
HAL Id: hal-03150397
https://hal.inria.fr/hal-03150397

Submitted on 23 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reduction Theorem for Randomized Distributed
Algorithms Under Weak Adversaries
Nathalie Bertrand, Marijana Lazić, Josef Widder

To cite this version:
Nathalie Bertrand, Marijana Lazić, Josef Widder. A Reduction Theorem for Randomized Distributed
Algorithms Under Weak Adversaries. VMCAI 2021 - 22nd International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation, Jan 2021, Copenhagen, Denmark. pp.219-239,
�10.1007/978-3-030-67067-2_11�. �hal-03150397�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395676353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03150397
https://hal.archives-ouvertes.fr

A Reduction Theorem for Randomized
Distributed Algorithms under Weak

Adversaries?

Nathalie Bertrand1, Marijana Lazić2, and Josef Widder3

1 Univ Rennes, Inria, CNRS, IRISA, France
nathalie.bertrand@inria.fr

2 Technical University of Munich, Germany
lazic@in.tum.de

3 Informal Systems, Vienna, Austria
josef@informal.systems

Abstract. Weak adversaries are a way to model the uncertainty due to
asynchrony in randomized distributed algorithms. They are a standard
notion in correctness proofs for distributed algorithms, and express the
property that the adversary (scheduler), which has to decide which mes-
sages to deliver to which process, has no means of inferring the outcome
of random choices, and the content of the messages.
In this paper, we introduce a model for randomized distributed algo-
rithms that allows us to formalize the notion of weak adversaries. It ap-
plies to randomized distributed algorithms that proceed in rounds and
are tolerant to process failures. For this wide class of algorithms, we
prove that for verification purposes, the class of weak adversaries can
be restricted to simple ones, so-called round-rigid adversaries, that keep
the processes tightly synchronized. As recently a verification method for
round-rigid adversaries has been introduced, our new reduction theo-
rem paves the way to the parameterized verification of randomized dis-
tributed algorithms under the more realistic weak adversaries.

1 Introduction

Automated verification of fault-tolerant distributed algorithms faces the com-
binatorial explosion problem. The asynchronous parallel composition of many
processes leads to a huge number of executions. Recently, several verification
methods [18,14,6,9,5] are based on the idea that for many distributed algorithms,
instead of considering all these asynchronous executions, it is sufficient to con-
sider only fewer (representative) synchronous executions. The central argument
is similar to the reductions (also know as, mover analysis) by Lipton [15] and
Elrad and Francez [10]: given an arbitrary execution, by repeatedly swapping

? This project has received funding from Interchain Foundation (Switzerland), and
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme under grant agreement No 787367 (PaVeS).

2 Nathalie Bertrand, Marijana Lazić, and Josef Widder

neighboring transitions, one arrives at one of the representative (synchronous)
executions. As this argument works on executions (traces), it works for reachabil-
ity properties, and for specific stuttering-insensitive linear temporal properties.

In this paper, we extend this idea to randomized distributed algorithms and
probabilistic properties [4,16,2]. Rather than arguing on traces, probabilistic
guarantees require us to reason on Markov decision processes (MDPs). In MDPs
the non-determinism is resolved by using adversaries, that is, by functions that
map an execution prefix to the next action taken. In case the next action is a
coin toss, we obtain a branching, where each branch is associated with a prob-
ability. As a result, an MDP together with an adversary induce a computation
tree with probabilistic branching. As the adversary is a function on the prefix,
it is not clear whether in the presence of this branching, it is possible to con-
duct a swapping argument on the computation tree that maintains probabilistic
properties. The technical challenge we face is to characterize a family of adver-
saries that permits a swapping argument in order to arrive at a computation
tree that corresponds to a synchronous execution. Restricting to synchronous
executions considerably decreases the verification effort, by reducing the num-
ber of executions to check. For the analysis of distributed consensus algorithms,
there are two well-researched classes of adversaries, namely strong and weak ad-
versaries. Strong adversaries have full knowledge of the execution prefix, while
weak adversaries are based on a projection (abstraction) of the execution prefix,
in particular, they do not have access to the content of the exchanged messages
and the outcomes of coin tosses. In this paper, we formalize weak adversaries,
and make explicit that they inherently impose restrictions on the local code of a
distributed algorithm, that is, they can only be defined for a class of distributed
algorithms (which was not apparent from their mathematical definition in the
literature).

Intuitively, these algorithms expose some form of symmetry regarding the
local control flow. Consider a formalization of Ben-Or’s consensus algorithm [4]
in Figure 1. The subscript in the locations (nodes) encode the local estimate
of the consensus value, for instance D0 and D1 are locations where processes
decide 0 and 1, respectively. We observe that the control flows on the 0 side
and the 1 side are symmetric: if we ignore the subscripts the paths through the
graph are identical. In contrast, consider the (made-up) example in Figure 2.
If at location J there would be a branching due to receiving messages with
different consensus estimates, the two paths that lead to F differ in length.
An adversary may observe whether a process has taken the left path or the
right path which allows the adversary to infer knowledge on the consensus value
that led to branching at location J . However, typical randomized consensus
algorithms from the literature [4,7,16,17] have a structure similar to Figure 1.
Almost sure termination of these algorithms have been automatically verified
in [5] under synchronous executions formalized via round-rigid adversaries. In
this paper we show that for these distributed algorithms the computation trees
that are defined by weak adversaries can be reduced to round-rigid computation

A Reduction Theorem for Weak Adversaries 3

trees by a swapping argument. As a result we show that the verification results
from [5] apply to a wider class of adversaries than originally claimed.

More formally, our new reduction theorem says that for each weak adversary
there exists a round-rigid adversary that maintains the original probabilities of
properties. For strong adversaries, we were not able to derive such a reduction
argument, which indicates that the verification problem for strong adversaries is
harder. This would also explain why the mathematical proofs in the literature
for strong adversaries are considerably more involved [1].

Contributions. We present in Section 2 a new formalization of randomized dis-
tributed algorithms that allows us to define the weak adversary model from
the literature [2]. Our model is based on threshold automata [12] and their
probabilistic extension [5]. To faithfully express the weak adversaries, we intro-
duce a process-based semantics, i.e., rather than the counter system semantics
from [12,5], we propose semantics based on processes that exchange messages.
We then prove our reduction in two steps. First, in Section 3, we reduce ad-
versaries to communication-closed [10] adversaries, that is, adversaries that to a
process in round r only deliver messages of round r′ ≤ r. Then, in Section 4, we
reduce weak communication-closed adversaries to round-rigid adversaries.

2 Modeling Randomized Threshold-based Algorithms

Probabilistic threshold automata with semantics based on counter systems were
introduced in [5]. For a discussion on the operation of threshold-based distributed
algorithms, and how they are captured by threshold automata we refer to [5].
Here we provide more concrete semantics based on processes and message buffers
(modeled as sets). A probabilistic threshold automaton with processes, PTAP, is
a tuple (L,Z,R,RC), where

– L is a non-empty finite set of locations that contains the disjoint subsets:
initial locations I, final locations F , and border locations B, with |B| = |I|.

– Z is a disjoint union of the following five sets:
• Π is a set of parameter variables;
• P = {p1, . . . , pn}, for some n ≥ 1, is a finite set of processes; It is the dis-

joint union of C and F, representing sets of correct and faulty processes,
respectively;

• T is a finite set of types of messages
• V is a finite set of values of messages, typically V = {0, 1};
• Λ ⊆ {xt,v | t ∈ T , v ∈ V} is a set of local receive variables;

– R is a finite set of rules; and
– RC , the resilience condition, is a constraint over parameter variables.

Example 1. Figure 1 depicts a PTAP that formalizes the seminal consensus al-
gorithm by Ben-Or [4]. It has locations L = B ∪ I ∪ F ∪ {SR, SP}, where
B = {I0, I1} are border locations, I = {J0, J1} are initial locations, and F =

4 Nathalie Bertrand, Marijana Lazić, and Josef Widder

I0

I1

J0

J1

SR SP

E0

CT0

CT1

D1

D0

E1

r1

r2

r3

r4

r8

r9

r12

r11

r7

r5

r6

r13 r14

r10

1/2

1/2

Fig. 1. Ben-Or’s randomized consensus algorithm as a
probabilistic threshold automaton with processes.

I

J
A

C

B
F

Fig. 2. Asymmetric
threshold automaton
used in Example 5.

Rule Guard Update

r1 true ∅
r2 true ∅
r3 true {x0}
r4 true {x1}
r5 x0+x1 ≥ n−t ∧ x0 ≥ (n+t)/2 {y0}
r6 x0+x1 ≥ n−t ∧ x1 ≥ (n+t)/2 {y1}
r7 x0+x1 ≥ n−t ∧

x0 < (n+t)/2 ∧ x1 < (n+t)/2 {y?}

Rule Guard Update

r8 y0+y1+y? ≥ n−t ∧ y0 ≥ t+1 ∅
r9 y0+y1+y? ≥ n−t ∧ y0 > (n+t)/2 ∅
r10 y0+y1+y? ≥ n−t ∧

y0 < t+1 ∧ y1 < t+1 ∅
r11 y0+y1+y? ≥ n−t ∧ y1 > (n+t)/2 ∅
r12 y0+y1+y? ≥ n−t ∧ y1 ≥ t+1 ∅
r13 true ∅
r14 true ∅

Table 1. The rules of the probabilistic threshold automaton for Ben-Or’s algorithm
from Figure 1, where zi ∈ {x0, x1, y0, y1, y?} refers to messages of type z and value i.

{E0, E1, D0, D1, CT0, CT1} are final locations. The set of parameters is Π =
{n, t, f}, where n is the total set of processes, f is the number of faulty pro-
cesses, and t is an upper bound on the number of faults. The 14 rules of the
PTAP from Figure 1 are given in Table 1 (and detailed later). There are two
message types, T = {x, y}, and three values V = {0, 1, ?}, where x-messages
can only have values 0 and 1, and y-messages all three values. The local receive
variables from Λ are thus written x0, x1, y0, y1, y? where we write shortly, e.g.,
type-value pair (x, 0).

See [5] for an in-detail exposition of Ben-Or’s algorithm and its formalization
as threshold automaton. There, one can observe that the pseudo-code of this
algorithm consists of a while loop, and one loop iteration is refered to as a
round. In the threshold automaton in Figure 1, the solid arrows represent local
transitions within a round, while dashed arrows represent local transitions to
the next round. In each round, each process starts in I0 or I1. The subscript of
the locations show what is the process’ current estimate of the consensus value.
A process informs its peers about its consensus estimate by firing rule r3 or
r4 and sending a message of type x0 or x1, respectively. Then it waits in SR
until sufficiently many — given by the guards — messages are received to fire r5,
r6, and r7, etc. If the thresholds are chosen properly, this shall ensure that if
a process enters D0 in some round, and thus decides 0, no process ever enters

A Reduction Theorem for Weak Adversaries 5

D1 in some round and decided 1 (agreement of consensus). The randomization
is introduced in rule r10: this is a coin toss where a process chooses its estimate
for the next round if there was no clear majority around a value. The dashed
arrows then show how a process transitions from a final location of round r to
the beginning of round r + 1. Performing an infinite number of rounds, and (if
necessary) coin tosses, shall ensure that eventually every process decides.

Resilience condition. Let N0 denote the set of natural numbers including zero.
A resilience condition RC defines the set of admissible parameter values PRC =

{p ∈ N|Π|0 : p |= RC}, for which the algorithm is designed to be correct. For
example, Ben-Or’s consensus algorithm is correct when n/5 > t ≥ f ≥ 0. We
introduce a function N : PRC → N0 that maps a vector of admissible parameters
to a number of modeled processes in the system. For instance, for the automa-
ton in Figure 1, N is the function (n, t, f) 7→ n−f , as we model only the n−f
correct processes explicitly, while the effect of Byzantine faulty processes is cap-
tured in non-deterministic choices between different guards. For crash-resilient
algorithms, where all processes are initially correct (until they crash), we model
them all explicitly, that is, N(n, t, f) = n. The set of modeled processes is then
C = {p1, . . . , pN}.

Messages. The set of all messages isM = (P×T ×V×N0). A message m is a tuple
(sen, type, val , rnd) where the process sen ∈ P is the sender, the message type
is type ∈ T , the value is val ∈ V, and the message is sent in the round rnd ∈ N0.
Note that we do not make explicit the process receiving the message, because we
focus on broadcast communications, and thus messages are sent to every process.

LetMF = F×T ×V ×N0 be the subset of all messages where the sender is a
faulty process, andMC = C×T ×V×N0 the subset of messages sent by correct
processes. In our example from Figure 1 we have |F| = f and |C| = n− f .

In the sequel, we assume M is equipped with a total order <M. This total
order can be naturally derived from the order on N0, and fixed orders on the
processes, on the types, and on the values.

Rules. We introduce rules in detail, and give syntactic restrictions that model
the local transitions of a distributed algorithm from/to particular locations. A
rule r is a tuple (from, δto , ϕ,u) where from ∈ L is the source location, δto ∈
Dist(L) is a probability distribution over the destination locations, u ⊆ T × V
is the update set, and ϕ is a guard, i.e., a conjunction of expressions of the form∑
v∈V(bv · xt,v) � ā · pᵀ + a0 where t ∈ T is a fixed message type; for a message

value v ∈ V, bv ∈ N0 is a non-negative integer and xt,v ∈ Λ is a local receive
variable; � ∈ {≥, <}, ā ∈ Z|Π| is a vector of integers, a0 ∈ Z, and p is the vector
of all parameters. If a guard contains only one conjunct, we sometimes call it a
simple threshold guard (or just a simple guard). The set of all simple guards that
appear in a probabilistic threshold automaton PTAP is denoted by G(PTAP).

If r.δto is a Dirac distribution, i.e., if there exists ` ∈ L such that r.δto(`) = 1,
we call r a Dirac rule, and simply denote it (from, `, ϕ,u).

6 Nathalie Bertrand, Marijana Lazić, and Josef Widder

Probabilistic threshold automata model algorithms with multiple rounds that
follow the same code. They represent the behaviour each correct process follows
within a round. Informally, a round happens between border locations and fi-
nal locations. The round switch rules let processes move from final locations
of a given round to border locations of the next round. From each border lo-
cation there is exactly one Dirac rule to an initial location, and it has a form
(`, `′, true, ∅) where ` ∈ B and `′ ∈ I. As |B| = |I|, one can think of border
locations as copies of initial locations. It remains to model from which final lo-
cations to which border location (that is, initial for the next round) processes
move. This is done by round switch rules. They can be described as Dirac rules
(`, `′, true, ∅) with ` ∈ F and `′ ∈ B. The set of round switch rules is denoted
by S ⊆ R. A location belongs to B iff all the incoming edges are in S. Similarly,
a location is in F iff there is only one outgoing edge and it is in S.

Example 2. Back to our running example, the only rule that is not a Dirac rule
is r10, and round switch rules are represented by dashed arrows. Also the update
sets are either empty sets or singletons, where we again write shortly, e.g., x0

instead of the type-value pair (x, 0).

2.1 Symmetry in PTAP

In the distributed algorithm community, weak adversaries are typically defined
by not being able to observe message content and the outcome of coin tosses.
In the PTAP model, one can often retrieve information about the outcome of a
coin toss by the location a process ends up in, or about the message contents by
the rule that is taken. For instance, in our example, depending on the outcome
of a coin toss, a process goes either to location CT0 or CT1. Also, firing r5 or r6

reveals which messages of type x—with value 0 or 1—are in the majority. This
motivates the introduction of two equivalence relations, one on locations and
one on guards (and thus rules). In our example on the one hand, the locations
CT0 and CT1 should be equivalent, and on the other hand the rules r5 and r6

should be equivalent. In the following, we formalize weak adversaries using such
symmetries in threshold automata.

Equivalence relations on guards and rules. Let us first define a correspondence
between threshold guards. Fix two simple threshold guards

ϕ1 :
∑
v∈V

(bt1,v · xt1,v) �1 ā · pᵀ + a0 and ϕ2 :
∑
v∈V

(dt2,v · xt2,v) �2 c̄ · pᵀ + c0.

We say that ϕ1 and ϕ2 correspond to each other, denoted by ϕ1 ≡ϕ ϕ2, if:

– �1 and �2 are the same relation, either ≥ or <,
– coefficients are the same, that is, ā = c̄ and a0 = c0,
– message types are the same, that is, t1 = t2,
– there exists a permutation π on the set of values V, such that bt1,v = dt2,π(v).

A Reduction Theorem for Weak Adversaries 7

We extend this definition to threshold guards. Let ϕA = ϕA1 ∧ . . . ∧ ϕAk and
ϕB = ϕB1 ∧ . . . ∧ ϕBm be threshold guards, and each ϕAi and ϕBj be a simple
guard. We say ϕA and ϕB correspond to each other, and write ϕA ≡ϕ ϕB , if
k = m and there is a permutation ρ on the set {1, . . . , k} such that ϕAi ≡ϕ ϕBρ(i)
for every 1 ≤ i ≤ k.

Example 3. In case x, y ∈ T and 0, 1, 2 ∈ V, we have y0 ≥ n−2t ≡ϕ y1 ≥ n−2t
and y0 + 3y1 < t+ 1 ≡ϕ y1 + 3y2 < t+ 1. In the example from Table 1 we have
r5 ≡ϕ r6, r8 ≡ϕ r12, and r9 ≡ϕ r11.

The equivalence relation over guards, allows us to define an equivalence rela-
tion ≡R⊆ R×R on rules. Let r1 and r2 be two rules from R. We have r1 ≡R r2

if and only if it holds that: r1.ϕ ≡ϕ r2.ϕ, and there exists a permutation π on
the set of values V, such that (t, v) ∈ r1.u if and only if (t, π(v)) ∈ r2.u.

Example 4. Consider again our example from Table 1. The rules r1, r2, r3, r4

have trivial guards, which are therefore all in the same equivalence class of ≡ϕ.
In contrast, not all the rules are equivalent w.r.t. relation ≡R, as their update
sets are different. Thus, we have r1 ≡R r2 and r3 ≡R r4.

Equivalence relation on locations. We define equivalence relation ≡L⊆ L×L on
locations inductively as follows:

– The set of border locations B is one equivalence class of ≡L, that is, for every
`1, `2 ∈ B and every `3 6∈ B it holds that `1 ≡L `2, and `1 6≡L `3.

– Let `1 and `2 be two locations from L \ B. We have `1 ≡L `2 if and only if
there exist rules r1 and r2 and locations `s1 and `s2 such that
• `si is a source location of ri, for i = 1, 2, that is, ri.from = `si ,
• `i is a destination location for ri, formally, ri.δto(`i) > 0, for i = 1, 2,
• `s1 ≡L `s2, and r1 ≡R r2.

– The set of final locations F is either one equivalence class of ≡L or a union
of finitely many equivalence classes of ≡L. As a consequence, there are no
two locations `1 ∈ F and `2 6∈ F such that `1 ≡L `2.

Let PTAP be a probabilistic threshold automaton with processes, equipped
with equivalence relations ≡L and ≡R. Assume `, `0, `1 ∈ L are locations, and
r = (from, δto , ϕ,u) ∈ R is a non-Dirac rule such that its source location is `
(r.from = `), and `0 and `1 are its destination locations. Then `0 ≡L `1. In
words, all destinations of a non-Dirac rule are equivalent locations.

Example 5. In Figure 1 we have 7 equivalence classes w.r.t. ≡L, namely {I0, I1},
{J0, J1}, {SR}, {SP}, {E0, E1}, {D0, D1}, and {CT0, CT1}.

Such an equivalence relation does not always exist, due to the last require-
ment on final locations. For instance, on the automaton from Figure 2, where
I ∈ B, J ∈ I, F ∈ F , where all rules have guard true and empty update set,
it is not possible to define ≡L. Intuitively, an adversary is able to infer whether
the left or the right branch is taken, and consequently in similar asymmetric au-
tomata it may infer information about message content or coin tosses. However,
typical randomized consensus algorithms from the literature [4,7,16,17] have a
structure similar to the one in Figure 1, and are thus symmetric.

8 Nathalie Bertrand, Marijana Lazić, and Josef Widder

2.2 Semantics of a PTAP

The semantics of a probabilistic threshold automaton with processes is an infinite-
state Markov decision process (MDP), which we formally define below.

Given a PTAP and a function N (defined earlier), we define the semantics,
called probabilistic system with processes Sys(PTAP), to be infinite-state MDP
(Σ, I,Act, ∆), where Σ is the set of configurations for PTAP among which I ⊆ Σ
are initial, the set of actions is Act = P(M)× C, and ∆ : Σ × Act→ Dist(Σ) is
the probabilistic transition function.

Configurations. A configuration σ is a tuple (s,Sent ,Rcvd ,p), where the com-
ponents are defined as follows:

– σ.s : C→ L×N0 is a function that describes the control states of processes,
that is, the location and the round of each correct process,

– σ.Sent ⊆MC is a set of messages sent by correct processes,
– σ.Rcvd : C→ P(M) is a function that keeps track of the received messages

for every correct process.

– σ.p ∈ N|Π|0 is a vector of parameter values.

We write σ.Rcvd [p]|t,v,k for the set of messages from σ.Rcvd [p] of type t and
value v that are sent in round k. Formally,

σ.Rcvd [p]|t,v,k = {m ∈ σ.Rcvd [p] | m.type = t ∧m.val = v ∧m.rnd = k}.

We write σ.sloc : C→ L and σ.srnd : C→ N0 for the projections to the first and
the second component of σ.s, respectively.

A configuration σ = (s,Sent ,Rcvd ,p) is initial if all processes are in border
locations of round 0, and there are no sent nor received messages in any round:

– σ.Sent = ∅,
– for every p ∈ C we have σ.Rcvd [p] = ∅,
– for every p ∈ C there is a location ` ∈ B such that σ.s[p] = (`, 0).

A threshold guard evaluates to true in a configuration σ for a process p and
a round k, written σ, p, k |= ϕ, if for all its conjuncts

∑
v∈V(bv ·xt,v) ≥ ā ·pᵀ +a0

we have
∑
v∈V(bv · |σ.Rcvd [p]|t,v,k|) ≥ ā · (σ.pᵀ) + a0, and similarly for conjuncts

of the other form, i.e.,
∑
v∈V(bv · xt,v) < ā · pᵀ + a0.

Actions. An action α = (M,p) ∈ Act stands for the atomic execution of the
following two steps: (i) process p receives the set of messages M ⊆M, and after
that (ii) process p makes progress by executing a rule, if possible.

An action α = (M,p) is applicable to a configuration σ if each message
from M has either been sent by a correct process or it comes from a faulty
process, i.e., for every m ∈M we have: m ∈ σ.Sent or m ∈MF.

A rule r = (from, δto , ϕ,u) is executable by a process p in a configuration σ
with σ.s[p] = (`, k) if: (i) p is in the source location of the rule, that is, from = `,

A Reduction Theorem for Weak Adversaries 9

and (ii) the guard evaluates to true in σ for p and k, that is, σ, p, k |= ϕ. In every
configuration for every process there is at most one executable rule.

It is also important to note the role of the round number k in the definition of
an executable rule. Whether a rule r is executable by p in σ depends only on the
messages from the round in which this process is in σ. Thus, threshold automata
are communication-closed [10,9] by construction and thus provide an effective
model for many communication-closed fault-tolerant distributed algorithms in
the literature. We consider this notion in more detail in Section 3.

Let σ be a configuration and let action α = (M,p) be applicable to σ. When
α is applied to σ, process p receives messages from M , which results in configu-
ration σaux, and then executes a rule r that is executable by p in σaux (if there
is an executable rule), which finally results in σ′. Note that M = ∅ implies that
σ = σaux, and if there is no executable rule in σaux then we have σaux = σ′.

Let us define a function exec : Σ × Act → R ∪ {⊥} that given a configura-
tion σ and an action α = (M,p) applicable to σ, outputs (i) the unique rule r
that is executable by p in configuration σaux obtained from σ by changing only
σaux.Rcvd [p] = σ.Rcvd [p] ∪M , if such a rule exists, and (ii) it outputs ⊥ if no
such rule exists. We define exec(σ, α) = ⊥ if α is not applicable to σ.

Let α = (M,p) be an action applicable to σ, and let ` be either a po-
tential destination location of exec(σ, α) 6= ⊥, or ` is the location of p in σ
if exec(σ, α) = ⊥. We write apply(σ, α, `) for the resulting configuration: pa-
rameters are unchanged, all messages from M are added to σ.Rcvd [p], and if
exec(σ, α) = r 6= ⊥, then new messages from M are added to σ.Sent accord-
ing to the update set r.u, and finally while the location and the round of all
processes except p are unchanged, we have that location of p becomes ` and its
round is unchanged (or increased by 1 if r is a round switch rule).

Formally, if α = (M,p), we have that apply(σ, α, `) = σ′ if and only if
apply(σ, α, `) is defined and the following holds:

– The parameter values do not change: σ′.p = σ.p.
– Process p receives all messages fromM , formally, σ′.Rcvd [p] = σ.Rcvd [p]∪M .
– The control states of processes, that is, their locations and rounds given by

the function σ′.s, are updated as follows:
• After updating σ.Rcvd [p], if there is no executable r for p, that is, if

exec(σ, α) = ⊥, then the control states of all processes remain the same:
σ′.s = σ.s.

• Otherwise, if exec(σ, α) = r 6= ⊥, then the control states for all the
processes except for p remain the same. Formally, σ′.s[q] = σ.s[q] for
every q 6= p.
Process p moves to location ` and either (i) it stays in the same round if
r 6∈ S is not a round switch rule, or (ii) it moves to the following round if
r ∈ S. Formally, if we denote the round of p in σ by σ.srnd[p] = k, then we
have that σ′.s[p] = (`, k) if r is not a round switch, and σ′.s[p] = (`, k+1)
if r is a round switch rule.

– The set of sent messages is updated as follows:
• If exec(σ, α) = ⊥, then no rule is fired and thus no message is sent, that

is, σ′.Sent = σ.Sent .

10 Nathalie Bertrand, Marijana Lazić, and Josef Widder

• If exec(σ, α) = r 6= ⊥ then the rule r is fired, and the update set r.u
dictates the set of messages (their types and values) that process p sends
to all in round k = σ.srnd[p], that is, σ′.Sent = σ.Sent ∪ {(p, t, v, k) |
(t, v) ∈ r.u}.

Let α = (M,p) be applicable to σ, and let process p be in round k in configu-
ration σ, that is, σ.s(p) = (`, k) for some location ` and round k. Then we define
the round of action α in configuration σ to be k, and denote this by rndσ(α) = k.
When it is clear from the context which configuration we refer to, we only write
rnd(α) instead of rndσ(α).

Probabilistic transition function. The probabilistic transition function ∆ is de-
fined such that for every two configurations σ and σ′ and for every action α
applicable to σ, with exec(σ, α) = r ∈ R ∪ {⊥}, we have

∆(σ, α)(σ′) =

®
r.δto(`) if apply(σ, α, `) = σ′ for some ` ∈ L
0 otherwise.

Note that if r = ⊥ we define r.δto(`) = 1, and if there exists a location ` with
apply(σ, α, `) = σ′, this location is uniquely defined.

Paths. A (finite or infinite) path in Sys(PTA) is an alternating sequence of configu-
rations and actions σ0, α0, σ1, α1 . . ., such that for i > 0, there exists a location `i
such that apply(σi−1, αi−1, `i) = σi. We denote the set of all paths by Paths and
the set of all finite paths (ending with a configuration) by Pathsfin. The length
of a finite path ρ = σ0, α0, σ1, α1 . . . , σk is the number of actions taken, that
is, |ρ| = k. Wlog if ρ is an infinite path, we let |ρ| =∞. We sometimes consider
prefixes of a (finite or infinite) path ρ, and for s < |ρ| write ρs for σ0, α0, . . . , σs.
Also the last configuration σk of a finite path ρ = σ0, α0 . . . , αk−1, σk is written
last(ρ). As sent messages cannot be unsent, the set of sent messages can only
grow along a path. Thus, the set last(ρ).Sent contains the set σi.Sent for every
0 ≤ i ≤ k. That is why we often write ρ.Sent instead of last(ρ).Sent .

2.3 Message identities

An adversary formalizes which messages will be received next. When formalizing
weak adversaries, we have to capture that the adversary can pick a message
without being aware of the content of the message. For this we introduce message
identities in the model. Note that every action may include sending a finite
number of messages. Therefore, in a finite path there are finitely many sent
messages, and we can assign them their identities (IDs for short). For a path
ρ ∈ Pathsfin, we define IDs of messages sent by correct processes along ρ by a
function ID[ρ] : ρ.Sent → N defined recursively on the length ρ:

Base case. If ρ is a degenerative path ρ = σ0, then σ0 is an initial configura-
tion, and therefore, there are no sent messages in it. Formally, σ0.Sent = ∅ and
there is nothing to assign.

Recursion. Let ρ = τασ ∈ Pathsfin be a non-degenerative finite path. We
distinguish two cases depending if new messages were sent while executing α.

A Reduction Theorem for Weak Adversaries 11

– If no message is sent when applying α to last(τ), i.e. if either no rule is exe-
cuted exec(last(τ), α) = ⊥, or if there is an executed rule exec(last(τ), α) =
r 6= ⊥ but r.u = ∅, then the function ID is unchanged: we set ID[ρ] = ID[τ].

– Otherwise, let r = exec(last(τ), α) and let the set of messages sent when
executing rule r from last(τ) be r.u = {m1, . . . ,mk} for some k ≥ 1, with
m1<Mm2 · · ·<Mmk. Then the function ID[ρ] is defined as follows:

ID[ρ](m) =

®
ID[τ](m) if m ∈ τ.Sent ,

|τ.Sent |+ i if m = mi ∈ r.u for 1 ≤ i ≤ k

Revealing messages from their IDs. It is important to notice that for every
natural number n ≤ |τ.Sent | there is a unique message m ∈ τ.Sent with that
identity, that is, with ID(m) = n. We define an inverse of msg when defined.
Given a path ρ ∈ Pathsfin we define a function rev-msg[ρ] : {1, 2, . . . , |ρ.Sent |} →
ρ.Sent , such that for every n with 1 ≤ n ≤ |ρ.Sent | we have rev-msg[ρ](n) = m
if and only if ID[ρ](m) = n.

We extend this definition to a set of IDs, and define rev-msg[ρ] of a set of
natural numbers N ⊂ N to be rev-msg[ρ](N) = {rev-msg[ρ](n) | n ∈ N}.

Faulty messages. Recall that MF = F× T × V × N0 is the set of messages m =
(p, t, v, k) ∈ M with the sender being a faulty process, that is, p ∈ F. Note
that this set has countably infinitely many elements, and therefore there exists
a bijection between the set of natural numbers and MF. We choose one such
bijection IDf :MF → N to be an enumerating function for the set of the faulty
messages.

Similarly, we define a reveal function rev-msgf : N → MF as the inverse of

the identity function, that is, rev-msgf = ID−1
f . Moreover, for a set of natural

numbers N ⊂ N we define rev-msgf (N) = {rev-msgf (n) | n ∈ N}.

2.4 Adversaries

The non-determinism in Markov decision processes is traditionally resolved by
a so-called adversary, see e.g. [3, Chap. 10]. An adversary is a function a :
Pathsfin → 2N×{c,f}×C that given a finite path ρ = σ0, α0, σ1, . . . , σk of Sys(PTAP)
selects a set of message IDs with the nature of their senders (a set of elements
from N×{c} or N×{f}) together with a correct process (thus from C) to whom
these messages are delivered.

As an adversary only gives message IDs, we need to understand which mes-
sages correspond to them. This is why we introduce the function reveal[a] :
Pathsfin → Act that reveals the next action in a path according to the choice of
the adversary a. Let a(ρ) = (N1 ×{c}× {p})∪ (N2 ×{f}× {p}), where N1 and
N2 are finite sets of natural numbers, and p ∈ C is a correct process. Then we
define reveal[a](ρ) to be the action (M1 ∪M2, p), where M1 = rev-msg[ρ](N1)
and M2 = rev-msgf (N2).

12 Nathalie Bertrand, Marijana Lazić, and Josef Widder

Given a path ρ, we also define a function choice[ρ] : 2ρ.Sent×C→ 2N×{c,f}×C
that tells us which choice a(ρ) should the adversary take in order to obtain the
expected action. Let (M,p) ∈ 2ρ.Sent × C, with M = M1 ∪M2 where M1 are
messages sent by correct processes and M2 are messages sent by faulty processes.
Let N1 = {ID[ρ](m) | m ∈ M1} and let N2 = {IDf (m) | m ∈ M2}. Then we
have choice[ρ](M,p) = (N, p), where N = (N1 × {c}) ∪ (N2 × {f}).

Given an initial configuration σ0, an adversary a generates a set paths(σ0, a)
of infinite paths σ0, α0, σ1, . . . with the following property: for every i > 0,
αi = reveal[a](σ0, σ1, . . . , σi−1) and there exists a location `i such that σi =
apply(σi−1, αi, `i). Every infinite path π ∈ paths(σ0, a), and every finite path ρ
which is a prefix of an infinite path π ∈ paths(σ0, a), are said to be induced by a.

The MDP Sys(PTAP) together with an initial configuration σ0 and an ad-
versary a induce a Markov chain, denoted by Mσ0

a . Precisely, the state space
of Mσ0

a is Pathsfin, its initial state is the initial configuration σ0—which is also
a path of length 0—and the probabilistic transition function δa,σ0

: Pathsfin →
Dist(Pathsfin) is defined for every τ ∈ Pathsfin starting in σ0 and ending in some
configuration σ, for every action α, and every σ′ ∈ Σ by:(

δa(τ)
)
(τασ′) = ∆(σ, reveal[a](τ))(σ′).

In words, the probability inMσ0
a to move from state τ to state τασ′ is non-zero

as soon as there exists an action α′ such that σ′ = apply(σ, α′, `) and a picks
α′. This equals the probability that the corresponding process moves to ` if the
adversary a picks action α′. Note that the Markov chain Mσ0

a is acyclic, and
even has the shape of a tree, since its states are the finite paths in Pathsfin. We
write Pσ0

a for the probability measure over infinite paths starting at σ0 inMσ0
a .

Given σ0, a and a finite path ρ = σ0, α0, . . . , σk ∈ Pathsfin, we write Mρ
a for

the Markov chain which corresponds to the part ofMσ0
a with initial state ρ. The

probability measure Pρ
a in Mρ

a is inherited from the one in Mσ0
a .

Weak adversaries. In order to define weak adversaries, we introduce an equiva-
lence relation on paths.

For two sets of messages M1 and M2 we say they are equivalent up to message
values if there is a bijection f : M1 → M2 such that for every m ∈ M1 we have
that m and f(m) have the same sender, type and round. Formally, we have
m.sen = f(m).sen, m.type = f(m).type, m.rnd = f(m).rnd .

The weak observation relation relates two configurations that differ only in
message content and symmetric locations of processes. Formally:

Definition 1. The weak observation relation is the equivalence relation ≡w⊆
Σ2 such that σ ≡w σ′ if and only if

– for every correct process p ∈ C, if σ.s(p) = (`1, k1) and σ′.s(p) = (`2, k2),
then k1 = k2 and `1 ≡L `2.

– σ.Sent and σ′.Sent are equivalent up to message values
– for all p ∈ C, σ.Rcvd(p) and σ′.Rcvd(p) are equivalent up to message values

A Reduction Theorem for Weak Adversaries 13

– σ.p = σ′.p

We extend the relation to finite paths of the same length: if π = σ1, σ2, . . . , σk
and π′ = σ′1, σ

′
2, . . . , σ

′
k, then we write π ≡w π′ if σi ≡w σ′i for every 1 ≤ i ≤ k.

An adversary a is weak if for every two finite paths π and π′ with π ≡w π′

we have that a(π) = a(π′). In words, a weak adversary does not distinguish
two paths if they are equivalent, and thus makes the same choice for equivalent
paths.

Note that for threshold automata on which ≡L cannot be defined, we can
also not define ≡w. Therefore, weak adversaries are a property of only those
distributed algorithms that can be modeled by symmetric automata.

Lemma 1. Let π = σ0, . . . , σk, αk, σk+1 and π̄ = σ0, . . . , σk, αk, σ̄k+1 be two
paths such that exec(σk, αk) = r is a non-Dirac rule with two destination loca-
tions ` 6= ¯̀, with apply(σk, αk, `) = σk+1 and with apply(σk, αk, ¯̀) = σ̄k+1. Then
for every weak adversary a we have a(π) = a(π̄).

Proof. Fix an arbitrary weak adversary a. By definition of weak adversaries, it
is enough to show that π ≡w π̄, and thus to prove that σk+1 ≡w σ̄k+1.

We check all conditions for two configurations to be weakly-equivalent. Of
course, σk+1.p = σ̄k+1.p. Let αk = (M,p).

For every correct process q 6= p, σk+1.s(q) = σ̄k+1.s(q). Writing σk+1.s(p) =
(`, k) and σ̄k+1.s(p) = (¯̀, k̄), then the rounds k and k̄ are trivially equal, and
` ≡L ¯̀ holds by definition of the equivalence relation on locations.

Moreover, the update is defined by the rule r, and is independent of the
destination location, so that the sent messages coincide: σk+1.Sent = σk.Sent ∪
r.u = σ̄k+1.Sent .

We now compare receive sets, and again they do not depend on the desti-
nation location, but only on r. For each correct process q 6= p it trivially holds
that σk+1.Rcvd(q) = σ̄k+1.Rcvd(q). Also σk+1.Rcvd(p) = σk.Rcvd(p) ∪ M =
σ̄k+1.Rcvd(p). ut

We define two more notions for adversaries: An adversary a is communication-
closed if for every finite path ρ the action reveal[a](ρ) = α = (M,p) is such that
each message m ∈ M is sent before or in the same round in which process p
is in last(ρ). Formally, m.rnd ≤ rnd(α). An adversary a is round-rigid if for
every finite path ρ the action reveal[a](ρ) = α = (M,p) has the smallest possible
round, that is, there is no applicable action α′ such that rnd(α′) < rnd(α). In
the sequel, we show that weak round-rigid adversaries are as expressive as weak
adversaries (see Theorem 1 and Theorem 2).

2.5 Atomic Propositions and Stutter Equivalence

Properties of threshold-based distributed algorithms are expressed in temporal
logic. More precisely, we consider a stutter-insensitive fragment of LTL, namely,
LTL-X [3, Chapter 7]. The atomic propositions describe the non-emptiness of a

14 Nathalie Bertrand, Marijana Lazić, and Josef Widder

location in a given round, i.e., whether there is at least one correct process in
location ` ∈ L\B in round k [5]. The set of all such propositions for a round k ∈
N0 is denoted by APk = {ap(`, k) : ` ∈ L \ B}. For every k we define a labeling
function λk : Σ → 2APk such that ap(`, k) ∈ λk(σ) iff ∃p ∈ C. σ.s(p) = (`, k).

For a path π = σ0, α1, σ1, . . . , αn, σn, n ∈ N, and a round k, a trace tracek(π)
w.r.t. the labeling function λk is the sequence λk(σ0)λk(σ1) . . . λk(σn). Similarly,
if a path is infinite π = σ0, α1, σ1, α2, σ2, . . ., then tracek(π) = λk(σ0)λk(σ1)

We say that two finite traces are stutter equivalent w.r.t. APk, denoted
tracek(π1) , tracek(π2), if there is a finite sequence A0A1 . . . An ∈ (2APk)+,
n ∈ N0, such that both tracek(π1) and tracek(π2) are contained in the language
given by the regular expression A+

0 A
+
1 . . . A

+
n . If traces of π1 and π2 are infi-

nite, then stutter equivalence tracek(π1) , tracek(π2) is defined in the standard
way [3]. To simplify notation, we say that paths π1 and π2 are stutter equivalent
w.r.t. APk, and write π1 ,k π2, instead of referring to specific path traces. Two
stutter equivalent paths satisfy the same LTL-X formulas [3, Theorem 7.92].

Remark. We emphasize that atomic propositions cannot check emptiness of
border locations from the set B. The specifications cannot observe the moment
of transition from one round to another. This allows us to swap transitions of
adjacent rounds below.

The following lemma expresses that an action may only change atomic propo-
sitions of its own round, as it only affects a process in that round.

Lemma 2. Let π = σ0, α1, σ1, . . . , σs−1, αs, σs be a finite path. Then, for every
round k 6= rnd(αs), it holds that λk(σs−1) = λk(σs).

Proof. Let ap(`, k) ∈ λk(σs−1), meaning that for some correct process p ∈ C,
σs−1.s(p) = (`, k). Since rnd(αs) 6= k, we have αs = (M, q) for a set of mes-
sages M and some correct process q 6= p. Thus, application of αs does not
affect p, and σs.s(p) = (`, k). In other words, ap(`, k) ∈ λk(σs). This holds for
every ap(`, k) ∈ λk(σs−1), concluding the proof. ut

Using Lemma 2, it is easy to prove that swapping two actions of different
rounds in a path yield a stutter equivalent path w.r.t. APk for every ∈ N0:

Lemma 3. Let π = σ0, . . . , σs, σs+1, σs+2 and π′ = σ0, . . . , σs, σ
′
s+1, σ

′
s+2 be two

paths with πs = π′s = σ0, . . . , σs, and such that there are two actions α and α′

with rnd(α) 6= rnd(α′), and there are locations ` and `′ with

σs+1 = apply(σs, α, `) σs+2 = apply(σs+1, α
′, `′)

σ′s+1 = apply(σs, α
′, `′) σ′s+2 = apply(σ′s+1, α, `)

Then σs+2 = σ′s+2 and for every k ∈ N0, π ,k π′.

Proof. Let us first prove that σs+2 = σ′s+2. Both σs+2 and σ′s+2 are obtained
from σs by applying α with ` and α′ with `′, just in different orders. By standard
communication-closure arguments [10,8,9], if an action from a smaller round
happens in an execution after an action of larger round, it is easy to prove that

A Reduction Theorem for Weak Adversaries 15

these two actions do not affect each other. Thus, in any order they will lead to
the same configuration.

Let us now fix an arbitrary k ∈ N0 and prove that π ,k π′. As these two
paths have the same prefix of length s, it suffices to prove that σs, σs+1, σs+2 ,k
σs, σ

′
s+1, σs+2. We distinguish three cases: (i) k 6= rnd(α) and k 6= rnd(α′), (ii)

k = rnd(α), and (iii) k = rnd(α′). Cases (ii) and (iii) are symmetrical, so that
we only prove (ii).

(i) By Lemma 2 we have λk(σs) = λk(σs+1) = λk(σ′s+1) = λk(σs+2), which
trivially yields the required statement.

(ii) As in this case k 6= rnd(α′), we can apply Lemma 2 and obtain that
λk(σs+1) = λk(σs+2) and λk(σs) = λk(σ′s+1). Therefore, tracek(σs, σs+1, σs+2) =
λk(σs)λk(σs+2)λk(σs+2), and tracek(σs, σ

′
s+1, σs+2) = λk(σs)λk(σs)λk(σs+2),

and they are clearly stutter equivalent w.r.t. k. ut

3 Reduction to Communication-closed Adversaries

In this section we show that in the threshold automata framework (which models
communication-closed algorithms by construction, cf. Section 2.2), for every ad-
versary, there exists an “equivalent” communication-closed adversary. This step
is quite intuitive: if the adversary delivers a message m of round r to a process
in round r′ 6= r, this is “similar” to an adversary that instead does not deliver
m now, but delivers m later when the process enters r. However, we need to
formalize this, in order to set the stage of our central reduction in Section 4.

For a set of messages M and a round k we denote by M |k the set of messages
from M sent in round k, that is, M |k = {m ∈ M | m.rnd = k}. Similarly, we
define M |≤k = ∪i≤kM |i the set of messages from M sent in any round i ≤ k.

Communication-closed configurations and Markov chains. The definition of rules
executable in σ in Section 2.2 yields that messages received from the “future”,
i.e., from a round k > σ.srnd(p), do not play a role for process p in σ. Namely,
if two configurations σ and σ′ differ only in the messages that processes have
received from future rounds, then the same rules are executable in σ and σ′. That
is why for every σ we define σ̃ to be a configuration in which each process only has
received messages from “past” and “present”, i.e., from a round k ≤ σ.srnd(p).
As border locations can be seen as borders between consecutive rounds, we
decide to let processes from border locations in σ̃ receive messages only from
the “past”, as if they were not yet in the next round. Formally, σ̃.s = σ.s
and σ̃.Sent = σ.Sent and σ̃.p = σ.p and for all p ∈ C, if sloc(p) ∈ B then
σ̃.Rcvd(p) = σ.Rcvd(p)|≤srnd(p)−1 otherwise σ̃.Rcvd(p) = σ.Rcvd(p)|≤srnd(p). A
configuration σ is communication-closed if σ = σ̃.

Recall that a path has the form σ0, α0, . . . , αs−1, σs, but given a sequence of
configurations σ0, . . . , σs of a path generated by an adversary a, we can easily re-
cover the missing actions. This allows us to consider the states of Markov chains
to be finite sequences of configurations rather than finite paths. Both represen-
tations are equivalent, and thus in this section we consider paths as sequences

16 Nathalie Bertrand, Marijana Lazić, and Josef Widder

of configurations. We can lift the notion of communication-closed configurations
to communication-closed paths, such that given a path ρ = σ0, . . . , σk we de-
fine µ(ρ) = σ̃0, . . . , σ̃k. Finally, we obtain a communication-closed Markov chain

M̃σ0
a by replacing each state ρ in Mσ0

a by µ(ρ).

Communication-closed adversaries. Given an arbitrary adversary a, we define its
corresponding communication-closed adversary cc(a) as follows. If a process p is
scheduled by a it is also scheduled by cc(a), but it receives different messages: if
p is not at the beginning of a round, cc(a) should check which messages a would
give to p, and among them cc(a) should choose only those messages that do not
come from future rounds. Once a process reaches a round (when it is at a border
location in B), it receives all the messages from that round and all those that
were previously sent to it, but the process could not receive it earlier (because
at that time these were messages from the future.)

As cc(a) has to know the behavior of a, we show how to recover a path gen-
erated by a (if it exists) if we are given a communication-closed path. Formally,
given an adversary a and a communication-closed path ρ, we define νa(ρ) to be
a path τ generated by a, such that µ(τ) = ρ, if such a path exists; otherwise,
νa(ρ) is undefined. Observe that if ρ is a path generated by a, then ρ = νa(µ(ρ)).

Finally, we define a communication-closed version of an adversary formally.
Recall that τi denotes the prefix of τ of length i.

Definition 2. Let a be an adversary. For a given finite path ρ, if νa(µ(ρ)) is
undefined then cc(a)(ρ) is an arbitrary action. Otherwise, if νa(µ(ρ)) = τ =
σ0, . . . , σs, let reveal[a](τi) = αi = (Mi, pji), for each 0 ≤ i ≤ s and some
pji ∈ C. If αs = (Ms, p), in order to define cc(a)(ρ) we distinguish two cases:

– If σs.s[p] = (`, k) with ` 6∈ B, then

cc(a)(ρ) = choice[τ](Ms|≤k, p).

– If σs.s[p] = (`, k) with ` ∈ B, then for Sp = {i | 1 ≤ i < s ∧ αi = (Mi, p)}
being the set of indices of the actions involving process p:

cc(a)(ρ) = choice[τ](M,p), for M = Ms|≤k ∪
⋃
i∈Sp

Mi|k.

Theorem 1. For every adversary a, M̃σ0
a = M̃σ0

cc(a).

Moreover, for every LTL-X formula ψ, Pσ0
a (ψ) = Pσ0

cc(a)(ψ).

4 From Weak to Round-Rigid Adversaries

In this section we reduce a communication-closed weak adversary to a round-
rigid adversary. More precisely, we show that we can transform the Markov
chain defined by the weak adversary to a round-rigid Markov chain that satisfies
specific temporal logic formulas with the same probabilities.

A Reduction Theorem for Weak Adversaries 17

Swapping function for paths and swapped adversaries We first define a swap-
ping function for a path ρ = σ0, α0, σ1, . . . , σs, αs, σs+1, αs+1, σs+2 . . . and s ∈
N a swapping index for ρ, such that rnd(αs) > rnd(αs+1). It applies to a
path ρ̄ = σ̄0, . . . , σ̄s, ᾱs, σ̄s+1, ᾱs+1, σ̄s+2, . . . such that ρ̄s ≡w ρs, and swaps
its actions (and target locations) at steps s and s+1. Formally, if ¯̀

s, ¯̀
s+1 are

the destination locations at step s and s+1, i.e. apply(σ̄s, ᾱs, ¯̀
s) = σ̄s+1 and

apply(σ̄s+1, ᾱs+1, ¯̀
s+1) = σ̄s+2, then for σ′s+1 = apply(σ̄s, ᾱs+1, ¯̀

s+1) we define

sw[ρ, s](ρ̄) =

®
σ̄0, . . . , σ̄s, ᾱs+1, σ

′
s+1, ᾱs, σ̄s+2, . . . if ρ̄s ≡w ρs

ρ̄ otherwise.

Note that the configurations in ρ̄ and sw[ρ, s](ρ̄) may only differ at position s+1,
and that ρ̄ and sw[ρ, s](ρ̄) are stutter-equivalent. Hence, for every LTL-X formula
ψ, ρ̄ |= ψ iff sw[ρ, s](ρ̄) |= ψ. If ρ′ = sw[ρ, s](ρ̄), we also write sw[ρ, s]−1(ρ′) = ρ̄.

Now, given a weak communication-closed adversary a, a path ρ, and a swap-
ping index s for ρ, we define the swapped adversary a′ = swap[ρ, s](a) that,
intuitively, will implement the swapping function sw[ρ, s] over a-induced paths.
Formally, for any finite path ρ′, the definition distinguishes whether ρ′s ≡ ρs,
and depends on the length of ρ′:

(i) if |ρ′| < s, then a′(ρ′) = a(ρ′);
(ii) if ρ′s 6≡w ρs and |ρ′| ≥ s, then a′(ρ′) = a(ρ′);

(iii) if ρ′s ≡w ρs and |ρ′| = s, then

a′(ρ′) = choice[ρ′]
(
reveal[a](ρs+1)

)
;

(iv) if ρ′s ≡w ρs and |ρ′| = s+1, then

a′(ρ′) = choice[ρ′]
(
reveal[a](ρs)

)
;

(v) if ρ′s ≡w ρs and |ρ′| ≥ s+2, then

a′(ρ′) = choice[ρ′]
(
reveal[a](sw[ρ, s]−1(ρ′))

)
.

Let us give some intuition on the definition of the swapped adversary swap[ρ, s](a).
Cases (i) and (ii) concern paths that are not involved in the swapping: either
they are shorter than the position s at which the swap occurs, or their pre-
fix of length s is not weakly-equivalent to the one of ρ. In these easy cases,
a′ = swap[ρ, s](a) is defined as a. Case (iii) applies to all paths of length s that
are weakly-equivalent to ρs, and the goal is to define swap[ρ, s](a) so that it
selects action αs+1. However, under a and swap[ρ, s](a), the identities of mes-
sages may be different along paths (and their extensions) that are equivalent to
ρs. We thus need to use the reveal[a] and choice[] functions to define that the
action prescribed by swap[ρ, s](a) is αs+1. Case (iv) applies to paths of length
s+1, whose prefix of length s is weakly-equivalent to ρs. For them, the decision
swap[ρ, s](a) should results in action αs. Finally, (v) deals with longer paths, for
which a and swap[ρ, s](a) take the same decisions, up to the renaming of message
identities, and the earlier swapping of αs and αs+1.

18 Nathalie Bertrand, Marijana Lazić, and Josef Widder

σ0a′ : σ2 σs σ′s+1

σs+2

σ̄s+2

α0, `0 . . .
αs+1, `s+1 αs

`s

¯̀
s

σ0a : σ2 σs

σs+1

σ̄s+1

σs+2

σ̄s+2

α0, `0 . . .
αs

`s

¯̀
s

αs+1, `s+1

αs+1, `s+1

Mσ0,...,σs+2
a

Mσ0,...,σ̄s+2
a

Mσ0,...,σs+2

a′

Mσ0,...,σ̄s+2

a′

Fig. 3. Parts of Markov chainsMσ0
a (above) andMσ0

a′ (below) following Proposition 1.
We assume here αs is a non-Dirac action with two destination locations `s and ¯̀

s, and
αs+1 is a Dirac action with destination location `s+1. If some of actions α0, . . . , αs−1 are
non-Dirac, we omit drawing branches that are irrelevant for Proposition 1. Note that
reveal[a](σ0, . . . , σs+1) and reveal[a](σ0, . . . , σ̄s+1) must be the same action αs+1, as a

is a weak adversary. This is the key insight that allows swapping, which would not be
possible for a strong adversary with reveal[a](σ0, . . . , σs+1) 6= reveal[a](σ0, . . . , σ̄s+1).

Excerpts of the Markov chains Mσ0
a and Mσ0

a′ in Figure 3 illustrate the
transformation to the swapped adversary. Observe that swapping αs and αs+1

relies on the fact that a is weak. Indeed, the same action αs+1 applies after αs
even if αs induces a non-Dirac distribution. Observe that swap[ρ, s](a) is still a
weak adversary, since it is defined uniformly over weakly-equivalent paths.

Adversaries a and swap[ρ, s](a) are tightly related. First, the successor con-
figurations in two steps after a path ρ′ ≡w ρs are the same, and they have the
same probabilities to happen. Second, the Markov chains from these points are
identical. Finally the probabilities of LTL-X formulas are preserved.

Proposition 1. Let a be a weak communication-closed adversary, ρ an a-induced
path and s a swapping index. Then, the swapped adversary a′ = swap[ρ, s](a) is
again a weak communication-closed adversary, and it satisfies:

1. for every ρ′ ≡w ρs and every σ ∈ Σ, we have

Pρ′

a (F=2σ) = Pρ′

a′ (F
=2σ)

2. for every path ρ̄ with |ρ̄| = s+2, we have

Mρ̄
a =Msw[ρ,s](ρ̄)

a′

3. for every LTL-X formula ψ, we have

Pσ0
a (ψ) = Pσ0

a′ (ψ)

Proof. Remark that indeed swap[ρ, s](a) is weak, because it is defined uniformely
for weakly-equivalent paths. It is also communication-closed, as a is.

Let us now prove the three statements.

A Reduction Theorem for Weak Adversaries 19

1. Let ρ′ ≡w ρs, and let σ be a configuration with Pρ′

a (F=2σ) > 0. Then there
exists an a-induced path ρ′αsσs+1αs+1σ and locations `s, `s+1 such that

σs+1 = apply(σs, αs, `s)

σ = apply(σs+1, αs+1, `s+1)

Let ρ̄ = sw[ρ, s](ρ′αsσs+1αs+1σ). By definition of swap[ρ, s](a), ρ̄ is a path
induced by swap[ρ, s](a), and it ends in σ. More precisely, letting

α′s+1 = choice[ρ′]
(
reveal[a](ρ′)

)
σ′s+1 = apply(σs, α

′
s+1, `s+1)

α′s = choice[ρ′α′s+1σ
′
s+1]

(
reveal[a′](ρ′αsσs+1)

)
σ′s+2 = apply(σ′s+1, α

′
s, `s)

then σ′s+2 = σ and ρ̄ = ρ′α′s+1σ
′
s+1α

′
sσ. Thus Pρ′

swap[ρ,s](a)(F
=2σ) > 0.

Moreover, by commutativity of multiplication, the probabilities of reaching σ

in two steps inMρ′

a andMρ′

swap[ρ,s](a) coincide: they are equal to αs.δto(`s)×
αs+1.δto(`s+1).

2. To prove that the Markov chains after ρ̄ of length s+2 under a, and the
one after sw[ρ, s](ρ̄) under swap[ρ, s](a) are equal, we observe that, for paths
longer than s+2,

a′(ρ′) = choice[ρ′]
(
reveal[a](sw[ρ, s]−1(ρ′))

)
.

This is (v) in the definition of swap[ρ, s](a), and also applies if ρ′ 6≡w ρs, in
which case sw[ρ, s]−1(ρ′) = ρ′. In words, swap[ρ, s](a) consists in applying a

on the reverse swapped path. Therefore, the subsequent Markov chains are
equal, as illustrated on Figure 3.

3. Finally, to prove that the probabilities of LTL-X formulas are preserved, we
argue thatMσ0

a andMσ0

swap[ρ,s](a) are essentially the same, up to the swapping

of some paths at positions s and s+1. Remember that they both are tree-
shaped. First, they are equal up to depth s. Then item (i) shows that the
successors from depth s in two steps are the same, and they happen with
same probabilities. Last, item (ii) shows that the subsequent Markov chains
are identical. To conclude, we use Lemma 3 to justify that even if actions
are swapped at positions s and s+1, they satisfy the same LTL-X formulas.

ut

Theorem 2. For every weak communication-closed adversary a under which
every round terminates, there exists a weak round-rigid adversary a′ such that
for every LTL-X formula ψ we have Pσ0

a (ψ) = Pσ0

a′ (ψ).

Proof (sketch). Theorem 2 is obtained by applying iteratively Proposition 1 to
consecutive actions that are in reverse order. Since every round is assumed to
terminate under a, one can start by moving towards the beginning all actions of
round 1 that happen after actions of later rounds; then one swaps all actions of
round 2, and so on, to obtain in the limit a weak adversary which is round-rigid.

20 Nathalie Bertrand, Marijana Lazić, and Josef Widder

5 Conclusions

Parameterized verification of safety and almost sure termination of a class of
distributed consensus algorithms [4,7,16,17] has been recently considered in [5].
For almost sure termination, the authors limited themselves to so-called “round-
rigid” adversaries, which were introduced by the authors for that purpose. Veri-
fication under these adversaries was reduced to verification of specifications in a
linear temporal logic that can be checked (within a few minutes) with the ByMC
model checker [13].

In this paper, we have shown that automated verification under weak adver-
saries can be reduced to verification of round-rigid adversaries. More precisely,
in order to verify randomized distributed algorithms under weak adversaries,
one only needs to verify their behavior under round-rigid adversaries, which has
been done in [5] for various randomized consensus algorithms. In order to define
weak adversaries, we were forced to reason within a system model with seman-
tics that explicitly talks about processes with IDs and messages. In contrast,
the standard semantics of threshold automata, namely, counter systems is used
in [5] and in ByMC. For a complete chain of proof we would need to connect
process-based semantics to counter systems. This is a rather standard technical
argument so that we do not give it here. From a theoretical viewpoint we find
our reduction from weak adversaries to round-rigid adversaries more interesting:
reductions for concurrent distributed systems is typically done for reachability
properties [15,10,11] or linear temporal properties [8,12,9]. As a result, the re-
duction argument is conducted on traces generated by the system: one shows
that by swapping transitions in a trace we arrive at another, yet “simpler” trace
of the system. In this paper, we lifted this reasoning from traces to computa-
tion trees and MDPs which shows that reductions are not only efficient in non-
deterministic systems but also in probabilistic systems defined by distributed
algorithms. This mirrors the recent “synchronizing” trend in the verification of
non-deterministic fault-tolerant distributed algorithms [18,14,6,9,5], and opens
this domain to automated parameterized verification of randomized distributed
algorithms.

References

1. Marcos Aguilera and Sam Toueg. The correctness proof of Ben-Or’s randomized
consensus algorithm. Distributed Computing, 25(5):371–381, 2012.

2. James Aspnes. Randomized protocols for asynchronous consensus. Distributed
Computing, 16(2-3):165–175, 2003.

3. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

4. Michael Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). In PODC, pages 27–30, 1983.

5. Nathalie Bertrand, Igor Konnov, Marijana Lazic, and Josef Widder. Verification
of randomized consensus algorithms under round-rigid adversaries. In CONCUR,
volume 140 of LIPIcs, pages 33:1–33:15, 2019.

A Reduction Theorem for Weak Adversaries 21

6. Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On the com-
pleteness of verifying message passing programs under bounded asynchrony. In
CAV, pages 372–391, 2018.

7. Gabriel Bracha. Asynchronous Byzantine agreement protocols. Inf. Comput.,
75(2):130–143, 1987.

8. Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. A reduction
theorem for the verification of round-based distributed algorithms. In RP, volume
5797 of LNCS, pages 93–106, 2009.

9. Andrei Damian, Cezara Drăgoi, Alexandru Militaru, and Josef Widder.
Communication-closed asynchronous protocols. In CAV, volume 11562 of LNCS,
pages 344–363. Springer, 2019.

10. Tzilla Elrad and Nissim Francez. Decomposition of distributed programs into
communication-closed layers. Science of Computer Programming, 2(3):155–173,
1982.

11. Igor Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. Para2: Parameter-
ized path reduction, acceleration, and SMT for reachability in threshold-guarded
distributed algorithms. Formal Methods in System Design, 51(2):270–307, 2017.

12. Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A short coun-
terexample property for safety and liveness verification of fault-tolerant distributed
algorithms. In POPL, pages 719–734, 2017.

13. Igor Konnov and Josef Widder. ByMC: Byzantine model checker. In ISoLA,
volume 11246 of LNCS, pages 327–342. Springer, 2018.

14. Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Synchronizing the asyn-
chronous. In CONCUR, volume 118 of LIPIcs, pages 21:1–21:17, 2018.

15. Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Communications of the ACM, 18(12):717–721, 1975.

16. Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Randomized k-set
agreement in crash-prone and Byzantine asynchronous systems. Theoretical Com-
puter Science, 709:80–97, 2018.

17. Yee Jiun Song and Robbert van Renesse. Bosco: One-step Byzantine asynchronous
consensus. In DISC, volume 5218 of LNCS, pages 438–450, 2008.

18. Klaus v. Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and
Ranjit Jhala. Pretend synchrony. In POPL, pages 59:1–59:30, 2019.

	A Reduction Theorem for Randomized Distributed Algorithms under Weak Adversaries

