
HAL Id: hal-03142207
https://hal.inria.fr/hal-03142207

Submitted on 15 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GraphMDL Visualizer: Interactive Visualization of
Graph Patterns

Francesco Bariatti, Peggy Cellier, Sébastien Ferré

To cite this version:
Francesco Bariatti, Peggy Cellier, Sébastien Ferré. GraphMDL Visualizer: Interactive Visualization
of Graph Patterns. GEM: Graph Embedding and Mining Workshop @ ECML-PKDD 2020, Sep 2020,
Ghent, Belgium. �hal-03142207�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395676564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03142207
https://hal.archives-ouvertes.fr


GraphMDL Visualizer:

Interactive Visualization of Graph Patterns

Francesco Bariatti, Peggy Cellier, and Sébastien Ferré

Univ Rennes, INSA, CNRS, IRISA
firstname.lastname@irisa.fr

Abstract. Pattern mining algorithms allow to extract structures from
data to highlight interesting and useful knowledge. However, those ap-
proaches can only be truly helpful if the users can actually understand
their outputs. Thus, visualization techniques play a great role in pattern
mining, bridging the gap between the algorithms and the users.
In this demo paper we propose GraphMDL Visualizer, a tool for the in-

teractive visualization of the graph patterns extracted withGraphMDL,
a graph mining approach based on the MDL principle. GraphMDL Vi-
sualizer is structured according to the behavior and needs of users when
they analyze GraphMDL results. The tool has di�erent views, rang-
ing from more general (distribution of pattern characteristics), to more
speci�c (visualization of speci�c patterns). It is also highly interactive,
allowing the users to customize the di�erent views, and navigate between
them, through simple mouse clicks. GraphMDL Visualizer is freely avail-
able online.

Keywords: Pattern Mining · Graph Mining · Minimum Description
Length · Visualization

1 Introduction

Analyzing data can be a daunting task for humans, especially when the amount of
data is important. Pattern mining algorithms �and in particular graph mining

algorithms [10,7]� make the task easier by extracting structures that appear
frequently in the data, allowing the users to concentrate only on those speci�c
structures. The GraphMDL algorithm [4] further helps users by leveraging the
Minimum Description Length principle [5,8] in order to select only a small subset
of patterns that are deemed descriptive of the data. That way, the users are not
overwhelmed by the large amount of patterns extracted by classic graph mining
approaches. However, all these pattern mining approaches can only be truly
helpful if the users can actually understand their outputs: what the extracted
patterns look like, how they appear in the data, and alongside which other
patterns. Thus, visualization techniques play a great role in pattern mining,
bridging the gap between the algorithms and the users [6].

In this demo paper we propose GraphMDL Visualizer, a tool that presents
the users with an interactive visualization of GraphMDL results. We construct



Fig. 1. The GraphMDL approach takes as input a data graph and some candidate
patterns. It outputs a set of descriptive patterns and a �rewritten graph� showing how
those patterns can be used to represent the data.

Fig. 2. GraphMDL creates a rewritten graph to describe the data as a composition
of pattern occurrences. The vertices that are at the boundaries between pattern occur-
rences as called ports.

GraphMDL Visualizer around the needs and expected behavior of users when
analyzing GraphMDL results. The tool has di�erent views, ranging from more
general (distribution of pattern characteristics), to more speci�c (visualization
of a speci�c pattern). It is also highly interactive, allowing the users to navigate
between the di�erent views and customize them through simple mouse clicks.
Since GraphMDL results are richer than other graph mining approaches (see
the concepts of �usage� and �ports� described in Section 2), a custom tool is
needed for visualizing them at their full potential. The di�erent views of the tool
can show all the information provided byGraphMDL in one single page, with an
organization of the content that we hope is bene�cial for the analysis. GraphMDL
Visualizer is freely available online at http://graphmdl-viz.irisa.fr/.

The paper is organized as follows. Section 2 reminds the general behaviour of
GraphMDL and some key notions that help understand the rest of the paper.
Section 3 presents GraphMDL Visualizer in details, through a user story and
some screenshots.

2 GraphMDL Background Knowledge

Pattern mining algorithms help users understand data by extracting patterns,
i.e. structures, that appear (frequently) in the data. Graph mining algorithms do
so when data and patterns are graphs. However, classic graph mining algorithms
(e.g. gSpan [10] and Gaston [7]) tend to extract too many patterns for users to

http://graphmdl-viz.irisa.fr/


analyse, because of the large number of possible patterns. The GraphMDL
approach [4] uses the Minimum Description Length (MDL) principle [5,8] to
reduce the number of graph patterns extracted by selecting the most descriptive
patterns among them. It was inspired by the Krimp algorithm [9], which does a
similar task with itemset patterns on transactional data.

In this section we remind the main principles of GraphMDL useful to under-
stand GraphMDL Visualizer. More details about GraphMDL are given in [4].

Fig. 1 summarizes the general behaviour of GraphMDL. The approach takes
as input a data graph (a) and a set of candidate patterns (b) that have occurrences
in this data graph. These patterns can be extracted with any classic graph mining
algorithm (e.g. gSpan is used in [4]). It outputs a set of patterns it deemed as
�descriptive� (c) and a rewritten graph (d), a structure that describes how the
selected patterns can be inter-connected to represent the data graph.

In order to choose which set of patterns is the most descriptive, GraphMDL
needs a way to evaluate each possible set to compare it with the others. For
this, it uses the MDL principle [5,8]. This principle comes from the domain of
information theory and states that the best model (out of all possible models) to
describe some data, is the one that minimizes the description length of the data
encoded by the model. Roughly, the description length of an element measures
the quantity of information in the element. GraphMDL instantiates the MDL
principle similarly to the Krimp algorithm [9], from which it is inspired: the
data is �represented� (or encoded) as a composition of pattern occurrences1.
This encoding is then given a description length that allows to evaluate the set
of patterns.

The main contribution of GraphMDL is how to use graph patterns to cover
graph data, and a MDL encoding that works in that context. Graphs are a
complex type of data since they have a structural component. For example, in
Fig. 2 knowing that patterns P1 and P2 are present in the data is not su�cient,
it is important to know how they are connected : in this case the second vertex
of P1 and the �rst vertex of P2 correspond to the same vertex in the data. In
order to encode this structural component, GraphMDL introduces the notion
of ports, which are vertices that are shared between multiple pattern occurrences
(e.g. the vertices marked by an arrow in Fig. 2).

When covering the data with some patterns, GraphMDL produces what it
calls a rewritten graph, which is a structure that states how pattern occurrences,
connected through ports, form the data graph. This structure is used when
computing a description length, and is also given to the users, which can use it
for interpretation. For example Fig. 2 (4) shows a rewritten graph: from it we
can learn that in the data there are an occurrence of P1 and one of P2 (squares
in the image), and that these two occurrences share a vertex (in grey).

Lastly, every pattern has a usage: it corresponds to the number of times that
the pattern is used in the data graph encoding i.e. the number of occurrences
of this pattern in the rewritten graph. For example in Fig. 2 each pattern has a
usage of 1 and in Fig. 1 pattern P1 has a usage of 3.

1 It can also be said that the patterns cover the data



3 The GraphMDL Visualizer Tool

In order to design GraphMDL Visualizer we asked ourselves what would be
a user's story when trying to understand GraphMDL output. We identi�ed
4 steps in the interaction between the user and the algorithm's output, and
designed GraphMDL Visualizer around them.

Step 1. When confronted for the �rst time with some new data and patterns,
the user wants to start with a broad view of statistical information about the
patterns: How many patterns have been extracted? Are the extracted patterns
very frequent and/or big? (i.e. what is the distribution of the usage2 and size of
the patterns?).

Step 2. After that, the user wants to look more precisely at the individual
patterns: for example, they may start by looking at the largest pattern extracted,
or the most frequent: What are their de�ning characteristics?

Step 3. Then, the user wants to know what the pattern(s) they selected
during the previous step look like. Graphs are complex structures that are usually
best understood when plotted graphically.

Step 4. Finally, the user wants to know how the patterns are used to cover

the data: Which are the neighbours of the pattern they selected at the previ-
ous step(s)? How a certain subset of the data is expressed in terms of pattern
occurrences?

During step 4, the user identi�es new patterns that pique their interest, and
navigates to a di�erent step, or starts over with a di�erent goal in mind. We
found that this back-and-forth navigation was very typical, and therefore a good
visualization should be interactive and allow the user to easily move from one
view to another.

3.1 Implementation

GraphMDL Visualizer is an interactive web page that the user can open in
their web browser. Web applications have a native support for user interactivity
(i.e. reacting when the user clicks or moves the mouse), and can be used with-
out a complex installation process. The application has been developed using
the Javascript framework VueJS [3], the Javascript data visualization library
D3.js [2], and the CSS library Bootstrap [1]. After GraphMDL has been run3,
the user just needs to upload the produced output �le to GraphMDL Visualizer.

The source code for GraphMDL Visualizer is available as a git repository4.
The application is also available online at http://graphmdl-viz.irisa.fr/.

Fig. 3 shows the general structure of GraphMDL Visualizer. The application
contains 4 main blocks, which correspond to the 4 steps of the user story that
we described at the beginning of this section. As a running example, we imagine

2 InGraphMDL the usage is a speci�c notion: it represents how many times a pattern
appears in the rewritten graph (see Section 2).

3 We use the implementation at https://gitlab.inria.fr/fbariatt/graphmdl/
4 https://gitlab.inria.fr/fbariatt/graphmdl-visualizer

http://graphmdl-viz.irisa.fr/
https://gitlab.inria.fr/fbariatt/graphmdl/
https://gitlab.inria.fr/fbariatt/graphmdl-visualizer


Fig. 3. The main structure of GraphMDL Visualizer. The application is composed of 4
blocks, which correspond to the 4 steps of data analysis that we identi�ed in Section 3.

that the users ran GraphMDL on the molecular dataset AIDS-CA5, which has
been used in [4] to evaluate GraphMDL.

3.2 Step 1: Main statistics

When the user �rst starts analysing GraphMDL results, we expect them to
want a general view of the selected patterns, without focusing on the speci�cs
of each pattern (yet). The �Main statistics� block, shown in Fig. 4, provides this
view. At the top-right, some general pieces of information are given, notably the
number of patterns selected. At the top-left, description length information is
reported: this information is related to the MDL approach and is mainly useful
when comparing di�erent pattern sets or datasets.

The bottom part of the block contains 4 plots. These plots represent the dis-
tribution of pattern usages and sizes (di�erent size measures are present: vertex
count, edge count, label count). A notable advantage of having an interactive
web page w.r.t. classic static plots is that the users can zoom and drag those
plots, to higlight the areas that interest them the most. Hovering a bar of the bar
plot also shows the exact height of the bar. Each plot also has a button to toggle
between a bar plot or a box plot for representing the data. In this way the user
can switch between the two visualizations, depending on whether they want to
observe the exact distribution or its main characteristics (median, percentiles).
For example in Fig. 4, we can observe that 75% of the patterns have a usage

5 https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data


Fig. 4. The �Main statistics� block. This blocks shows the global characteristics of the
selected patterns, without focusing on the individual patterns. In this image the user
switched the top-left and bottom-right plots to box plots. The red dotted lines in the
plots represent their medians.

of 33 or less (top-left graph), and that half the patterns have 5 edges or less
(bottom-left graph).

3.3 Step 2: Pattern Characteristics Table

In the �Main statistics� block the user has observed the general distributions of
pattern characteristics. We now expect them to become interested in the individ-
ual patterns and wanting more speci�c information. The �Pattern characteristics�
block, shown in Fig. 5 provides such information. It contains a table, each row
of the table corresponding to one of the patterns selected by GraphMDL. For



Fig. 5. The �Pattern characteristics� block. This block shows some information for
each pattern. 1) A �lter allows to only show the patterns that have certain labels. 2)
Patterns can be sorted following their characteristics. 3) It is possible to show and hide
detailed port information.

each pattern, it reports its usage, whether the pattern is a singleton6 or not, its
number of vertices, edges and labels, which labels are included in the patterns,
and the number of ports it has. It is also possible to show in details which of its
vertices are ports and how much each one is used.

The table is interactive. It is possible to �lter the rows so that only patterns
having some speci�c vertices or edges are shown, and it is also possible to sort the
table by any of its columns, thus o�ering di�erent points of view. For example
in Fig. 5, the user chose to only show patterns containing at least an atom of
Oxygen and an atom of Carbon. Then, the user sorted the table by number of
vertices, so that the biggest patterns would be on top.

Thanks to this table, the user has now identi�ed a pattern that interest them:
pattern P1 (highlighted in Fig. 5). This pattern is used 51 times, has 19 vertices,
20 edges and a total of 39 labels. It has two ports: its vertices 11 and 12, which
are used 1 and 49 times respectively. The user has now become interested in the
structure of this pattern: a double-click on the pattern's row takes them to the
next block.

6 A singleton is either a single vertex with a single label or two vertices without labels
connected by a single edge. They are the most basic patterns that GraphMDL can
handle.



Fig. 6. The �Pattern visualization� block. The user can select a pattern, and the struc-
ture of the pattern will be shown. Colors of vertices and edges, as well as their positions,
can be customised.

3.4 Step 3: Pattern Visualization

Graph are complex data structures and �especially for large graphs� visualiz-
ing them allows to better understand them. The �Pattern visualization� block,
shown in Fig. 6, allows the user to display the structure of the patterns selected
by GraphMDL, as interactive plots. The user can zoom on speci�c parts of the
pattern if needed.

On the right, the user can choose the color associated to each vertex and
edge label to customize the visualization. Color choices can be exported and
imported, to make it easier to be reused. For example, the colors shown in Fig. 6
are based on the classic colors used when visualizing molecules. The user can
also toggle the presence of vertex and edge labels on the plot. It is also possible
to choose whether to highlight the port vertices of the pattern by showing them
as rings instead of circles (e.g. the top-left vertices in Fig. 6).

Graphs are generally di�cult to plot properly and in the way that the user
expects. We implemented a drag behaviour in this block so that the user can
click and drag vertices to move them. For example, if they prefer Oxygen atoms
to be towards the top of the image, they can drag them to that position. This
has the added bene�t of allowing the users to �correct� the visualization when
it turns out �messy�, like in Fig. 7. This interactivity really eases interpretation
of the more complex patterns.

In Fig. 6 we can observe the structure of the pattern P1 that the user selected
when analyzing the pattern characteristics table during the previous step. It is
a fairly complex molecule with 19 vertices, which would be di�cult to imagine



Fig. 7. Sometimes the visualization is not very clear, like above. Luckily, the user can
click and drag vertices to help the application.

without a plot. Thanks to the visualization we can also easily identify that the
pattern can be connected to other patterns only from one of its �branches�: the
one on the top-left, where its two ports are.

3.5 Step 4: Rewritten Graph Visualization

After having chosen and visualized a pattern, we expect the user to ask them-
selves how the pattern is used by GraphMDL to �cover� the data. The �Rewrit-
ten graph� block, shown in Fig. 8, visualizes GraphMDL's rewritten graph i.e.
how the data is encoded as pattern occurrences. Since the data may be large,
it would be very di�cult to show the whole of the data at once: it would be
di�cult for the user to analyze and would probably require too much computa-
tion for the web browser. Therefore, we implemented the possibility of limiting
the visualization to only some subsets of the data: the user can upload a �data
subsets� �le describing them. For example, the AIDS-CA dataset used as our
example is a collection of molecules, each molecule being a separate connected
component in the data graph. Thus, we created a data subsets �le that allows
to show only one molecule at a time. It is also possible to �lter the list of data
subsets via the interface, to only show the ones that contain speci�c patterns.

We found that the visualization ran smoothly on graphs up to some hundreds
of vertices and edges. For larger graphs, we warn the user and ask them to con�rm
before visualizing the graph, in order to avoid an unexpected application freeze.
In those cases, the user can instead decide to visualize a smaller part of the data
by tweaking the data subsets �le.

Fig. 8 shows the visualization of one of the molecules in the dataset, which
contains pattern P1. This visualization is similar to the pattern visualization
block. The users can zoom on the visualization, click and drag vertices to move
them around, show/hide the labels and customize colors. In particular, the color
customization of the two blocks are synced, so that the choices made when
visualizing the data are maintained when visualizing individual patterns.

Thanks to this visualization, we can observe that the molecule shown in
Fig. 8 is described by GraphMDL using 5 patterns, with pattern P1 describing



Fig. 8. The �Rewritten Graph Visualization� block. It visualize how the patterns are
used by GraphMDL to describe the data, with an interface similar to the �Pattern
visualization� block. 1) The user used the �data subsets� feature to only visualize a
subset of the data. 2) Additionally, the user �ltered the list of data subsets to only
show the ones that contain pattern P1.

the main �bulk� of the molecule. By observing this visualization, the user will
probably become interested in a new pattern (for example one of the other
patterns that appear alongside P1). A double-click on a pattern takes the user
back to the pattern visualization block showing the structure of that new pattern.
The user can also just go back to the pattern table or the main statistics block,
and change some options in order to continue exploring GraphMDL results!

4 Conclusion

In this demo paper we presented the GraphMDL Visualizer tool, which visualizes
the results of the GraphMDL algorithm [4] in an interactive interface, to help
users to better analyze and understand them. The tool presents itself as a web
page, where the users can upload a result �le generated by GraphMDL. The
users can then navigate the four blocks that make up the visualization, each
one responsible for a di�erent step of the analysis process, and interact with
them to customize the visualization to suit their needs. Throughout the paper
we followed the analysis process of a user, highlighting the steps where our tool
helped them understand the data, showing how an interactive visualization can
help them.

While GraphMDL Visualizer has been designed for the purpose of visual-
izing GraphMDL results, it could be adapted to visualize results from other



graph mining methods, as long as these results are converted into the format
accepted by the visualizer. Of course some features of the visualization may not
be available if the other mining solution does not support them (e.g. the notion
of ports).

References

1. Build fast, responsive sites with Bootstrap, https://getbootstrap.com/
2. D3.js, data-driven documents, https://d3js.org/
3. Vue.JS, the progressive javascript framework, https://vuejs.org/
4. Bariatti, F., Cellier, P., Ferré, S.: GraphMDL: Graph Pattern Selection Based on

Minimum Description Length. In: Advances in Intelligent Data Analysis. pp. 54�66.
Springer (2020)

5. Grünwald, P.: Model selection based on minimum description length. Journal of
Mathematical Psychology 44(1), 133�152 (2000)

6. Jentner, W., Keim, D.A.: Visualization and visual analytic techniques for patterns.
In: High-Utility Pattern Mining, pp. 303�337. Springer (2019)

7. Nijssen, S., Kok, J.N.: The Gaston tool for frequent subgraph mining. Electron.
Notes Theor. Comput. Sci. 127(1), 77�87 (2005)

8. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465�471
(1978)

9. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Min. Knowl. Discov. 23(1), 169�214 (2011)

10. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: IEEE Int.
Conf. on Data Mining (ICDM). pp. 721�724. IEEE (2002)

https://getbootstrap.com/
https://d3js.org/
https://vuejs.org/

	GraphMDL Visualizer:Interactive Visualization of Graph Patterns

