedures, as for
instance done for EL in [2]. This idea of pinpointing formulas is very related
to that of provenance semirings from the field of database access [6], recently
investigated also in the context of DLs [3]. Here the idea is to compute a for-
mula, called provenance polynomial, that links a query result or entailment to
the database entries that are involved in computing the query.

6 Conclusion

We introduced the notions of relevance and semi-relevance in first-order logic,
showed their effectiveness and discussed their relationship to existing notions
known in the DL context. Our notion of relevance adds new aspects in under-
standing an ontology to the related DL notions of justifications and repairs. In
particular, semi-relevant clauses appear to be particularly connected to laconic
justifications and the computation of relevant axioms offers an alternative to
existing repair methods.

The test procedure suggested in Section 4 relying on an explicit finite domain
can be inefficient. It would be desirable to use the original first-order decision pro-
cedures, e.g., ordered resolution [21] for the (semi-)relevance tests. For relevance
this can be obviously done. For semi-relevance this needs an extra argument,
because the SOS strategy is not a priori compatible with ordered resolution.
However, we believe that an extended concept of saturation can lead to a com-
plete SOS procedure for ordered resolution. In any case, the design of an efficient
semi-relevancy detection algorithm is the next considered step in this work.

Acknowledgments: We thank our reviewers for their valuable comments. This
work was funded by DFG grant 389792660 as part of TRR 248 “Foundations of
Perspicuous Software Systems”.
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11. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiabil-
ity, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 339–401. IOS
Press (2009). https://doi.org/10.3233/978-1-58603-929-5-339, https://doi.org/

10.3233/978-1-58603-929-5-339

12. Kullmann, O.: Investigations on autark assignments. Discret. Appl. Math. 107(1-
3), 99–137 (2000). https://doi.org/10.1016/S0166-218X(00)00262-6, https://doi.
org/10.1016/S0166-218X(00)00262-6

13. Lev-Ami, T., Weidenbach, C., Reps, T.W., Sagiv, M.: Labelled clauses. In: Pfen-
ning, F. (ed.) Automated Deduction - CADE-21, 21st International Conference on
Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings. LNCS,
vol. 4603, pp. 311–327. Springer (2007)
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