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Abstract

OCaml function calls consume space on the system stack. Operating systems set default
limits on the stack space which are much lower than the available memory. If a program
runs out of stack space, they get the dreaded “Stack Overflow” exception – they crash. As
a result, OCaml programmers have to be careful, when they write recursive functions, to
remain in the so-called tail-recursive fragment, using tail calls that do not consume stack
space.

This discipline is a source of difficulties for both beginners and experts. Beginners have
to be taught recursion, and then tail-recursion. Experts disagree on the “right” way to
write List.map. The direct version is beautiful but not tail-recursive, so it crashes on larger
inputs. The naive tail-recursive transformation is (slightly) slower than the direct version,
and experts may want to avoid that cost. Some libraries propose horrible implementations,
unrolling code by hand, to compensate for this performance loss. In general, tail-recursion
requires the programmer to manually perform sophisticated program transformations.

In this work we propose an implementation of “Tail Modulo Cons” (TMC) for OCaml.
TMC is a program transformation for a fragment of non-tail-recursive functions, that
rewrites them in destination-passing style. The supported fragment is smaller than other
approaches such as continuation-passing-style, but the performance of the transformed code
is on par with the direct, non-tail-recursive version. Many useful functions that traverse a
recursive datastructure and rebuild another recursive structure are in the TMC fragment,
in particular List.map (and List.{filter,append}, etc.). Finally those functions can be
written in a way that is beautiful, correct on all inputs, and efficient.

In this work we give a novel modular, compositional definition of the TMC transfor-
mation. We discuss the design space of user-interface choices: what degree of control for
the user, when to warn or fail when the transformation may lead unexpected results. We
mention a few remaining design difficulties, and present (in appendices) a performance
evaluation of the transformed code.

1 Introduction

1.1 Prologue

“OCaml”, we teach our students, “is a functional programming language. We can write the
beautiful function List.map as follows:”

let rec map f = function

| [] -> []

| x :: xs -> f x :: map f xs

“Well, actually”, we continue, “OCaml is an effectful language, so we need to be careful
about the evaluation order. We want map to process elements from the beginning to the end of
the input list, and the evaluation order of f x :: map f xs is unspecified. So we write:



Tail Modulo Cons Bour, Clément, Scherer

let rec map f = function

| [] -> []

| x :: xs ->

let y = f x in

y :: map f xs

“Well, actually, this version fails with a Stack_overflow exception on large input lists. If
you want your map to behave correctly on all inputs, you should write a tail-recursive version.
For this you can use the accumulator-passing style:”

let map f li =

let rec map_ acc = function

| [] -> List.rev acc

| x :: xs -> map_ (f x :: acc) xs

in map_ [] f li

“Well, actually, this version works fine on large lists, but it is less efficient than the original
version. It is noticeably slower on small lists, which are the most common inputs for most
programs. We measured it 35% slower on lists of size 10. If you want to write a robust
function for a standard library, you may want to support both use-cases as well as possible.
One approach is to start with a non-tail-recursive version, and switch to a tail-recursive version
for large inputs; even there you can use some manual optimizations to reduce the overhead of
the accumulator. For example, the nice Containers library does it as follows:”.

let tail_map f l =

(* Unwind the list of tuples, reconstructing the full list front-to-back.

@param tail_acc a suffix of the final list; we append tuples’ content

at the front of it *)

let rec rebuild tail_acc = function

| [] -> tail_acc

| (y0, y1, y2, y3, y4, y5, y6, y7, y8) :: bs ->

rebuild (y0 :: y1 :: y2 :: y3 :: y4 :: y5 :: y6 :: y7 :: y8 :: tail_acc) bs

in

(* Create a compressed reverse-list representation using tuples

@param tuple_acc a reverse list of chunks mapped with [f] *)

let rec dive tuple_acc = function

| x0 :: x1 :: x2 :: x3 :: x4 :: x5 :: x6 :: x7 :: x8 :: xs ->

let y0 = f x0 in let y1 = f x1 in let y2 = f x2 in

let y3 = f x3 in let y4 = f x4 in let y5 = f x5 in

let y6 = f x6 in let y7 = f x7 in let y8 = f x8 in

dive ((y0, y1, y2, y3, y4, y5, y6, y7, y8) :: tuple_acc) xs

| xs ->

(* Reverse direction, finishing off with a direct map *)

let tail = List.map f xs in

rebuild tail tuple_acc

in

dive [] l

let direct_depth_default_ = 1000

let map f l =

let rec direct f i l = match l with

| [] -> []

| [x] -> [f x]

| [x1;x2] -> let y1 = f x1 in [y1; f x2]

| [x1;x2;x3] ->

let y1 = f x1 in let y2 = f x2 in [y1; y2; f x3]

| _ when i=0 -> tail_map f l

| x1::x2::x3::x4::l’ ->

let y1 = f x1 in

let y2 = f x2 in

let y3 = f x3 in

let y4 = f x4 in

y1 :: y2 :: y3 :: y4 :: direct f (i-1) l’

in

direct f direct_depth_default_ l

At this point, unfortunately, some students leave the class and never come back. (These
days they just have to disconnect from the remote-teaching server.)

We propose a new feature for the OCaml compiler, an explicit, opt-in “Tail Modulo Cons”
transformation, to retain our students. After the first version (or maybe, if we are teaching an
advanced class, after the second version), we could show them the following version:

let[@tail_mod_cons] rec map f = function

| [] -> []

| x :: xs -> f x :: map f xs

This version would be as fast as the simple implementation, tail-recursive, and easy to write.

The catch, of course, is to teach when this [@tail_mod_cons] annotation can be used. Maybe
we would not show it at all, and pretend that the direct map version with let y is fine. This
would be a much smaller lie than it currently is, a [@tail_mod_cons]-sized lie.

Finally, experts would be very happy. They know about all these versions, but they would
not have to write them by hand anymore. Have a program perform (some of) the program
transformations that they are currently doing manually.

https://github.com/c-cube/ocaml-containers
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1.2 TMC transformation example

A function call is in tail position within a function definition if the definition has “nothing to
do” after evaluating the function call – the result of the call is the result of the whole function
at this point of the program. (A precise definition will be given in Section 2.) A function is tail
recursive if all its recursive calls are tail calls.

In the definition of map, the recursive call is not in tail position: after computing the result
of map f xs we still have to compute the final list cell, y :: �. We say that a call is tail modulo
cons when the work remaining is formed of data constructors only, such as (::) here.

let[@tail_mod_cons] rec map f = function

| [] -> []

| x :: xs ->

let y = f x in

y :: map f xs

Other datatype constructors may also be used; the following example is also tail-recursive
modulo cons:

let[@tail_mod_cons] rec tree_of_list = function

| [] -> Empty

| x :: xs -> Node(Empty, x, tree_of_list xs)

The TMC transformation returns an equivalent function in destination-passing style where
the calls in tail modulo cons position have been turned into tail calls. In particular, for map it
gives a tail-recursive function, which runs in constant stack space; many other list functions
also become tail-recursive. The transformed code of map can be described as follows:

let rec map f = function

| [] -> []

| x::xs ->

let y = f x in

let dst = y :: Hole in

map_dps dst 1 f xs;

dst

and map_dps dst i f = function

| [] ->

dst.i <- []

| x::xs ->

let y = f x in

let dst’ = y :: Hole in

dst.i <- dst’;

map_dps dst’ 1 f xs

The transformed code has two variants of the map function. The map_dps variant is in
destination-passing style, it expects additional parameters that specify a memory location, a
destination, and will write its result to this destination instead of returning it. It is tail-recursive.
The map variant provides the same interface as the non-transformed function, and internally
calls map_dps on non-empty lists. It is not tail-recursive, but it does not call itself recursively,
it jumps to the tail-recursive map_dps after one call.

The key idea of the transformation is that the expression y :: map f xs, which contained
a non-tail-recursive call, is transformed into first the computation of a partial list cell, written
y :: Hole, followed by a call to map_dps that is asked to write its result in the position of the
Hole. The recursive call thus happens after the cell creation (instead of before), in tail-recursive
position in the map_dps variant. In the direct variant, the value of the destination dst has to be
returned after the call.

The transformed code is in a pseudo-OCaml, it is not a valid OCaml program: we use a
magical Hole constant, and our notation dst.i <- ... to update constructor parameters in-
place is also invalid in source programs. The transformation is implemented on a lower-level,
untyped intermediate representation of the OCaml compiler (Lambda), where those operations
do exist. The OCaml type system is not expressive enough to type-check the transformed
program: the list cell is only partially-initialized at first, each partial cell is mutated exactly
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once, and in the end the whole result is returned as an immutable list. Some type system are
expressive enough to represent this transformed code, notably Mezzo (Pottier and Protzenko,
2013).

1.3 Other approaches

1.3.1 More general transformations

Instead of a program transformation in destination-passing style, we could perform a more gen-
eral program transformation that can make more functions tail-recursive, for example a generic
continuation-passing style (CPS) transformation. We have three arguments for implementing
the TMC transformation:

• The TMC transformation generates more efficient code, using mutation instead of function
calls. On the OCaml runtime, the difference is a large constant factor.1

• The CPS transformation can be expressed at the source level, and can be made reasonably
nice-looking using some monadic-binding syntactic sugar. TMC can only be done by the
compiler, or using safety-breaking features.

• TMC is provided as an opt-in, on-demand optimization. We can add more such optimiza-
tions, they are not competing with each other, especially if they are to be rather used
by expert programmers. Someone should try presenting CPS as an annotation-driven
transformation, but we wanted to look at TMC first.

1.3.2 Different runtimes

Using the native system stack is a choice of the OCaml implementation. Some other implemen-
tations of functional languages, such as SML/NJ, use a different stack (the OCaml bytecode
interpreter also does this), or directly allocate stack frames on their GC-managed heap. This
approach makes “stack overflow” go away completely, and it also makes it very simple to im-
plement stack-capture control operators, such as continuations, or other stack operations such
as continuation marks.

On the other hand, using the native stack brings compatibility benefits (coherent stack traces
for mixed OCaml+C programs), and seems to noticeably improve the performance of function
calls (on benchmarks that are only testing function calls and return, such as Ackermann or the
naive Fibonacci, OCaml can be 4x, 5x faster than SML/NJ.)

Lazy (call-by-need) languages will also often avoid running into stack overflows: as soon
as a lazy datastructure is returned, which is the default, functions such as map will return
immediately, with recursive calls frozen in a lazy thunk, waiting to be evaluated on-demand
as the user traverses the result structure. User still need to worry about tail-recursivity for
their strict functions (if the implementation uses the system stack); strict functions are often
preferred when writing performant code.

1.3.3 Unlimiting the stack

Some operating systems can provide an unlimited system stack; such as ulimit -s unlimited

on Linux systems – the system stack is then resized on-demand. Then it is possible to run
non-tail-recursive functions without fear of overflows. Frustratingly, unlimited stacks are not
available on all systems, and not the default on any system in wide use. Convincing all users to

1On a toy benchmark with large-sized lists, the CPS version is 100% slower and has 130% more allocations
than the non-tail-recursive version.
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setup their system in a non-standard way would be much harder than performing a program
transformation or accepting the CPS overhead for some programs.

1.4 Related Work

Tail-recursion modulo cons was well-known in the Lisp community as early as the 1970s. For
example the REMREC system (Risch, 1973) would automatically transform recursive functions
into loops, and supports modulo-cons tail recursion. It also supports tail-recursion modulo
associative arithmetic operators, which is outside the scope of our work, but supported by the
GCC compiler for example. The TMC fragment is precisely described (in prose) in Friedman
and Wise (1975).

In the Prolog community it is a common pattern to implement destination-passing style
through unification variables; in particular “difference lists” are a common representation of
lists with a final hole. Unification variables are first-class values, in particular they can be passed
as function arguments. This makes it easy to write the destination-passing-style equivalent
of a context of the form List.append li �, as the difference list (List.append li X, X). In
constrast, we only support direct constructor applications. However, this expressivity comes at
a performance cost, and there is no static checking that the data is fully initialized at the end
of computation.

In general, if we think of non-tail recursive functions as having an “evaluation context” left
for after the recursive call, then the techniques to turn classes of calls into tail-calls correspond to
different reified representations of non-tail contexts, as long as they support efficient composition
and hole-plugging. TMC comes from representing data-construction contexts as the partial
data itself, with hole-plugging by mutation. Associative-operator transformations represent
the context 1 + (4 + �) as the number 5 directly. (Sometimes it suffices to keep around an
abstraction of the context; this is a key idea in John Clements’ work on stack-based security in
presence of tail calls.)

Minamide (1998) gives a “functional” interface to destination-passing-style program, by pre-
senting a partial data-constructor composition Foo(x,Bar(�)) as a use-once, linear-typed func-
tion linfun h -> Foo(x,Bar(h)). Those special linear functions remain implemented as partial
data, but they expose a referentially-transparent interface to the programmer, restricted by a
linear type discline. This is a beautiful way to represent destination-passing style, orthogonal
to our work: users of Minamide’s system would still have to write the transformed version by
hand, and we could implement a transformation into destination-passing style expressed in his
system. Pottier and Protzenko (2013) supports a more general-purpose type system based on
separation logic, which can directly express uniquely-owned partially-initialized data, and its
implicit transformation into immutable, duplicable results. (See the List module of the Mezzo
standard library, and in particular cell, freeze and append in destination-passing-style).

1.5 Contributions

This work is in progress. We claim the following contributions:
• A formal grammar of which programs expressions are in the “Tail Modulo Cons” fragment.
• A novel, modular definition of the transformation into destination-passing-style.
• Discussion of the user-interface issues related to transformation control.
• A performance evaluation of the transformation for List.map, in the specific context of

the OCaml runtime.
A notable non-contribution is a correctness proof for the transformation. We would like to

work on a correctness proof soon; the correctness argument requires reasoning on mutability

https://protz.github.io/mezzo/code_samples/list.mz.html
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and ownership of partial values, an excellent use-case for separation logic.

2 Tail Calls Modulo Constructors

Exprs 3 e, d ::= x, y
| n ∈ N
| f e
| let x = e in e′

| K (ei)
i

| match e with (pi → e′i)
i

| d.e← e′

FunctionNames 3 f

Patterns 3 p ::= x | K (pi)
i

Stmt 3 s ::= let rec (fi x = ei)
i

Figure 1: A first-order programming language

In order to simplify the presentation of the transformation, we consider a simple untyped
language, described in Figure 1. This language, which we present with a syntax similar to
OCaml, embeds function application and sequencing let-binding, as well as constructor appli-
cation and pattern-matching. In addition, to implement the imperative DPS transformation, we
include a special operator: d.e← e′ is an imperative construct which updates d’s e-th argument
in-place. All those constructs (and more) are present in the untyped intermediate language used
in the OCaml compiler where we implemented the transformation. One notable missing con-
struct is function abstraction. In fact, this model requires that all functions be called by name,
and functions can only be defined through a toplevel let rec statement. Our implementation
supports the full OCaml language, but it cannot specialize higher-order function arguments for
TMC.

In the following, we will use syntaxic sugar for some usual constructs; namely, we can desugar
e1; e2 into the let-binding let = e1 in e2 (where is a fresh variable name) and (e1, . . . , en)
into the constructor application Tuple (e1, . . . , en).

The multi-hole grammar of tail contexts, where each hole indicates a tail position, for this
simple language is depicted in Figure 2. To interpret a multi-hole context T with n holes, we
denote by T [e1, . . . , en] the term obtained by replacing each of the holes in T from left to right
with the expressions e1, . . . , en. In a decomposition e = T [e1, . . . , en], each of the ei is in tail
position; in particular, a call f e is in tail position (i.e. it is a tail call) in expression e′ if there
is a decomposition of e′ as T [e1, . . . , ej , f e, ej+1, . . . , en].

One can remark that, for a language construct, the holes in the tail context are precisely
the complement of holes in the evaluation context. For instance, the construct let x = e in e′

has evaluation contexts of the form let x = E in e′ and tail contexts let x = e in T . In some
sense, the tail contexts are “guarded” by the evaluation context: a reduction can only occur
in a tail position after the construct has been reduced away, and the subterm in tail position
is now at toplevel. This guarantees that when we start reducing inside the tail context, there
is no remaining computation to be performed in the surrounding context. The “depth” of the
surrounding context is a source-level notion that is directly related to call-stack size: tail calls
do not require reserving frames on the call stack.

Our first goal is to figure out what the proper grammar is for properly defining tail calls
modulo cons. The lazy way would be to allow, in tail position, a single constructor application
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TailCtx 3 T ::=
| �
| e;T
| let x = e in T

| match e with (pj → Tj)
j

ConstrCtx 3 C [�] ::= �
| K ((ei)

i
, C [�] , (ej)

j
)

Figure 2: Tail multicontexts, constructor contexts

itself containing a tail position, that is, add a case K ((ei)
i
,�, (ej)

j
) to the definition of T . This

would capture most of the cases presented above. However, such a lazy implementation would
be brittle: for instance, a partially unrolled version of map below would not benefit from the
optimization.

let rec umap f xs =

match xs with

| [] -> []

| [x] -> [f x]

| x1 :: x2 :: xs ->

f x1 :: f x2 :: umap f xs

This would make the performance-seeking developer unhappy, as they would have to choose
between our optimization or the performance benefits of unrolling. To make them happy again,
we at least need to consider repeated constructor applications. Using the grammar C from
Figure 2, we could consider all the decompositions T [C], and extract the inner hole from the
nested C context.

However, this approach would still be somewhat fragile, and some very reasonable program
transformations on the nested TMC call would break it. For instance, it is not possible to
locally let-bind parts of the function application, or to perform a match ultimately leading
to a TMC call inside a constructor application. In our new grammar U , instead of adding a
case K ((ei)

i
,�, (ej)

j
) that forces constructors to occur only at the ”leaves” of a context, we

add a case K ((ei)
i
, U, (ej)

j
), allowing arbitrary interleavings of constructors and tail-preserving

contexts. This gives a more natural and less surprising definition of the tail positions modulo
cons. This grammar is depicted in Figure 3.

TailModConsCtx 3 U ::=
| �
| e;U
| let x = e in U

| match e with (pj → U)
j

| K ((ei)
i
, U, (ej)

j
)

Figure 3: Tail modulo cons contexts

If an expression e0 is of the form U
[
(ei)

i
, f e, (ej)

j
]
, we say that the plugged subterms are

in tail position modulo constructor in e0, and in particular f e is a tail call modulo constructor.
We also define tail positions strictly modulo cons as the tail positions modulo cons which are
not regular tail positions.
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Notice that there is a subtlety here: the term K (f1 e1, f2 e2) admits two distinct context
decompositions, one with U1 := K (�, f2 e2) where f1 e1 is a tail call modulo cons, the other
with U2 := K (f1 e1,�) where f2 e2 is a tail call modulo cons. (This is intentional, obtained by
allowing a single sub-context in the constructor rule of U .) We can transform this term such
that either one of the calls become tail-calls, but not both. In other words, the notion of being
“in tail position modulo cons” depends on the decomposition context U .

Our implementation has to decide which context decomposition to perform. It does not make
choices on the user’s behalf: in such ambiguous situations, it will ask the user to disambiguate
by adding a [@tailcall] attribute to the one call that should be made a tail-call.

Remark: our grammar for U is maximal in the sense that in each possible context decom-
position of a term, all tail positions modulo cons are inside a hole of the U context. It would
be possible to abandon maximality by allowing arbitrary terms e (containing no hole) as a
context. We avoided doing this, as it would introduce ambiguities in the grammar of context
(the program (a; b) can be parsed using this e case directly, or using the e;U rule first), so that
operations defined on contexts would depend on the parse tree of the context in the grammar.

3 TRMC functions of interest

Many functions that consume and produce lists are tail-recursive-modulo-cons, in the sense
that all they have a TMC decomposition where all recursive calls are in TMC position. Notable
functions include map, as already discussed, but also for example:

let[@tail_mod_cons] rec filter p = function

| [] -> []

| x :: xs -> if p x then x :: filter p xs else filter p xs

let[@tail_mod_cons] rec merge cmp l1 l2 =

match l1, l2 with

| [], l | l, [] -> l

| h1 :: t1, h2 :: t2 ->

if cmp h1 h2 <= 0

then h1 :: merge cmp t1 l2

else h2 :: merge cmp l1 t2

TMC is not useful only for lists or other “linear” data types, with at most one recursive
occurrence of the datatype in each constructor.

A non-example Consider a map function on binary trees:

let[@tail_mod_cons] rec map f = function

| Leaf v -> Leaf (f v)

| Node(t1, t2) -> Node(map f t1, (map[@tailcall]) f t2)

In this function, there are two recursive calls, but only one of them can be optimized; we used
the [@tailcall] attribute to direct our implementation to optimize the call to the right child.
This is actually a bad example of TMC usage in most cases, given that

• If the tree is arbitrary, there is no reason that it would be right-leaning rather than
left-leaning. Making only the right-child calls tail-calls does not protect us from stack
overflows.

• If the tree is known to be balanced, then in practice the depth is probably very small
in both directions, so the TMC transformation is not necessary to have a well-behaved
function.



Tail Modulo Cons Bour, Clément, Scherer

Yes-examples from our real world There are interesting examples of TMC-transformation
on functions operating on tree-like data structures, when there are natural assumptions about
which child is likely to contain a deep subtree. The OCaml compiler itself contains a number
of them; consider for example the following function from the Cmm module, one of its lower-level
program representations:

let[@tail_mod_cons] rec map_tail f = function

| Clet(id, exp, body) ->

Clet(id, exp, map_tail f body)

| Cifthenelse(cond, ifso, ifnot) ->

Cifthenelse(cond, map_tail f ifso, (map_tail[@tailcall]) f ifnot)

| Csequence(e1, e2) ->

Csequence(e1, map_tail f e2)

| Cswitch(e, tbl, el) ->

Cswitch(e, tbl, Array.map (map_tail f) el)

[...]

| Cexit _ | Cop (Craise _, _, _) as cmm ->

cmm

| Cconst_int _ | Cvar _ | Ctuple _ | Cop _ as c ->

f c

This function is traversing the “tail” context of an arbitrary program term – a meta-example!
The Cifthenelse node acts as our binary-node constructor, we do not know which side is likely to
be larger, so TMC is not so interesting. The recursive calls for Cswitch are not in TMC position.
But on the other hand the Clet, Csequence cases are very beneficial to have in TMC: while they
have several recursive subtrees, they are in practice only deeply nested in the direction that is
turned into a tailcall by the transformation. The OCaml compiler does sometimes encounter
machine-generated programs with a unusually long sequence of either constructions, and the
TMC transformation may very well avoid a stack overflow in this case.

Another example would be #9636, a patch to the OCaml compiler proposed by Mark
Shinwell, to get a partially-tail-recursive implementation of the “Common Subexpression Elim-
ination” (CSE) pass. Xavier Leroy remarked that the existing implementation in fact fits the
TMC fragment. Not all recursive calls become tail-calls (this would require a more powerful
transformation or a longer, less readable patch), but the behavior of TMC on the unchanged
code matches the tail-call-ness proposed in the human-written patch.

4 Modular TMC transformation

A good way of thinking about our TMC transformation is as follows. We want to transform
a tail context modulo cons U into a regular tail context T , where tail calls modulo cons have
been replaced by regular tail calls, but to the DPS version of the callee. More precisely, given
a term e, we will build its DPS version as follows:

• First, we find a decomposition of e as U [e1, . . . , en] which identifies the tail positions
modulo cons. We want this decomposition to capture as much of the TMC calls to DPS-
enabled functions (functions marked with the [@tail_mod_cons] attribute) as possible.

• Once the decomposition is selected, we transform the context x.y ← U (where x and
y are fresh variables not appearing in U) into a context T [x1.y1 ← �, . . . , xn.yn ← �].
This transformation is effectively moving the assignment from the root to the leaves of
the context U .

• Finally, we replace the assignments x.y ← f e by calls fdps ((x, y), e) when the callee f
has a DPS version fdps, introducing calls in tail position.

https://github.com/ocaml/ocaml/pull/9636
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However, this transformation is not enough: we also need to transform the code of the origi-
nal function to call fdps in the recursive case. There is a naive way to do it, which is suboptimal,
as we explain, before showing how we do it, in Section 4.2 (The “direct” transformation).

Finally, Section 4.3 (Compression of nested constructors) highlights an optimization made
by our implementation which generates cleaner code for TMC calls inside nested constructor
applications.

4.1 The DPS transformation

We now present in detail the transformation used to build the body of the transformed fdps func-
tion from a function definition let rec f x = e. As a reminder, the semantics of fdps ((d, i), e′)
should be the same as d.i← f e′, and the body of fdps should replace tail calls modulo cons in e
with regular tail calls to the DPS versions of the callee. We only present the transformation for
unary functions: the general case follows by using tuple for n-ary functions. Our implementa-
tion handles fully applied functions of arbitrary arity, treating them similarly as the equivalent
unary function with a tuple argument.

We first find a decomposition of e as U [e1, . . . , en]. Recall that the TMC transformation de-
pends on this decomposition, as we have multiple choices for the decomposition of a constructor
K (e1, . . . , en). We use the following logic:

• If none of the ei contains calls in TMC position to a function which has a DPS version
(a TMC candidate), use the decomposition e = � [e].

• If exactly one of the ei contains such a TMC candidate, or if exactly one of the ei
contains a TMC candidate marked with the [@tailcall] annotation, name it ej and use
the decomposition e = (K (e1, . . . , ej−1,�, ej+1, . . . , en) [ej ].

• Otherwise, report an error to the user, indicating the ambiguity, and requesting that one
(or more) [@tailcall] annotations be added.

For other constructs, we only decompose them if at least one of their component has a
TMC candidate; for instance, let x = e in e′ gets decomposed into � [let x = e in e′] unless
e′ contains TMC candidates. This avoids needlessly duplicating assignments.

Once we obtained the decomposition as a tail context modulo constructors, we transform
said context into a tail context where each expression in tail position is an assignment. We
write d.n ← U  dps T [di.ni ← �]

i
to signify that the context T [di.ni ← �]

i
is obtained by

performing the DPS transformation on the TMC context U with destination d.n. The rules
describing this transformation are shown below.

d.n← �  dps � [d.n← �]

d.n← U  dps T [di.ni ← �]
i

d.n← let x = e in U  dps let x = e in T [di.ni ← �]
i

∀j, d.n← Uj  dps Tj

[
dij .nij ← �

]ij
d.n← match e with (pj → Uj)

j  dps match e with
(
pj → Tj

[
dij .nij ← �

]ij)j
n′ = |I|+ 1 d′.n′ ← U  dps T [d′l.n

′
l ← �]

l

d.n← K ((ei)
i∈I

, U, (ej)
j
) dps

let d′ = K ((ei)
i∈I

, Hole, (ej)
j
) in

d.n← d′;

T [d′l.n
′
l ← �]

l
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Most cases are straightforward: for constructs whose tail context modulo cons is also a reg-
ular tail context, we simply apply the transformation into said tail context. The two important
cases are the one of a hole, where we introduce an assignment to the result of evaluating the
hole, and the case of a constructor, where we “reify” the hole by using a placeholder value,
fill the current destination, and recursively transform the TMC context with the newly created
hole as a new destination d′.n′.2

After this transformation, we can now build the term T [di.ni ← ei]
i

where the ei are the

subterms in the initial decomposition U [ei]
i

of the body of our recursive function. Finally, for

each ei with shape fi e′i where fi has a DPS version fdps
i , we can replace di.ni ← ei with

fi
dps ((di, ni), ei), yielding the final result of the DPS transformation.

We remark again that the only calls in tail position in the transformed term are the assign-
ments we have just transformed into calls to a DPS version of the original callee. Indeed, any
other tail call in the initial decomposition has been replaced by an assignment. We ”lose” a
tail call when we go from the ”transformed” world back to the ”direct-style” world – a CPS
transformation would work similarly, transforming f e into k (f e) if f has no CPS version.

4.2 The “direct” transformation

As we just noted, tail calls in the original function are tail calls in the DPS version only if their
callee also have a DPS version (e.g. in the common case of a recursive function). Tail calls
where the callee didn’t have a DPS version are no longer in tail position. As such, the simple
and lazy way to call into fdps in the body of f , namely, introducing a destination and calling
fdps, is suboptimal, as it could make previously-tail recursive paths in f no longer tail recursive,
and the programmer may rely on those being tail recursive. Instead, we will ensure that calls
to fdps only happen inside a constructor application: this way, all the pre-existing tail calls will
be left untouched.

The transformation is very similar as the DPS transformation (in fact, all of the “boring”
cases are identical), and we will reuse the same context decomposition of e as U [e1, . . . , en].
We again perform a context rewriting on U , but now the output is an arbitrary context E.

�  direct �

U  direct E

let x = e in U  direct (let x = e in E)

∀j, Uj  direct Ej

match e with (pj → Uj)
j  direct (match e with (pj → Ej)

j
)

n = |I|+ 1 d.n← U  dps T [dl.nl ← �]
l

K ((ei)
i∈I

, U, (ej)
j
) direct

let d = K ((ei)
i∈I

, Hole, (ej)
j
) in

T [dl.nl ← �]
l
;

d

This transformation leaves the regular tail positions unchanged, but switches to the DPS
version for tail positions strictly modulo cons. We then replace again tail assignments of a call
to a tail call to the DPS version of the callee. Note that this time, calls to the DPS version

2It may look like d′ is only used once in the right-hand-side of the conclusion of this rule, so its binding
could be inlined, but this d′ is used in the last premise and will occur in U .
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are not in tail position (we need to return the computed value): we simply introduce a fresh
destination so that we can call into the DPS version.

The presentation by Minamide (1998) suggests a slightly different encoding, where we would
pass a third extra argument to the DPS version: the location of the final value to be returned.
This would allow tail calls into the DPS version, at the cost of an extra argument. This may
look compelling, but in practice not so much, because calls from the DPS version back into the
“direct” world will never be in tail position, and we only end up paying a constant factor more
frames.

4.3 Compression of nested constructors

Consider a function such as the partially unrolled map shown above. It has two nested construc-
tor applications, and the DPS transformation as described above will generate the code on the
left below for the umap_dps version. This is unsatisfactory, as it introduces needless writes that
the OCaml compiler does not eliminate. Instead, we would want to generate the nicer code on
the right.

let rec umap_dps dst i f = function

| [] ->

dst.i <- []

| [x] ->

dst.i <- [f x]

| x1 :: x2 :: xs ->

let dst1 = f x1 :: Hole in

dst.i <- dst1;

let dst2 = f x2 :: Hole in

dst1.1 <- dst2;

umap_dps dst2 1 f xs

let rec umap_dps dst i f = function

| [] ->

dst.i <- []

| [x] ->

dst.i <- [f x]

| x1 :: x2 :: xs ->

let y1 = f x1 in

let y2 = f x2 in

let dst’ = y2 :: Hole in

dst.i <- y1 :: dst’;

umap_dps dst’ 1 f xs

Notice that in the nicer code, we need to let-bind constructor arguments to preserve ex-
ecution order. We implement this optimization by keeping track, in the rules for the dps
transformation, of an additional “constructor context”. Before, we were conceptually preserv-
ing the semantics of d.n← U ; now, we will be preserving the semantics of d.n← C [U ] for some
constructor context C. C represents delayed constructor applications, which we will perform
later — typically, immediately before calling a DPS-transformed function.

The new rules, written d.n← C [U ] dps T [di.ni ← Ci]
i
, are shown in Figure 4. The rules

for let and match are unchanged, except that we pass the unchanged constructor context C
recursively.

The constructor rule is now split in two parts: the DPS-Constr-Opt rule adds the new
constructor to the delayed constructor context, and the DPS-Reify rule generates an assign-
ment for the constructor context. Note that the rules for  dps are no longer deterministic: the
DPS-Reify can apply whenever the delayed constructor stack is nonempty. We perform the
reification in two cases. The first one is before generating a call to a DPS-transformed version,
because we need a concrete destination for that. The second one is that we keep track of
whether a subterm would duplicate the delayed context (e.g. due to a match) and immediately
apply the reification after a constructor in that case.

Notice that a similar optimization could be made in the direct transformation (in fact, our
implementation does just that): the goal of switching to the dps mode in a constructor context
is simply to provide a destination to the inner TMC calls. We can, without loss of generality,
only switch to dps when there is a TMC call in tail position in the recursive argument (i.e.
there will be no opportunities to introduce a destination in a subterm).
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DPS-Hole-Opt

d.n← C [�] dps � [d.n← C]

DPS-Reify

n′ = |I|+ 1 d′.n′ ← � [U ] dps T [dl.nl ← Cl]
l

d.n← C
[
K ((ei)

i
,�, (ej)

j
)
]

[U ] dps

let d′ = K ((ei)
i∈I

, Hole, (ej)
j
) in

d.n← C [d′];

T [dl.nl ← Cl]
l

DPS-Constr-Opt

n′ = |I|+ 1 d′.n′ ← C
[
K ((v)

i∈I
i ,�, (ej)

j
)
]

[U ] dps T
[
(dl.nl ← Cl)

l
]

d.n← C
[
K ((ei)

i∈I
, U, (ej)

j
)
]
 dps

let (vi = ei)
i∈I

in

let (vj = ej)
j
in

T [dl.nl ← Cl]
l

d.n← � [U ] dps � [d.i← Ci]

d.n← U  dps � [d.i← Ci]

Figure 4: DPS transformation, with constructor compression

Finally, we note that in our implementation we perform all of the transformations (dps,
direct, as well as the computation of the auxiliary information such as whether there are TMC
opportunities in the term and whether we need to provide a destination to benefit from a switch
to the DPS mode) in a single pass over the terms.

5 Design issues

5.1 Non-issue: Flambda and Multicore

Some readers may wonder whether introducing mutation to build immutable data structures
could be an issue with other subsystems of the OCaml implementation that perform fine-grained
mutability reasoning, notably the Flambda optimizer and the Multicore runtime.

The answer is that there is no issue, move along! The OCaml value model (even under
Multicore) already contains the notions that (immutable) values may start “uninitialized” and
eventually be filled by “initializing” writes – this is how immutable values are constructed from
the C FFI, for example. In 2016, in preparation for our TMC work, Frédéric Bour extended
the Lambda intermediate representation with an explicit notion of “initializing” write (#673),
so that the information is explicit in the generated code, and thus perfectly understood by
Flambda.

5.2 Non-linear control operators

The TMC transformation makes the assumption that partially-initialized values (with a Hole

placeholder) have a unique owner, and will be initialized into complete values by a single write.
This assumption can be violated by the addition of control operators to the language, such as

https://github.com/ocaml/ocaml/pull/673
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call/cc or delim/cc. The problem comes from the non-linear usage of continuations, where the
same continuation is invoked twice.

In practice this means that we cannot combine the external (but magical) delim/cc library
with our TMC transformation. Currently the only solution is to disable the TMC transfor-
mation for delimited-continuation users (at the risk of stack overflows), but in the future we
could perform a more general stack-avoiding transformation, such as a continuation-passing-
style transformation, for delim/cc users.

(We considered intermediate approaches, based on detecting multi-writes to a partially-
initialized value, and copying the partial value on the fly. This works for lists, where the
position of the hole is, but we did not manage to define this approach in the general case of
arbitrary constructors.)

5.3 Evaluation order

If a call inside a constructor is in TMC position, our transformation ensures that it is evaluated
“last”. For example, in the program K (e1, f e2, e3), if f is the TMC call, we know that e1 and
e3 will be evaluated (in some order) before f e2 in the transformed program.

In OCaml, the order of evaluation order of constructor arguments is implementation-defined;
the evaluation-order resulting from the TMC transform is perfectly valid for the source program.
However, in this case it is also different from the one you would typically observe on the
unmodified program – most implementations use either left-to-right or right-to-left.

We consider that it is reasonable that an explicit transformation would change the evaluation
order – especially as it remains a valid order for the source program. Reviewers have found
this to be an issue, and suggested instead to forbid having potentially-side-effectful arguments
in TMC constructor applications: in this example, if we restrict e1 and e3 to be values (or
variables), we cannot observe a difference anymore.

In several cases this forces the user to let-bind the arguments beforehand, explicitly ex-
pressing an evaluation order. This is a sensible design, but in our experience many functions
that would benefit from the TMC transformation are not written in this style, and converting
them to be in this style would be a bothersome and invasive change, raising the barrier to
entry of the [@tail_mod_cons] annotation – without much benefits in terms of evaluation-order,
as functions that need to enforce a specific evaluation order should use explicit let-bindings
anyway. This is for example the case of the most interesting example of Section 3 (TRMC
functions of interest), the tail_map function on a compiler intermediate representation.

5.4 Stack usage guarantees

This document presents a precisely-defined subset of functions that can be TMC-transformed
(they must be decomposable through a TMC context U , with a TMC-specialized function call
in tail-position or, preferably, strictly in tail-position modulo cons).

For many recursive functions in this subset, the TMC-transformation returns a “tail-recursive
function”, using a constant amount of stack space. However, many other functions are not
“tail-recursive modulo cons” (TRMC) in this sense. Initially we wanted to restrict our trans-
formation to reject non-TRMC functions: the success of the transformation would guarantee
that the resulting function never stack-overflows.

However, we realized that many functions we want to TMC-transform are not in the TRMC
fragment. The interesting tail_map function from Section 3 (TRMC functions of interest) does
not provide this guarantee – for instance, its stack usage grows linearly with the nesting of
Cifthenelse constructors in the then direction.

http://okmij.org/ftp/continuations/implementations.html#caml-shift
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5.5 Transformation scope

If a given function f is marked for TMC transformation, what is the scope of the code in which
TMC calls to f should be transformed? If one tried to give a maximal scope, an answer could
be: all calls to f in the program. This requires including information on which functions have a
DPS version in module boundaries, and thus in module types (to enable separate compilation).
We tried to find a smaller scope that is easy to define, and would not require cross-module
information.

The second idea was the following “minimal” scope: when we have a group of mutually-
recursive functions marked for TMC, we should only rewrite calls to those functions in the
recursive bodies themselves, not in the rest of the program. In let rec (fi x = ei)

i
in e′, the

calls to the fi in some ej would get rewritten, but not in e′. This restriction makes sense,
given that generally the stack-consuming calls are done within the recursive bodies, with only
a constant number of calls in e′ that do not contribute to stack exhaustion.

However, consider the List.flatten function, which flattens lists of lists into simple lists.

let rec flatten = function

| [] -> []

| xs :: xss -> xs @ flatten xs

This function is not in the TRMC fragment. However, it can be rewritten to be TMC-
transformable by performing a local inlining of the @ operator to flatten two lists:

let[@tail_mod_cons] rec flatten = function

| [] -> []

| xs :: xss ->

let[@tail_mod_cons] rec append_flatten xs xss =

match xs with

| [] -> flatten xss

| xs :: xss -> xs :: append_flatten xs xss

in append_flatten xs xss

This definition contains a toplevel recursive function and a local recursive function, and
both are in the TMC fragment. However, to get constant-stack usage it is essential that the
call to append_flatten that is outside its recursive definition be TMC-specialized. Otherwise it
is not a tail-call anymore in the transformed program.

For now we have decided to extend the “minimal” scope as follows: for a recursive definition
let rec (fi x = ei)

i
in e′, TMC calls to the fi in the body e′ are not rewritten unless the whole

term is itself in the body of a function marked for TMC. In other words, the scope is “minimal”
at the toplevel, but “maximal” within TMC-marked functions.

Another alternative is to stick to the minimal scope, and warn on the flatten implementation
above. It is still possible to write a TMC flatten in the minimal scope, by extruding the local
definition into a mutual recursion:

let[@tail_mod_cons] rec flatten = function

| [] -> []

| xs :: xss -> append_flatten xs xss

and[@tail_mod_cons] append_flatten xs xss =

match xs with

| [] -> flatten xss

| xs :: xss -> xs :: append_flatten xs xss

Indeed, for local definitions it is always possible to rewrite the term let rec (fi x = ei)
i
in e′

by moving e′ inside the mutually-recursive part: let rec ((fi x = ei)
i
, g = e′) in g (). The
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question would be whether we want to force users to perform this transformation manually,
and how to tell them that we expect it.

5.6 Future work: Higher-order transformation

We formalized the TMC-transformation on a first-order language, and our implementation
silently ignores the higher-order features of OCaml. What would it mean to DPS-transform a
higher-order function such as (let app f x = f x)?

Our answer would be that the higher-order DPS-transformation takes a pair of function f
and returns a pair (fdirect, fdps), allowing to define

let appdirect (fdirect, fdps) x = fdirect x
let appdps (d, i) (fdirect, fdps) x = fdps (d, i) x

5.7 Future work: Multi-destination TMC?

The program below on the left, frustratingly, cannot be TMC-transformed with our current
definition or implementation. One can manually express a multi-destination DPS version, on
the right, but it is still unclear how to specify the fragment of input programs that would be
transformed in this way. (We discussed this with Pierre Chambart.)

let rec partition p = function

| [] -> ([], [])

| x::xs ->

let (yes, no) = partition p xs in

if p x

then (x :: yes, no)

else (yes, x :: no)

let rec partition_dps

dst_yes i_yes dst_no i_no p xs

= match xs with

| [] -> dst_yes.i_yes <- []; dst_no.i_no <- []

| x :: xs ->

let dst_yes’, i_yes’, dst_no’, i_no’ =

if p x then

let dst’ = x :: Hole in

dst_yes.i_yes <- dst’;

dst’, 1, dst_no, y_no

else

let dst’ = x :: Hole in

dst_no.i_no <- dst’;

dst_yes, i_yes, dst’, 1

in

partition_dps

dst_yes’ i_yes’ dst_right’ i_right’ p xs
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A Performance evaluation

In this section we present preliminary performance numbers for the TMC-transformed version
of List.map, which appear to confirm the claim that this version is “almost as fast as the naive,
non-tail-recursive version” – and supports lists of all length.

The performance results were produced by Anton Bachin’s benchmarking script faster-map,
which internally uses the core-bench library that is careful to reduce measurement errors on
short-running functions, and also measures memory allocation. They are “preliminary” in
that they were run on a personal laptop (running an Intel Core i5-4500U – Haswell), we have
not reproduced results in a controlled environment or on other architectures. We ran the
benchmarks several times, with variations, and the qualitative results were very stable.

A.1 The big picture

We graph the performance ratio of various List.map implementation, relative to the “naive
tail-recursive version”, that accumulates the results in an auxiliary list that is reversed at the
end – the first tail-recursive version of our Prologue. We pointed out that this implementation
is “slow” compared to the non-tail-recursive version: for most input lengths it is the slowest
version, with other versions taking around 60-80% of its runtime (lower is better). One can also
see that it is not that slow, it is at most twice as slow.

The other List.map versions in the graph are the following:

base The implementation of Jane Street’s Base library (version 0.14.0). It is hand-optimized
to compensate for the costs of being tail-recursive.

batteries The implementation of the community-maintained Batteries library. It is actually
written in destination-passing-style, using an unsafe encoding with Obj.magic to unsafely
cast a mutable record into a list cell. (The trick comes from the older Extlib library, and
its implementation has a comment crediting Jacques Garrigue for the particular encoding
used.)

containers Is another standard-library extension by Simon Cruanes; it is the hand-optimized
tail-recursive implementation we included in the Prologue.

trmc is “our” version, the last version of the Prologue: the result of applying our implemen-
tation of the TMC transformation to the simple, non-tail-recursive version.

stdlib is the non-tail-recursive version that is in the OCaml standard library. (All measure-
ments used OCaml 4.10)

stdlib unrolled 5x, trmc unrolled 4x are the result of manually unrolling the simple im-
plementation (to go in the direction of the Base and Containers implementation); in the
trmc case, the result is then TRMC-transformed.

Our expectation, before running measurements, are that trmc should be about as fast as
stdlib, both slower than manually-optimized implementations (they were tuned to compete
with the stdlib version). We hoped that trmc unrolled 4x would be competitive with the
manually-optimized implementations. Finally, batteries should be about on-par with trmc,
as it is using the same implementation technique (as a manual transformation rather than a
compiler-supported transformation).

https://github.com/aantron/faster-map/
https://github.com/janestreet/core_bench
https://github.com/janestreet/base
https://github.com/ocaml-batteries-team/batteries-included/


Tail Modulo Cons Bour, Clément, Scherer

0

20

40

60

80

100

1 10 100 1000 10000 100000 106

T
im

e
re

la
ti

v
e

to
n

a
iv

e
ta

il
-r

ec
u

rs
iv

e
v
er

si
o
n

(%
)

List size (no. of elements)

Time elapsed (relative) – lower is better

naive tail-rec.
base

batteries
containers

trmc
trmc unrolled 4x

stdlib
stdlib unrolled 5×

Actual results In the first half of the graph, up to lists of size 1000, the results are as we
expected. There are three performance groups. The slow tail-recursive baseline alone. Then
batteries, stdlib and trmc close to each other (batteries does better than the two other,
which is surprising, possibly a code-size effect). Then the versions using manual optimizations:
base, containers, and our unrolled versions.

At the far end of the graph, with lists of size higher than 105, the results are interesting, and
very positive: trmc and batteries are the fastest versions, containers is slower. base falls
back to the slow tail-recursive version after a certain input length, so its graph progressively
joins the baseline on larger lists. (Note: later versions of Base switched to use an implementation
closer to containers in this regime.)

We also got performance results on stdlib and stdlib unrolled on large lists, by configuring
the system to remove the call-stack limit to avoid the stack overflows; their performance profile
is interesting and non-obvious, we discuss it in Section A.3 (ulimit).

In the third quarter of the graph, for list sizes in the region [5.103; 105], we observe surprising
results where the destination-passing-style version (trmc and batteries) become, momentarily,
sensibly slower than the non-tail-recursive stdlib version. We discuss this strange effect in
details in Section A.2 (Promotion effects), but the summary is that it is mostly a GC effect
due to the micro-benchmark setting (this strange region disappears with a slightly different
measurement), and would not show up in typical programs.
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A.2 Promotion effects

What happens in the [5.103; 105] region, where destination-passing-style implementations seem
to suddenly lose ground against stdlib? Promotion effects in the OCaml garbage collector.

Consider a call to List.map on an input of length N , which is in the process of building the
result list. With the standard List.map, the result is built “from the end”: first the list cell
for the very last element of the list is allocated, then for the one-before-last element, etc., until
the whole list is created. With the TMC-transformed List.map, the result list is built “from
the beginning”: a list cell is first allocated for the first element of the list (with a “hole” in tail
positive) and written in the destination, then a list cell for the second element is written in the
first cell’s hole, etc., until the whole list is created.

The OCaml garbage collector is generational, with a small minor heap, collected frequently,
and a large major heap, collected infrequently. When the minor heap becomes full, it is collected,
and all its objects that are still alive are promoted to the major heap.

What if the minor heap becomes full in the middle of the allocation of the result list? Let’s
consider the average scenario where promotion happens at cell N/2. In both cases (stdlib or
trmc), one half of the list cells are already allocated (the second or the first half, respectively),
and they get promoted to the major heap. What differs is what happens next. With the non-
tail-recursive implementation, the next list cell (in position N/2 − 1) is allocated, pointing to
the (N/2)-th cell, and the process continues unchanged. In the destination-passing case, the
next list cell (N/2 + 1) is allocated, and it is written in the hole of the (N/2)-th cell.

At each minor collection, the garbage collector (GC) needs to know which objects are live
in the minor heap. An object is live if it is a root (a global value in the program, a value on
the call stack, etc.), if it is pointed to by a live object in the minor heap, or a live object on the
major heap. The GC cannot afford to traverse the large major heap to determine the latter
category, so it keeps track of all the pointers from the major to the minor heap; this is called
“write barrier”. At this point in our new list’s life, writing the (N/2+1)-th cell to the (N/2)-th
cell hits this write barrier, and the (N/2)-th cell is added to the “remembered set”, of minor
objects that are live due to the major heap. Trouble!

Hitting the write barrier has a small overhead, but this only happens once in the middle of
constructing a very large list. When the next cell, the (N/2 + 2)-th list cell, gets written in the
hole of the (N/2 + 1)-th cell, both are in the minor heap, so the write barrier does not come
into play. Nothing happens until the next minor collection.

For the sake of simplicity, let’s consider that the next minor collection only happens after
the whole result list has been created. At this point, in the destination-passing-style version,
the (N/2 + 1)-th cell is in the remembered set, so it will be promoted by the garbage collector
to the major heap, along with all the objects that it itself references; those are (at least) the
list cells from the middle to the end of the result list – in total N/2− 1 list cells get promoted.
In the stdlib version, they corresponds to the N/2− 1 list cells at the beginning of the result
list, allocated after the previous minor collection. They will also get promoted... if the result
list is still alive at this point!

To recapituate, the “remainder” of the result list is promoted in all cases in the destination-
passing version; it is only promoted in the non-tail-recursive version if the result list is still
alive.

“But this is silly”, you say, “who would call List.map on a very large list and drop the result
immediately after?” Well, this code:

let make_map_test name map_function argument : Core_bench.Bench.Test.t =

Core_bench.Bench.Test.create ~name

(fun () ->

https://github.com/aantron/faster-map/blob/5c1f2ca/tester/tester.ml#L57-L62
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map_function ((+) 1) argument

|> ignore)

Remark 1. There are real-world example where large results are short-lived. For example,
consider a processing pipeline that calls map, and then filter on the result, etc.: the result of
map may become dead quickly, if the lists are not too large. It is less likely to hit this promotion
effect with medium-sized lists, but if this is all your application code is doing you will still see
the effect once every L/M calls, where L is the length of your lists and M the size of the minor
heap, adding to a small but observable promotionoverhead.

If we change the code to a version that guarantees that the result is kept until at the next
minor promotion, then there should be no difference in promotion behavior. We did exactly
this, and the new graph looks like this:
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This is the version that we consider representative of most applciations, where data is long-
lived enough that the subtle promotion effects do not get into play. Notice in particular that,
on this version, trmc unrolled is robustly better than all other implementations. (stdlib
unrolled is still somewhat faster in the previous “awkward region”, and we are not sure why,
nor do we care very much.)

A.3 ulimit

Using ulimit -s unlimited, we removed the call-stack limit on our test machine, to test the
speed of the non-tail-recursive List.map on large lists. These behaviors tend to be unobserved
by OCaml users, which just get a program crash with a Stack_overflow.
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It is interesting that the stdlib version gets progressively slower on large inputs, until it
matches the performance of the tail-recursive baseline. Notice that the stdlib unrolled variant
is also getting slower, although it starts with a good safety margin.

Pierre Chambart suggested that this slowdown may result from stack scanning: when the
GC performs a minor collection, it scans the call stack to find root pointers to minor objects.
When the result list gets much larger than the minor-heap size, many minor collections will
occur during the List.map call, with progressively larger call stacks. The total overhead of
the call-stack scanning is thus quadratic; scanning the stack is fast, but it eventually slows
down those implementations noticeably. (In theory it would only get slower and slower as we
increased the input size.)

Some implementations use the heap rather than a call stack; either the tail-recursive List.map

in OCaml, or non-tail-recursive versions in a language that allocates call frames on the heap.
Notice that those implementations do not suffer from such a quadratic slowdown, thanks to the
generational GC: when the corresponding “heap frames” are scanned, they get moved to the
major heap, and they will not get scanned again by minor collections, avoiding the quadratic
behavior at this level – eventually enough memory is consumed that the major heap will need
to be traversed regularly. It would be possible to change the OCaml runtime to use a similar
approach for the system call stack: the runtime could keep track of which portions of the call
stack have been traversed already, to not scan them again on the next minor collection. In fact,
it seems that the OCaml runtime implements such an optimization on Power architectures only
(?!). In our case it is of little pratical interest, however, speeding up scenarios that we never
observe due to the system stack limit.

https://github.com/ocaml/ocaml/blob/41f0522/runtime/roots_nat.c#L306-L311
https://github.com/ocaml/ocaml/blob/41f0522/runtime/caml/stack.h#L47-L49
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