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ABSTRACT

In cases of pressure or volume overload, probing cardiac
function may be difficult because of the interactions between
shape and deformations. In this work, we use the LDDMM
framework and parallel transport to estimate and reorient
deformations of the right ventricle. We then propose a nor-
malization procedure for the amplitude of the deformation,
and a second-order spline model to represent the full cardiac
contraction. The method is applied to 3D meshes of the right
ventricle extracted from echocardiographic sequences of 314
patients divided into three disease categories and a control
group. We find significant differences between pathologies in
the model parameters, revealing insights into the dynamics of
each disease.

Index Terms— LDDMM, Shape Analysis, Cardiac Mod-
elling

1. INTRODUCTION

Spatio-temporal shape analysis is of growing importance in
the study of cardiac diseases. In particular, the assessment
of cardiac function requires the measurement and analysis of
cardiac motion beyond scalar indicators such as ejection frac-
tion or area strain. The case of the Right Ventricle (RV), is of
particular interest as it has been shown to have a large capac-
ity to adapt to overload by remodelling [1], raising the issue
of disentangling the deformation from the initial anatomy.

A powerful and popular viewpoint based on shape regis-
tration is that of Riemannian Geometry and the Large Defor-
mations Diffeomorphic Metric Mapping (LDDMM) frame-
work, modelling non-linear transformations as elements of
the group of diffeomorphisms of the embedding space, to en-
sure smooth and invertible mappings between shapes, and us-
ing parallel transport to build a reference-centred represen-
tation of all the patients’ trajectories. Parallel transport is a
natural geometric tool to normalise deformations that is con-
sistent with registration. Two main approaches have been
proposed. The first consists in estimating a mean trajectory,
and representing each individual’s trajectory as a translation
of this mean evolution by a subject-specific perturbation, that
is parallel transported to each time point [2, and references
therein]. The other strategy [3, 4, and references therein],

which will be developed in this paper, consists in first rep-
resenting each trajectory with respect to its own reference,
and then transporting it to a global reference –the atlas– thus
normalizing the individual deformations.

However, the computation of parallel transport in the dif-
feomorhism group is challenging, as no closed form solutions
exist and the numerical methods lack stability or result in
over-smoothing. Moreover, [5] showed that parallel transport
in LDDMM does not conserve global properties such as scale
or volume changes. In the case of cardiac deformations, the
magnitude of the temporal deformation is comparable to that
of the subject’s reference to atlas deformation, and substan-
tial volume changes are observed. Thus the lack of scale-
invariance is crucial. In this work, we investigate the effect of
a straightforward scaling of the transported deformation, in
order to preserve the ejection fraction of the RV.

Furthermore, we leverage recent results on the Pole Lad-
der [6], a method that consists in approximating the parallel
transport of a tangent vector along a geodesic. This method
was first proposed by [3], for brain data in the context of
Alzheimer’s disease. We use it, in the context of LDDMM, to
associate a deformation of the atlas to each shape. This allows
to build patient-specific trajectories all starting from the atlas.

The patient-specific trajectories are then summarized by
fitting a spline regression, which postulates a second-order
dynamic model [7] whose parameters are estimated with an
optimization procedure. This allows to compactly represent
all the patients’ trajectories in the same space, and to proceed
with linear statistics.

2. MOTIVATION: THE RIGHT VENTRICLE UNDER
PRESSURE

With this framework, we study the RV under pressure or vol-
ume overload due to different diseases: Pulmonary Hyperten-
sion (PHT), Tetralogy of Fallot (ToF) and Atrial Septal De-
fect (ASD) and seek to characterize their impact on the con-
traction of the RV, during the systolic phase of the cardiac
cycle. Previous work on these pathologies demonstrated dif-
ferences in RV function between the ASD group and the ToF
group, despite comparable shape remodelling [8]. Moreover,
[9] showed that the Area Strain (AS), i.e. the relative change
of area of each cell of the mesh that represents the RV, was



a strong predictor of survival in the PHT group. [10] studied
the interactions between AS and shape descriptors.

Both studies suffered from a low power due to a small co-
hort against high-dimensional markers. Thanks to the use of
sparse control points to parameterize the LDDMM and spline
deformations, our descriptors are more compact and translate
into increased statistical power.

We use 3D meshes extracted from 314 echocardiographic
sequences from patients examined at the CHU of Nice. The
meshes were extracted with a commercial software (4D RV
Function 2.0, TomTec Imaging Systems, GmbH, DE) with
point-to-point correspondences across time and patients.
These are formed by 938 points and 1872 triangles. All
the shapes were realigned with a subject-specific rigid-body
deformation. An atlas was computed from the end diastolic
meshes of the control group, after alignment.

3. METHOD

3.1. The LDDMM framework

The LDDMM framework encompasses both algorithms for
shape matching (a.k.a. registration) and a Riemannian geo-
metric structure on the space of shapes. The former allows
to compute shape descriptors, and to parameterize diffeomor-
phisms. The latter, provides a distance to compare defor-
mations, and an associated notion of parallelism to transport
them. We present here the formulation of [11] and its imple-
mentation in [12], focusing on the case of landmarks.

A natural and efficient computational construction of dif-
feomorphisms is obtained by flows associated to ordinary dif-
ferential equations (ODEs) ∂φt(·) = vt[φt(·)], with the ini-
tial condition φ0 = Id. The time-dependent vector field vt
can be interpreted as the instantaneous speed of the points
during deformation, and must verify certain regularity con-
ditions to ensure that solutions to the ODE are indeed dif-
feomorphisms. An efficient way to enforce these conditions
is to consider vector fields obtained by the convolution of a
number Nc of momentum vectors carried by control points:
vt(x) =

∑Nc

k=1K(x, c
(t)
k )µ

(t)
k , where K is the Gaussian ker-

nel: K(x, y) = exp(−‖x−y‖
2

σ2 ). The (closure of the) set of
such vector fields forms a reproducing kernel Hilbert space,
with the associated norm ‖v‖2K =

∑
i,j K(ci, cj)µ

T
i µj . The

total cost, or energy of the deformation can be defined as∫ 1

0
‖vt‖2Kdt.
It can be shown that the momentum vectors that mini-

mize this energy, considering c(0)k , c
(1)
k , k = 1 . . . Nc fixed,

together with the equation driving the motion of the control
points, follow a Hamiltonian system of ODEs:{

ċk
(t) =

∑
j K(c

(t)
k , c

(t)
j )µ

(t)
j

µ̇k
(t) = −

∑
j ∇1K(c

(t)
k , c

(t)
j )µ

(t)T

k µ
(t)
j

(1)

A diffeomorphism φ1 is thus uniquely parameterized by the

initial conditions c(0)k , µ
(0)
k , k = 1 . . . Nc, and a shape reg-

istration criterion between a template T and target S can be
defined as

C(c, µ) = ‖S − φc,µ1 (T )‖22 + α2‖vc,µ0 ‖2K . (2)

where α is a regularisation parameter that penalises large de-
formations. Minimizing C therefore amounts to finding the
transformation that best deforms T to match S. The gradi-
ent of C can be computed through automatic differentiation,
to perform gradient descent. The optimal value of C defines
a distance between φ1 and the identity. In fact this distance
derives from an invariant Riemannian metric on the group of
diffeomorphisms and the path φt is a minimizing geodesic for
this metric. By considering the action of diffeomorphisms on
shapes, it projects to a distance between the shapes S and T .

3.2. Scaled parallel transport with the pole ladder

Along with a distance, the Riemannian metric provides a no-
tion of parallel transport. It is defined by an ODE that al-
lows to transport a set of momentum vectors along a path
of diffeomorphisms φt ([4, section 13.3.3]). However, this
differential equation is hard to solve in practice and alterna-
tive methods have been proposed for the case of transporting
along a geodesic. We here leveraged recent results on the con-
vergence properties of the Pole Ladder [6] to propose a new
implementation within the LDDMM framework. We solve
the registration problem (4) between the end-diastolic (ED)
shape and each time frame ti, then use the Pole Ladder to
transport this deformation to the atlas, and reconstruct a cor-
responding shape at time ti.

However, there is a substantial correlation between the
magnitude of the systolic deformation and the End Diastolic
(ED) volume (ρ = 0.42 in the data-set considered in this pa-
per). As the parallel transport is isometric, this deformation
may be too large for the atlas. An example of the obtained
end-systolic (ES) frame is shown on Figure 1 for a patient
whose RV volume is greater that that of the atlas, which re-
sults in an unrealistic ES frame. A clinically relevant quantity
that should be conserved is the Ejection Fraction (EF), de-
fined as the relative volume change, as it is a straightforward
indicator of cardiac function. We then introduce a parameter
λ such that scaling the magnitude of each intra-subject de-
formation after parallel transport conserves the EF relative to
the ED frame. This parameter is optimized by gradient de-
scent on each patient. We validate this scaling by probing the
conservation of the area strain, and the ES ejection fraction.

3.3. Spline regression for shape evolution

The registration framework described in section 3.1 estimates
a geodesic path between two shapes (the equivalent of a uni-
form motion). For a trajectory such as the contraction of the
cardiac RV, one may expect to find second-order dynamics,



Fig. 1. Example: transparent ED mesh over coloured ES
mesh. Left: Original patient with extreme volume, Middle:
after parallel transport, unrealistic deformation, Right: after
scaling of the parallel transport.

making a (first-order) geodesic regression ill-suited. We thus
propose to use the second-order model defined in [7] to ac-
count for the motion of the RV during systole. The second-
order terms ut can be interpreted as random external forces
smoothly perturbing the trajectory around a mean geodesic.
They modify the continuous-time system of equations (2) as
follows: ∀t ∈ [0, 1],

{
ċk

(t) =
∑
j K(c

(t)
k , c

(t)
j )µ

(t)
j

µ̇k
(t) = −

∑
j ∇1K(c

(t)
k , c

(t)
j )µ

(t)T

k µ
(t)
j + u

(t)
k

(3)

If we consider a discrete sequence of observation times
t1 = 0, t2, . . . td = 1 and configurations xt1 , . . . , xtd , one
seeks to find the path φt that minimizes the new cost

CS(c, µ, ut) =
1

α2d

d∑
i=1

‖xti − φti(xt0)‖22

+

∫ 1

0

‖u(t)‖2dt+ ‖vc,µ0 ‖2K . (4)

In practice, the ODEs (1) and (3) are discretized in n time
steps and an integration method such as Euler or Runge-Kutta
is used. We define all the patients trajectories between t = 0
and t = 1, and use the same discretization for all the pa-
tients to ensure that u0, . . . , uNc are estimated at correspond-
ing times. Along with µ(0), these are estimated by gradient
descent as in the case of registration. We use a kernel band-
width σ = 15 in all the experiments, and 60 control points for
all the deformations of the atlas. The initial control points are
fixed for the entire data-set so that the initial momenta can be
compared consistently. They have been optimized to register
the atlas on all the transported ES frames.

Fig. 2. Scaling Parameter λ with respect to the ED volume.

4. RESULTS

4.1. AS and EF conservation

As expected, the scaling coefficient is closely related to the
ED volume. We use a linear regression to identify a linear re-
lation between log(λ) and log(Vref/VED). This is displayed
on Figure 2.

We validate our scaled parallel transport algorithm by as-
sessing the conservation of scalar quantities of interest: the
ejection fraction (EF) and area strain (AS). Both quantities
are defined as the relative change of respectively volume or
area during systole. The AS is a local quantity computed on
each cell of the mesh. We compute the root mean squared
error (RMSE) at each cell, and report here the mean over all
cells.

We compute the EF on the original data, and compare it
with the values computed on the shapes obtained by paral-
lel transport (PT), and scaled parallel transport (SPT). The
RMSE are displayed on Table 1. Interestingly, it is possi-
ble to obtain a low error on the EF after the scaled transport,
but this does not preserve the AS. This shows that although
these quantities are related, they carry different information
and that AS depends on the initial shape, itself related to the
pathology.

Original Values RMSE PT RMSE SPT
AS -0.24 ± 0.08 0.18 0.13
EF 0.42 ± 0.13 0.13 0.04

Table 1. Validation of parallel transport with EF and AS.

4.2. Groupwise differences on the splines

Secondly, we study the differences between the diseases on
the spline deformations. These are parameterized by the
initial momentum µ, and by the discretized external forces
(u(0), . . . , u(1)). We perform a Hotelling multivariate test to
compare each disease to the control group, and perform a
Bonferroni correction for multiple testing, to maintain type I
error risk at α = 0.05. The results for the momentum are
displayed Figure 3 for the ASD, ToF and PHT groups and
show significant differences between each disease and the
control group. The differences observed near the tricuspid



PHT ASD ToF

Fig. 3. Group Mean momentum where it significantly differs
from the control group. Red indicates stronger impact, while
blue indicates no impact (no difference). Top row: free wall.
Bottom row: septum

valve mainly reflect the difference of magnitude of the defor-
mations, and one should be cautions before drawing further
conclusions as the quality of the mesh may vary near this
region. However it is interesting to notice that very little dif-
ferences are observed for the ASD group, which corroborates
previous results [8]. Similarly, only small differences are
observed on the septum, showing that the shape differences
usually observed on the PHT group have been filtered out.
This makes the differences observed on the free wall interest-
ing and other markers such as the circumferential strain will
be studied to confirm these effects.

The second-order terms give insight into the dynamic dif-
ferences between the groups. Indeed, significant differences
were found again for the ToF and PHT groups, but the loca-
tions and orientations vary across time. This will be studied
more in depth in future work.
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