-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Towards On-Demand 1/0O Forwarding in HPC Platforms

Jean Luca Bez, Francieli Zanon Boito, Alberto Miranda, Ramon Nou, Toni

Cortes, Philippe Navaux

» To cite this version:

Jean Luca Bez, Francieli Zanon Boito, Alberto Miranda, Ramon Nou, Toni Cortes, et al.. Towards
On-Demand I/0 Forwarding in HPC Platforms. PDSW 2020: 5th IEEE/ACM International Parallel
Data Systems Workshop, Nov 2020, Atlanta, Georgia / Virtual, United States. hal-03150024

HAL Id: hal-03150024
https://hal.inria.fr /hal-03150024
Submitted on 23 Feb 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/395676357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03150024
https://hal.archives-ouvertes.fr

Towards On-Demand I/O Forwarding in HPC Platforms

Jean Luca Bez!, Francieli Z. Boito?, Alberto Miranda®, Ramon Nou?, Toni Cortes>*, Philippe O. A. Navaux

1

!Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS) — Porto Alegre, Brazil
2LaBRI, University of Bordeaux, Inria, CNRS, Bordeaux-INP — Bordeaux, France
3Barcelona Supercomputing Center (BSC) — Barcelona, Spain
4Polytechnic University of Catalonia — Barcelona, Spain

{jean.bez, navaux} @inf.ufrgs.br, francieli.zanon-boito @u-bordeaux.fr,
{alberto.miranda,ramon.nou’} @bsc.es, toni@ac.upc.edu

Abstract—I1/O forwarding is an established and widely-adopted
technique in HPC to reduce contention and improve I/O
performance in the access to shared storage infrastructure.
On such machines, this layer is often physically deployed on
dedicated nodes, and their connection to the clients is static.
Furthermore, the increasingly heterogeneous workloads enter-
ing HPC installations stress the I/O stack, requiring tuning
and reconfiguration based on the applications’ characteristics.t
Nonetheless, it is not always feasible in a production system
to explore the potential benefits of this layer under different
configurations without impacting clients. In this paper, we
investigate the effects of I/O forwarding on performance by
considering the application’s I/O access patterns and system
characteristics. We aim to explore when forwarding is the best
choice for an application, how many I/O nodes it would benefit
from, and whether not using forwarding at all might be the
correct decision. To gather performance metrics, explore, and
understand the impact of forwarding I/0O requests of different
access patterns, we implemented FORGE, a lightweight I/O
forwarding layer in user-space. Using FORGE, we evaluated
the optimal forwarding configurations for several access pat-
terns on MareNostrum 4 (Spain) and Santos Dumont (Brazil)
supercomputers. Our results demonstrate that shifting the
focus from a static system-wide deployment to an on-demand
reconfigurable I/O forwarding layer dictated by application
demands can improve I/O performance on future machines.

1. Introduction

Scientific applications impose ever-growing performance
requirements to the High-Performance Computing (HPC)
field. Increasingly heterogeneous workloads are entering
HPC installations, from the traditionally compute-bound
scientific simulations to Machine Learning applications and
I/O bound Big Data workflows. While HPC clusters typi-
cally rely on a shared storage infrastructure powered by a
Parallel File System (PFS) such as Lustre [1], GPFS [2], or
Panasas [3], the increasing I/0O demands of applications from
fundamentally distinct domains stress this shared infrastruc-
ture. As systems grow in the number of compute nodes to

accommodate larger applications and more concurrent jobs,
the PFES is not able to keep providing performance due to
increasing contention and interference [4], [5], [6].

I/O forwarding [7] is a technique that seeks to mitigate
this contention by reducing the number of compute nodes
concurrently accessing the PFS servers. Rather than having
applications directly access the PFS, the forwarding tech-
nique defines a set of I/O nodes that are responsible for
receiving application requests and forward them to the PFS,
thus allowing the application of optimization techniques
such as request scheduling and aggregation. Furthermore,
I/O forwarding is file system agnostic and is transparently
applied to applications. Due to these benefits, the technique
is used by TOP500 machines [8], as showed in Table 1.

On such machines, I/O nodes are often physically de-
ployed on special nodes with dedicated hardware, and their
connection to the clients is static. Thus, a subset of compute
nodes will only forward their requests to a single fixed I/O
node. Typically, in this setup, all applications are forced to
use forwarding when it is deployed in the machine.

In this paper, we seek to investigate the impact of
I/O forwarding on performance, taking into account the
application’s I/O demands (i.e., their access patterns) and
the overall system characteristics. We seek to explore when
forwarding is the best choice (and how many I/O nodes an
application would benefit from), and when not using it is
the most suitable alternative. We hope that the design of
the forwarding layer in future machines will build upon this
knowledge, leading towards a more re-configurable 1/O for-
warding layer. The Sunway TaihuLight [9] and Tianhe-2A

TABLE 1. HIGHEST RAKED TOP 500 MACHINES THAT IMPLEMENT
THE /O FORWARDING TECHNIQUES (JUNE 2020).

Compute /0
Nodes Nodes

40,960 240
16,000 256
6,751 54
19,420 576

Rank Supercomputer

4 Sunway TaihuLight [9]
5 Tianhe-2A [6]

10 Piz Daint [10]

11 Trinity [11]

[6] already provide an initial support towards this plasticity.

Due to the physically static deployment of current I/O
forwarding infrastructures, it is usually not possible to run
experiments with varying numbers of I/O nodes. Further-
more, any reconfiguration of the forwarding layer typically
requires acquiring, installing, and configuring new hardware.
Thus, most machines are not easily re-configurable, and, in
fact, end-users are not allowed to make modifications to
this layer to prevent impacting a production system. We
argue that a research/exploration alternative is required to
enable obtaining an overview of the impact that different I/O
access patterns might have under different I/O forwarding
configurations. We seek a portable, simple-to-deploy solu-
tion, capable of covering different deployments and access
patterns. Consequently, we implement a lightweight I/O
forwarding layer named FORGE that can be deployed as
a user-level job to gather performance metrics and aid in
understanding the impact of forwarding in an HPC system.
Our evaluation was conducted in two different supercom-
puters: the MareNostrum 4 at Barcelona Supercomputing
Center (BSC), in Spain, and the Santos Dumont at the
National Laboratory for Scientific Computation (LNCC), in
Brazil. We demonstrate that the number of I/O nodes for 189
scenarios covering distinct access patterns is different. For
90.5%, using forwarding would indeed be the correct course
of action. But using two I/O nodes, for instance, would only
bring performance improvements for 44% of the scenarios.

The rest of this paper is organized as follows. Section 2
presents FORGE, our user-level implementation of the I/O
forwarding technique. Our experimental methodology, the
platforms and access patterns, are described in Section 3. We
also present and discuss our results in that section. Finally,
we conclude this paper in Section 5 and discuss future work.

2. FORGE: The I/0 Forwarding Explorer

Existing I/0O forwarding solutions in production today,
such as IBM’s CIOD [7] or Cray DVS [12] require dedicated
hardware for I/O nodes and/or a restrictive software stack.
They are, hence, not a straightforward solution to explore
and evaluate I/O forwarding in machines that do not yet
have this layer deployed or that may seek to modify existing
deployments. Furthermore, modifications on deployment or
tuning of these solutions would have a system-wide impact,
even if just for exploration/testing purposes. Since many
supercomputers such as the MareNostrum 4 and the Santos
Dumont still do not have an I/O forwarding layer, we
implemented such layer in user-space to allow sysadmins to
evaluate the benefits and impact of using different number
of I/0O nodes under different workloads, without the need
for production downtime or new hardware.

The goal of the I/O Forwarding Explorer (FORGE)
is to evaluate new I/O optimizations (such as new request
schedulers) as well as modifications on I/O forwarding
deployment and configuration on large-scale clusters and
supercomputers. Our solution is designed to be flexible
enough to represent multiple /O access patterns (number
of processes, file layout, request spatiality, and request

Compute Node

Compute Node

Compute Node

Compute Node

[t I e TTITTIET LT TToTTIrTTTT [t I ait i
2 1t 6 3 7o o4 o 8 5 a0 9
RN SR | | | Pl | I | O eoS-ooa R S H
V1o v s a|ff|0 o1 s a|]] 12 0 16 af[]]r 13 0 16 s
_____ olll P B P [B
FORGE CN FORGE CN FORGE CN FORGE CN
AN yA AN i
h I 4 h I 4
Compute || FORGE l"a": Ll |l l'"l": FORGE | [Compute
Node || ION L____, \ / L_Z--1 ION [Node
----- MPI Rank | Parallel File System |

Figure 1. Overview of the architecture used by FORGE to implement the
1/0 forwarding technique at user-space. I/O nodes and computes nodes are
distributed according to the hostfile.

size) derived from Darshan [13]. As mentioned, it can be
submitted to HPC queues as a normal user-space job to
provide insights regarding the I/O node’s behavior on the
platform. FORGE is open-source and can be downloaded
from https://github.com/jeanbez/forge.

We designed FORGE based on the general concepts
applied in I/O forwarding tools such as IOFSL [14], IBM
CIOD [7], and Cray DVS [12]. The common underlying idea
present in these solutions is that clients emit I/O requests
which are then intercepted and forwarded to one I/O node
in the forwarding layer. This I/O node will receive requests
from multiple processes of a given application (or even
many applications), schedule those requests, and reshape the
I/0 flow by reordering and aggregating the requests to better
suit the underlying PFS. The requests are then dispatched
to the back-end PFS, which executes them and replies to
the I/0 node. Only then, the I/O node responds to the client
(with the requested data, if that is the case) whether the
operation was successful. I/O nodes typically have a pool
of threads to handle multiple incoming requests and dispatch
them to the PFS concurrently.

FORGE was built as an MPI application where M ranks
are split into two subsets: compute nodes and I/O nodes.
The first N processes act as I/O forwarding servers, and
each should be placed exclusively on a compute node. The
remaining M — N processes act as an application, and
are evenly distributed between the nodes, allocating more
than one process per node if necessary, as depicted by
Figure 1. The compute nodes issue I/O requests according
to a user-defined JSON input file describing the I/O phases
of an application. All I/O requests of a given compute node
are sent by MPI messages to the defined I/O node. The
operations are synchronous from the client’s perspective,
i.e., FORGE waits until the I/O operation to the PFS is
complete to reply back to the client.

Each I/O node has a thread that listens to incoming
requests and a pool of threads to dispatch these requests
to the PFS and reply to the clients. Note that any metadata-
related requests, such as those in open () and close ()
operations, are immediately executed. For write () and
read () operations, the requests are placed on a queue of
incoming requests that are scheduled using the AGIOS [15]

https://github.com/jeanbez/forge

scheduling library, aggregated, and dispatched. AGIOS was
chosen as it can be plugged into other forwarding solutions,
and it contains several available schedulers. Regarding ag-
gregation, in FORGE, requests to the same file and opera-
tion are handled in succession. Existing solutions, such as
IOFSL, have a particular interface to issue list operations if
the PFS supports it. We opted for a more general approach
without relying on such feature being available.

3. Study of I/O Forwarding Performance

This section evaluates the impact of I/O forwarding on
performance by observing the bandwidth achieved by differ-
ent application’ access patterns under different forwarding
configurations. We seek to determine when forwarding is the
best choice and how many I/O nodes an application would
benefit from. Our experiments were conducted on MareNos-
trum 4! at Barcelona Supercomputing Center (BSC), Spain,
and on Santos Dumont supercomputer at the National Lab-
oratory for Scientific Computation (LNCC), Brazil.

MareNostrum 4 supercomputer uses 3,456 Lenovo
ThinkSystem SD530 compute nodes on 48 racks. Each
node uses two Intel Xeon Platinum 8160 24C chips with
24 processors each at 2.1 GHz which totals to 165, 888
processes and 390 TB of main memory. Each node provides
an Intel SSD DC S3520 Series with 240 GiB of available
storage, usable within a job. A 100 Gb Intel Omni-Path Full-
Fat Tree is used for the interconnection network and a total
of 14 PB of storage capacity is offered by IBM’s GPFS.

Santos Dumont has a total of 36,472 CPU cores. The
base system has 756 thin compute nodes with two Intel
Xeon E5-2695v2 Ivy Bridge 2.40GHz 12-core processors,
64GB DDR3 RAM, and one 128GB SSD. There are three
types of thin nodes (BullX B700 family), one fat node
(BullX MESCA family), and one AI/ML/DL dedicated
node (BullSequana X family). Its latest upgrade added 376
X 1120 nodes with two Intel Xeon Cascade Lake Gold 6252
2.10GHz 24-core processors, and one 1TB SSD. 36 of these
nodes have a 764GB DDR3 RAM, whereas the remainder
have a 384GB DDR3 RAM. Compute nodes are connected
to the LustreFS directly through a fat-tree non-blocking
Infiniband FDR network. Each OSS has one OST made of
40 6TB HDD disks in a RAID6 (same for the MDS-MDT).

We explore FORGE with multiple access patterns and
forwarding deployments in MareNostrum in Section 3.1. We
expand our analysis using a subset of patterns in Santos
Dumont in Section 3.2. We covered 189 scenarios, with at
least 5 repetitions of each, considering the following factors:

e 8,16, and 32 compute nodes;

e 12, 24, and 48 client processes per compute node
(i.e., 96, 192, 384, 768, and 1536 processes);

o File layout: file-per-process or shared-file;

o Spatiality: contiguous or 1D-strided;

¢ Operation: writes with O_DIRECT enabled to ac-
count for caching effects present in the system;

1. https://www.bsc.es/marenostrum/marenostrum

« Request sizes of 32KB, 128KB, 512KB, 1MB, 4MB,
6MB, and SMB synchronously issued until a given
total size is transferred or a stonewall is reached.

As the compute nodes of both supercomputers’ have 48
cores per node, we evaluate a scenario where an application
uses all, half, or a quarter of its cores. Regarding file layout
and spatiality, we opted for configurations commonly tested
with benchmarks such as IOR [16] and MPI-IO Test [17].

TABLE 2. DESCRIPTION OF THE ACCESS PATTERNS WITH FORGE ON
THE EXPERIMENT PRESENTED IN FIGURES 2 AND 4.

File Request ~ Request
Nodes Processes Layout Spatiality (KB)
A 32 1536 File-per-process Contiguous 1024
B 32 1536 File-per-process Contiguous 128
C 32 1536 Shared Contiguous 1024
D 32 1536 Shared Contiguous 4096
E 32 1536 Shared 1D-strided 512
F 16 192 Shared Contiguous 32
G 16 192 Shared 1D-strided 128
H 8 192 File-per-process Contiguous 8192
I 8 192 Shared 1D-strided 8192
J 16 384 Shared Contiguous 128
K 16 384 Shared Contiguous 8192
L 32 384 Shared 1D-strided 4096
M 32 384 Shared 1D-strided 512
N 8 384 Shared Contiguous 4096
o 16 768 Shared Contiguous 1024
P 32 768 Shared Contiguous 1024
Q 16 768 Shared 1D-strided 1024
R 8 96 File-per-process Contiguous 8192
S 8 96 Shared 1D-strided 6144
T 8 96 Shared Contiguous 512

3.1. I/O Forwarding on MareNostrum 4

Figure 2 depicts the bandwidth measured at client-side,
when multiple clients issue their requests following each ac-
cess pattern and taking into account the number of available
I/0 nodes (0, 1, 2, 4, and 8). Each experiment was repeated
at least 5 times, in random order, and spanning different
days and periods of the day. Table 2 describes each depicted
pattern. In Figure 2, only for scenario A directly accessing
the PES translates into higher I/O bandwidth. For L and
M, the right choice would be to allocate one I/O node each.
Patterns J and O would achieve higher bandwidth when four
I/0O nodes are given to the application. On the other hand,
eight are required by scenarios B, G, H, and R. For the
remaining scenarios, two I/O nodes is the ideal choice. The
complete evaluation of the 189 experiments is available at
https://doi.org/10.5281/zenodo.4016899.

For each one of 189 scenarios, it is possible to determine
the different options an application (or access pattern) has
to choose regarding how many I/O nodes it could use. For
options that translate into similar achieved bandwidth, the
smallest number of I/O nodes is the most reasonable choice.
To verify how many choices we have for each pattern, we
compute Dunn’s test [18] for stochastic dominance, which
reports the results among multiple pairwise comparisons

https://doi.org/10.5281/zenodo.4016899

Scenario A Scenario B Scenario C Scenario D
5000 3000 =] 804 150 4
4ooo-$ - 604 '::""*
3000 - 2000 - Fy 1004=0
&= 40 1ea]
2000 - e=| 1000 - 20 ° 50 4
1000 - - = 1
O =2 1 o 2 0t O
01248 01248 01248 01248
Scenario E Scenario F Scenario G Scenario H
80 ——=—"7 250+ ggg o] 100001
- - 1 =
604 B _ | 200 E o0] é. 7500 A -
40 4 L) 150 4 5000 A
= L 100-? 100 A
20 50 50 4 2500 4 e
(R SN | S 0o
01248 01248 01248 012438
g Scenario | Scenario J Scenario K Scenario L
S 1504, BHm| 8004 300 |y a2 150 @
£ 10044 200 - 200 o-l-.'_ 100 4 =
kel s
S 50 - 100-. 100 50 4
2 o 0 Ot
3 012438 01248 01248 01248
Scenario M Scenario N Scenario O Scenario P
= 100
40-0 8 150 E:!. _ Q= 901 T
304 75 E:l ® pin [m] $
® el 100 =P =E] 604
20 m= 50 $ °
104 50 @ 251 304
O Ot O O
01248 01248 01248 01248
Scenario Q Scenario R Scenario S Scenario T
100 1 6000 - °
& 100{y ™ 100 -
;g' $?= 4000 - = LT T 1L |_I—_|
sl * T 20004 | - 501 50 {= Q
>
Ot O Ol Ot
01248 01248 01248 01248

I/O Forwarding nodes

Figure 2. I/O bandwidth of distinct write access patterns and I/O nodes in
the MareNostrum 4 supercomputer. The y-axis is not the same.

o 88 0 83

3 75 15 751 ob

g 8 5

5 997 40 39 G

g 2

E %0718 E*1M > 15 17

2 ./l L 2 [AmEEE
i 2 3 4 5 0o 1 2 4 8
Number of choices Number of I/O nodes

(a) (b)

Figure 3. (a) Number of choices each access pattern has which translates
into statistically distinct I/O performance. (b) Access patterns grouped by
the number of I/O nodes that would translates to the best performance.

after a Kruskal-Wallis [19] test for stochastic dominance
among groups. Dunn is a non-parametric test that can be
used to identify which specific means are significant from
the others. The null hypothesis (Hy) for the test is that there
is no difference between groups. The alternate hypothesis is
that there is a difference. We used a level of significance of
a = 0.05, thus we reject Hy if p < alpha/2.

Not using forwarding is always an option to be con-
sidered as it yields different bandwidth than when using
forwarding, though it might not be the best choice for many
cases. Figure 3(a) illustrates how many options an allocation

Scenario A Scenario B Scenario C Scenario D
6000 2000 - 51| 2000 4 B
4000 A 1000 - 1500 - ;l'; 1500 A py
1000 + 1000 A =71
4 500 -
2000 _._" 500 P 50047 5
0T o m—®T o) 0l
01248 01248 012438 012438
Scenario E Scenario F Scenario G Scenario H
750 4 é 75 904 ® | 2000 4 ﬁ
500 - 504 60 - $ 1500 - E
250 =] & i . 1000 -
—_= 254 _a- 30-Hg= 5004 o™
0- T T T 0- T T T 0- T L T O- T L T
01248 01248 012438 012438
g Scenario | Scenario J Scenario K Scenario L
S 2000 ¥ *] 2000 = o] E|
=] [}
i b oy o e
ke 7 J 7 1000 A °
S 500 oF 100 ‘ﬁﬁ s00.F_% 500 =
2 o o) ool 0
g 01248 01248 01248 012438
Scenario M Scenario N Scenario O Scenario P
600 - ® 2500 = 1
2000 A é 2000 - Q 2000 =]
400 E] E- a | 15007 g 15004 &
i 1000 4 1000 - 1000-‘
2095 = m_=° | 50lf & 5001 _¥
Ot Ot 0L T Ot
01248 01248 01248 012438
Scenario Q Scenario R Scenario S Scenario T
500
2000 =] 20001 1500 g 400]
1500 - -] 15001 =l 000 e 300
J L4 1000 -
1000 - ® o ° ‘D = 200 A
5005 5001 wu's 500 4% 100 {F 0
R B e e S
01248 01248 01248 01248

1/0 Forwarding nodes

Figure 4. I/O bandwidth of distinct write access patterns and I/O nodes in
the Santos Dumont supercomputer. The y-axis is not the same.

policy would have to consider. For 88 (~ 46%) of the
patterns, three possible choices would impact performance.

The optimal number of I/O nodes for each of the 189
scenarios, considering the available choices of I/O nodes, is
different, as depicted by Figure 3(b). For 12 (6%), 83 (44%),
15 (8%), and 17 (9%) scenarios, the largest bandwidth is
achieved by using 1, 2, 4, and 8 I/O nodes respectively.
Whereas, for 62 scenarios (33%), not using forwarding is
instead the best alternative. There does not seem to be a
simple rule to fit all applications and system configurations,
which is to be expected given the complexity of factors
that can influence I/O performance. For instance, consider
patterns A and B in MareNostrum. The size of requests
makes not using forwarding the best for pattern A, whereas
for B, using 8 I/O nodes translates more bandwidth. For
pattern A and C, where the only difference is the file layout,
C should use 2 I/0 nodes. In Santos Dumont, 8 I/O nodes
should be chosen for C instead of 0 as in A.

Considering the static physical setup of platforms where
forwarding is present, applications often are not allowed to
have direct access to the PFS other than by an I/O node. We
can compare the maximum attained bandwidth one could
achieve by forcibly using forwarding in all the cases (and
the optimal number of I/O nodes) to not using this technique.
For 90.5% (171 scenarios) using forwarding, for 9.5% (18
scenarios), directly accessing the PFS would instead increase

performance. Hence, both options should be available to
applications to optimize I/O performance properly.

3.2. I/0 Forwarding on Santos Dumont

We conducted a smaller evaluation on Santos Dumont
(due to allocation restrictions) comprised of 20 patterns
described in Table 2. Figure 4 depicts the I/O bandwidth
of distinct write access patterns with a varying number of
I/O nodes. One can notice that the forwarding layer setup’s
impact is not the same on MareNostrum and Santos Dumont.

A common behavior observed in Santos Dumont is that
using more I/O nodes yields better performance. Regardless,
the choice of using forwarding or not in this machine is
still relevant. For instance, for the scenarios A, B, and H,
direct access to the Lustre PFS translates into higher I/O
bandwidth. Whereas, for some other scenarios, the benefits
of using forwarding are perceived by the application after
more than one I/O node is available. It is possible to notice
that using a single I/O node is not the best choice for none
of the tested patterns. If two were available, scenarios C, E,
N, Q, and S would already see benefits. For D, G, I, J, K, L,
M, O, P, and T, only when four I/O nodes are given to the
application, in this machine, performance would increase.
Other patterns, such as F and R, require eight I/O nodes
instead to achieve the best performance. In practice, there
will be an upper bound on how many of these resources
are available to applications. This information could guide
allocation policies to arbitrate the I/O nodes by allocating the
resources to those that would achieve the highest bandwidth.

3.3. Discussion

As HPC systems tend to get more complex to accom-
modate new performance requirements and different appli-
cations, the forwarding layer might be re-purposed from
a must-use to an on-demand approach. This layer has the
potential to not only coordinate the access to the back-end
PFS or avoid contention but also to transparently reshape the
flow of I/O requests to be more suited to the characteristics
and setup of the storage system. Our results demonstrate the
intuitive notion that access patterns are impacted differently
by using forwarding, and that the choice in the number of
I/O nodes also plays an important role. Consequently, taking
into account this information, novel forwarding mechanisms
could benefit from this knowledge to allocate I/O nodes
based on the demand. Our initial experiments with FORGE
demonstrate that an idle compute node (or even a set of
compute nodes) could be temporarily allocated to act as a
forwarder and improve application and system performance.

Furthermore, as I/O nodes could be given only to ap-
plications that would benefit the most from them, interfer-
ence on sharing these resources would be reduced or even
eliminated. Instead, in today’s setups, I/O nodes have to
handle all requests from a subset of compute nodes, where
concurrent applications (with very distinct characteristics)
could be running. Yildiz et al. [4] demonstrate the impact
of interference in the PFS, and Bez et al. [20] attested this

when forwarding is also present. Moreover, Yu et al. [21]
investigated the load imbalance on the forwarding nodes,
where recruiting idle I/O nodes would be the solution.
Instead, we argue that a shift of focus from the physical
global deployment of this layer to the I/O demands of
applications should instead guide this layer’s future usage
and distribution. Hence, I/O forwarding could be seen as
an on-demand service for applications that would benefit
from it, possibly recruiting temporary I/O nodes to avoiding
interference present when sharing these resources.

4. Related Work

The I/0 forwarding layer has been the focus of many
research efforts [20], [22], [23] due to its potential to
transparently improve applications’ and systems’ perfor-
mance. Recently, studies have been motivated by the need
of optimally allocating these I/O nodes in a cluster. Yu et
al. [21] propose to recruit idle I/O nodes to mitigate the
load imbalance problem of the I/O forwarding layer. The
mapping of extra and primary I/O nodes is exclusive for
an application. Consequently, that adds some flexibility to
the default static solution. Ji et al. [24] propose a Dynamic
Forwarding Resource Allocation (DRFA) which estimates
the number of I/O nodes needed by a certain job based on
its history records. DFRA remaps compute nodes to other
than their default forwarding node assignments. They either
grant more I/O nodes (for capacity) or unused I/O nodes (for
isolation) based on the global application’s behavior. Their
strategy relies on resource over-provisioning and assumes
that there are idle I/O to satisfy all allocations.

Conversely, we sought to expand such studies with an
experimental analysis on how I/O forwarding would benefit
performance on machines that do not have this layer phys-
ically deployed yet. Furthermore, we opted to explore with
an access pattern granularity, targeting the baseline access
patterns that describe an application’s behavior to determine
the number of I/O nodes that better suit each situation. The
acquired knowledge can be used to guide allocation deci-
sions for all applications that share the observed patterns.

Compared to the current state of the art, FORGE can
assist system administrators in understanding how common
access patterns behave under different forwarding setups.
In its client-side, FORGE can be compared to IOR [16] or
MPI-IO Test [17], where it is possible to describe various
I/0 workloads and run tests using the cluster’s job queues.
FORGE implements a forwarding layer’s baseline concepts,
including request forwarding, scheduling, and aggregation.

5. Conclusion

I/0O forwarding is an established and widely-adopted
technique in HPC to reduce contention and improve I/O
performance in the access to shared storage infrastructure.
However, it is not always possible to explore its advantages
under different setups without impacting or disrupting pro-
duction systems. This paper investigates I/O forwarding by

considering particular applications I/O access patterns and
system configuration, rather than trying to guess a one-size-
fits-all configuration for all applications. By determining
when forwarding is the best choice for an application and
how many I/O nodes it would benefit from, we can guide
allocation policies and help reaching better decisions.

To understand the impact of forwarding I/O requests
of different access patterns, we implemented FORGE, a
lightweight forwarding layer in user-space. We explored 189
scenarios covering distinct access patterns and demonstrated
that, as expected, the optimal number of I/O nodes varies
depending on the application. While for 90.5% patterns
forwarding would be the correct course of action, allocating
two I/0O nodes would only bring performance improvements
for 44% of the scenarios. Our results on the MareNostrum
and Santos Dumont supercomputers demonstrate that shift-
ing the focus from a static system-wide deployment to an
on-demand reconfigurable I/O forwarding layer dictated by
application demands can improve I/O performance on future
machines. Future work will harness this knowledge to guide
and arbitrate on I/O nodes’ allocation decisions. We seek to
propose a production-ready solution capable of adding re-
allocation flexibility to this layer based on the application’s
access patterns and I/O demands.

Acknowledgments

This study was financed by the Coordenagdo de Aperfeicoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001. It has
also received support from the Conselho Nacional de Desenvolvimento
Cientifico e Tecnoldégico (CNPq), Brazil; It is also partially supported
by the Spanish Ministry of Economy and Competitiveness (MINECO)
under grants PID2019-107255GB; and the Generalitat de Catalunya un-
der contract 2014-SGR-1051. The author thankfully acknowledges the
computer resources, technical expertise and assistance provided by the
Barcelona Supercomputing Center - Centro Nacional de Supercomputacion.
The authors acknowledge the National Laboratory for Scientific Computing
(LNCC/MCTI, Brazil) for providing HPC resources of the SDumont su-
percomputer, which have contributed to the research results reported within
this paper. URL: http://sdumont.Incc.br.

References

[1] SUN, “High-Performance Storage Architecture and Scalable Cluster
File System,” Sun Microsystems, Inc, Tech. Rep., 2007.

[2] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters,” in Proceedings of the 1st USENIX
Conference on File and Storage Technologies, ser. FAST *02. USA:
USENIX Association, 2002, p. 19—es.

[3] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable Performance of the Panasas
Parallel File System,” in 6th USENIX Conference on File and Storage
Technologies, ser. FAST’08. USA: USENIX Association, 2008.

[4] 0. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the
Root Causes of Cross-Application I/O Interference in HPC Storage
Systems,” in IEEE International Parallel and Distributed Processing
Symposium (IPDPS). Chicago, USA: IEEE, 2016, pp. 750-759.

[5S1 J. Yu, G. Liu, X. Li, W. Dong, and Q. Li, “Cross-layer coordination
in the I/O software stack of extreme-scale systems,” Concurrency and
Computation: Practice and Experience, vol. 30, no. 10, 2018.

[6] W.Xu, Y. Lu, Q. Li, E. Zhou, Z. Song, Y. Dong, W. Zhang, D. Wei,
X. Zhang, H. Chen, J. Xing, and Y. Yuan, “Hybrid hierarchy stor-
age system in MilkyWay-2 supercomputer,” Frontiers of Computer
Science, vol. 8, no. 3, pp. 367-377, 2014.

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

G. Almadsi, R. Bellofatto, J. Brunheroto, C. Cascaval, J. G. Castanos,
L. Ceze et al., “An overview of the Blue Gene/L system software
organization,” in Euro-Par 2003 Parallel Processing, Euro-Par 2003
Conference, Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer-Verlag, 2003, pp. 543-555.

TOPS500, TOP500 List — June 2020, 2020 (accessed September 1,
2020). [Online]. Available: https://www.topS00.org/lists/2020/06/

B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed,
H. Lan, Y. Yang, J. Zhai, W. Liu, and W. Xue, “End-to-end i/o mon-
itoring on a leading supercomputer,” in /6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). Boston,
MA: USENIX Association, Feb. 2019, pp. 379-394.

S. Gorini, M. Chesi, and C. Ponti, “CSCS Site Update,” http://opensfs.
org/wp-content/uploads/2017/06/Wed11-GoriniStefano-LUG2017_
20170601.pdf, 2017, [Online; Accessed 7-January-2020].

A. for Computing at Extreme Scale Team, “Trinity Platform Introduc-
tioon and Usage Model,” https://www.lanl.gov/projects/trinity/_assets/
docs/trinity-usage-model-presentation.pdf, 2015, [Online; Accessed
7-January-2020].

S. Sugiyama and D. Wallace, “Cray DVS: Data Virtualization Ser-
vice,” 2008.

P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and improving computational science stor-
age access through continuous characterization,” in 27th Symposium
on Mass Storage Systems and Technologies (MSST), 2011, pp. 1-14.

N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,
L. Ward, and P. Sadayappan, “Scalable 1/O forwarding framework for
high-performance computing systems,” in 2009 IEEE International
Conference on Cluster Computing and Workshops. New Orleans,
LA, USA: IEEE, Aug 2009, pp. 1-10.

F. Z. Boito, R. V. Kassick, P. O. A. Navaux, and Y. Denneulin,
“AGIOS: Application-guided I/O scheduling for parallel file systems,”
in 2013 International Conference on Parallel and Distributed Sys-
tems, International Conference on Parallel and Distributed Systems
(ICPADS). Seoul, South Korea: IEEE, Dec 2013, pp. 43-50.

HPC 10 Repository, “IOR,” https://github.com/hpc/ior, 2020.

Los Alamos National Laboratory, “MPI-IO Test Bechmark,” http://
freshmeat.sourceforge.net/projects/mpiiotest, 2008.

J. Dunn and O. J. Dunn, “Multiple comparisons among means,”
American Statistical Association, pp. 52-64, 1961.

W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion
variance analysis,” Journal of the American Statistical Association,
vol. 47, no. 260, pp. 583-621, 1952.

J. L. Bez, F. Z. Boito, L. M. Schnorr, P. O. A. Navaux, and J.-F.
Méhaut, “TWINS: Server Access Coordination in the I/O Forwarding
Layer,” in 2017 25th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP). St. Petersburg,
Russia: IEEE, March 2017, pp. 116-123.

J. Yu, G. Liu, W. Dong, X. Li, J. Zhang, and F. Sun, “On the load
imbalance problem of I/O forwarding layer in HPC systems,” in 2017
3rd IEEE International Conference on Computer and Communica-
tions (ICCC). Chengdu, China: IEEE, 2017, pp. 2424-2428.

V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, “Topology-
Aware Data Movement and Staging for I/O Acceleration on Blue
Gene/P Supercomputing Systems,” in International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC’11. New York, NY, USA: ACM, 2011.

F. Isaila, J. Blas, J. Carretero, R. Latham, and R. Ross, “Design and
evaluation of multiple-level data staging for blue gene systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 6, pp.
946-959, June 2011.

X. Ji, B. Yang, T. Zhang, X. Ma, X. Zhu, X. Wang, N. El-Sayed,
J. Zhai, W. Liu, and W. Xue, “Automatic, Application-Aware I/O
Forwarding Resource Allocation,” in Proceedings of the 17th USENIX
Conference on File and Storage Technologies, ser. FAST’19. USA:
USENIX Association, 2019, pp. 265-279.

http://sdumont.lncc.br
https://www.top500.org/lists/2020/06/
http://opensfs.org/wp-content/uploads/2017/06/Wed11-GoriniStefano-LUG2017_20170601.pdf
http://opensfs.org/wp-content/uploads/2017/06/Wed11-GoriniStefano-LUG2017_20170601.pdf
http://opensfs.org/wp-content/uploads/2017/06/Wed11-GoriniStefano-LUG2017_20170601.pdf
https://www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf
https://www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf
https://github.com/hpc/ior
http://freshmeat.sourceforge.net/projects/mpiiotest
http://freshmeat.sourceforge.net/projects/mpiiotest

