
HAL Id: hal-03145320
https://hal.archives-ouvertes.fr/hal-03145320

Preprint submitted on 18 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Moderate Deviations for the SSEP with a Slow Bond
Xiaofeng Xue, Linjie Zhao

To cite this version:

Xiaofeng Xue, Linjie Zhao. Moderate Deviations for the SSEP with a Slow Bond. 2021. �hal-03145320�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395676477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-03145320
https://hal.archives-ouvertes.fr


Moderate Deviations for the SSEP with a Slow Bond
Xiaofeng Xue ∗and Linjie Zhao †

Abstract

We consider the one dimensional symmetric simple exclusion process with a slow bond. In
this model, particles cross each bond at rate N2, except one particular bond, the slow bond,
where the rate is N . Above, N is the scaling parameter. This model has been considered
in the context of hydrodynamic limits, fluctuations and large deviations. We investigate
moderate deviations from hydrodynamics and obtain a moderate deviation principle.

Keywords: exclusion process, slow bond, moderate deviation, exponential martingale.

1 Introduction
The symmetric simple exclusion process (SSEP) with a slow bond was introduced in [6] by
Franco, Gonçalves and Neumann to consider the macroscopic effect of the slow bond on the
hydrodynamic profile. They derived from this microscopic system PDEs with boundary condi-
tions, which has become a popular topic recently [1, 9, 12]. The process evolves on the discrete
ring with N sites, where N is the scaling parameter. There is at most one particle per site.
Particles cross each bond at rate N2 except one particular bond, where the rate is N .

The hydrodynamic limit of the SSEP with a slow bond has been well understood [6,8]. The
hydrodynamic equation turns out to be the heat equation with Robin’s boundary conditions:

∂tρ (t, u) = ∂2uρ (t, u), t > 0, u ∈ T\{0},
∂uρ (t, 0

+) = ∂uρ (t, 0
−) = ρ (t, 0+)− ρ (t, 0−) , t > 0,

ρ(0, u) = γ(u), u ∈ T,
(1.1)

where T is the continuous ring, 0+ and 0− denote respectively the right limit and left limit
at site 0, and γ(·) is the initial density profile. Then it is natural to consider the equilibrium
fluctuations and large deviations from the hydrodynamic limit. Equilibrium fluctuations have
been studied in [7] and large deviations in [11] by Franco, Gonçalves and Neumann.

To better understand the SSEP with a slow bond, we consider the moderate deviations from
the hydrodynamic limit, which gives asymptotic behavior of the model between the central limit
theorem and the large deviation. As far as we know, the only paper concerned about moderate
deviations from hydrodynamics is [14] authored by Gao and Quastel, where the classic SSEP was
considered. For literatures about theories of moderate deviations, see References [2–4,13,18–20]
and so on.

∗E-mail: xfxue@bjtu.edu.cn Address: School of Science, Beijing Jiaotong University, Beijing 100044, China.
†E-mail: linjie.zhao@inria.fr Address: Inria Lille-Nord Europe, France.
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A main physical motivation to investigate the moderate deviation theory is due to its appli-
cation in statistical inference. Generally speaking, assuming that θ is a parameter of a model
in statistical physics while {ϑn}n≥1 is a series of stochastic elements arising from the random
sample path of the model that can be observed by the researchers, if one can show that ϑn
converges weakly to θ under a moderate deviation principle with rate function I(ϵ), then for
any ϵ > 0,

P

(∣∣∣∣ nan (ϑn − θ)

∣∣∣∣ > ϵ

)
≈ e−

a2n
n
I(ϵ)

for sufficiently large n and positive sequence {an}n≥1 satisfying an
n → 0 and a2n

n → +∞ as
n→ +∞. As a result, [

ϑn −
anϵ

n
, ϑn +

anϵ

n

]
is a confidence interval of θ with the advantage that the length of the interval converges to 0
while the confidence level of the interval converges to 1 exponentially as n→ +∞.

Next, we introduce the SSEP with a slow bond and main results. The process evolves on
TN = {0, 1, . . . , N − 1} the ring with N sites, with the convention N ≡ 0. Therefore, the state
space is {0, 1}TN . For each configuration η ∈ {0, 1}TN , η(x) = 1 means site x is occupied by a
particle, and η(x) = 0 means site x is vacant. The infinitesimal generator LN of the process is

LNf(η) = N [f(η−1,0)− f(η)] +N2
∑
x∈TN,
x ̸=−1

[f(ηx,x+1)− f(η)],

where

ηx,y(u) =


η(u) if u ̸= x, y,

η(y) if u = x,

η(x) if u = y

for any x ̸= y. Denote by {ηt}t≥0 the process with generator LN . We suppress the dependence
of the process {ηt}t≥0 on N for short.

Equivalently, we can define the process in the following way. For each i ̸= −1, let {Yi(t)}t≥0

be a Poisson process with rate N2 and {Y−1(t)}t≥0 be a Poisson process with rate N . Assume
that all these Poisson processes are independent. Then at any event moment of Yi(·), η(i) and
η(i+ 1) exchange their values.

The SSEP with a slow bond has a family of invariant measures indexed by the particle
density. To be precise, let νρ, ρ ∈ [0, 1], be the product measure on TN with marginals given by

νρ{η : η(x) = 1} = ρ, ∀x ∈ TN .

Then, it can be checked easily that νρ, ρ ∈ [0, 1], are reversible measures for the process {ηt}t≥0.
To define the empirical density and rate functions, we need to introduce some definitions and

notations and then discuss some topological issues. We identify T with [0, 1), and thus 0+ with
0 and 0− with 1. By the boundary conditions imposed on the hydrodynamic equation (1.1), it
is reasonable to consider test functions G ∈ C1[0, 1] with the property

G′(0) = G′(1) = G(0)−G(1). (1.2)
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The result of this paper relies heavily on the above kind of functions, especially trigonometric
functions satisfying (1.2). Define G0 as

G0 := span

({
sin

(
kn

(
x− 1

2

))}
n≥1

⋃ {
cos
(
2nπx

)}
n≥0

)
,

where kn is the unique solution to the equation −x
2 = tan x

2 in
(
(2n− 1)π, (2n+ 1)π

)
for each

n ≥ 1. It can be checked easily that any G ∈ G0 satisfies (1.2). According to [10, Theorem 1]
given by Franco and Landim, we can prove the set of the above trigonometric functions is a
basis in L2[0, 1], which is crucial to construct the topology of this paper.

Lemma 1.1. The set
{
sin
(
kn(x− 1/2)

)}
n≥1

⋃ {
cos
(
2nπx

)}
n≥0

is an orthogonal basis of
L2[0, 1].

We put the proof of Lemma 1.1 in the appendix.
Let M be the space of linear (not necessarily bounded) functionals on G0 endowed with the

following topology: for any An ∈ M , n ≥ 1, and A ∈ M ,

lim
n→+∞

An = A in M if and only if lim
n→+∞

An(θk) = A (θk) for all integers k,

where θn(x) = sin
(
kn(x − 1/2)

)
for n ≥ 1 and θ−n(x) = cos

(
2nπx

)
for n ≥ 0. The above

topology is metrizable and the metric d (·, ·) is given by

d
(
A1,A2

)
=

∑
−∞<n<+∞

1

2|n|
|A1(θn)− A2(θn)|

1 + |A1(θn)− A2(θn)|
, A1, A2 ∈ M .

It can be checked directly that the space M is complete and separable under the above metric.
Note that a bounded signed measure µ on [0, 1] can be identified with an element in M in the
sense that µ(f) =

∫
[0,1] f(x)µ(dx) for any f ∈ G0.

Remark 1.2. We construct the above topology for technical reasons. Mainly, we cannot show the
uniqueness or existence of the weak solution to a PDE arising from hydrodynamics of the SSEP
with a slow bond under a Girsanov’s transformed measure. However, if we do not distinguish
two measures µ1 and µ2 satisfying µ1(θn) = µ2(θn) for all n, the above PDE can be reduced to
an ODE on M , the existence and uniqueness of the solution to which can be rigorously proved.
For mathematical details, see Section 4 and appendix. We also underline that µ1(θn) = µ2(θn)
for all n does not mean µ1 = µ2 under the usual weak topology, since the product of functions on
G0 may not be in G0 when applying the Stone-Weierstrass Theorem [5, Theorem 7.5.3]. Indeed,
the readers can check directly that the function sin(k1(x− 1/2)) sin(k2(x− 1/2)) does not belong
to G0 since the function does not satisfy (1.2).

In the following, we will fix a horizon time T > 0. Let D
(
[0, T ],M

)
be the space of càdlàg

functions from [0, T ] to M endowed with the Skorohod topology. Define the rescaled central
empirical density µNt (du) as

µNt (du) :=
1

aN

∑
x∈TN

(ηt(x)− ρ)δx/N (du),
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where
√
N ≪ aN ≪ N , i.e.,

lim sup
N→∞

√
N

aN
= lim sup

N→∞

aN
N

= 0.

We will regard µN := {µNt }0≤t≤T as a random element taking values in D
(
[0, T ],M

)
.

Let G be the family of functions G : [0, T ]× [0, 1] → R with the following forms: there exist
M ∈ N and bm(t) ∈ C1([0, T ]), −M ≤ m ≤M such that

G(t, u) =

M∑
m=−M

bm(t) θm(u), (t, u) ∈ [0, T ]× [0, 1].

Then for any G ∈ G ,

∂uG(t, 0) = ∂uG(t, 1) = G(t, 0)−G(t, 1), ∀ t ∈ [0, T ]. (1.3)

We sometimes write Gt(u) for G(t, u). For G ∈ G , define the extended Laplacian ∆̃ as

∆̃Gt (u) =

{
∂2uGt (u) if u ̸= 0,

∂2uGt (0
+) if u = 0.

Fix a density ρ ∈ (0, 1). Denote by QNρ the law of {µNt }0≤t≤T with initial distribution νρ. Let
PNρ be the law of the process {ηt}0≤t≤T with initial distribution νρ, and ENρ the corresponding
expectation. Let Eνρ be the expectation with respect to νρ. For µ ∈ D([0, T ],M ), define

I(µ) := Iini(µ0) + Idyn(µ),

Iini(µ0) := sup
γ∈G0

{
µ0(γ)−

ρ(1− ρ)

2

∫ 1

0
γ2(u) du

}
,

Idyn(µ) := sup
G∈G

{
ℓT (µ,G)− ρ(1− ρ)

∫ T

0
(Gt(0)−Gt(1))

2 dt

−ρ(1− ρ)

∫ T

0

∫ 1

0
(∂uGt(u))

2 du dt

}
,

(1.4)

where

ℓT (µ,G) := µT (GT )− µ0 (G0)−
∫ T

0
µt

(
(∂t + ∆̃)Gt

)
dt. (1.5)

Now we are ready to state the main result of the paper.

Theorem 1.3. For any closed set C of D ([0, T ],M ),

lim sup
N→∞

N

a2N
logQNρ [C] ≤ − inf

µ∈C
I(µ), (1.6)

and for any open set O of D ([0, T ],M ),

lim inf
N→∞

N

a2N
logQNρ [O] ≥ − inf

µ∈O
I(µ). (1.7)
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Remark 1.4. We recall the large deviation principle of the SSEP with a slow bond established
in [11] by Franco and Neumann for a comparison. Note that definitions and notations in this
remark are not utilized elsewhere. Let

πNt (du) =
1

N

∑
x∈TN

ηt(x)δx/N (du), πN = {πNt }0≤t≤T ,

then it was shown in [11] that, roughly speaking,

P (πN ≈ π) ≈ exp {−NJ(π)}

assuming uniqueness for the weak solution to hydrodynamic equation associated to the perturbed
process, where

J(π) = sup
H∈C1,2([0,T ]×[0,1])

{ℓ̂H(π)− ΦH(π)}

with ℓ̂H(π) given by

ℓ̂H(π) =⟨ρT ,HT ⟩ − ⟨ρ0,H0⟩ −
∫ T

0
⟨ρt, (∂t +∆)Ht⟩ dt

−
∫ T

0
{ρt(0)∂uHt(0)− ρt(1)∂uHt(1)} dt+

∫ T

0
(ρt(0)− ρt(1)) δHt(0) dt

and ΦH(π) given by

ΦH(π) =

∫ T

0
⟨χ(ρt), (∂uHt)

2⟩ dt+
∫ T

0
ρt(1) (1− ρt(0))ψ (δHt(0)) dt

+

∫ T

0
ρt(0) (1− ρt(1))ψ (−δHt(0)) dt,

where ρt is the Radon-Nikodym derivative of πt with respect to the Lebesgue measure, ψ(x) =
ex − x − 1, χ(ρ) = ρ(1 − ρ) and δHt(0) = Ht(0) − Ht(1). Since ex − x − 1 = x2

2 + o(x2)

as |x| decreases to 0 and ℓ̂H(π) equals ℓT (π,H) when H satisfies (1.3), the rate function Idyn
can be intuitively considered as the quadratic part of J about its minimum, which is a common
relationship between large and moderate deviations for many models in statistical physics.

Notation. For deterministic positive sequences {bn}n≥1, {cn}n≥1 and random sequence
{Xn}n≥1, we write bn = o(cn) if lim supn→∞ bn/cn = 0 and bn = O(cn) if lim supn→∞ bn/cn < C
for some constant C independent of n. We also write bn = OG(cn) to stress the dependence on
some parameter G of the constant C. We write Xn = op(cn) if Xn/cn → 0 in probability as
n→ ∞, and Xn = oexp(cn) if

lim sup
n→+∞

1

cn
logP

(
|Xn| > ϵ

)
= −∞, ∀ϵ > 0.
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We remark on these last points that the constant throughout the paper may be different from
line to line.

The rest of the paper is devoted to the proof of Theorem 1.3. In Section 2 we give several
super-exponential estimates that are necessary in the proof of upper and lower bounds as a
preparation. Moderate upper bounds are proved in Section 3. Our proof follows a strategy
similar with that introduced in [14], except for some details modified due to technical reasons
caused by the slow bond. First, as introduced above, we have to choose a proper topology and to
consider the empirical density as a random element taking values in the linear functional space
M , instead of the dual of Schwartz functions. Second, an extra super-exponential estimate
(Lemma 2.1) is needed. Third, because of the topology constructed, we have to use a different
version of Minimax Theorem (Theorem 3.2) from the one in [14]. Moderate lower bounds are
proved in Section 4. A crucial step in the proof is the utilizing of a generalized Girsanov’s
theorem to give the hydrodynamic equation of the model under a transformed measure.

2 Super-exponential Decay
In this section, we mainly present three super-exponential estimates that are critical when
making some replacements and proving exponential tightness.

Lemma 2.1. For any continuous function G : [0, T ] → R and any δ, t > 0,

lim sup
N→∞

1

aN
logPNρ

[∣∣∣∣∫ t

0
(ηs(0)(1− ηs(−1))− ρ(1− ρ))Gs ds

∣∣∣∣ > δ

]
= −∞. (2.1)

The same result holds with ηs(0)(1− ηs(−1)) replaced by ηs(−1)(1− ηs(0)).

Proof. We only present the proof of (2.1) since the rest is the same. For any integer M > 0 and
x ∈ TN , define ηM,R(x) (resp. ηM,L(x)) as the average density over the box of size M to the
right (resp. left) of site x ,

ηM,R(x) =
1

M

x+M−1∑
y=x

η(y), ηM,L(x) =
1

M

x∑
y=x−M+1

η(y).

Note that for every integer M > 0,

η(0)(1− η(−1))− ρ(1− ρ) =
(
η(0)− ηM,R(0)

)
(1− η(−1))

+ ηM,R(0)(ηM,L(−1)− η(−1)) +
(
ηM,R(0)− ρ

) (
1− ηM,L(−1)

)
+ ρ

(
ρ− ηM,L(−1)

)
.

Since for any positive sequences {bN}N≥1 and {cN}N≥1,

lim sup
N→∞

1

aN
log(bN + cN ) ≤ max

{
lim sup
N→∞

1

aN
log bN , lim sup

N→∞

1

aN
log cN

}
,

to prove (2.1), we only need to prove for any δ > 0,

lim sup
N→∞

1

aN
logPNρ

[∣∣∣∣∫ t

0

(
ηs(0)− ηM,R

s (0)
)
(1− ηs(−1))Gs ds

∣∣∣∣ > δ

]
= −∞, (2.2)

6



lim sup
N→∞

1

aN
logPNρ

[∣∣∣∣∫ t

0
ηM,R
s (0)(ηM,L

s (−1)− ηs(−1))Gs ds

∣∣∣∣ > δ

]
= −∞,

lim sup
N→∞

1

aN
logPNρ

[∣∣∣∣∫ t

0

(
ηM,R
s (0)− ρ

) (
1− ηM,L

s (−1)
)
Gs ds

∣∣∣∣ > δ

]
= −∞, (2.3)

and
lim sup
N→∞

1

aN
logPNρ

[∣∣∣∣∫ t

0
ρ
(
ρ− ηM,L

s (−1)
)
Gs ds

∣∣∣∣ > δ

]
= −∞.

We only prove (2.2) and (2.3), since the remaining two terms are similar.

For any A > 0, by Chebyshev’s inequality, the formula on the left-hand side of (2.2) is
bounded from above by

− Aδ

aN
+

1

aN
logENρ

[
exp

{
A

∣∣∣∣∫ t

0

(
ηs(0)− ηM,R

s (0)
)
(1− ηs(−1))Gs ds

∣∣∣∣}] . (2.4)

Since e|x| ≤ ex + e−x, we can remove the modulus in the expectation above. By the Feynman-
Kac formula (see [15, Lemma A.1.7.2] by Kipnis and Landim for example), the second term in
(2.4) is bounded by

1

aN

∫ t

0
ds sup

f density

{
AGs

∫ (
η(0)− ηM,R(0)

)
(1− η(−1)) f(η) dνρ −DN (f ; νρ)

}
,

where DN (f ; νρ) is the Dirichlet form of f associated with νρ given by

DN (f ; νρ) :=
〈√

f, (−LN )
√
f
〉
νρ

= N
[√

f(η−1,0)−
√
f(η)

]2
+N2

∑
x∈TN,
x̸=−1

[√
f(ηx,x+1)−

√
f(η)

]2
.

We first write η(0)− ηM,R(0) as a telescope sum,

η(0)− ηM,R(0) =
1

M

M−1∑
x=0

x−1∑
y=0

(η(y)− η(y + 1)) .

Making the transformations η → ηy,y+1, by Cauchy-Schwarz inequality, we obtain that there
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exists a constant C only depending on G such that for any B > 0,

AGs

∫ (
η(0)− ηM,R(0)

)
(1− η(−1)) f(η) dνρ

=
AGs
2M

M−1∑
x=0

x−1∑
y=0

∫
(η(y)− η(y + 1)) (1− η(−1))

(
f(η)− f(ηy,y+1)

)
dνρ

≤ AB||G||∞
4M

M−1∑
x=0

x−1∑
y=0

∫ (√
f(η)−

√
f(ηy,y+1)

)2
dνρ

+
A||G||∞
4BM

M−1∑
x=0

x−1∑
y=0

∫ (√
f(η) +

√
f(ηy,y+1)

)2
dνρ

≤ C

(
AB

N2
DN (f ; νρ) +

AM

B

)
.

Taking B = N2A−1C−1, we bound (2.4) by

inf
A>0

{
−Aδ
aN

+
A2C2tM

N2aN

}
= − δ2N2

4C2tMaN
.

We prove (2.2) by choosing M = [N/2].
As above, for any A > 0, the formula on the left-hand side of (2.3) is bounded by

−Aδ
aN

+
1

aN
logENρ

[
exp

{
A

∣∣∣∣∫ t

0

(
ηM,R
s (0)− ρ

) (
1− ηM,L

s (−1)
)
Gs ds

∣∣∣∣}] .
As before, we can first remove the modulus. By Jensen’s inequality and the invariance of the
measure νρ, we bound the above formula by

− Aδ

aN
+

1

aN
log

(
1

t

∫ t

0
dsEνρ

[
exp

{
AtGs

(
ηM,R(0)− ρ

) (
1− ηM,L(−1)

)}])
. (2.5)

By Taylor’s expansion, the expectation in the above formula is less than or equal to

∑
k≥0

A2kt2k||G||2k∞
(2k)!

Eνρ

[(
ηM,R(0)− ρ

)2k]
+
∑
k≥0

A2k+1t2k+1||G||2k+1
∞

(2k + 1)!
Eνρ

[∣∣ηM,R(0)− ρ
∣∣2k+1

]
≤ (1 +At||G||∞)

∑
k≥0

A2kt2k||G||2k∞
(2k)!

Eνρ

[(
ηM,R(0)− ρ

)2k]
.

We claim that there exists a constant C(ρ) such that

Eνρ

[(
ηM,R(0)− ρ

)2k] ≤ C(ρ)k k!

Mk
. (2.6)
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Since 2k(k!)2 ≤ (2k)!, the expectation in (2.5) is bounded by CA exp{CA2/M} for some constant
C = C(t, G, ρ). Therefore, we bound (2.5) by

−Aδ
aN

+
CA2

MaN
+

logC + logA

aN
.

Recall we have set M = [N/2]. We prove (2.3) by taking A =Mδ/(2C).
At last, we only need to check Equation (2.6) to complete this proof. By Fubini’s theorem,

Eνρ

[(
ηM,R(0)− ρ

)2k]
=

∫ +∞

0
2kt2k−1Pνρ

(∣∣ηM,R(0)− ρ
∣∣ ≥ t

)
dt.

For 0 ≤ t < 1− ρ and θ ≥ 0, by Chebyshev’s inequality,

Pνρ
(
ηM,R(0)− ρ ≥ t

)
≤ e−tMθEνρ

[
eθM(ηM,R(0)−ρ)

]
=
(
e−θtEνρ

[
eθ(η(0)−ρ)

])M
=
(
e−θ(t+ρ)

[
eθρ+ 1− ρ

])M
.

Let θ = log (t+ρ)(1−ρ)
ρ(1−t−ρ) , then

Pνρ
(
ηM,R(0)− ρ ≥ t

)
≤ e−MI (t) (2.7)

for 0 ≤ t < 1− ρ, where

I (t) = −(1− t− ρ) log(1− ρ) + (t+ ρ) log(t+ ρ) + (1− t− ρ) log(1− ρ− t)− (t+ ρ) log ρ.

We define I (1− ρ) = − log ρ. Note that limt↑1−ρ I (t) = − log ρ and

Pνρ
(
ηM,R(0)− ρ ≥ 1− ρ

)
=
(
Pνρ (η(0) = 1)

)M
= ρM,

hence Equation (2.7) holds for 0 ≤ t ≤ 1−ρ and I is continuous in [0, 1−ρ]. It is easy to check
that I (0) = 0 and I (t) > 0 for t ∈ (0, 1− ρ]. By L’Hospital’s rule,

lim
t↓0

I (t)

t2
=

1

2ρ(1− ρ)
.

Hence I (t)
t2

is continuous and strictly positive on [0, 1 − ρ]. Let J1(ρ) = inf0≤t≤1−ρ
I (t)
t2

, which
is strictly positive, then

Pνρ
(
ηM,R(0)− ρ ≥ t

)
≤ e−MJ1(ρ)t2 (2.8)

for all M ≥ 1 and any t ∈ [0, 1− ρ] by Equation (2.7). Note that Pνρ
(
ηM,R(0)− ρ ≥ t

)
= 0 for

t > 1− ρ, hence Equation (2.8) holds for all M ≥ 1 and t ≥ 0. A similar argument proves that
there exists J2(ρ) > 0 such that

Pνρ
(
ηM,R(0)− ρ ≤ −t

)
≤ e−MJ2(ρ)t2

for all M ≥ 1 and t ≥ 0. Let J(ρ) = inf{J1(ρ), J2(ρ)}, then

Eνρ

[(
ηM,R(0)− ρ

)2k]
=

∫ +∞

0
2kt2k−1Pνρ

(∣∣ηM,R(0)− ρ
∣∣ ≥ t

)
dt

≤
∫ +∞

0
4kt2k−1e−MJ(ρ)t2dt =

2k!

Mk (J(ρ))k
.

Equation (2.6) follows by taking C(ρ) = 2
J(ρ) . This completes the proof.
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Lemma 2.2. For any G ∈ C ([0, T ]× [0, 1]) and any δ, t > 0,

lim sup
N→∞

1

aN
logPNρ


∣∣∣∣∣∣∣
∫ t

0

1

N

∑
x∈TN,
x ̸=−1

[
(ηs(x)− ηs(x+ 1))2 − 2ρ(1− ρ)

]
Gs

( x
N

)
ds

∣∣∣∣∣∣∣ > δ

 = −∞.

Lemma 2.3. Let G ∈ C[0, 1]. Then for any t > 0,

lim sup
A→∞

lim sup
N→∞

N

a2N
logPNρ

[
sup

0⩽t⩽T

∣∣∣∣∫ t

0
⟨µNs , G⟩ ds

∣∣∣∣ > A

]
= −∞, (2.9)

and for any ϵ, t > 0,

lim sup
δ→0

lim sup
N→∞

N

a2N
logPNρ

[
sup

|t−s|≤δ

∣∣∣∣∫ t

s

〈
µNu , G

〉
du

∣∣∣∣ > ϵ

]
= −∞. (2.10)

The proof of [14, Lemmas 2.1 and 2.2] also applies to the above two lemmas. The main
ingredients are the invariance of the Bernoulli product measure νρ. For that reason we omit the
proof.

3 Upper Bound
In this section, we prove (1.6) the moderate deviations upper bound. The strategy is first
proving upper bound over compact sets, and then extending to closed sets, which follows from
the exponential tightness.

Fix G ∈ G . By Feynman-Kac formula (see [15, A.1.7]),

MN
t (G) :=

f(t, ηt)

f(0, η0)
exp

{
−
∫ t

0

∂sf + LNf
f

(s, ηs) ds

}
(3.1)

is a positive mean-one martingale, where

f(t, η) := fG(t, η) := exp

aNN ∑
x∈TN

(η(x)− ρ)Gt (x/N)

 .

Notice that
f(t, ηt) = exp

{
a2N
N

〈
µNt , Gt

〉}
.

A simple calculation yields that

(∂sf + LNf)(s, ηs) = f(s, ηs)

(
a2N
N

⟨µNs , ∂sGs⟩

+N

[
exp

{
aN
N

(ηs(−1)− ηs(0))

(
Gs

(
0

N

)
−Gs

(
−1

N

))}
− 1

]

+
∑
x∈TN,
x ̸=−1

N2

[
exp

{
aN
N

(ηs(x)− ηs(x+ 1))

(
Gs

(
x+ 1

N

)
−Gs

( x
N

))}
− 1

] .
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By Taylor’s expansion,

N

[
exp

{
aN
N

(ηs(−1)− ηs(0))

(
Gs

(
0

N

)
−Gs

(
−1

N

))}
− 1

]
= aN (ηs(−1)− ηs(0))

(
Gs

(
0

N

)
−Gs

(
−1

N

))
+
a2N
2N

(ηs(−1)− ηs(0))
2

(
Gs

(
0

N

)
−Gs

(
−1

N

))2

+OG

(
a3N
N2

)
,

and for x ̸= −1,

N2

[
exp

{
aN
N

(ηs(x)− ηs(x+ 1))

(
Gs

(
x+ 1

N

)
−Gs

( x
N

))}
− 1

]
= NaN (ηs(x)− ηs(x+ 1))

(
Gs

(
x+ 1

N

)
−Gs

( x
N

))
+
a2N
2
(ηs(x)− ηs(x+ 1))2

(
Gs

(
x+ 1

N

)
−Gs

( x
N

)2)
+OG

(
a3N
N4

)
.

Using the summation by parts formula,

MN
t (G) = exp

a2N
N

{
⟨µNt , Gt⟩ − ⟨µN0 , G0⟩ −

∫ t

0
⟨µNs , (∂s + ∆̃)Gs⟩ds (3.2)

−
∫ t

0

N

aN
(ηs(−1)− ηs(0))

(
Gs

(
0

N

)
−Gs

(
−1

N

))
ds (3.3)

−
∫ t

0

1

2
(ηs(−1)− ηs(0))

2

(
Gs

(
0

N

)
−Gs

(
−1

N

))2

ds (3.4)

−
∫ t

0

N

aN

(
(ηs(0)− ρ)∇NGs

(
0

N

)
− (ηs(−1)− ρ)∇NGs

(
−2

N

))
ds (3.5)

−
∫ t

0

1

2N

∑
x∈TN,
x̸=−1

(ηs(x)− ηs(x+ 1))2
(
∇NGs

( x
N

))2
ds (3.6)

+OG

(aN
N

)
+OG

(
1

aN

)}
, (3.7)

where ∇N is the discrete space derivative, ∇NGs(x/N) := N [Gs ((x+ 1)/N)−Gs(x/N)]. By
the boundary condition (1.3) imposed on G, the sum of (3.3) and (3.5) is of order OG

(
a−1
N

)
.

Therefore,

MN
t (G) = exp

a2N
N

{
ℓt(µ

N )−
∫ t

0

1

2
(ηs(−1)− ηs(0))

2

(
Gs

(
0

N

)
−Gs

(
−1

N

))2

ds

−
∫ t

0

1

2N

∑
x∈TN,
x̸=−1

(ηs(x)− ηs(x+ 1))2
(
∇NGs

( x
N

))2
ds+OG

(
1

aN

) .
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Lemma 3.1 (Upper bounds over compact sets). For any compact set K ⊂ D ([0, T ],M ),

lim sup
N→∞

N

a2N
logQNρ [K] ≤ − inf

µ∈K
I(µ). (3.8)

Proof. For any δ > 0 and any G ∈ G , let

BN,δ =


∣∣∣∣∣∣∣
∫ T

0

∑
x∈TN,
x ̸=−1

1

2N
(ηt(x)− ηt(x+ 1))2

(
∇NGt

( x
N

))2
dt−

∫ T

0

∫ 1

0
ρ(1− ρ) (∇Gt(u))2 dt du

∣∣∣∣∣∣∣ < δ


⋂{∣∣∣∣∣

∫ T

0

[
1

2
(ηt(−1)− ηt(0))

2 − ρ(1− ρ)

](
Gt

(
0

N

)
−Gt

(
−1

N

))2

dt

∣∣∣∣∣ < δ

}
.

By Lemmas 2.1, 2.2 and the assumption aN ≪ N ,

lim sup
N→∞

N

a2N
logPNρ [Bc

N,δ] = −∞.

Therefore, for any γ ∈ G0,

lim sup
N→∞

N

a2N
logPNρ [µN ∈ K] ≤ lim sup

N→∞

N

a2N
logPNρ

[{
µN ∈ K

}
∩BN,δ

]
= lim sup

N→∞

N

a2N
logENρ

[(
MN
T (G)

)−1
MN
T (G)1{µN∈K}

⋂
BN,δ

]
≤ sup

µ∈K

{
−ℓT (µ) + ρ(1− ρ)

∫ T

0
(Gt(0)−Gt(1))

2 dt

+ρ(1− ρ)

∫ T

0

∫ 1

0
(∂uGt(u))

2 du dt− µ0(γ)

}
+O(δ)

+ lim sup
N→∞

N

a2N
logENρ

[
MN
T (G) exp

{
a2N
N

⟨µN0 , γ⟩
}]

.

Because {MN
t (G)} is a mean one martingale and νρ is a product measure, direct calculations

yield that

lim sup
N→∞

N

a2N
logENρ

[
MN
T (G) exp

{
a2N
N

⟨µN0 , γ⟩
}]

=
ρ(1− ρ)

2

∫ 1

0
γ(u)2 du.

Letting δ → 0, and then minimizing over G ∈ G , γ ∈ G0,

lim sup
N→∞

N

a2N
logPNρ [µN ∈ K] ≤ inf

G∈G ,
γ∈G0

sup
µ∈K

{
−ℓT (µ) + ρ(1− ρ)

∫ T

0
(Gt(0)−Gt(1))

2 dt

+ρ(1− ρ)

∫ T

0

∫ 1

0
(∂uGt(u))

2 du dt− µ0(γ) +
ρ(1− ρ)

2

∫ 1

0
γ(u)2 du

}
.

In order to exchange the supremum and infimum above, we use the following version of
Minimax Theorem proved by Nikaidô.
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Theorem 3.2 (Minimax Theorem, [16, Theorem 1]). Let X be a linear space endowed with
separative topology and Y a linear space. Moreover, assume X is compact. Let f : X×Y → R
satisfy that f(x, y) is convex in y for each fixed x, and concave in x for each fixed y. Furthermore,
f(x, y) is continuous in x for each fixed y. If supx∈X infy∈Y f(x, y) is finite, then

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

We finish the proof by taking X = K ⊂ D ([0, T ],M ) , Y = G × G0 and

f (µ, (G, γ)) = −ℓT (µ) + ρ(1− ρ)

∫ T

0
(Gt(0)−Gt(1))

2 dt

+ ρ(1− ρ)

∫ T

0

∫ 1

0
(∂uGt(u))

2 du dt− µ0(γ) +
ρ(1− ρ)

2

∫ 1

0
γ(u)2 du

for any µ ∈ X and (G, γ) ∈ Y.

To extend the moderate deviations upper bound to any closed set, it suffices to show the
exponential tightness of the sequence {QN}N≥1, which follows from Lemma 3.3 as in [14].

Lemma 3.3. For any G ∈ G0,

lim sup
A→∞

lim sup
N→∞

N

a2N
logPNρ

(
sup

0⩽t⩽T

∣∣〈µNt , G〉∣∣ > A

)
= −∞, (3.9)

and for any ϵ > 0,

lim sup
δ→0

lim sup
N→∞

N

a2N
logPNρ

(
sup
0<t⩽δ

∣∣〈µNt − µN0 , G
〉∣∣ > ε

)
= −∞. (3.10)

We first explain why the above lemma implies exponential tightness. For any m ∈ N, k ∈ Z
and any δ,A > 0, define

Bk,A =

{
sup

0≤t≤T
|µt(θk)| ≤ A

}
, Bk,m,δ =

{
sup

0≤|t−s|≤δ
|(µt − µs)(θk)| ≤

1

m

}
.

Then by Lemma 3.3, for any n > 0, there exist A = A(n, k) and δ = δ(m, k, n) such that

sup
N≥1

QNρ
[
Bc
k,A

]
< e−(a2N/N)nk, sup

N≥1
QNρ

[
Bc
k,m,δ

]
< e−(a2N/N)nkm.

Let

Kn =

⋂
k≥1

Bk,A(n,k)

⋂
 ⋂
k,m≥1

Bk,m,δ(m,k,n)

 .

It can be checked that Kn is a compact set for each n ≥ 1. Moreover, QNρ [Kc
n] is bounded by a

multiple of exp{−(a2N/N)n}. This proves the exponential tightness.
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Proof of Lemma 3.3. We first prove (3.9). Since (3.4) and (3.6) are bounded, we only need to
show that

lim sup
A→∞

lim sup
N→∞

N

a2N
logPNρ

[
sup

0⩽t⩽T

∣∣∣∣ Na2N logMN
t (G) + ⟨µN0 , G⟩+

∫ t

0
⟨µNs , ∆̃G⟩ds

∣∣∣∣ > A

]
= −∞,

which is a consequence of

lim sup
A→∞

lim sup
N→∞

N

a2N
logPNρ

[
sup

0⩽t⩽T

∣∣∣∣ Na2N logMN
t (G)

∣∣∣∣ > A/3

]
= −∞, (3.11)

lim sup
A→∞

lim sup
N→∞

N

a2N
logPNρ

 1

aN

∣∣∣∣∣∣
∑
x∈TN

(η0(x)− ρ)G (x/N)

∣∣∣∣∣∣ > A/3

 = −∞, (3.12)

and
lim sup
A→∞

lim sup
N→∞

N

a2N
logPNρ

[
sup

0⩽t⩽T

∣∣∣∣∫ t

0
⟨µNs , ∆̃G⟩ds

∣∣∣∣ > A/3

]
= −∞. (3.13)

Notice that (3.13) follows from Lemma 2.3. To prove (3.11), without loss of generality, we first
remove the modulus since otherwise we can replace G by −G. Then

PNρ
[
sup

0⩽t⩽T

N

a2N
logMN

t (G) > A/3

]
= PNρ

[
sup

0⩽t⩽T
MN
t (G) > exp

{
Aa2N
3N

}]
≤ 4 exp

{
−
Aa2N
3N

}
ENρ
[(
MN
T (G)

)2] ≤ 4 exp

{
C
(
||G||2∞ + ||G′||2∞

)
T −

Aa2N
3N

}
.

This proves (3.11). For (3.12), removing the modulus inside the probability as before and then
by Chebyshev’s inequality,

N

a2N
logPNρ

 1

aN

∑
x∈TN

(η0(x)− ρ)G (x/N) > A/3


≤ −A/3 + N

a2N
logENρ

exp
aNN ∑

x∈TN

(η0(x)− ρ)G (x/N)




= −A/3 + N

a2N

∑
x∈TN

log

(
1 +

C(ρ)a2N
N2

G(x/N)2 +OG

(
a3N
N3

))
≤ −A/3 + C(ρ)

N

∑
x∈TN

G(x/N)2 +OG

(aN
N

)
.

This proves (3.12) by letting N → ∞ and then A→ ∞.
Next we prove (3.10). Fix A > 0, which will converge to infinity after δ → 0, N → ∞. From

Equations (3.2)-(3.7) with G replaced by AG, we only need to prove (3.10) for the following four
terms:

N

Aa2N
logMN

t (AG),

∫ t

0
⟨µNs , ∆̃G⟩ds,

A

∫ t

0

1

2
(ηs(−1)− ηs(0))

2

(
G

(
0

N

)
−G

(
−1

N

))2

ds,
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and
A

∫ t

0

1

2N

∑
x∈TN,
x ̸=−1

(ηs(x)− ηs(x+ 1))2
(
∇NG

( x
N

))2
ds.

Notice that the proof of (3.11) also applies to the martingale term. The second one follows from
Lemma 2.3. For the last two terms, notice that they are both bounded by C(G)δA. The proof
is complete.

4 Lower bound
In this section we give the proof of the lower bound. Our strategy is similar with that introduced
in [14], where a crucial step is to obtain a hydrodynamic limit of our process under a transformed
measure with the exponential martingale given in (3.1) as the Radon-Nikodym derivative with
respect to the original measure of our process with {η0(x)}x∈TN independently distributed.
However, to achieve the above purpose, we utilize a different approach from that introduced
in [14]. In [14], a weakly asymmetric exclusion process is defined as an auxiliary model while in
this paper, to simplify calculations, we turn to apply a generalized version of Girsanov’s theorem
introduced in [17].

For f, g ∈ G0, we define

⟨f |g⟩ = 2ρ(1− ρ)

[(
f(0)− f(1)

)(
g(0)− g(1)

)
+

∫ 1

0
∂uf (u) ∂ug (u) du

]
.

For f, g ∈ G and 0 ≤ t ≤ T , we define

⟨⟨f, g⟩⟩t =
∫ t

0
⟨fs|gs⟩ ds.

For simplicity, we write ⟨⟨f, g⟩⟩T as ⟨⟨f, g⟩⟩. To make ⟨⟨·, ·⟩⟩ an inner product, we write f ≃ g if
and only if ⟨⟨f − g, f − g⟩⟩ = 0 and then define H as the Hilbert space which is the completion
of G /≃.

For locally square integrable martingales {Mt}t≥0 and {Nt}t≥0, we use {⟨M,N⟩t}t≥0 to
denote the predictable quadratic-covariation process which is continuous and use {[M,N ]t}t≥0

to denote the optional quadratic-covariation process which satisfies

[M,N ]T = lim
sup(ti+1−ti)→0

∑
i

(
Mti+1 −Mti

)(
Nti+1 −Nti

)
in L2,

where the limit is over all partitions {ti} of [0, T ]. Note that [M,N ] = ⟨M,N⟩ when M and N
are continuous. For any H ∈ C1,2([0, T ]× {0, 1}TN ), by Dynkin’s martingale formula,

ΛNt (H) := H(t, ηt)−H(0, η0)−
∫ t

0
(LN + ∂s)H(s, ηs) ds (4.1)

is a martingale and for any H1,H2 ∈ C1,2([0, T ]× {0, 1}TN ),

⟨ΛN (H1),Λ
N (H2)⟩t =

∫ t

0
LN
(
H1H2

)
−H1LNH2 −H2LNH1 ds. (4.2)

The following lemma gives clear expressions of Idyn and Iini.
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Lemma 4.1. (i) If Idyn (µ) < +∞, then there exists ψ ∈ H such that ℓT (µ,G) = ⟨⟨G,ψ⟩⟩ for
any G ∈ G and Idyn (µ) = 1

2⟨⟨ψ,ψ⟩⟩.
(ii) If Iini (ν) < +∞ for ν ∈ M , then there exists ϕ ∈ L2[0, 1] such that ν(G) = ⟨ϕ,G⟩ for any
G ∈ G0 and

Iini (ν) =

∫ 1
0 ϕ

2(u) du

2ρ(1− ρ)
.

Proof. The proofs of the two parts follow the same strategy, hence we only give the proof of (i).
According to the definition of Idyn,

Idyn(µ) = sup
G∈G

{ℓT (µ,G)− (1/2)⟨⟨G,G⟩⟩} .

If ℓT (µ,G) ̸= 0 for some G such that ⟨⟨G,G⟩⟩ = 0, then

Idyn (µ) ≥ sup
c∈R

{
ℓT (µ, cG)−

1

2
⟨⟨cG, cG⟩⟩

}
= sup

c∈R
{c ℓT (µ,G)} = +∞,

which is contradictory. Therefore, ℓT (µ, ·) is well defined on G /≃. For G ∈ G /≃ such that
G ̸= 0, ℓT (µ, cG)− (1/2)⟨⟨cG, cG⟩⟩ obtains maximum ℓ2T (µ,G)

2⟨⟨G,G⟩⟩ at c = ℓT (µ,G)
⟨⟨G,G⟩⟩ . Therefore,

Idyn (µ) = sup
G∈G /≃,G ̸=0

ℓ2T (µ,G)

2⟨⟨G,G⟩⟩
.

Since Idyn(µ) < +∞, ℓT (µ, ·) can be extended to a bounded linear function on H . As a result,
the existence of ψ follows from Riesz’s representation theorem and Idyn (µ) =

1
2⟨⟨ψ,ψ⟩⟩ follows

from Cauchy-Schwarz inequality.

For ϕ ∈ G0 and sufficiently large N , denote by ν
N,ϕ

the product measure on {0, 1}TN with
marginals given by

ν
N,ϕ

{η : η(x) = 1} = ρ+
aN
N

ϕ
( x
N

)
, x ∈ TN ,

and by PNϕ the law of the process {ηt}t≥0 with initial distribution ν
N,ϕ

. For any G ∈ G , denote
by P̂Nϕ,G the probability measure on D

(
[0, T ], {0, 1}TN

)
such that

d P̂Nϕ,G
dPNϕ

=MN
T (G).

Lemma 4.2. For any G ∈ G and any ϕ ∈ G0, {µNt }0≤t≤T converges in P̂Nϕ,G-probability to
µG = {µGt }0≤t≤T as N → ∞, where µG is the unique element in D

(
[0, T ],M

)
such that{

d
dtµ

G
t (h) = µGt (∆̃h) + ⟨h|Gt⟩,

µG0 (h) =
∫ 1
0 ϕ(u)h(u) du

(4.3)

for any h ∈ G0 and 0 ≤ t ≤ T .
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Remark 4.3. Intuitively but not rigorously, integrating by parts, µGt given by (4.3) should be a
signed measure such that µGt (du) = ρ(t, u) du, where ρ(t, u) is the solution to the PDE

∂tρ(t, u) = ∆̃ρ(t, u)− 2ρ(1− ρ)∆̃Gt(u),

ρ(0, u) = ϕ(u), 0 ≤ u ≤ 1,

ρ(t, ·) ∈ G0, 0 ≤ t ≤ T.

However, as we have discussed in Remark 1.2, we do not manage to prove the uniqueness or
existence to this PDE. That’s why we only consider µG as the solution to an equation on M the
space of linear functionals on G0, the uniqueness and existence of which we can show rigorously.

To prove Lemma 4.2, we need some preparation. For h ∈ G , we write

Fh(t, η) =
1

aN

∑
x∈TN

(η(x)− ρ)ht

( x
N

)
and hence

ΛNt (Fh) = ⟨µNt , ht⟩ − ⟨µN0 , h0⟩ −
∫ t

0
(LN + ∂s)⟨µNs , hs⟩ ds.

Lemma 4.4. For any ϕ ∈ G0, G,h ∈ G ,

[ΛN (Fh),Λ
N (Fh)]T = oexp(a

2
N ) (4.4)

under both PNϕ and P̂Nϕ,G.

Proof. We first show that Equation (4.4) holds under PNϕ . According to the definition of ΛNt (Fh),

[ΛN (Fh),Λ
N (Fh)]T =

∑
0≤s≤T

[
⟨µNs , hs⟩ − ⟨µNs−, hs−⟩

]2
.

Recall that {Yi(·)}i∈TN are independent Poisson processes. If s is an event moment of Yi(·), then

⟨µNs , hs⟩ − ⟨µNs−, hs−⟩ =
1

aN

(
hs−

(
i+ 1

N

)
− hs−

(
i

N

))(
ηs−(i)− ηs−(i+ 1)

)
.

Consequently, let Ch = sup
0≤t≤T,
0≤u≤1

|h(t, u)| and Dh = sup
0≤t≤T,
0≤u≤1

|∂uh (t, u)|, then

[ΛN (Fh),Λ
N (Fh)]T ≤ 4

a2N

∑
i ̸=−1

Yi(T )

N2
D2
h +

16

a2N
C2
h Y−1(T )

according to Lagrange’s mean value theorem and the fact that there is at most one particle per
site. By Chebyshev’s inequality, for any θ > 0,

PNϕ
(
[ΛN (Fh),Λ

N (Fh)]T ≥ ϵ
)
≤ exp

{
−θa2N ϵ

}
E

exp
4θ

∑
i ̸=−1

Yi(T )

N2
D2
h + 16 θ C2

h Y−1(T )




= exp
{
−θa2N ϵ

} [
exp

{
N2T

(
exp

{
4θD2

h

N2

}
− 1

)}]N−1

exp
{
NT

(
exp{16θC2

h} − 1
)}
.
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Then
lim sup
N→+∞

1

a2N
logPNϕ

(
[ΛN (Fh),Λ

N (Fh)]T ≥ ϵ
)
≤ −θϵ.

This proves Equation (4.4) under PNϕ since θ is arbitrary.
Now we only need to show that Equation (4.4) holds under P̂Nϕ,G. According to the definition

of P̂Nϕ,G and Cauchy-Schwarz inequality, for any ϵ > 0,

P̂Nϕ,G
(
[ΛN (Fh),Λ

N (Fh)]T ≥ ϵ
)
≤
√

PNϕ
(
[ΛN (Fh),ΛN (Fh)]T ≥ ϵ

)√
ENϕ
[(
MN
T (G)

)2]
.

Recall the expressions of MN
t (G) given in (3.2)-(3.7). It is not difficult to check that there

exists a finite constant C independent of N such that MN
T (G) ≤ eC aN for sufficiently large N .

Therefore, Equation (4.4) also holds under P̂Nϕ,G.

Proof of Lemma 4.2. The existence and uniqueness of solutions to Equation (4.3) are given in
the appendix. It remains to show that µN converges weakly under P̂Nϕ,G to this unique solution
µG as N → ∞. To achieve this purpose, we need to investigate the martingale {MN

t (G)}t≥0 in
(3.1) and to utilize a generalized version of Girsanov’s theorem introduced in [17] by Schuppen
and Wong.

Recall the definition of ΛNt (f) in (4.1) and that for any G ∈ G ,

fG(t, η) = exp

aNN ∑
i∈TN

(η(i)− ρ)Gt

(
i

N

) .

According to Ito’s formula,

dMN
t (G) = fG(0, η0)

−1 exp

{
−
∫ t

0

(∂s + LN )fG
fG

(s, ηs) ds

}
dΛNt (fG).

For any t ≥ 0, let

Λ̃Nt (fG) =

∫ t

0

1

fG(s−, ηs−)
dΛNs (fG),

then
dMN

t (G) =MN
t−(G) dΛ̃

N
t (fG). (4.5)

For any local martingale {Mt}t≥0 under PNϕ , let

M̂t =Mt −
〈
M, Λ̃N (fG)

〉
t
.

By Equation (4.5) and the generalized version of Girsanov’s theorem [17], {M̂t}t≥0 is a local
martingale under P̂Nϕ,G and [M̂, M̂ ] = [M,M ] under both PNϕ and P̂Nϕ,G. Therefore, for any h ∈ G ,

⟨µNt , ht⟩ =⟨µN0 , h0⟩+
∫ t

0
(∂s + LN )⟨µNs , hs⟩ds+ Λ̂Nt (Fh) + ⟨ΛN (Fh), Λ̃N (fG)⟩t,
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where
{
Λ̂Nt (Fh)

}
t≥0

is a local martingale under P̂Nϕ,G with[
Λ̂N (Fh), Λ̂N (Fh)

]
=
[
ΛN (Fh),Λ

N (Fh)
]
.

Then, by Lemma 4.4 and Doob’s inequality, Λ̂Nt (Fh) = op(1) under P̂Nϕ,G and hence

⟨µNt , ht⟩ = ⟨µN0 , h0⟩+
∫ t

0
(∂s + LN )⟨µNs , hs⟩ds+ op(1) + ⟨ΛN (Fh), Λ̃N (fG)⟩t

under P̂Nϕ,G.

Next we calculate ⟨ΛN (Fh), Λ̃N (fG)⟩t. According to the definition of Λ̃Nt (fG) and (4.2),

d
〈
ΛN (Fh), Λ̃

N (fG)
〉
t
=

1

fG(t, ηt)
d
〈
ΛN (Fh),Λ

N (fG)
〉
t
,

where

d⟨ΛN (Fh),ΛN (fG)⟩t =
(
LN
(
FhfG

)
− fGLNFh − FhLNfG

)
dt.

By direct calculations,

1

fG

(
LN
(
FhfG

)
− fGLNFh − FhLNfG

)
= IN + IIN ,

where
IN =

N2

aN

∑
i ̸=−1

(
ηt(i+ 1)− ηt(i)

)(
ht

(
i

N

)
− ht

(
i+ 1

N

))

×
(
exp

{
aN
N

(
ηt(i+ 1)− ηt(i)

)(
Gt

(
i

N

)
−Gt

(
i+ 1

N

))}
− 1

)
and

IIN =
N

aN

(
ηt(0)− ηt(−1)

)(
ht

(
−1

N

)
− ht

(
0

N

))
×
(
exp

{
aN
N

(
ηt(0)− ηt(−1)

)(
Gt

(
−1

N

)
−Gt

(
0

N

))}
− 1

)
.

By Taylor’s expansion formula up to second order,

IN =
1

N

∑
i ̸=−1

(
ηt(i)− ηt(i+ 1)

)2
∂uht

(
i

N

)
∂uGt

(
i

N

)
+ o(1)

and
IIN =

(
ηt(−1)− ηt(0)

)2(
ht(0)− ht(1)

)(
Gt(0)−Gt(1)

)
+ o(1).

Since
(
ηt(i)− ηt(i+1)

)2
= ηt(i)(1− ηt(i+1))+ ηt(i+1)(1− ηt(i)), Lemmas 2.1 and 2.2 control

the errors when we replace
(
ηt(i)− ηt(i+1)

)2 by 2ρ(1− ρ) in IN and IIN . To be precise, under
PNρ , ∫ T

0
IN dt = 2ρ(1− ρ)

∫ T

0

∫ 1

0
∂uht (u) ∂uGt(u) du dt+ o(1) + oexp(aN ) (4.6)
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and ∫ T

0
IIN dt = 2ρ(1− ρ)

∫ T

0

(
ht(0)− ht(1)

)(
Gt(0)−Gt(1)

)
dt+ o(1) + oexp(aN ). (4.7)

By Taylor’s expansion formula, it is not difficult to show that there exists a finite constant C
independent of N such that d ν

N,ϕ

d νρ
≤ eCaN for sufficiently large N . Therefore, dP̂Nϕ,G

dPNρ
≤ eCaN for

large N . By Cauchy-Schwarz inequality, Equations (4.6) and (4.7) also hold under P̂Nϕ,G. As a
result, under P̂Nϕ,G,

⟨µNt , ht⟩ = op(1) + ⟨µN0 , h0⟩+
∫ t

0
(∂s + LN )⟨µNs , hs⟩ds

+ 2ρ(1− ρ)

(∫ t

0

(
hs(0)− hs(1)

)(
Gs(0)−Gs(1)

)
ds+

∫ t

0

∫ 1

0
∂uhs (u) ∂uGs (u) du ds

)
.

Now we calculate (∂s + LN )⟨µNs , hs⟩. By direct calculations,

LN ⟨µNs , hs⟩ =
N2

aN

N−1∑
i=0

(ηs(i)− ρ)

(
hs

(
i+ 1

N

)
+ hs

(
i− 1

N

)
− 2hs

(
i

N

))
+
N −N2

aN

(
ηs(0)− ηs(−1)

)(
hs

(
−1

N

)
− hs(0)

)
= IIIN + IVN ,

where
IIIN =

N2

aN

∑
i ̸=0,−1

(
ηs(i)− ρ

)(
hs

(
i+ 1

N

)
+ hs

(
i− 1

N

)
− 2hs

(
i

N

))
and

IVN =
N

aN
(ηs(0)− ηs(−1))

(
hs

(
−1

N

)
− hs(0)

)
+
N2

aN
(ηs(0)− ρ)

(
hs

(
1

N

)
− hs(0)

)
+
N2

aN
(ηs(−1)− ρ)

(
hs

(
−2

N

)
− hs(−1)

)
.

By Taylor’s expansion formula up to third order,

IIIN = ⟨µNs , ∆̃hs⟩+ o(1).

Since h ∈ G , it is not difficult to check that IVN = o(1).

In conclusion, we have shown that under P̂Nϕ,G,

⟨µNt , ht⟩ = op(1) + ⟨µN0 , h0⟩+
∫ t

0
⟨µNs , (∂s + ∆̃)hs⟩ds

+ 2ρ(1− ρ)

(∫ t

0

(
hs(0)− hs(1)

)(
Gs(0)−Gs(1)

)
dt+

∫ t

0

∫ 1

0
∂uhs(u) ∂uGs(u) du ds

)

= op(1) + ⟨µN0 , h0⟩+
∫ t

0
⟨µNs , (∂s + ∆̃)hs⟩ds+

∫ t

0
⟨hs|Gs⟩ds.
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Specially, when h ∈ G0,

⟨µNt , h⟩ = op(1) + ⟨µN0 , h⟩+
∫ t

0
⟨µNs , ∆̃h⟩ ds+

∫ t

0
⟨h|Gs⟩ ds

for all 0 ≤ t ≤ T . Note that although the op(1) term in the above equation is given for each t,
it is easy to check that this op(1) term can be chosen uniformly for 0 ≤ t ≤ T . Since

µGt (h) =

∫ 1

0
ϕ(u)h(u) du+

∫ t

0
µGs (∆̃h) ds+

∫ t

0
⟨h|Gs⟩ ds,

by Grownwall’s inequality,

∣∣⟨µNt , θm⟩ − µG(θm)
∣∣ ≤ (op(1) + ∣∣ ∫ 1

0
ϕ(x)θm(x)dx− ⟨µN0 , θm⟩

∣∣)e|em|t

for all 0 ≤ t ≤ T and m ≥ 1.
Therefore, to show that µN converges in P̂Nϕ,G-probability to µG in D ([0, T ],M ), we only

need to show that
⟨µN0 , h⟩ =

∫ 1

0
ϕ(u)h(u) du+ op(1) (4.8)

under P̂Nϕ,G for any h ∈ G0. According to the definition of ν
N,ϕ

and Chebyshev’s inequality,
it is easy to check that Equation (4.8) holds under PNϕ . Since MN

0 (G) = 1, µN0 has the same
distribution under PNϕ and P̂Nϕ,G. This finishes the proof.

Proof of the lower bound. If infµ∈O I(µ) = +∞, then Equation (1.7) holds trivially. So we only
need to deal with the case where infµ∈O I(µ) < +∞. For given ϵ > 0, there exists µϵ ∈ O such
that

Iini(µ
ϵ
0) + Idyn(µ

ϵ) ≤ inf
µ∈O

I(µ) + ϵ.

By Lemma 4.1, there exists ϕϵ ∈ L2[0, 1] and ψϵ ∈ H such that

µϵ0 (G) = ⟨ϕϵ, G⟩, ∀G ∈ G0, Iini (µ
ϵ
0) =

∫ 1
0 (ϕ

ϵ(u))2 du

2ρ(1− ρ)
,

and
ℓT (µ

ϵ, G) = ⟨⟨G,ψϵ⟩⟩, ∀G ∈ G , I(µϵ) =
1

2
⟨⟨ψϵ, ψϵ⟩⟩.

Let G ∈ G such that Gt = bth for some h ∈ G0 and b ∈ C1[0, T ]. By the above formula and
(1.5),

bTµ
ϵ
T (h)− b0µ

ϵ
0(h)−

∫ T

0
b′(s)µϵs(h)ds =

∫ T

0
b(s)

(
µϵs(∆̃h) + ⟨h|ψϵs⟩

)
ds.

Since b is arbitrary, according to the formula of integration by parts, {µϵt(h)}0≤t≤T is absolutely
continuous and {

d
dtµ

ϵ
t(h) = µϵt(∆̃h) + ⟨h|ψϵt⟩,

µϵ0(h) =
∫ 1
0 ϕ

ϵ(u)h(u) du
(4.9)
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for any h ∈ G0.

Since G0 is dense in L2[0, 1] by Lemma 1.1 and G is dense in H , there exist ϕn ∈ G0 and
ψn ∈ G such that ϕn converges to ϕϵ in L2[0, 1] and ψn converges to ψϵ in H as n → ∞. Let
µn ∈ D

(
[0, T ],M

)
such that µn,0(G) = ⟨ϕn, G⟩ for any G ∈ G0, and ℓT (µn, G) = ⟨⟨G,ψn⟩⟩ for

any G ∈ G . According to an analysis similar to that one leading to Equation (4.9), µn is the
solution to the Equation {

d
dtµn,t(h) = µn,t(∆̃h) + ⟨h|ψn,t⟩,
µn,0(h) =

∫ 1
0 ϕn(u)h(u) du

(4.10)

for any h ∈ G0. By Lemma 4.1,

Iini(µn,0) =

∫ 1
0 (ϕn(u))

2 du

2ρ(1− ρ)

and
Idyn (µn) =

1

2
⟨⟨ψn, ψn⟩⟩ = ℓT (µn, ψn)−

1

2
⟨⟨ψn, ψn⟩⟩.

By (4.9), (4.10) and Grownwall’s inequality, for any 0 ≤ t ≤ T and any integer k,

∣∣µn,t(θk)− µϵt(θk)
∣∣ ≤ ∣∣∣ ∫ 1

0
(ϕϵ(u)− ϕn(u))θk(u) du+ ⟨⟨θk, ψϵ − ψn⟩⟩

∣∣∣e|ek|t.
Consequently, µn converges to µϵ in D ([0, T ],M ) and

lim
n→+∞

(
Idyn (µn) + Iini(µn,0)

)
= Idyn (µ

ϵ) + Iini(µ
ϵ
0).

Hence, there exists m ≥ 1 such that µm ∈ O and

Idyn (µm) + Iini(µm,0) ≤ Idyn (µ
ϵ) + Iini(µ

ϵ
0) + ϵ.

Let Dϵ =
{
µ : |ℓT (µ, ψm) − ℓT (µm, ψm)| < ϵ

}⋂
O, then by Lemma 4.2 and Equation (4.10),

µN converges in P̂Nϕm,ψm-probability to µm as N → +∞ and hence

lim
N→+∞

P̂Nϕm,ψm
(
µN ∈ Dϵ

)
= 1.

According to the expression of MN
T (G) given in Equation (3.7) and Lemmas 2.1 and 2.2,

MN
T (ψm) = exp

{
a2N
N

(
ℓT (µ

N , ψm)−
1

2
⟨⟨ψm, ψm⟩⟩+ o(1) + ε̂N

)}
,

where ε̂N = oexp(aN ) under PNρ . As we have shown above, dP̂Nϕm,ψm
dPNρ

≤ eCaN for sufficiently large
N , hence ε̂N = oexp(aN ) under P̂Nϕm,ψm .

According to the definition of ν
N,ϕm

, Chebyshev’s inequality and Taylor’s expansion formula
up to second order, it is not difficult to show that

dPNρ
dPNϕm

= exp

{
−
a2N
N

(∫ 1
0 ϕ

2
m(u) du

2ρ(1− ρ)
+ ε̃N

)}
= exp

{
−
a2N
N

(Iini(µm,0) + ε̃N )

}
,
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where ε̃N = op(1) under P̂Nϕm,ψm . Consequently, let

D̂N,ϵ = {µN ∈ Dϵ}
⋂

{|ε̂N | < ϵ, |ε̃N | < ϵ},

then
lim

N→+∞
P̂Nϕm,ψm

(
D̂N,ϵ

)
= 1. (4.11)

For sufficiently large N , on D̂N,ϵ,

dPNρ
dP̂Nϕm,ψm

=
dPNρ
dPNϕm

dPNϕm
dP̂Nϕm,ψm

=
dPNρ
dPNϕm

1

MN
T (ψm)

≥ exp
{
−
a2N
N

(
Iini(µm,0) + ℓT (µm, ψm)−

1

2
⟨⟨ψm, ψm⟩⟩+ 3ϵ

)}
= exp

{
−
a2N
N

(
Iini(µm,0) + Idyn(µm) + 3ϵ

)}
≥ exp

{
−
a2N
N

(
Iini(µ

ϵ
0) + Idyn(µ

ϵ) + 4ϵ
)}

≥ exp
{
−
a2N
N

(
inf
µ∈O

(
Iini(µ0) + Idyn(µ)

)
+ 5ϵ

)}
.

Therefore, by Equation (4.11),

lim inf
N→∞

N

a2N
logQNρ [O] = lim inf

n→+∞

N

a2N
logPNρ

(
µN ∈ O

)
≥ lim inf

n→+∞

N

a2N
logPNρ

(
D̂N,ϵ

)
= lim inf

n→+∞

N

a2N
log ÊNϕm,ψm

[
dPNρ

dP̂Nϕm,ψm
1
D̂N,ϵ

]
≥ − inf

µ∈O

(
Iini(µ0) + Idyn(µ)

)
− 5ϵ.

Since ϵ is arbitrary, the proof is complete.

A Appendix

A.1 Lemma 1.1

Proof of Lemma 1.1. We use e−n to denote −(2πn)2 for n ≥ 0 and use en to denote −k2n for
n ≥ 1. Let

Ĝ0 =
{
G ∈ C2[0, 1] : G′(0) = G′(1) = G(0)−G(1)

}
,

then, as we will show at the end of this proof, {en}−∞<n<+∞ are all the eigenvalues of ∆̃
limited on Ĝ0. Moreover, θ−n(x) = cos

(
2nπx

)
is the eigenvector with respect to e−n and

θn(x) = sin
(
kn(x− 1

2)
)

is the eigenvector with respect to en.
According to the definition of the operator d

dx
d
dW introduced in [10], when W (dx) equals

to Lebesgue measure plus the Dirac measure at 1, it is easy to check that the domain DW of
d
dx

d
dW includes Ĝ0 while ∆̃

∣∣∣
Ĝ0

= d
dx

d
dW

∣∣∣
Ĝ0

. By [10, Theorem 1], all the eigenvalues of d
dx

d
dW form

an orthogonal basis of L2[0, 1]. As a result, to complete this proof, we only need to check the
following two claims,

1. {en}−∞<n<+∞ are all the eigenvalues of ∆̃ limited on Ĝ0;
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2. if f is an eigenvector of d
dx

d
dW , then f ∈ Ĝ0.

For the first claim, it is obviously that G ≡ 1 is the eigenvector of ∆̃
∣∣∣
Ĝ0

with respect to

e0 = 0. So, from now on, we assume that λ ̸= 0 is an eigenvalue of ∆̃
∣∣∣
Ĝ0

while G ̸= 0 is an

eigenvector of ∆̃
∣∣∣
Ĝ0

with respect to λ. We further let H(x) = G(x + 1
2) for −1

2 ≤ x ≤ 1
2 . If

λ > 0, let c =
√
λ, then, since ∆̃G = λG and G ∈ Ĝ0,

H(x) = a1e
cx + a2e

−cx

for some a1, a2 ∈ R while H ′ (1
2

)
= H ′ (−1

2

)
= H

(
−1

2

)
−H

(
1
2

)
. Therefore, −a2 = a1 = a for

some a ∈ R while
ac(e

c
2 + e−

c
2 ) = 2a(e−

c
2 − e

c
2 ).

If a ̸= 0, then
0 < c(e

c
2 + e−

c
2 ) = 2(e−

c
2 − e

c
2 ) < 0

since c > 0, which is contradictory. Hence, we have a = 0 and G = 0, which is also contradictory.
Therefore, λ < 0. Let c =

√
−λ, then

H(x) = a1 sin(cx) + a2 cos(cx)

for some a1, a2 ∈ R while H ′ (1
2

)
= H ′ (−1

2

)
= H

(
−1

2

)
−H

(
1
2

)
. Therefore,

ca2 sin
( c
2

)
= 0 and ca1 cos

( c
2

)
= −2a1 sin

( c
2

)
.

As a result, if a2 = 0, then a1 ̸= 0 while c is a root of the equation −x
2 = tan x

2 . Else if a2 ̸= 0,
then sin

(
c
2

)
= 0 and hence c = 2nπ for some integer n ≥ 1. Consequently, λ = −(2nπ)2 or −k2n

for some integer n ≥ 1.
For the second claim, if f ∈ DW is an eigenvector of d

dx
d
dW , then there exist a, b, λ ∈ R while

f ∈ L2[0, 1) such that ∫ 1

0
f(z)dz = 0,

∫
(0,1]

W (dy)

(
b+

∫ y

0
f(z)dz

)
= 0

while
f(x) = a+ bW (x) +

∫
(0,x]

W (dy)

∫ y

0
f(z)dz

for 0 ≤ x < 1 and d
dx

d
dW f = f = λf , where

W (x) =

{
x if 0 ≤ x < 1,

2 if x = 1.

Hence, f(x) = a+ bx+
∫ x
0

(∫ y
0 f(x)dz

)
dy for 0 ≤ x < 1. Supplementarily define

f(1) = f(1−) = lim
x↑1

f(x) = a+ b+

∫ 1

0

(∫ y

0
f(x)dz

)
dy,

24



then f ∈ C[0, 1] with f(0) = a and f(1) = a− b since∫ 1

0

(∫ y

0
f(x)dz

)
dy =

∫
(0,1]

W (dy)

(
b+

∫ y

0
f(z)dz

)
− 2b−

∫ 1

0
f(y)dy = −2b.

Since f(x) = a+ bx+
∫ x
0

(∫ y
0 f(x)dz

)
dy for 0 ≤ x ≤ 1,

f ′(x) = b+

∫ x

0
f(y)dy

for 0 ≤ x ≤ 1. Therefore, f ∈ C1[0, 1] with f ′(0) = b and f ′(1) = b since∫ 1

0
f(z)dz = 0.

As a result,
f ′(0) = f ′(1) = f(0)− f(1). (A.1)

Since f = λf in L2[0, 1) while f ∈ C[0, 1] as we have shown above, we can choose a continuous
version of f and supplementarily define f(1) = λf(1) such that f ∈ C[0, 1]. Since f ∈ C[0, 1] and
f ′(x) = b+

∫ x
0 f(y)dy for 0 ≤ x ≤ 1,

f ′′(x) = f(x) = λf(x)

for 0 ≤ x ≤ 1 and hence f ′′ ∈ C[0, 1], implying f ∈ C2[0, 1]. Consequently, by Equation (A.1),
f ∈ Ĝ0. This completes the proof.

A.2 Existence and Uniqueness of solution to Equation (4.3)

Proof of the existence. We directly construct a solution to Equation (4.3). For −∞ < n < +∞,
let {xnt }0≤t≤T be the unique solution to the ODE{

d
dtx

n
t = enx

n
t + ⟨θn|Gt⟩,

xn0 =
∫ 1
0 ϕ(x)θn(x)dx,

where en is defined as in the proof of Lemma 1.1. That is to say,

xnt = eent
∫ 1

0
ϕ(x)θn(x)dx+

∫ t

0
een(t−s)⟨θn|Gs⟩ds.

For any f =
∑

−∞<n<+∞Cn(f)θn ∈ G0 and t ≥ 0, we define

µGt (f) =
∑

−∞<n<+∞
Cn(f)x

n
t .

Note that the coefficients {Cn(f)}−∞<n<+∞ are unique according to Lemma 1.1 and hence the
definition of µG is reasonable. Since

µGt (θn) = xnt and µGt (∆̃θn) = µGt (enθn) = enx
n
t ,

it is easy to check that µG is the solution to Equation (4.3).
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Proof of the uniqueness. Assuming that µ and ν are both solutions to Equation (4.3), then

|µt(θn)− νt(θn)| ≤ |en|
∫ t

0
|µs(θn)− νs(θn)|ds.

By Grownwall’s inequality,
|µt(θn)− νt(θn)| ≤ 0e|en|t = 0

for any 0 ≤ t ≤ T and n ≥ 1. Hence, µ = ν and the proof is complete.
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