
HAL Id: hal-03148711
https://hal.inria.fr/hal-03148711

Submitted on 22 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for Preemptive Co-scheduling of Kernels on
GPUs

Lionel Eyraud-Dubois, Cristiana Bentes

To cite this version:
Lionel Eyraud-Dubois, Cristiana Bentes. Algorithms for Preemptive Co-scheduling of Kernels on
GPUs. HiPC 2020 : 27th IEEE International Conference on High Performance Computing, Data, and
Analytics, Dec 2020, Pune / Virtual, India. �hal-03148711�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395676381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03148711
https://hal.archives-ouvertes.fr

Algorithms for Preemptive Co-scheduling
of Kernels on GPUs

Lionel Eyraud-Dubois
Inria

University of Bordeaux
Bordeaux, France, 33000

lionel.eyraud-dubois@inria.fr

Cristiana Bentes
Systems Engineering Department
State University of Rio de Janeiro

Rio de Janeiro, Brazil
cris@eng.uerj.br

Abstract—Modern GPUs allow concurrent kernel execu-
tion and preemption to improve hardware utilization and
responsiveness. Currently, the decision on the simultaneous
execution of kernels is performed by the hardware, which
can lead to unreasonable use of resources. In this work,
we tackle the problem of co-scheduling for GPUs in
high competition scenarios. We propose a novel graph-
based preemptive co-scheduling algorithm, with the focus
on reducing the number of preemptions. We show that
the optimal preemptive makespan can be computed by
solving a Linear Program in polynomial time. Based on
this solution we propose graph theoretical model and an
algorithm to build preemptive schedules which minimizes
the number of preemptions. We show, however, that finding
the minimal amount of preemptions among all preemptive
solutions of optimal makespan is a NP-hard problem. We
performed experiments on real-world GPU applications
and our approach can achieve optimal makespan by
preempting 6 to 9% of the tasks.

I. INTRODUCTION

Graphics Processing Units (GPUs) are throughput-
oriented co-processors that are witnessing a rapid in-
crease in the amount of computing resources. To avoid
keeping these growing resources underutilized and im-
prove performance, concurrent kernel execution (CKE)
has been proposed and showed improved GPU through-
put and resource utilization [1], [2], [3].

Recently, GPU architectures also provide hardware
preemption. The preemption can occur at coarse and
fine-grain granularity: thread level and instruction level.
In thread level preemption, the threads that are executing
on the SMs have to be completed before the preemp-
tion actually occurs. This type of preemption reduces
the amount of context to be saved on the preemption
event, since the threads finished their work. In NVIDIA
GPUs, the switching of kernels in thread boundary can
complete in less than 100 µs [4]. In instruction level
preemption, however, all thread processing stops at the
current instruction and the threads contexts have to be

saved. This type of preemption involves substantially
more state information, because all the registers of the
executing threads must be saved, which takes significant
memory bandwidth.

In this scenario, scheduling decisions are key to in-
crease resource utilization and improve responsiveness.
However, GPU resource allocation is performed by the
hardware, that assigns as many resources as possible for
one task and then assigns the remaining resources to the
next task, if there are sufficient leftover resources [5].
This allocation policy has shown to lead to an unrea-
sonable use of resources [2], and to be influenced by
the order in which the kernels are launched [6], [7].
Therefore, the launching of kernels to the GPU has to
be wisely performed in order to avoid an unbalanced
occupation of the GPU resources and its consequent
negative effect on the system performance.

In this work, we study the problem of co-scheduling
kernels to the GPU for future scenarios that present
high competition and the GPU will behave as multi-
programmed devices, such as CPUs are in the present.
Although the problem of co-scheduling applications on
CPU multicore nodes has been well studied in the
past [8], [9], [10], they are not directly applicable to the
GPU environment due to the GPU hardware allocation
policies. We propose a novel graph-based preemptive co-
scheduling solution, that defines the kernels submission
order focusing on reducing the number of preemptions.
The idea is to exploit the kernels interference profile
provided by previous works analysis of how the ker-
nels resource usage impacts the interference in their
co-execution [11], [12]. More formally, we deal with
the following problem: given a co-scheduling speedup
matrix S, where Si,j is the speed at which kernel i
makes progress when running with j, and the duration of
each kernel, what is the best way to co-schedule them,

in order to minimize their makespan. We first propose
a Linear Programming model to generate an optimal
preemptive schedule that minimizes the makespan of
the kernels. The optimal solution then produces a co-
execution graph G where each node i represents one
kernel and an edge connecting i to j indicates that
kernels i and j should co-execute. From G, we propose
the algorithm CATERPILLARSPLIT to generate kernel
submissions with the minimum number of preemptions.
However, we show that the problem of minimizing the
number of preemptions directly from the speedup matrix
S is NP-hard.

We used 60 kernels from real-world applications ob-
tained from the main benchmark suites for evaluating
GPUs, Rodinia, Parboil and SHOC, and observed that
our algorithms produce very efficient schedules. We
obtain the optimal makespan by preempting between 5%
and 10% of the kernels depending on the setting.

The rest of the paper is organised as follows. In
Section II, we review related works. In Section III, we
present the notations and the scheduling model used
throughout the paper. Section IV shows how to obtain
preemptive schedules with minimal makespan, and how
to minimize the number of preemptions. Finally, Sec-
tion V gives an experimental validation of our algorithms
on realistic instances.

II. RELATED WORK

Enabling efficient multiprogramming on GPUs is re-
ceiving a lot of attention from the research community
in recent years. Software techniques, such as reorder-
ing were proposed to find a good submission order
to improve resource utilization [7], [13], [14]. Other
software techniques propose modifying the granularity of
the kernels to create more concurrency opportunities [2],
[15], [16]. Hardware techniques were also proposed to
divide the GPU resources among the concurrent kernels,
called spatial multitasking [1], [17].

The non-preemptive co-scheduling of kernels of dif-
ferent applications on the GPU have also been studied.
The work of Margiolas and O’Boyle [18] transparently
modifies the kernel code in terms of the thread blocks
size in order to improve fairness in the assignment of
the GPU resources among different kernels. Chen et
al. [19] propose a task duration predictor and a task
reordering mechanism based on the predictions to guar-
antee QoS. Ukidave et al. [12] present an interference-
aware mechanism for co-scheduling on GPUs based on
machine learning to predict whether kernels can share a
GPU efficiently. Wen et al. [20] propose a graph-based
algorithm to schedule kernels in pairs. The recent work

of Shekofteh et al. [6] proposes the co-scheduling of pair
of kernels with different execution behaviors. They use
kernel slicing to improve the choice of kernels pairs for
co-scheduling.

There are also some works in exploiting kernel pre-
emption to provide fairness, responsiveness, and quality
of service of applications running on GPUs. Xu et
al. [21] proposed a deadline-aware dynamic GPU par-
titioning to improve the responsiveness when a GPU is
shared by tasks with strict and non-strict deadlines. Wang
et al. [22] proposed QoS mechanisms for fine-grained
GPU sharing, where kernels with QoS requirements
receive enough resources to reach its goals, and the
remaining resources are assigned to kernels without QoS
requirements. Wang et al. [23] proposed Simultaneous
Multikernel (SMK) that allows fine-grain sharing within
each SM, kernels with complimentary resource usage
are co-scheduled in the same SM to achieve resource
fairness and better utilization. Chen et al. [24] proposed
a compiler-runtime software solution for priority-based
preemptive scheduling on GPUs, that transforms the
kernel for voluntary preemptions. Jin et al. [25] pro-
posed a preemption-aware scheduler that use cache miss
behavior to classify the kernels into compute-intensive
and memory intensive, and predict the performance of
complementary execution of pairs of kernels based on
their classification.

Compared to the other approaches, we propose a
preemptive algorithm that use optimization strategies to
find a global optimal solution rather than local or greedy
solutions. In addition, we are the first to propose an
algorithm to reduce the number of preemptions in co-
scheduling.

III. MODEL AND NOTATIONS

In this paper, we consider the problem of scheduling a
set T of n independent tasks on a GPU with two streams.
We assume that we know for each task i its execution
time pi, and for each pair of task (i, j), we know the
speed Si,j at which task i makes progress when running
at the same time as task j. For ease of notation, we will
assume that Si,i = 1.

Given this input data, we consider schedules σ defined
as a succession of intervals Il, with duration dl, during
which the set of running tasks is Rl, where 1 ≤ |Rl| ≤ 2.
If i ∈ Rl, its companion task in Rl is either j if
Rl = {i, j} or i if Rl = {i}, and is denoted c(Rl, i).
A schedule is valid if all tasks have progressed to
completion, i.e. ∀i ∈ T ,

∑
l|i∈Rl

dlSi,c(Rl,i) = pi. The
makespan of a schedule is its total duration,

∑
l dl. We

are interested in the following problem:

2

Problem 1 (MINMAKESPAN). Given input data pi and
Si,j , find a valid schedule of minimal makespan.

In a preemptive schedule, we can define the number of
preemptions of task i as P (σ, i), the number of intervals
required to partition Xi minus one. The total number of
preemptions of a schedule σ is P (σ) =

∑
i∈T P (σ, i).

a) Remark.: If for a pair a task (i, j), we have
Si,j + Sj,i ≤ 1, it is not worth it to schedule tasks i
and j together. Indeed, it is never worse to replace a
time interval of length d where they are together by a
time of length dSi,j for task i alone followed by a time
of length dSj,i for task j alone. Thus we can assume
that ∀i, j, Si,j + Sj,i is either 0 or more than 1.

IV. PREEMPTIVE SCHEDULES

A. Optimal Preemptive Schedule

The first remark from the previous definitions is that
the makespan of a preemptive schedule σ does not
depend on the ordering of its intervals, but only on their
duration. It can thus be described with n(n−1)

2 variables
xe for e ∈ {{i, j}|i, j ∈ T } describing the duration of
the interval during which the set of running tasks is e.
For this reason, given a speed matrix S, we introduce the
graph G(S) = (T , E(S)) where the set of vertices is T ,
and there is an edge between i and j if Si,j + Sj,i > 1.
Note that the graph G(S) also contains loops (edges
from i to i).

This description means that we can express the MIN-
MAKESPAN problem as the following Linear Program,
called (PLP):

Minimize
∑

e∈E(S)

xe

subject to ∀i ∈ T ,
∑

e∈E(S)|i∈e

xeSi,c(e,i) ≥ pi

∀c ∈ C, xc ≥ 0

This Linear Program has |E(S)| variables, and
|E(S)| + n constraints. In any optimal solution, at
least |E(S)| constraints are saturated, thus at most n
inequalities are strict. This implies that at most n xc
variables are positive, and thus any optimal solution
contains at most n different intervals. In the following,
we denote by x∗ an optimal solution of this Linear
Program. This solution yields the optimal makespan
for problem MINMAKESPAN, and any ordering of the
obtained intervals incurs at most n preemptions (the total
number of task appearances is at most 2n, and the first
appearance of each task does not count as a preemption).

In the remainder of this Section, we present how to
compute an ordering of these intervals to minimize the
number of preemptions. To this end, we introduce the
graph G(x∗):

Definition 1 (Graph G(x) associated with a solution x).
Given a solution x of the (PLP), we define G(x) as the
graph with one vertex per task, in which there is an edge
between tasks i and j if and only if x{i,j} > 0.

By definition, G(x) is a spanning subgraph of G(S).
The above result ensures that G(x∗) has at most n edges.
But we can actually prove a stronger statement:

Proposition 1. Any connected component of G(x∗) with
k vertices has at most k edges.

Proof. If we rewrite (PLP) with only the variables xe
such that x∗e > 0, we obtain exactly the same solution
x∗. In this restricted (PLP), the connected components
of G(x∗) produce independent problems, and for each
of them the above analysis on the number of constraints
and variables is still correct.

Definition 2. A connected graph with at most as many
edges as vertices is called a pseudo-tree, and can have
at most one cycle. A pseudo-forest is a graph in which
each connected component is a pseudo-tree.

Theorem 1. For any optimal solution x∗, G(x∗) is a
pseudo-forest.

B. Minimizing the number of preemptions

In this Section, we describe how to minimize the
number of preemptions of a preemptive solution. We
start by characterizing the graphs G(x∗) from which it is
possible to build a non-preemptive schedule. As shown
on Figure 1a, if the graph is a single path we can build a
schedule without any preemption, just by following the
path. Case 1b shows that this holds even if the graph is a
caterpillar, i.e. has several nodes of degree 1 connected to
a central path. In case 1b the path is A−B−E−G−H ,
with C,D and F (shown in lighter color) connected to
it. Case 1c shows that this no longer holds true when
nodes connected to the path have a more complicated
structure. Here the path is A − B − C − F − G, with
D − E connected to it, and it is necessary to have a
preemption (here C is preempted). Case 1d shows that
any cycle incurs at least one preemption.

This brings us to the following Lemma:

Lemma 1. The graph G of a preemptive solution can
be ordered in a non preemptive way if and only if it is
a vertex-disjoint collection of caterpillars.

3

A
B

C
D

E

t

R1

R2

A

B

C

D

E

(a) Simple path

A B E

G

H

C D

F

t

R1

R2

A

B

C D E

F G

H

(b) Caterpillar graph

A

B C F G

D E

t

R1

R2

A

B

C

D

E C

F

G

(c) More complex tree

A B

CD

t

R1

R2

A

B

C

D

A

(d) Cycle

Figure 1: Possible cases to turn the graph G into a
schedule.

Definition 3 (Caterpillar). A graph G is a caterpillar if
it contains a path P , such that all nodes of G that do
not belong to P are incident to only one edge, directly
connected to a node of P .

We call the path P the internal path, and all nodes
and edges of this path are called internal.

From the above discussion, it is natural to consider
that preempting a task can be modeled by splitting the
corresponding vertex of the graph, so that the task can
appear at several places in the schedule. When a vertex
is split, its neighbors are partitioned in two sets: the first
set is attached to the first copy of the vertex, and the
second set to the second copy.

The problem that we are interested in is:

Problem 2 (CATERPILLARSPLIT). Given a graph G,
find a minimum number of node splitting operations to
obtain a graph G′ which is a collection of vertex-disjoint
caterpillars.

Of course, this problem can be solved separately on

t

u v w

(a) Lemma 2

t

u v

s

(b) Lemma 3

t

u

t

(c) Lemma 4 (original tree T
on the left, T ′ on the right)

Figure 2: Illustrations of Lemmas 2, 3 and 4. Leaves
are in grey, internal paths of the caterpillars have thick
edges, and non connected edges show the splitting.

each connected component of G. We start by analyzing
problem CATERPILLARSPLIT on trees, and will move to
pseudo-trees later.

1) Solving the problem on trees: On trees, the prob-
lem CATERPILLARSPLIT can be formulated this way:

Problem 3. Given a tree T , find a partition of the
edges of T into a minimum number of edge-disjoint
caterpillars.

Indeed, two different caterpillars in the result can share
at most one node, and thus the number of caterpillars in a
solution is exactly one plus the number of node splitting
operations required.

To solve this problem, we make a number of obser-
vations in the following lemmas, illustrated on Figure 2.
We assume that the tree T is rooted at some arbitrary
root r, allowing to define the height of a vertex in T .

Definition 4 (height of a vertex). The height of a vertex
v of a rooted tree T is the length of the longest downward
path to a leaf from v.

By definition, leaves of T have height 0, and if the
children of a vertex v are all leaves, then v has height
1. For any node v, we call leaves of v the children of v
which are leaves in T .

Lemma 2 (Greedy for vertices of height 1). Assume that
T contains a vertex t of height 2 connected to at least
3 vertices of height 1 u, v, w. There exists an optimal
solution containing the caterpillar whose internal path
is (u, t, v), with their leaves attached.

Proof. We first show that there exists an optimal solution
in which nodes u, v and w are all internal nodes of their
respective caterpillars in which they are connected to t.
Indeed, if any of them (say node u) is a leaf node in the
caterpillar C1 containing edge (u, t), then the solution

4

necessarily contains another caterpillar C2 with the edges
connecting u to its leaves. We can thus disconnect edge
(u, t) from caterpillar C1 and add it to caterpillar C2.
Both C1 and C2 remain valid caterpillars, and both
solutions contains the same number of caterpillars.

Let us consider such an optimal solution, in which u,
v and w are internal nodes. Since no path connects all
three of them, they can not be in the same caterpillars in
this solution. Consider the caterpillar Cu which contains
u, the caterpillar Cv which contains v, and the caterpillar
Cw which contains w. If Cu 6= Cv , we can disconnect
both caterpillars at node t and reconnect them pairwise,
so that u and v belong to the same caterpillar, and
the other parts are connected as well. If Cu = Cv

we do not need to do this step. Leaves attached at
t can be freely attached to this (u, t, v) caterpillar.
Any other node connected to t as a leaf of either Cu

or Cv can be attached to Cw. The resulting solution
has the same number of caterpillars, and contains the
caterpillar (u, t, v) with their leaves attached, proving
our lemma.

Lemma 3 (Special case for two vertices of height 1).
Assume that T contains a vertex t of height 2 connected
to exactly 2 vertices of height 1, u and v. Denote by s the
father of t. There exists an optimal solution containing
the caterpillar (u, t, v) with their leaves attached and
with edge (t, s) also included.

Proof. By definition, u and v each have at least one leaf,
which we denote by u′ and v′. Consider any optimal
solution in which edges (u, u′) and (v, v′) are part of two
different caterpillars Cu and Cv . One of these caterpillars
contains edge (t, s) in its internal path, otherwise they
can be merged together and the solution is not optimal.
Assume without loss of generality that Cu contains (t, s).
It is possible to split Cu at node s, and merge Cv with
the resulting part. This yields a solution with the same
number of caterpillars as an optimal solution, thus it is
optimal.

Consider now any optimal solution which contains the
caterpillar (u, t, v) without edge (t, s). We can assume
that all leaves of t are connected to this (u, t, v) cater-
pillar. Denote C the caterpillar of this solution which
contains (t, s). By assumption, the only edges connected
to t which do not lead to leaves are (t, u), (t, v) and
(t, s). This implies that edge (t, s) is an external edge
of caterpillar C. It is thus possible to remove it from
caterpillar C and attach it to caterpillar (u, t, v): the
solution produced is still optimal.

Lemma 4 (Contract lonely vertices of height 1). Assume

T contains a vertex t of height 2 which has exactly child
of height 1, u. Then in any optimal solution, node u
belongs to only one caterpillar.

This implies that solving CATERPILLARSPLIT on T is
equivalent to solving CATERPILLARSPLIT on T ′ where
edge (t, u) is contracted (i.e., nodes t and u are merged).

Proof. Consider any solution in which node u belongs
to several caterpillars, and denote by C the caterpillar
which contains edge (t, u). Since t has only one child
of height 1, the internal path of this caterpillar is either
empty or ends with the edge connecting t to its parent.
In both cases, it is possible to add edge (t, u) to this
path. All leaves of u can thus be added to caterpillar
C, decreasing the total number of caterpillars of the
solution, which implies that the considered solution is
not optimal.

Algorithm 1: CaterpillarSplit(T , r)
Input: A tree T , rooted at r
Output: A partition of T in caterpillars

1 S ← ∅ ;
2 while T has vertices of height 2 do
3 t← a vertex of height 2 of T ;
4 if t has one child of height 1 u then
5 Merge t with u ;
6 else if t has two children of height 1 u and v then
7 C ← caterpillar (u, t, v) with leaves attached,

and the edge from t to its parent;
8 S ← S ∪ {C};
9 Remove edges of C from T ;

10 else if t has at least 3 children of height 1 then
11 Pick u and v, two children of height 1 of t;
12 C ← the caterpillar (u, t, v) with leaves

attached;
13 S ← S ∪ {C};
14 Remove edges of C from T ;
15 return S ∪ {T}

These lemmas suggest an algorithm to solve CATER-
PILLARSPLIT on trees, which is detailed in Algorithm 1.
The optimality of this algorithm comes directly from
the previous Lemmas: for each caterpillar added to S,
we have a proof that there exists an optimal solution
containing this caterpillar. Since a tree T that does
not contain any vertex of height 2 is a caterpillar, the
produced solution is valid and optimal.

2) Solving the problem on pseudo-trees: We now
consider the general problem CATERPILLARSPLIT on
pseudo-trees. Consider a pseudo-tree T which is not a
tree: it either contains a self loop (an edge (i, i)) or
one proper cycle C. If T contains a self loop (i, i),

5

A
B C

D
cycle

Figure 3: Four possible shapes for a node on the cycle.

then an equivalent problem is obtained by replacing this
loop with an edge connecting i to a new node i′ which
represents the time during which task i must execute by
itself. This replacement yields a tree, on which we can
apply Algorithm 1.

If T contains a proper cycle C, it is easy to see with a
similar argument as above that the number of caterpillars
of any solution is equal to the number of split operations.
We are thus again interested in minimizing the number
of caterpillars used to partition the edges of T .

For each u ∈ C, the subgraph of nodes reachable from
u without going through C is a tree Tu. By rooting Tu at
u, all the Lemmas proven above are still valid, with one
exception: Lemma 3 cannot be applied if the vertex t of
height 2 is u, since u has no father in Tu. This implies
that iteratively applying the Lemmas as in Algorithm 1
yields a cycle C in which the subtrees Tu can have 4
possible shapes (see Figure 3): (A) Tu = {u}, i.e. u is
a leaf in Tu; (B) u has height 1 in Tu, with at least one
leaf; (C) u has height 2 in Tu, and exactly one child
of height 1; (D) u has height 2 in Tu, and exactly two
children of height 1.

If Tu is of shape C or D, we call the subtree corre-
sponding to each vertex of height 1 in Tu a leg of u.
Each u ∈ C can thus have 0, 1 or 2 legs. Note that for
shapes C and D, node u can have any number of leaves
in Tu.

If two legs are separated on the cycle by at least two
nodes, or by one node of shape B, we can reduce the
problem with the following lemmas:

Lemma 5. Assume the cycle C contains three consecu-
tive nodes u, v, w, where u and w have at least one leg,
and node v has shape B. Then there exists an optimal
solution which contains the caterpillar made of one leg
of u, Tv and one leg of w, with leaves of u and w
attached. If u and/or w has only one leg, then this
caterpillar also contains the next edge of the cycle in
the corresponding direction, as an external edge.

Proof. This proof is very similar to the proofs of
Lemma 2; in the interest of brevity we only present the
main points. In the first part, we prove that there exists
an optimal solution in which edges (u, v) and (v, w) are

u′
u v w

w′
cycle

(a) Lemma 5, where u has two legs and w has one. Thick edges
show the internal path of the caterpillar, and non-connected edges
show where the splitting occurs.

u v w
cycle

t
cycle

(b) Lemma 7. The original pseudo-tree T is on the left, T ′ is on
the right.

Figure 4: Illustrations for Lemmas 5 and 7.

part of the same caterpillar: from any optimal solution
in which this is not the case, a case analysis on whether
edges (u, v) and (v, w) are internal edges in their respec-
tive caterpillar shows that we can always obtain another
optimal solution with the required property. Then, we
show that such a solution can always be transformed
into an optimal solution which satisfies the conditions
of this Lemma.

Lemma 6. Assume the cycle C contains at least four
consecutive nodes (u, v1, . . . , vk, w) for k ≥ 2 where
u and w have at least one leg, and nodes vi have no
leg. Then there exists an optimal solution containing the
caterpillar made of one leg of u, ∪iTvi

, and one leg of
w, with the leaves of u and w attached. If u and/or w
has only one leg, then this caterpillar also contains the
next cycle edge in the corresponding direction, as an
external edge.

Proof. This Lemma is proven in the same way as the
previous one, where in the first part we state that there
exists an optimal solution in which edges of the path
(u, v1, . . . , vk, w) are part of the same caterpillar.

Node v in Lemma 5 and nodes v1, . . . , vk in Lemma 6
are called forcing nodes.

When two legs are close enough, the next Lemma
shows that we can merge the corresponding nodes:

Lemma 7. Assume that C contains three consecutive
nodes (u, v, w) where u and w have at least one leg,

6

and Tv has shape A (i.e., v is connected to no other
edge). Consider T ′ obtained by contracting the edges
(u, v) and (v, w): the three nodes are replaced by a
node t, to which Tu and Tw are connected.

Then solving CATERPILLARSPLIT on T is equivalent
to solving CATERPILLARSPLIT on T ′.

Proof. Consider any solution S′ for T ′. If one leg of u
and one leg of w are part of the same caterpillar in S′, the
edges (u, v) and (v, w) can be added to this caterpillar in
place of node t, and we obtain a solution for T . On the
other hand, if there is no caterpillar with a leg of u and
a leg of w, it means S′ contains at least two caterpillars
with node t. We can attach edge (u, v) to the caterpillar
which contains a leg of u, and (v, w) to the caterpillar
which contains a leg of w (both as external edges). Since
v has no other edge, this yields a solution for T .

If two caterpillars of S′ contain a leg of u and a leg
of w, we can swap them to obtain a solution where one
caterpillar has two legs of u and one caterpillar has two
legs of w, and return to the second case mentioned above.

Lemma 7 also holds if u and w are neighbors in the
cycle: edge (u,w) can be contracted.

With these three lemmas, we can write algorithm 2 to
solve CATERPILLARSPLIT on pseudo-trees. On line 12,

Algorithm 2: CaterpillarSplit(T , C)
Input: A pseudo-tree T , containing one cycle C
Output: A partition of T in caterpillars

1 foreach u ∈ C do
2 Solve CATERPILLARSPLIT on Tu, stop when u

has at most two children of height 1;
3 if no node of C has a leg then
4 Split any node of C to obtain a path;
5 return the caterpillar made of this path and all

their leaves attached;
6 else if exactly one node u of C has one or two legs

then
7 Split node u to obtain a path;
8 return the caterpillar made of this path and all

their leaves attached;
9 else if there are at least two legs on cycle C then

10 if there exists two legs separated by a forcing
node v then

11 Cv ← caterpillar forced by v (Lemma 5 or 6);
12 S ← CATERPILLARSPLIT (T \ Cv) (Alg. 1);
13 return S ∪ {Cv};
14 else
15 Repeatedly merge two consecutive nodes on

the cycle (Lemma 7) and apply Lemma 2;
16 return the resulting caterpillars

once Cv has been removed from T , the resulting graph is

a tree. We can thus use Algorithm 1 from the previous
Section to solve CATERPILLARSPLIT in that case. On
line 15, all legs of the cycle will be grouped by two,
and we obtain

⌈
l
2

⌉
caterpillars, where l is the number of

legs.

C. Minimization of both makespan and preemptions

The algorithms presented above work in two steps:
we first compute a preemptive solution x∗ with optimal
makespan thanks to the Linear Program (PLP), and then
we compute the optimal ordering for this particular
solution which minimizes the number of preemptions.
This does not guarantee that the resulting schedule has
an optimal number of preemptions: there may exist
another optimal solution of (PLP) which incurs fewer
preemptions with a correct ordering.

In order to strengthen the guarantee on the number
of preemptions, one may want to study the following
problem (we denote it with MINPREEMPTIONS): given
a speed matrix Si,j and processing times pi, output
a schedule with the smallest number of preemptions
among those schedules with optimal makespan. Unfor-
tunately, we show in this Section that this problem is
actually NP-complete.

Theorem 2. MINPREEMPTIONS is NP-complete.

Proof. The problem clearly belongs to NP: given a
solution, it is easy to check in polynomial time that
the solution is valid, and to compute its makespan and
number of preemptions.

We prove its NP-hardness by reduction from the well-
known problem 3-PARTITION, whose input is a set of
3n integers ai, with

∑
i ai = nB, and whose output

is a partition of [|1, 3n|] into n parts Pj such that
∀j,
∑

i∈Pj
ai = B.

From any 3-PARTITION instance with values ai, we
build the following instance for our scheduling problem:
• There are n groups of tasks Aj , Bj , Cj , Xj , Yj

with the following processing times:

A B C X Y
p 2B 3B 2B B B

The co-scheduling matrix S for the tasks of group
j is as follows:

A B C X Y
A · 1 0 1 0
B 1 · 1 0 0
C 0 1 · 0 1
X 1 0 0 · 0
Y 0 0 1 0 ·

7

t

R1

R2

B 2B 3B 4B 5B

Xj

Aj

Bj

Cj

Yj

Vi1Vi2Vi3

Figure 5: Valid schedule for group j with Pj =
{i1, i2, i3} if the 3-PARTITION instance is positive.

For any tasks u and v in different groups, Su,v = 0.
• In addition, there are 3n Vi tasks, with pVi

= ai
from the 3-PARTITION instance. The co-scheduling
coefficients of these tasks are 1 for all the Bj tasks
(SVi,Bj = 1 for all i and j), and 0 for all other
tasks of any group j.

If the 3-PARTITION instance is positive, it is pos-
sible to schedule these tasks without preemption with
makespan 5nB (see Figure 5, where each group j is
associated with one part Pj).

Conversely, assume there exists a non preemptive
schedule for these tasks in time 5nB. Since the total
execution time of all tasks is 9nB from tasks of all
groups and nB from Vi tasks, this schedule must have
two tasks executing at all times. In each group j, task Xj

can only run together with task Aj for a duration B. The
remaining duration of task Aj can only be together with
task Bj . Similarly, task Yj must execute with task Cj ,
and the remaining duration has to be with task Bj . The
remaining duration of task Bj (for B time units) has to
be together with some tasks Vi for some i. Let us denote
by Pj the set of indices i such that task Bj runs with the
tasks Vi in this schedule. Since no preemption is allowed,
the sum of execution times of these Vi tasks is exactly B,
and so we have a solution for the 3-PARTITION instance.

V. EXPERIMENTAL EVALUATION

In this section, we present an experimental validation
on realistic data, in order to assess the practical perfor-
mance of our algorithm.

A. Benchmarks

The data was obtained by benchmarking a number of
GPU kernels from different well-known GPU benchmark
suites (Rodinia, Parboil and SHOC) that reproduce real-
life applications [11]. The experiments were performed
on a GPU Tesla P100-SXM2 based on the Pascal archi-
tecture. The kernels were compiled with NVCC CUDA
version 8.0 and the executions used a framework that
support the submission of two given kernels at the same
time. Measuring the resulting execution time of both

kernels allows to obtain realistic values for the slowdown
experienced by kernels when running together.

Consider a given measurement for kernels K and K ′,
whose standalone execution times are respectively T 1

K

and T 1
K′ . We measure the co-execution time OK,K′ :

the time interval during which both kernels are running
together. We also measure the execution times of kernel
K when running with K ′: TK′

K , and respectively TK
K′ is

the execution time of K ′ when running with K.
With similar ideas to those used in [11] to define the

so-called concurrency index, we can use these measure-
ments to compute the speed SK,K′ of kernel K when run
with kernel K ′. If the co-execution interval is the whole
duration of TK′

K , then SK,K′ =
T 1
K

TK′
K

since the total work

is T 1
K , and it was performed in time TK′

K . For shorter co-
execution intervals, we will assume that outside of the
co-execution interval, both kernels behaved as if they
were in isolation. We can thus consider that all of the
slowdown incurred by each kernel is due to this interval.
Then the duration TK′

K −OK,K′ is common between both
executions, and can be removed. Since the remaining
duration was executed in time OK,K′ , the speed SK,K′

is thus:

SK,K′ =
T 1
K − (TK′

K −OK,K′)

OK,K′
= 1− TK′

K − T 1
K

OK,K′

We have thus computed these values for each mea-
surement for all kernels analyzed in [11], and assigned
speed = 0 for all measurements that resulted in too short
of an overlap. Each kernel pair was measured 5 times,
and the maximum speed recorded for each pair was used
as a measure of how fast these kernels may run together.
The CDF of the resulting speed distribution is shown on
the left of Figure 6, which shows that about half of kernel
pairs can not run together at all, and the speeds of the
remaining pairs is roughly uniformly distributed. This
does not tell the whole story though, since we expect
correlations between the speed of kernels relative to each
other. The complete speed matrix is provide on the right
of Figure 6.

B. Experimental setting

From the speed measurements, we construct random
instances to our scheduling problem in the following
way. We fix a number n of tasks, and each task computes
one of the 60 kernels, picked at random. To assign task
durations, we can use the measured standalone time of
the kernels (modeling the fact that this task computes the
kernel once). This is the actual case, and it results in
large variety in task execution times because the kernels
are very different from each other. This case comes

8

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Co−execution speed

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Kernel 1

K
er

ne
l 2

0.00 0.25 0.50 0.75 1.00
Speed

Figure 6: Speeds obtained from measurement data. Cu-
mulative distribution on the left, speed matrix on the
right.

in two flavors: either uniform where the kernels are
picked with equal probability, or weighted where each
kernel is picked with a probability inversely proportional
to its duration. In the weighted case, if two kernels
have duration d and d′, the expected number of tasks of
each type will be c · n/d and c · n/d′ for some constant
c. Thus, the expected total workload corresponding to
each type of task is equal to c · n, independently of
the kernel duration. We have also analyzed the random
duration case, in which the duration of a task is a
uniform value between 0 and 10 (modeling the fact that
each task computes one given kernel several times, and
that tasks have relatively similar durations). In this last
case, two tasks may represent the same kernel but have
different durations.

For each case and each number of tasks, we have
generated 15 different instances. We first compute the
solution to the preemptive Linear Program (PLP), and
then, for each instance, we evaluate the results of the pre-
emptive solution obtained with the CATERPILLARSPLIT
algorithm (Algorithm 2). For comparison, we also com-
pute the sequential solution (where each task is executed
alone) and the solution obtained from the graph-based
algorithm MAXPAIR [20] which schedules tasks non-
preemptively by grouping them by best-assorted pairs.

All algorithms are implemented in Python 3.6.5. Lin-
ear Programs are solved with CPLEX 12.7.

C. Experimental results

Figure 7 shows the number of preemptions achieved
by the CaterpillarSplit algorithm, on the solution re-
turned by the Linear Program. The plot actually shows
the average number of preemptions per task, i.e. the
total number of preemptions divided by the number of
tasks. This average reaches a constant value relatively

●●●●●

●

●●●●●●●●●

●●●●

●

●

●●●●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●●

●

●
●
●

●●●
●●
●
●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●●●
●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●
●
●
●

●
●
●●

●

●
●

●
●●
●●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●
●
●●●

●
●
●
●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●
●

●●

●

●
●
●●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●
●
●

●

●
●

●

●●

●●
●

●

●

●
●●

●
●
●

●

●●●

●

●
●

●●●

●

●
●
●

● ●

●

●
●●

●
●
●
●

●

●
●
●

●
●

●●●

●●

●●

●●●●

●●

●

●

●

●

●

●

●●●●

●

●

●●●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●●
●●
●
●
●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●
●
●

●

●
●

●

●
●
●●
●
●
●

●●

●

●●
●

●●
●

●

●

●●
●

●

●

●●
●●●
●
●●
●

●

●
●
●

●

●●●
●
●

●
●
●
●
●
●

●

●

●

●

weighted randomDuration uniform

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0.00

0.05

0.10

0.15

Number of tasks

A
ve

ra
ge

 n
um

be
r

of
 p

re
em

pt
io

ns

Figure 7: Analysis of the number of preemptions
achieved by the CATERPILLARSPLIT algorithm. Each
dot is an experiment, the line represents a smoothed
average with standard deviation shown in grey.

weighted randomDuration uniform

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
0.65

0.70

0.75

0.80

0.85

0.90

Number of tasks

R
at

io
 to

 s
eq

ue
nt

ia
l m

ak
es

pa
n

Algorithm CaterpillarSplit CaterpillarSplit+20% CaterpillarSplit+50% MaxPair

Figure 8: Performance of CATERPILLARSPLIT (with and
without preemption overhead) compared to MAXPAIR.

quickly, showing that our solution requires to preempt at
most 12% of tasks (9% in average) for the worst setting
random duration.

Figure 8 shows the performance in terms of schedule
length, compared to a sequential solution. In addition
to the results of CATERPILLARSPLIT and MAXPAIR,
this plot includes schedule durations for CATERPILLAR-
SPLIT with the very conservative assumption that each
preemption incurs an overhead of either 20 or 50% of
the average task duration, during which the GPU can
not process any task. We first see that using concurrent
execution allows to reduce execution time by 20 to
30%. Using our preemptive solutions allows to reduce
this time further, by 10-12% for the weighted case,
by 5-7% for the uniform case, and by 3-5% for the
random duration case. Furthemore, our solution is
more efficient in all cases even with 20% overhead, and
in both the weighted and uniform cases with the
very conservative 50% overhead.

VI. CONCLUSIONS

In this paper, we address the problem of co-scheduling
on a GPU. We propose a theoretical model and pro-

9

vide a preemptive scheduling algorithm. We show that
the optimal preemptive makespan can be computed in
polynomial time, and that we can schedule any solution
of optimal makespan with a minimal number of pre-
emptions. However, computing the minimal amount of
preemptions among all preemptive solutions of optimal
makespan is an NP-hard problem.

We present an experimental evaluation of our algo-
rithm on realistic instances, based on benchmarks of
real applications. We show that our approach is able to
achieve the optimal makespan by preempting 6 to 9% of
all tasks depending on the experimental condition, which
allows to obtain very good performance compared to the
literature, even with a conservative overhead.

This work opens many challenging perspectives. One
next step would be to design an algorithm to produce
non-preemptive schedules which could be more efficient
than MAXPAIR, or more generally to take a preemption
cost into account. On the theoretical side, it would be
valuable to provide worst-case estimates on the average
number of preemptions (we conjecture that it can not
be more than 1

3), and to consider the problem with
concurrent execution of three kernels.

REFERENCES

[1] J. T. Adriaens, K. Compton, N. S. Kim, M. J. Schulte, The case
for GPGPU spatial multitasking, in: 2012 IEEE 18th Interna-
tional Symposium on High Performance Computer Architecture
(HPCA),, 2012, pp. 1–12.

[2] S. Pai, M. J. Thazhuthaveetil, R. Govindarajan, Improving
GPGPU concurrency with elastic kernels, in: Proceedings of
the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
2013, ACM, 2013, pp. 407–418.

[3] X. Zhao, Z. Wang, L. Eeckhout, Classification-driven search for
effective sm partitioning in multitasking gpus, in: Proceedings
of the 2018 International Conference on Supercomputing, ACM,
2018, pp. 65–75.

[4] Nvidia gp100 pascal whitepaper, http://www.nvidia.com.
[5] Q. Hu, J. Shu, J. Fan, Y. Lu, Run-time performance estimation

and fairness-oriented scheduling policy for concurrent GPGPU
applications, in: 45th International Conference on Parallel Pro-
cessing (ICPP), 2016, 2016, pp. 57–66.

[6] S. . Shekofteh, H. Noori, M. Naghibzadeh, H. Fröning, H. S.
Yazdi, ccuda: Effective co-scheduling of concurrent kernels on
gpus, IEEE Transactions on Parallel and Distributed Systems
31 (4) (2020) 766–778.

[7] R. A. Cruz, C. Bentes, B. Breder, E. Vasconcellos, E. Clua, P. M.
de Carvalho, L. M. Drummond, Maximizing the gpu resource
usage by reordering concurrent kernels submission, Concurrency
and Computation: Practice and Experience.

[8] M. Shantharam, Y. Youn, P. Raghavan, Speedup-aware co-
schedules for efficient workload management, Parallel Processing
Letters 23 (02) (2013) 1340001.

[9] G. Aupy, M. Shantharam, A. Benoit, Y. Robert, P. Raghavan, Co-
scheduling algorithms for high-throughput workload execution,
Journal of Scheduling 19 (6) (2016) 627–640.

[10] H. Sun, R. Elghazi, A. Gainaru, G. Aupy, P. Raghavan, Schedul-
ing parallel tasks under multiple resources: List scheduling vs.
pack scheduling, in: 2018 IEEE Int. Parallel and Distributed
Processing Symposium (IPDPS), IEEE, 2018, pp. 194–203.

[11] P. Carvalho, L. M. Drummond, C. Bentes, E. Clua, E. Cataldo,
L. A. Marzulo, Analysis and characterization of gpu benchmarks
for kernel concurrency efficiency, in: Latin American High Per-
formance Computing Conference, Springer, 2017, pp. 71–86.

[12] Y. Ukidave, X. Li, D. Kaeli, Mystic: Predictive scheduling for
gpu based cloud servers using machine learning, in: 2016 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), IEEE, 2016, pp. 353–362.

[13] F. Wende, F. Cordes, T. Steinke, On improving the performance
of multi-threaded CUDA applications with concurrent kernel
execution by kernel reordering, in: Symposium on Application
Accelerators in High Performance Computing (SAAHPC), 2012,
2012, pp. 74–83.

[14] T. Li, V. K. Narayana, T. El-Ghazawi, A power-aware symbiotic
scheduling algorithm for concurrent GPU kernels, in: IEEE 21st
International Conference on Parallel and Distributed Systems
(ICPADS), 2015, 2015, pp. 562–569.

[15] J. Zhong, B. He, Kernelet: High-throughput GPU kernel execu-
tions with dynamic slicing and scheduling, IEEE Transactions on
Parallel and Distributed Systems 25 (6) (2014) 1522–1532.

[16] V. T. Ravi, M. Becchi, G. Agrawal, S. Chakradhar, Supporting
GPU sharing in cloud environments with a transparent runtime
consolidation framework, in: Proceedings of the 20th interna-
tional symposium on High performance distributed computing,
ACM, 2011, pp. 217–228.

[17] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, D. Chen,
Efficient GPU spatial-temporal multitasking, IEEE Transactions
on Parallel and Distributed Systems 26 (3) (2015) 748–760.

[18] C. Margiolas, M. F. O’Boyle, Portable and transparent software
managed scheduling on accelerators for fair resource sharing,
in: Proceedings of the 2016 International Symposium on Code
Generation and Optimization, ACM, 2016, pp. 82–93.

[19] Q. Chen, H. Yang, J. Mars, L. Tang, Baymax: Qos awareness
and increased utilization for non-preemptive accelerators in ware-
house scale computers, ACM SIGPLAN Notices 51 (4) (2016)
681–696.

[20] Y. Wen, M. F. O’Boyle, C. Fensch, Maxpair: Enhance opencl
concurrent kernel execution by weighted maximum matching, in:
Proceedings of the 11th Workshop on General Purpose GPUs,
ACM, 2018, pp. 40–49.

[21] Q. Xu, H. Jeon, K. Kim, W. W. Ro, M. Annavaram, Warped-
slicer: efficient intra-sm slicing through dynamic resource par-
titioning for gpu multiprogramming, in: Proceedings of the
43rd Annual International Symposium on Computer Architecture
(ISCA), 2016, IEEE, 2016, pp. 230–242.

[22] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, M. Guo,
Quality of service support for fine-grained sharing on gpus, in:
Proceedings of the 44th Annual International Symposium on
Computer Architecture (ISCA), 2017, ACM, 2017, pp. 269–281.

[23] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, M. Guo, Si-
multaneous multikernel gpu: Multi-tasking throughput processors
via fine-grained sharing, in: IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2016, IEEE,
2016, pp. 358–369.

[24] G. Chen, Y. Zhao, X. Shen, H. Zhou, Effisha: A software
framework for enabling effficient preemptive scheduling of gpu,
ACM SIGPLAN Notices 52 (8) (2017) 3–16.

[25] S. Jin, Z. Wang, Q. Chen, M. Guo, Preemption-aware kernel
scheduling for gpus, in: 2017 IEEE International Symposium on
Parallel and Distributed Processing with Applications and 2017
IEEE International Conference on Ubiquitous Computing and
Communications (ISPA/IUCC), IEEE, 2017, pp. 525–532.

10

http://www.nvidia.com

	Introduction
	Related Work
	Model and Notations
	Preemptive Schedules
	Optimal Preemptive Schedule
	Minimizing the number of preemptions
	Solving the problem on trees
	Solving the problem on pseudo-trees

	Minimization of both makespan and preemptions

	Experimental Evaluation
	Benchmarks
	Experimental setting
	Experimental results

	Conclusions
	References

