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Abstract

The aim of this study is to design a non-parametric identifier for homogeneous systems based on a class of artificial neural networks
with continuous dynamics. The identification algorithm is developed for input-affine systems with uncertain gains and diverse degrees of
homogeneity. One of the main contributions of this study is the extension of the universal approximation property of neural networks for
continuous homogeneous systems. Another contribution is the development of a differential non-parametric identifier based on the novel
concept of homogeneous neural networks. The adjustment laws for the weights are obtained from a Lyapunov stability analysis taking
homogeneity properties of the system into account. The ultimate boundedness of the origin for the identification error is demonstrated using
the persistent excitation condition. The effectiveness of the proposed identifier is verified by the simulation of the three-tank homogeneous
model. In this example, the proposed identification scheme is compared with a classical ANN identifier, and we present a statistical
analysis of such comparison. It is shown in simulations that the identification error of the proposed homogeneous algorithm has faster
convergence and less oscillations.

Key words: Non-Parametric Identification, Homogeneous Systems, Differential Neural Networks, Approximate Homogeneity.

1 Introduction

Control and optimization of uncertain systems is an active
research area in the modern control theory. One option to
control such a class of systems consists of designing com-
pensating controllers based on an approximated model of
the uncertain dynamics. This modeling technique is usually
known as system identification [1]. The identifier design can
be either parametric or non-parametric. The first one as-
sumes the existence of an adequate mathematical representa-
tion but with uncertain parameters, which must be estimated
using the input-output response. The second approach pro-
poses an approximate mathematical model whose parame-
ters must be estimated [2,3]. The identification method for
the adjustment of the parameters must guarantee at least that
the identification error is ultimately bounded.

The non-parametric identification problem has been tackled
using several methods due to the inherent complexity of
uncertain models of real plants. Some of these identifica-
tion techniques are also known as black-box identification
using functional series methods, nonlinear auto-regressive
moving average with exogenous input, frequency domain
approaches, fuzzy models, and artificial neural networks
(ANNs) [2,4–6]. Differential neural networks (DNNs),
which form a class of ANNs with a continuous evolution
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of its states, have been used to solve the non-parametric
identification problem of dynamical systems [7,8]. In [9],
the identification, tracking control and disturbance rejection
for a class of uncertain system is proposed using DNNs.
This variant of ANN offers a mathematical structure to
approximate a large class of nonlinear time-dependent map-
pings, see [10,11]. DNNs can be adjusted on-line and used
for multi-input-multi-output systems. The class of DNN is
defined by the activation functions, the number of layers,
and the kind of interconnection between them [12,13]. For
example in [14] and [15] the network structure uses radial
basis functions for the identification task. Besides the DNN
structure, the development of a DNN identifier needs the
design of the parameter adjustment algorithms. There are di-
verse methods to adapt the parameters based on continuous
versions of the least mean square technique or the Lyapunov
stability theory for systems with time-varying parameters
[16]. In [17], the parameters are adjusted using a Lyapunov
stability analysis but for a recurrent neural network, in the
discrete-time case. Most of these techniques offer similar
efficient approximations. However, an additional a priori
information about homogeneity (dilation symmetry) of an
uncertain system may allow better identification of the sys-
tem. The lack of a solution using symmetry information
is the motivation of developing non-parametric identifiers
with continuous dynamics for homogeneous systems.
Homogeneity is a kind of symmetry under which an object
remains consistent for a certain scaling or dilation. Homo-
geneous systems can be utilized for local approximations
[18,19] or set-valued extensions [20,21] of nonlinear control
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systems. In particular, some models of control process [22],
non-holonomic mechanical systems [23], and systems with
frictions [20] are homogeneous or at least locally homoge-
neous. One of the main features of homogeneous systems is
that the local analysis (on the unit sphere, for example) can
be extended to the whole state space [24–27].

To the best of the authors’ knowledge, the identification
problem of homogeneous systems has not been profoundly
studied in the literature. The need in such an identifier is
motivated by the wide class of uncertain systems which
preserve the homogeneity property (at least locally). Based
on all the above mentioned homogeneity properties and the
wide application of the non-parametric identifiers for con-
trolling uncertain systems, this study offers the design of a
non-parametric identifier with a homogeneous structure us-
ing DNNs. In consequence, if the identifier may approxi-
mate locally a homogeneous system, then the approximation
ability can be expanded to the whole state space [24,26,27].

A preliminary version of this work was presented in [28],
the novelty of this work consists of the following:

-The key difference of the present version is that the stability
analysis of the DNN identifier in the case of a non-exact
representation of the system is provided; the proofs and the
comparison of the presented homogeneous DNN identifier
with a classical one are given.
-For homogeneous and locally homogeneous dynamical sys-
tems, a non-parametric identifier is designed based on DNN.
-The universal approximation property of ANN for homo-
geneous systems is quantified.
-The closed-loop identification error stability is proven us-
ing Lyapunov arguments, homogeneity and persistence of
excitation (PE) condition.
-Numerical validation of the proposed DNN-identifier for
a three-tank system confirms efficiency of the proposed
method.

Notation: R denotes the set of real numbers, R+ =
{x 2 R : x � 0}. For any J 2 R+ and 8x 2 R we set
dxcJ = sign(x)|x|J. The Euclidean norm is denoted by
k · k, the weighted norm kzkQ :=

p
z>Qz for z 2 Rn and

Q = Q> 2 Rn⇥n, Q > 0. The trace of matrix H 2 Rn⇥n

is defined as tr{H}. The Frobenius norm is denoted by
kBkF =

q
tr
�

B>B
 

for B 2 Rn⇥r. We set vec(M) 2 Rnm

as the vectorization of matrix M 2 Rn⇥m. The Kronecker
product is denoted by ⌦. Notation diag{A1, . . . ,An} means
the block diagonal matrix conformed by matrices Ai,
i = {1, . . . ,n}. A continuous function r : R+ ! R+ is a
class-K function if it is strictly increasing and r(0) = 0.

2 Problem Statement

The nonlinear system considered in this manuscript is given
by the following ordinary differential equations:

ẋ = f (x,u), t 2 R+, x(0) = x0, (1)

where f (x,u) := f0(x) +
m
Â

i=1
fi(x)ui, x(t) 2 Rn is the state

vector of the system; x0 2Rn is the initial condition, u(t) =
[u1(t), ..,um(t)]> 2Rm is the control input, m  n. The func-
tion f0 : Rn !Rn is a drift term of the system, the input as-
sociated functions fi : Rn ! Rn, i = 0,1, ...,m are unknown
nonlinear vector fields. The identifier design for (1) is stud-
ied under the following basic assumptions:

Assumption 1 The vector fields fi, i = 0,1, ...,m are con-
tinuous on the unit sphere S = {x 2 Rn : kxk= 1}.

Assumption 2 The vector fields fi are homogeneous in the
standard sense with known homogeneity degrees ni 2R, i.e.,
fi(lx) = lni fi(x),8x 2 Rn, 8l > 0, where i = 0,1, ...,m.

The standard homogeneity for the given function f means
that such a function f is symmetric with respect to the uni-
form dilation x 7! lx of its argument.

Remark 1 Notice that the generalized concepts of ho-
mogeneity [27,29–31] can be considered instead of the
standard one. In this case, the condition Assumption 2 be-
comes fi(D(l)x) = lniD(l) fi(x), 8x 2 Rn,8l > 0, where
D : R+ ! Rn⇥n is a dilation in Rn (see [31,32] for more
details). For D(l) = lI the uniform dilation is recovered. In
the finite dimensional case, any generalized homogeneous
system is topologically equivalent to a standard homoge-
neous one [32,33], i.e. Assumption 2 holds after certain
transformation of the coordinates.

Assumption 3 The whole state vector of (1) assumed to
be on-line measured, bounded and sufficiently excited by
control inputs (the details are given in Theorems 2 and 3).

Assumption 4 The control inputs are known essentially
bounded functions such that |ui(t)|U <+•, 8t 2R+, i=
1, . . . ,m.

Remark 2 Assumptions 3 and 4 are commonly used in sys-
tem identification (parametric and non-parametric). There
are new studies working on incomplete input-output mea-
surement or relaxed excitation concepts [1,34–36]. Since it
is the first time, when a DNN is proposed for homogeneous
systems, we decided to focus on the most common hypothe-
ses leaving technical relaxations for further researches.

The aim of this study is to solve the identification prob-
lem for (1) under the proposed assumptions 1-4. The solu-
tion consists of finding an approximate model for the vec-
tor field f and its parameters such that, the error between
the states of (1) and the states of the approximate structure
are small (in a certain norm). Therefore, the first step is to
represent (1) as a valid approximate model taking into ac-
count the homogeneity property of f . This work proposes
a homogeneous DNN structure. The second step consists in
designing adaptive laws for the adjustment of weights of
this DNN identifier, such that, the error e := x� x̂ between
the system states x and the DNN identifier states x̂ satisfies
limsup

t!•
ke(t)k  r(e+)<+•, where e+ 2R+ characterizes

the best possible approximation of the unknown mapping f
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by means of the DNN identifier and r : R+ !R+ is a class-
K function. Obviously, if e+ = 0 (i.e. the DNN model may
exactly approximate the original system) then the error e(t)
must tend to zero as t !+•.
Remark 3 Homogeneity allows local properties of vector
fields to be extended globally, for example, the vector field
fi : Rn ! Rn satisfying Assumption 2, is locally Lipschitz
continuous on Rn \ {0} if and only if it satisfies the Lips-
chitz condition on the unit sphere, see e.g. [32] and [37].
Similarly, (1) satisfying assumptions 1 and 2 has the contin-
uous right-hand side (on the first argument) in Rn\{0}. For
ni = 0, the function fi may be discontinuous at the origin.
Therefore, the developed identifier has to be able to deal
with discontinuous (at the origin) models.

3 Neural networks approximation property for homo-
geneous systems

The universal approximation property of ANN has been used
in several works, which claims that any continuous function
can be approximated arbitrarily closely on a compact set us-
ing weighted superposition of nonlinear functions such as
polynomials, radial basis functions [38] and sigmoidal func-
tions [3,10,12,39]. The following theorem justifies the ap-
proximation of continuous functions by sigmoidal functions:

Theorem 1 [39] Let s(·) be a non-constant, bounded
monotone-increasing continuous function. Let K be
a compact subset of Rn and f (x1, . . . ,xn) be a real
valued continuous function on K. Then, for an arbi-
trary e > 0, there exists an integer N and real con-
stants wi, ci, bi j, where i = 1, ...,N and j = 1, ...,n,
such that F(x) := ÂN

i=1 wis
⇣

Ân
j=1 bi jx j + ci

⌘
satisfies

max
x2K

|F(x)� f (x)|< e.

Notice that Theorem 1 is formulated under the assump-
tion that the ANN has two layers and it has a static struc-
ture. The proof of this theorem has its fundamentals on the
Stone–Weierstrass and the Kolmogorov approximation the-
orems [40]. This property is used in DNN structures for the
representation of dynamic systems.
Remark 4 In [7,41] and [42], it is stated that the param-
eters ci, and bi j can be selected randomly using a uniform
distribution. Then, in the aforementioned works, it is shown
that the universal approximation property holds by finding
only the parameters wi.
All classical DNN identifiers are not homogeneous by con-
struction, so the dilation symmetry of the system (1) cannot
be preserved in an approximate model. Since any homoge-
neous vector field is uniquely defined by its values on the
unit sphere and the homogeneity degree, the above theorem
implies the following approximation property for the system
(1).
Corollary 1 Let (1) satisfy the assumptions 1 and 2. Then,
for any ei 2R+ and for any Hurwitz matrix A 2Rn⇥n there
exist Ni 2 R and W ⇤

i 2 Rn⇥Ni , i = 0,1, ..,m such that:

kp(x,u)ke0kxkn0+
m

Â
i=1

eikxkni |ui|, 8x2Rn, 8u2Rm, (2)

where p(x,u) := f (x,u)�F(x,u) and the approximate func-
tion F(x,u) is given by

F(x,u)=kxkn0
h

Ax
kxk +W ⇤

0 s0

⇣
x
kxk

⌘i
+

m

Â
i=1

kxkniW ⇤
i si

⇣
x
kxk

⌘
ui.

(3)The elements of the vector functions si : Rn ! RN
i are pro-

posed as sigmoidal activation functions, that is:

(si(x)) j =
⇣

1+ ci je�b>i j x
⌘�1

, (4)

where ci j 2R+ and bi j 2Rn are properly selected parame-
ters with i = 0,1, ...,m and j = 1, ...,Ni.

PROOF. Based on the properties given in Assumption 2,
the system (1) can be rewritten as ẋ = kxkn0 f0(x/kxk) +
m
Â

i=1
kxkni fi(x/kxk)ui. Notice that, the right-hand side of the

system (1) is uniquely identified by its values on the unit
sphere.

Consider the functions f̃i : Rn ! Rn, i = 0,1, ...,m (associ-
ated to the components of the control u, except f̃0), that is
f̃i(x) = fi(x) = fi(x/kxk). The modeling error function f̃i is
continuous on Rn \ {0} due to continuity of fi on the unit
sphere, see Remark 3. Applying the Theorem 1 to each com-
ponent of the vector f̃i, i = 1,2, ...m and to f̃0 (x)�Ax/kxk
on the unit sphere S, and based on the continuity argu-
ments, it can be observed that W ⇤

i si(x/kxk) approximates
f̃i(x) = fi(x/kxk) with an arbitrary small error ei. Notice
that the application of sigmoidal functions justifies that the
approximation error can be made arbitrary small with the
proper selection of parameters (scalars and vectors) W ⇤

i , bi j
and ci j. Taking into account the homogeneity of nonlin-
ear functions fi, i = 0, ...,m, the desired global estimate (2)
holds.

It is a well-known fact that usually an ANN guarantees a
certain quality of approximation on a compact set only (that
happens out this set is often not specified, and the error
may become quickly growing) (see, [7,12,39]). Corollary 1
states results on approximation by the proposed homoge-
neous ANN not just for a particular compact set but quan-
tifies how the approximation error grows globally. Hence,
and in view of Remark 4, below we assume that the pa-
rameters bi j and ci j are selected randomly with a uniform
distribution, and it is needed to find matrices W ⇤

i in order to
complete the identification of the homogeneous model.

Remark 5 The activation functions (4) are bounded. Hence,
the vectors of the activation functions used for the identifica-
tion on the unit sphere are bounded in the following sense:

ksi(x/kxk)k 
p

Ni, 8x 2 Rn. (5)

Remark 6 Usually, a function f can be approximated by
an ANN structure only on a compact set (see Theorem 1).
The homogeneous ANN structure (3) gives a global approx-
imation of f (see the formula (2)).
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4 Identification of affine homogeneous control systems

4.1 The case of known control gains

Let us consider initially the case when the nonlinear vector
fields fi : Rn !Rn, i = 1, ...,m associated with the input are
known, so it is only necessary to identify the vector field f0.

Remark 7 In Corollary 1, the bound for the approximation
error for the complete unknown vector field case is pre-
sented. Hence, the approximation error considering f0 un-
known and the control gains fi, i = 0, ...,m as known, leads
to the following inequality:

kd(x/kxk)k  e0 , 8x 2 Rn, (6)

where d(x/kxk) = f0(x/kxk)�Ax/kxk�W ⇤
0 s0(x/kxk).

Notice that W ⇤
0 s0(x/kxk) := S0(x/kxk)w⇤

0, where S0(z) =
In⌦s>

0 (z)2Rn⇥nN0 , z2Rn, In 2Rn⇥n is the identity matrix
and w⇤

0 = vec
⇣
(W ⇤

0 )
>
⌘
2 RnN0 . The Frobenius norm of the

matrix S0(x/kxk) has a finite upper-bound (in the matrix
space) in view of (5), i.e.

kS0(x/kxk)kF 
p

nN0, 8x 2 Rn. (7)

The identification problem can be understood as finding the
vector of weights w0 by implementing a weights adjustment
law such that w0 converges to w⇤

0 and x can be reproduced
by x̂, where x̂ 2 Rn represents the state vector of the DNN
identifier (8)-(10).

Theorem 2 Let assumptions 1-4 be satisfied and consider
the approximation (3) for the homogeneous vector field f0,
with modeling error as in Remark 7 and

d
dt x̂ = kxkn0

h
A x̂
kxk +S0

⇣
x
kxk

⌘
w0 +WKW>e

i
+

m

Â
i=1

fi (x)ui,

(8)where A 2 Rn⇥n is a Hurwitz matrix, e(t) = x(t)� x̂(t) is
the identification error, w0(t)2RnN0 is the vector of weights
adjusted as follows:

d
dt w0 =�kxkn0KW>e, (9)

and W 2 Rn⇥nN0 is an auxiliary variable satisfying:
d
dt W = kxkn0 (AW/kxk�S0(x/kxk)) . (10)

If K 2 RnN0⇥nN0 is a positive definite symmetric ma-
trix and the control inputs u in (1) are such that
9x� > 0, 9x+ > 0, x� < kx(t)k < x+ < +•, 8t 2 R+
and the following persistent excitation (PE) condition holdsR t+`w

t W>(s)W(s)ds � JwInN0 , 8t 2 R+, for some `w > 0
and Jw > 0. Then, there exist two class-K functions r1 and
r2 such that limsup

t!•
ke(t)k  r1 (e0), and

limsup
t!•

kw0(t)�w⇤
0(t)k  r2 (e0) , (11)

where e0 is given by (6).

PROOF. To prove the ultimate boundedness of the identifi-
cation error e and the input to state stability for the weights
deviation variable w̃ := w⇤

0�w0 consider the following aux-
iliary input:

d = e+Ww̃. (12)
The dynamics of (12) satisfies:

ḋ = ė+ dW
dt w̃+W dw̃

dt . (13)

In (13), ė corresponds to:

ė = kxkn0
h

Ae
kxk +S0

⇣
x
kxk

⌘
w̃�WKW>e+d

⇣
x
kxk

⌘i
. (14)

The time derivative of w̃ satisfies dw̃
dt = � dw0

dt . Then, the
substitution of (9), (10) and (14) on (13) yields:

ḋ = kxkn0
h
A e
kxk +S0

⇣
x
kxk

⌘
w̃�WKW>e+d

⇣
x
kxk

⌘i

+kxkn0
⇣

A W
kxk �S0

⇣
x
kxk

⌘⌘
w̃+kxkn0WKW>e.

(15)According to the definition of d in (12), (15) is equivalent to
ḋ = kxkn0((A/kxk)d+d(x/kxk)), since A is Hurwitz, kxk 6=
0 and the modelling error d (·) corresponds to a bounded ad-
ditive input (6) in ḋ, we can conclude that the auxiliary vari-
able d is also bounded, i.e., limsup

t!•
kd(t)k  r0 (e0), where

r0 is a class-K function (see Lemma 1 in the Appendix).
By the same result and considering (7), as well as (10),
it is straightforward to observe that the variable W is also
bounded, i.e. limsup

t!•
kW(t)kF  W̄, where W̄ is depends on

p
nN0 (see (7)), x+ and x�. Using the selected learning law

(9) and (12), one obtains:

dw̃
dt =�kxkn0KW> (Ww̃�d) . (16)

Due to boundedness kxk and W, the system (16) is input-
to-state stable with respect to the input d (see Corollary 2
in the Appendix), i.e. the inequality (11) holds. An estimate
for the convergence quality of the identification error can be
obtained using (12). Since e = d�Ww̃, one may notice that:

kek  kdk+kWw̃k , 8t 2 R+. (17)

Using the norm relation in (17) (see e.g. [43]) and the fact
that bound of w̃ depends on the upper bound for d (see
Lemma 1 in the Appendix), one gets limsup

t!•
kW(t)w̃(t)k 

limsup
t!•

kw̃(t)kW̄  W̄r2(e0), where r2 is a class-K func-

tion from (11). The following relation for (17) takes place,
limsup

t!•
ke(t)k  r1(e0) := r0(e0) + W̄r2(e0). The proof is

complete.

Notice that the DNN identifier (8)-(10) is not regular [8,16]
because it has a direct injection of the identification error
e. Notice also that in many cases the PE condition can be
fulfilled by a proper selection of a control input u (see e.g.
[44] for more details about this).

4



4.2 The case of unknown control gains

In this section, we design a DNN identifier for the considered
system assuming that functions fi are unknown but admit the
representation (3). Similarly to the previous case, we intro-
duce the vectors w⇤

i and the matrix-valued function Si such
that W ⇤

i si(x/kxk) := Si(x/kxk)w⇤
i . The matrices Si(x/kxk)

have a finite upper bound (in the matrix space) in view of
(5), i.e. kSi(x/kxk)kF 

p
nNi, 8x 2 Rn.

Theorem 3 Let assumptions 1-3 be satisfied and the con-
trol input u be selected as ui(t) =

ũi(t)
kx(t)kni�n0 , i = 1, . . . ,m,

where ũi : R+ !R are continuous uniformly bounded func-
tions, i.e. that |ũi(t)| Ũ ,8t 2R+ for some number Ũ > 0.

Consider the system (1) which can be represented in the
form (3) with an estimation error given in (2). Define

dx̂
dt = kxkn0�1Ax̂+kxkn0

"
m

Â
i=0

Si

⇣
x
kxk

⌘
wiũi +WiKiW>

i e

#
,

where ũ0(t) ⌘ 1 , A 2 Rn⇥n is a Hurwitz matrix and
e(t) = x(t)� x̂(t) is the identification error, wi(t) 2 RnNi ,
i = 0,1...,m are the vectors of the weights to be adjusted as
follows: d

dt
wi =�kxkn0KiW>

i e (18)
and Wi 2 Rn⇥nNi are auxiliary variables satisfying:

d
dt Wi = kxkn0�1AWi �kxkn0 ũiSi(x/kxk), (19)

If Ki 2 RnNi⇥nNi , i = 0,1, .... are positive definite matrices
and the control inputs u in (1) are such that 9x� > 0, 9x+ >
0, x� < kx(t)k < x+ < +•, 8t 2 R+ and the following
PE condition holds for all t 2 R+ and some JW > 0 and
`W > 0: t+`WZ

t

G>(s)G(s)ds � JW InÂm
i=0 Ni ,

where the matrix G 2 Rn⇥nÂm
i=0 Ni is given by G =

[W0,W1, . . . ,Wm]. Then, there exist two class-K functions
r1 and r2, such that limsup

t!•
ke(t)k  r1 (e+) and

limsup
t!•

kwi(t)�w⇤
i (t)k  r2

�
e+
�
, (20)

where e+ = max
i=0,...,m

{ei} and ei are given by (2).

PROOF. Consider w̃i = w⇤
i �wi, i = 0,1, . . . ,m and the fol-

lowing auxiliary variable:

d = e+
m
Â

i=0
Wiw̃i. (21)

Hence, the dynamics of (21) is:

ḋ = ė+
m
Â

i=0

h
dWi
dt w̃i +Wi

dw̃i
dt

i
, (22)

where ė is given by:

ė = kxkn0�1Ae+ p(x,u)

+kxkn0
m
Â

i=0

h
Si

⇣
x
kxk

⌘
w̃iũi �WiKiW>

i e
i
,

(23)

the function p(x,u) is defined in (2). The time derivative of
w̃i satisfies dw̃i

dt =� dwi
dt . Then, the substitution of (18), (19)

and (23) on (22) yields to:

ḋ = kxkn0�1Ae+kxkn0
m
Â

i=0
WiKiW>

i e

+kxkn0
m
Â

i=0

h
Si

⇣
x

kxk

⌘
w̃iũi �WiKiW>

i e
i
+ p(x,u)

+
m
Â

i=0

⇣
kxkn0�1AWi �kxkn0 ũiSi

⇣
x
kxk

⌘⌘
w̃i.

(24)

According to (21), (24) is equivalent to ḋ = kxkn0�1Ad+
p(x,u). Taking into account the identity ui(t)= ũ(t)/kxkni�n0

from (2) we derive kp(x(t),u(t))k  kxkn0
�
e0 +Ũ Âm

i=1 ei
�
.

Since A is Hurwitz and x is uniformly bounded from
below and from above, then using Lemma 1 we have
limsup

t!•
kd(t)k  r0 (e+), for some class-K function r0.

Similarly, for (19) we conclude limsup
t!•

kWi(t)k  W̄i, where

the number W̄i depends on
p

nNi, Ũ , x� and x+ (see Lemma
1 in the Appendix). Using (18) and (21), we obtain:

dw̃i(t)
dt =�kxkn0KiW>

i

 
m

Â
j=0

W jw̃ j �d

!
.

or, equivalently, dW
dt =�kxkn0KG>(GW �d), where W (t) =

[ w̃>
0 (t), w̃>

1 (t), ..., w̃>
m(t) ]>, K = diag{K0,K1, . . . ,Km}. Due to

boundedness of Wi, from Corollary 2 we derive (20). Finally,
using (21) we finish the proof:

limsup
t!•

ke(t)k  r1(e+) := r0(e+)+
m

Â
i=0

r2(e+)W̄i.

5 Numerical Results

To show the performance of the proposed algorithm a three-
tank system as the depicted in Figure 1 is used. The same
figure includes the variables and parameters considered in
the dynamic model whose dynamics is described by the
following homogeneous nonlinear system [22]:

ẋ1 = S�1
tank
⇥
�q1dx1 � x3c0.5 +u1

⇤
,

ẋ2 = S�1
tank
⇥
q3dx3 � x2c0.5 �q2dx2c0.5 +u2

⇤
,

ẋ3 = S�1
tank
⇥
q1dx1 � x3c0.5 �q3dx3 � x2c0.5⇤ ,

where x1 [m], x2 [m] and x3 [m] represent the liquid level
of each tank respectively, Stank [m] is the diameter of the
three tanks, the input flows u1 [L · s�1] and u2 [L · s�1] are
the control signals and the constant parameters q1, q2 and
q3, [m3/2/s2] are coefficients related with the outflow rate
according to Torricelli’s rule.
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Fig. 1. Three-tank system

Tank systems have been used to test numerous control and
identification algorithms [22,45,46]. For simulation we con-
sidered the following parameters Stank = 1, q1 = 3, q3 = 2,
q2 = 1, x0 = [3, 1, 2]> as the initial condition. We assume
that the functions fi are unknown, but their homogeneity
degrees are known. The matrix A for the identification algo-
rithm has been selected as follows:

A =


�5.1 �3.5 �3
�22.5 �32 �17
�4 �2 �12

�
,

The parameters associated with the activation functions
given by (4) were selected randomly with a uniform distri-
bution (See Remark 4). To adjust these parameters, recursive
procedures could be used to obtain a better performance
[42,47,48]. The activation functions were selected with
Ni = 3. The constant parameters c0,1 = 5, c0,2 = 10 and
c0,3 = 20, the constant vectors b0,1 = [0.01,0.02,0.03]>,
b0,2 = [0.01,0.04,0.01]>, b0,3 = [0.04,0.01,0.06]>. Equal
constant parameters ci, j and c0, j are chosen (ci, j = c0, j) as
well as in the case of the vectors bi, j = b0, j. The initial
conditions for the adjustment laws are selected as: w0(0) =
[1,2,1,1,3,2,1,2,3]>, w1(0) = [1,3,1,5,3,2,1,2,3]>

and w2(0) = [1,4,1,2,1,6,1,3,3]>, the gain matrices
K0 = I3 ⌦ K̃0 and K1 = K2 = I3 ⌦ K̃1, with:

K̃0 =
h 5220 �1044 1566
�1044 1566 522
1566 522 7830

i
, K̃1 =

h 5250 �1050 1575
�1050 1575 525
1575 525 7875

i
,

which were obtained randomly, satisfying the positiveness
condition needed for the activation functions. The perfor-
mance of the designed algorithm was compared with a clas-
sical DNN identifier (see [8], Chapter 2). The numerical
simulations for the identifiers are made in Simulink Matlab®

by using the Runge Kutta integration method with a step
of 0.1 ms. The weights of the proposed identifier followed
the laws (18) and the classical DNN weights followed the
laws presented in [8], Chapter 2. For the classical DNN in-
dentifier, the following parameters are considered, the ma-
trix A is the same as the selected for the homogeneous one,
the constants for the vector of activation functions associ-
ated to f0 in the classical DNN identifier were the same as
the parameters for s0 (x) in the homogeneous identifier. The
matrix of activation functions f : R3 ! R3⇥2 is selected as
f(x) = [s1 (x) ,s2 (x)]. The initial conditions for the adjust-
ment law are:

W1(0) =
h 10 23 12

14 33 26
14 25 36

i
, W2(0) =

h 13 34 15
56 53 2
12 23 35

i
.

The linear inequality for the classical DNN identifier struc-
ture is used (together with a numerical optimization algo-
rithm) to get some of the parameters used in the learning law
as reported in [8]. The adjustment gains were selected man-
ually using the simulations results, fixed with K = [55,65.2].
The initial conditions are the same for both identifier algo-
rithms x̂(0) = [5 ,2 ,3]>.

Figure 2-a) depicts how the first estimate state of the identi-
fier for homogeneous systems converges faster (before 0.01
seconds) to the state of the system (solid line, color black)
than the classical DNN identifier. The estimation of the clas-
sical algorithm contains oscillations with an estimated am-
plitude of 2 [m] before 0.5 seconds. The amplitude of these
oscillations is unacceptable considering the nature of the
three-tank system. The lack of oscillations and the faster
convergence in the state evolution of the homogeneous iden-
tifier is clearly an advantage.

Fig. 2. Identification result for the states of the three tank system.

Figure 2-b) shows similar results for both identifiers. In the
closer view, it is possible to notice that the second estimated
state (dotted line, color red) of the identifier using a clas-
sical series-parallel DNN structure presents bigger oscilla-
tions and has a slower convergence than the homogeneous
algorithm. In Figure 2-c), the estimation for the third state of
the three-tank plant is depicted. The estimate state conver-
gence using the algorithm devoted to homogeneous systems
(before 0.02 seconds) is faster than the convergence of the
estimate state with the classical DNN identifier (around 1.2
seconds). In addition, the estimation with the classical algo-
rithm presents oscillations. Although the oscillations are of
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a smaller frequency than the other two states, the amplitude
of such oscillations is approximately of 3.5 [m] before 0.8
seconds. In addition, the enclosed figure confirms the equal
initial conditions for both identifiers.

In Figure 3-a), the comparison for the norm of the identifi-
cation error with the classic DNN structure identifier (dot-
ted line, color red) and the DNN homogeneous identifier for
systems with unknown model (solid line, color blue) is de-
picted. The identification error with the classical DNN iden-
tifier converges around 1.5 seconds versus 0.02 seconds of
the identification error when the DNN identifier is devoted
to homogeneous systems. The comparison sums up the per-
formance of the states obtained with the classical and homo-
geneous identifiers. The obtained identification error norm
with the classical approach presents oscillations, which are
not detected in the homogeneous version.

Fig. 3. Comparison of the identification error norms for the ho-
mogeneous and classical DNN identifiers.

For the simulation, considering all the vector functions un-
known used the same 9 activation functions for both algo-
rithms. In the case of the classical DNN structure, the activa-
tion functions matrix for the terms associated to the input has
the same elements of the two activation functions vectors of
the algorithm for homogeneous systems. In addition, Figure
3-b) depicts the result of a different gain test for the classical
algorithm. In order to increase the convergence rate of the
classical DNN, the gain K was increased, the latter implied
the appearance of the high-frequency oscillations and it did
not improve the convergence rate compared with the identi-
fier for homogeneous systems (blue line and black line). On
the other hand, the decrease of the gain K decelerates the
convergence (purple line and orange line). This result shows
the faster convergence of the homogeneous identifier.

Intending to make a comparison with conventional ap-
proaches, we carried out a statistical analysis using the
classical DNN identifier and the proposed homogeneous
identifier. The integral square mean error calculated after

2.5 seconds is 0.001469 [m2] for the homogeneous and
0.3589 [m2] for the non-homogeneous identifiers. In ad-
dition, Table 1 shows the average and standard deviation
of the final value of the accumulated total error using dif-
ferent initial conditions and using different state evolution
velocities, for these results we performed ten tests.

Table 1
Statistical results comparing classical and homogeneous DNN.

Identifier Average Standard Deviation

Classical DNN with different initial weights 1.6667 0.9598

Homogeneous DNN with different initial weights 0.0052 0.0004

Classical DNN with different states evolution 1.19 0.3606

Homogeneous DNN with different states evolution 0.0060 0.0074

6 Conclusions

The design of an identification algorithm for standard homo-
geneous control systems was developed in this paper using
a DNN approach and stability Lyapunov theory to derive
the learning laws. The convergence of the identification er-
ror and the learning laws is proven theoretically. Numerical
simulations are presented using a three thank homogeneous
model to demonstrate the performance of the identification
algorithm. As a future extension to this work, it is planned
the study of the particular different cases based on the sign
of the homogeneous degree and its identification due to the
requirements of Assumption 2, as well as the implementa-
tion in an experimental platform. Relaxation of Assumption
3 is another promising direction of research.

A Proof of boundedness for the auxiliary variables

Lemma 1 Consider the dynamical system ṙ = j1 (t)Ar +
j2(t), where r 2 Rn, A 2 Rn⇥n is a Hurwitz matrix, j1 :
R+ ! R+ is locally bounded separated from zero:

j1 (t)� b1 > 0, 8t 2 R+, (A.1)

and the function j2 : R+ ! Rn is globally bounded
sup

t2R+

kj2(t)k = j+
2 < +•. Then, there exists a class-K

function rr(·) such that the solutions of the system satisfy:

limsup
t!•

kr(t)k  rr
�
j+

2
�
. (A.2)

PROOF. Consider the Lyapunov function candidate
Va(r)= r>Pr. The time derivative is V̇a =j1r>

�
A>P+PA

�
r+

2j>
2 Pr, where P 2 Rn⇥n, P = P> > 0, such that:

A>P+PA �gP, g 2 R+, (A.3)

Using the L-inequality we derive 2j>
2 Pr  kj2k2

L +
kPrk2

L�1 , for any L 2Rn⇥n, L = L>, L > 0. By taking L =

2b�1
1 g�1P, considering (A.3) and the condition (A.1). Then,

V̇a  �0.5b1gVa(r) + 2b�1
1 g�1lmax {P}kj2(t)k2 holds.

Hence, we derive limsupt!+• Va(t) 
2b�1

1 g�1lmax{P}(j+
2 )2

0.5b1g ,
and (A.2) is fulfilled.
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B Persistent excitation condition
The following result is a Corollary of [44, Lemma 1].

Corollary 2 Consider the time-varying dynamical system:

ż(t) =�gz(t)KzG>
z (t)Gz(t)z(t)+ v(t), t 2 R+ (B.1)

where z(t) 2 Rk is the state of the system, the continuous
function gz : R+ ! R+ is positive and bounded, 0 < g� 
gz(t)  g+, 8t 2 R+, the continuous vector-valued function
v :R+ !Rk is uniformly bounded and limsupt!+• kv(t)k
v+, the symmetric matrix Kz 2 Rk⇥k is positive definite and
the continuous matrix-valued function Gz : R+ ! Rq⇥k is
uniformly bounded. If the following PE condition

Z t+`

t
G>

z (s)Gz(s)ds � JIk, 8t 2 R+ (B.2)

holds for some J > 0 and ` > 0, then, there exists rz 2
K such that for any initial condition z(0) 2 Rk, the solu-
tion z(t) of the system (B.1) is defined for all t 2 R+ and
limsupt!+• kz(t)k  rz(v+).
PROOF. Applying the following change of variable z̃ =
K�1/2

z z, we derive: d
dt z̃(t)=�gz(t)K

1/2
z G>

z (s)Gz(s)K
1/2
z z̃(t)+

K�1/2
z v(t). Then, d

dt z̃(t) = �G̃>(s)G̃(s)z̃(t) + ṽ(t), where
G̃(t) =

p
gz(t)Gz(t)K

1/2
z and ṽ(t) = K�1/2

z v(t). Obvi-
ously, if the PE condition holds

R t+`
t G̃>(s)G̃(s)ds =

K1/2
z

⇣R t+`
t gz(s)G>

z (s)Gz(s)ds
⌘

K1/2
z . Then,

R t+`
t G̃>(s)G̃(s)ds

� g�K1/2
z

⇣R t+`
t G>

z (s)Gz(s)ds
⌘

K1/2
z and

R t+`
t G̃>(s)G̃(s)ds�

g�K1/2
z (JIk)K

1/2
z = g�JKz � g�Jlmin(Kz)Ik, 8t 2 R+. Ap-

plying [44, Lemma 1] we complete the proof.
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