
HAL Id: hal-03152176
https://hal.archives-ouvertes.fr/hal-03152176

Submitted on 25 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fingerprinting in Style: Detecting Browser Extensions
via Injected Style Sheets

Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, Nick
Nikiforakis

To cite this version:
Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, Nick Nikiforakis. Fingerprinting
in Style: Detecting Browser Extensions via Injected Style Sheets. 30th USENIX Security Symposium,
Aug 2021, Virtual, France. �hal-03152176�

https://hal.archives-ouvertes.fr/hal-03152176
https://hal.archives-ouvertes.fr

Fingerprinting in Style:
Detecting Browser Extensions via Injected Style Sheets

Pierre Laperdrix
Univ. Lille, CNRS, Inria

Oleksii Starov
Palo Alto Networks

Quan Chen
North Carolina State University

Alexandros Kapravelos
North Carolina State University

Nick Nikiforakis
Stony Brook University

Abstract
Browser extensions enhance the web experience and have

seen great adoption from users in the past decade. At the same
time, past research has shown that online trackers can use
various techniques to infer the presence of installed extensions
and abuse them to track users as well as uncover sensitive
information about them.

In this work we present a novel extension-fingerprinting
vector showing how style modifications from browser exten-
sions can be abused to identify installed extensions. We pro-
pose a pipeline that analyzes extensions both statically and dy-
namically and pinpoints their injected style sheets. Based on
these, we craft a set of triggers that uniquely identify browser
extensions from the context of the visited page. We analyzed
116K extensions from Chrome’s Web Store and report that
6,645 of them inject style sheets on any website that users
visit. Our pipeline has created triggers that uniquely identify
4,446 of these extensions, 1,074 (24%) of which could not
be fingerprinted with previous techniques. Given the power
of this new extension-fingerprinting vector, we propose spe-
cific countermeasures against style fingerprinting that have
minimal impact on the overall user experience.

1 Introduction

In the last decade, researchers have revealed that a user’s on-
line activity is invisibly tracked by a multitude of third parties.
These third parties record the websites that users visit in an
effort to better understand them (i.e. their socioeconomic char-
acteristics and preferences), most commonly for the purpose
of better ad targetting. This type of tracking happens through
two broad sets of tracking techniques: stateful tracking and
stateless tracking.

Stateful tracking makes use of browser cookies and other
stateful identifiers that enable trackers to recognize returning
users and expand their browsing profiles with newly visited
websites [41]. Because of the limitations of stateful tracking
(such as the existence of options to block third-party cookies

and a browser’s private mode) stateless tracking techniques
arose that enable third parties to track users across sessions,
without relying on previously set cookies or other stateful
identifiers. These stateless techniques essentially “fingerprint”
a user’s browsing environment (such as the exact version
of their browser, the resolution of their screen, and the way
with which their graphics card renders complex 3D images)
and associate browsing sessions with this fingerprint [15, 19,
30, 33, 37]. As long as a user’s fingerprint remains relatively
stable over time, this approach subsumes the need for cookies
and works equally well both in and out of a browser’s private
mode.

The most recent addition to the arsenal of browser fin-
gerprinting is the fingerprinting of browser extensions, such
as, ad-blockers, video downloaders, productivity tools, and
password managers. Prior work has shown that browser exten-
sions can be fingerprinted by the resources they make avail-
able to websites [22, 24, 44], the way they modify a page’s
DOM [29,45,47], and the messages they send between origins
with postMessage [29, 45]. Unlike traditional fingerprinting
which could only be abused in the sense of offering bits of
entropy for differentiating users from each other, the ability to
detect browser extensions can also be abused to infer sensitive
information about users. This is because users choose to in-
stall specific browser extensions and these choices can betray
sensitive information about them. Recent work by Karami et
al. [29] showed that browser extensions can reveal, among
others, a user’s age, religion, political affiliation, and ethnicity.

In this paper, we present a new method of fingerprinting
browser extensions which, to the best of our knowledge, has
never been presented before. Our fingerprinting method arises
from the observation that, like regular web pages, browser ex-
tensions rely on Cascading Style Sheets (CSS) for the styling
of their user interfaces (UIs). These UIs include not only the
user-facing UIs that are invisible to pages (such as the UIs
shown to users who click on an extension’s icon), but also the
ones that extensions inject in the pages where they are active
(e.g. a new download menu under each YouTube video). This
observation coupled with the ability of modern browsers to

check the styling of individual DOM elements, allow web
pages to create “tripwire” DOM elements that have the same
IDs and class names as the ones that an extension injects and
styles. A webpage can therefore present thousands of invisi-
ble elements to a visiting user’s browser and detect the ones
whose styles are different than the default ones. In this way,
a web page can detect the presence of specific extensions,
without the need of any user interactions.

To quantify the vulnerability of browser extensions to this
new attack, we design an analysis pipeline that detects both
statically and dynamically whether an extension injects CSS
rules into public webpages, extracts correspondent CSS selec-
tors and builds a set of triggers that can be used for fingerprint-
ing (e.g., DOM elements or hierarchies with particular class
names and IDs), tests those triggers dynamically for actual
style or dimension changes and whether those changes are
stable from visit to visit, and finally, evaluates the uniqueness
of the obtained fingerprints. By analyzing more than 116K
extensions from the Chrome extension store, which include at
least 6,645 extensions that add styles on any URL, we could
fingerprint 4,446 extensions, which can be uniquely identi-
fied by any web page. Among them, 1,074 extensions could
not be fingerprinted with existing methods. Finally, given the
severity of the attack, we present a new countermeasure that
hides styles from extension origins through a self-contained
web component called Shadow DOM. When the browser
checks for the style of an element, its call is rerouted to a
mirrored DOM that is free of all extension styles, deceiving
any fingerprinting attempts.

2 Background

This section provides the necessary background on browser
extensions, focusing on how the CSS rules injected by ex-
tensions can be used to fingerprint them. We briefly discuss
known privacy risks from browser extensions and also provide
the necessary details of the getComputedStyle API, which
enables the fingerprinting techniques we present in this work.

2.1 Browser extensions and Style Sheets
Figure 1 shows the high-level architecture of modern browser
extensions. A browser extension is essentially a set of
JavaScript, HTML, and CSS files that implements the func-
tionalities of the extension, packaged into a single zip archive
together with a mandatory manifest file describing the ex-
tension. Apart from providing metadata about the extension,
such as, an extension’s name and version number, the manifest
plays a crucial role in that it allows the extension authors to
specify background scripts that listen for specific page events,
content scripts that are injected and executed in the page
context, and CSS rules to be applied on the matching page
elements. Altogether, background/content scripts and CSS
rules allow extensions to achieve their essential functionality.

Extension Background Page
Extension
Resources

Extension Content
Scripts

Extension Content
Styles

Extension Manifest

(html, css, js,
png, json, ...) DOM

<style/>

Figure 1: Different ways that browser extensions use to inject styles.

Content scripts and CSS rules can be injected either declar-
atively via the manifest using match patterns [11] (in which
case they are injected automatically by the browser into pages
with the matching URLs), or they can be injected programmat-
ically at runtime. In the case of CSS rules, programmatic injec-
tion is done via the extension API chrome.tabs.insertCSS,
which is only available to JavaScript code running in the ex-
tension context (and not the normal webpage JavaScript).
Additionally, since the content scripts (regardless of whether
injected declaratively or programmatically) run in the same
context as the page they are injected in, they can also modify
the style sheets of the page. Figure 1 shows the means in
which extensions can affect the CSS rules of a page.

In current browser implementations, the effects of CSS
rules injected by extensions are visible to all JavaScript code
running on the affected page, regardless of their origin, and
regardless of the fact that such injected style sheets are hid-
den from the document.styleSheets API. This presents
a channel where information about the installed extensions
can be leaked. For example, a malicious script can deliber-
ately inject an element that matches the CSS rules injected
by extensions, and then use the getComputedStyle API (dis-
cussed in Section 2.3) to read back the CSS properties after
all CSS rules are applied by the browser. Given a database
of which extensions style which elements and in what way,
a script can create thousands of “tripwire” elements, check
which elements’ CSS properties are modified, and deduce the
presence of specific installed extensions. This information
leak forms the basis of our work.

2.2 Risks of using and detecting browser ex-
tensions

Browser extensions are known to expose their users to in-
creased privacy risks, either in an active or in a passive way.
Previous work (e.g., [18, 21, 31, 46, 50]) has shown that ex-
tensions can actively endanger user privacy by abusing their
access to privileged APIs and exfiltrate sensitive user infor-
mation over the network. Orthogonally to active abuse, fin-
gerprinting installed extensions can reveal private and per-

sonal information about the user. As some extensions offer
very specific functionality, their presence can reveal the user’s
age, interests, ethnicity, political affiliation or religion, which
could then be abused to build a profile and serve targeted
ads [29]. Moreover, having an exact list of installed extensions
in the browser introduce additional entropy for fingerprinting
a user’s browsing environment. Previous works demonstrated
that browser extensions can be fingerprinted via, for exam-
ple, their Web Accessible Resources (WARs) [22, 24, 44],
or the changes they introduce in the DOM [45, 47]. Sec-
tion 7 provides a detailed description of previous extension-
fingerprinting techniques.

2.3 The getComputedStyle API

The techniques we present in this paper primarily rely on
the DOM API window.getComputedStyle, which takes a
DOM element (e.g., a div element) and returns the resolved
CSS properties of that element, after all active style sheets are
applied [13]. The return value also takes into account element-
specific properties (e.g., inline style attributes) along with
the current JavaScript modifications. The Internet Explorer
browser implements a proprietary version of this API, al-
beit as an element property currentStyle (accessed as
Element.currentStyle on the target DOM element) [10].
Since this API returns the computed (i.e., actual showing)
CSS properties, such as width/height and background color
of an element, it provides web developers with an accurate
view of the rendered UI elements [40].

In addition to static styling, with the CSS3 specification,
all major browsers now support creating transitions and ani-
mations of HTML elements using CSS. Transitions specify
that a CSS property change should be done gradually over a
period of time, while animations are used to animate other
CSS properties (e.g., color, width/height) by specifying key
frames. The getComputedStyle API also plays an important
role here by allowing developers fine grained control over the
animation, or otherwise to trigger the starting or ending of a
transition [9].

2.4 Known Risks of getComputedStyle

It is well-known in the web security and privacy com-
munity that a malicious website could deduce the user’s
browsing history by using a technique called link color
differentiation [16, 26]. A malicious website could inject
a list of hyperlinks of interest as DOM objects, and use
the getComputedStyle API on each injected hyperlink and
check their color: a previously visited link will have a differ-
ent color than the non-visited ones. In response to this type
of information leakage, major browsers modified the imple-
mentation of getComputedStyle so that it always reports the
unvisited color for hyperlinks.

<div class="drwebThreatLink">(trigger)</div>

(a) Example of a CSS trigger

(b) No extension (c) With extension

Figure 2: Appearance of the HTML trigger (a) when the Dr.Web
Link Checker extension (239K users) is absent (b) and present (c).

Previous research [25] has also used getComputedStyle
in attacks aiming to steal confidential information from vic-
tim websites by utilizing so-called cross-origin CSS. Due to
the permissive nature of CSS, attackers can inject CSS rule
fragments into the target webpage that contains confidential
information (e.g., by sending CSS rule fragments as email
titles so they appear in the victim’s inbox page), and then
induce the victim to visit a website controlled by the attacker.
The attacker website will then import the entire target page as
a style sheet, and finally use getComputedStyle to retrieve
confidential information from the target page.

3 Style-Fingerprinting Example and Threat
Models

As we described in Section 2, browser extensions have multi-
ple ways to style elements that they introduce in webpages.
Unfortunately, web pages can take advantage of this behavior
by presenting trigger elements, i.e., elements with the appro-
priate IDs and class names which exist for the sole purpose of
matching the CSS rules of the present extensions and thereby
inheriting the specified styles.

Figure 2 shows a class-based trigger that can be used to
detect the presence of an extension called Dr. Web in the
browser. The visual appearance of the trigger element with
class “drwebThreatLink” radically changes when the exten-
sion is installed, since it inherits all the CSS properties that
are injected by that extension (shown in Listing 1). A web-
page can use all of the properties listed in Table 1 to detect
style changes in that element, or check for the resulting di-
mensional changes with the listed methods, and thereby infer
the presence of that extension. Note that all of the above hap-
pens without the need of user interaction and can therefore
fingerprint extensions that inject CSS rules in a webpage but
do not change a webpage in any other way. A video demo
that demonstrates the power of our proposed technique by
fingerprinting 20 extensions without any user interaction is
available at this URL: https://vimeo.com/430428308

https://vimeo.com/430428308

Listing 1: Extension-injected CSS rules for the example trigger

r.drwebThreatLink {
background-repeat: no-repeat;
width: 86px;
height: 84px;
background-position: 0 0;
background-image: url(data:image/png;base64
,...);

}

Given that an extension must have the permission to inject
CSS rules in a given webpage (we describe the permission
system and manifest files in more detail in Section 4) we
identify two separate classes of fingerprintable extensions,
that match the ones of Starov and Nikiforakis [47]:

• Fingerprintable on any domain These extensions are
the ones that have permissions to operate on all do-
mains that users visit and thereby potentially inject CSS
rules in all of these domains. Typical examples of these
extensions would be ad-blockers, password managers,
security- and privacy-related extensions, and screenshot
extensions. In this case, any website that a user visits has
the ability to deploy the appropriate CSS-based triggers
and detect the presence of a given extension.

• Fingerprintable on some domains Many extensions
are tailored to one or more specific domains, typically
those of popular services, such as, GMail, Twitter, and
YouTube. In this case, these extensions can only be fin-
gerprinted on these domains. Note however that prior
research has identified the large footprint of third parties
on the popular web [35]. Any JavaScript-capable third
party that is present on a domain on which an exten-
sion is active, can deploy arbitrary trigger elements and
therefore fingerprint these specialized extensions.

4 Data collection and processing

In this section, we detail our initial dataset of browser exten-
sions and how we process them to extract and verify their fin-
gerprints. The presented pipeline is used to build our database
of style fingerprints that we analyze in Section 5.

4.1 Initial dataset
For our experiments, we collected 116,485 extensions from
the Chrome Store in April 2019, intentionally excluding irrel-
evant themes and apps. We cover all types of extensions from
the most popular ones with millions of users to those with
one or no user at all at the time of writing. Each collected ex-
tension was submitted to the pipeline detailed below in order
to obtain a final “ready-to-use” fingerprinting script, which

Table 1: Changed visible properties of the example trigger

window.getComputedStyle Position & Dimensions
background getBoundingClientRect.bottom
backgroundImage getBoundingClientRect.height
backgroundPosition getBoundingClientRect.right
backgroundPositionX getBoundingClientRect.width
backgroundPositionY offsetHeight
backgroundRepeat offsetWidth
blockSize
height
inlineSize
perspectiveOrigin
transformOrigin
webkitLogicalHeight
webkitLogicalWidth
webkitPerspectiveOrigin
webkitTransformOrigin
width

can be deployed on any domain and URL. This fingerprinting
script consists of DOM triggers for particular style changes
and logic to determine the cause of each change. In addition,
we also collected 501,349 extensions and their versions dating
back from as early as 2014 to perform a longitudinal analysis
(see Section 5.7 for more details).

We gathered these extensions by crawling daily the Chrome
Store website with a custom script written in Python that
makes HTTP requests using the requests library. It stores
all metadata and extensions encountered in a MongoDB
database. Though the appropriate setting of the HTTP User
Agent, the script pretends to be a recent Chrome browser
version (updated occasionally over the years) and fetches the
information page of all publicly listed extensions available at
https://chrome.google.com/webstore/sitemap. It then
proceeds to download all extensions that have a new version
that does not exist in our database. The script is ~100 lines of
Python code and executes daily via a cronjob since 2014.

4.2 Processing pipeline

Figure 3 provides an overview of our processing pipeline to
generate style fingerprints. At the very end of our pipeline,
each remaining trigger links back to a single browser exten-
sion from our dataset. It should be noted that this pipeline can
be executed as often as necessary to obtain new fingerprinting
scripts for updated browser extensions. Our implementation
is currently limited to the WebExtension format supported
by Chrome, Firefox, Opera, Edge, and Brave. Note, however,
that our attack uses standardized JavaScript APIs and can
therefore be extended to other extension systems.

https://chrome.google.com/webstore/sitemap

Mystique Taint

Analysis

Manifest-based

Extraction

Trigger

Confirmation

Fingerprint

Evaluation

 Extension Runner

Trigger

Builder

Final Script

Figure 3: Extension analysis pipeline for collecting style-fingerprints: 1© extract injected CSS; 2© generate candidate triggers; and perform
dynamic tests for 3© trigger confirmation and 4© final fingerprint evaluation.

Listing 2: Extract from the manifest.json file of the Wikiwand:
Wikipedia Modernized extension

1 "content_scripts": [
2 {
3 "matches": [
4 "http://*/*",
5 "https://*/*"
6],
7 "css": [
8 "css/autowand.css",
9 "css/cards.css"

10],
11 "js": [
12 (...)
13],
14 "run_at": "document_start"
15 }
16]

4.2.1 Extracting injected CSS

The first step is to extract styles that can be injected in a web
page by an extension.

Detecting declarative injection With the manifest.json
file, a developer can declare what CSS style sheets should
be applied to the DOM. Listing 2 presents a snippet of the
manifest from the Wikiwand: Wikipedia Modernized exten-
sion. Here, through content scripts, the extension injects two
different CSS files (lines 7 to 9) on all HTTP and HTTPS
URLs (lines 4 and 5).

Since all extensions have a manifest file, it is straightfor-
ward to automate the detection by iterating through all of
them and parsing the content_scripts field.

Detecting programmatic injection CSS can also be in-
jected dynamically by calling the appropriate browser APIs.
Statically detecting these injections is challenging since the
code may be obfuscated and the injected code may be assem-
bled at runtime (e.g. through the concatenation of multiple
variables).

Quan et al. developed a tool called Mystique that uses taint
analysis to detect leaks of privacy-sensitive information in
browser extensions [18]. Mystique builds upon the Honey-
Pages mechanism by Kapravelos et al. [28] where specific
elements are populated in the browser’s DOM as extensions
are requesting them. For our purposes, this means that we
do not need to know beforehand the requirements for a style
to be injected as Mystique will resolve the calls to missing
elements on the fly. In our experiment, we used Mystique’s
web interface [34] to monitor calls to the tabs.insertCSS
API and save the styles injected in the DOM. This approach
will capture injections of both raw CSS code as well as paths
to CSS files.

4.2.2 Generating style triggers

After identifying what styles are injected by each extension,
the second step converts all the collected CSS rules into decoy
triggers. The goal is that each trigger will receive the corre-
sponding style changes when the right extension is present.
Note that this is not a straightforward engineering task given
the wide range of possible CSS selector constructions and
complexity of required DOM hierarchies. As such, we de-
vised a pragmatic and effective approach for the translation
of CSS rules to triggers, focusing on IDs and class names
to recreate the trigger hierarchy. As detailed in Section 5,
we did not need to consider additional CSS constructs like
pseudo-classes or pseudo-elements when building triggers as
extensions were already fingerprintable by only focusing on
IDs and class names.

Listings 3 and 4 present an example of a CSS rule that is
converted into a decoy trigger. To make the transformation,
we divide the selector into its different parts and build the
corresponding hierarchy. Here, the first element we generate
is a div with the ww_hovercard ID (if the type of an element
is not specified, we used a div by default). Then we add
another div with the ww_image class and we finish with an
img element. When running the test page, the style of the
structure we generated will match the rule of the injected CSS
and the style will be applied.

Listing 3: CSS rule from the “Wikiwand: Wikipedia Modernized”
(WikiWand) extension

#ww_hovercard .ww_image img {
display: block;
float: right;
max-height: 150px;
max-width: 180px;
width: auto;
height: auto;
margin: 10px;
border-radius: 2px;

}

Listing 4: Decoy trigger for the WikiWand extension

<div id="ww_hovercard">
<div class="ww_image">

</div>
</div>

It should be noted that we limited ourselves to 50 triggers
per extension as some of them included full libraries with
hundreds of rules. Generating triggers for each of them would
have been redundant as only a few of them are needed to iden-
tify them. At the same time, the fact that there are hundreds
of ways that these extensions can be fingerprinted shows the
difficulty of defending against this type of fingerprinting.

4.2.3 Confirming trigger fingerprints

The third step consists in verifying that all generated triggers
are correct and can be exploited to perform extension finger-
printing. Indeed, even if triggers were built directly from CSS
rules, it can be hard to predict the exact runtime behavior of an
extension. Other styles could counter its effect and dynamic
code could remove an element or change its class on the fly.
For these reasons, we need to perform a thorough verification
as there is no guarantee that a decoy trigger will be effective
in identifying an extension. As part of this verification, we
perform the following checks:

• We need to ensure that the observed changes are consis-
tent over multiple runs. We collect style changes from the test
page of each extension three times and check that they are
identical. This check helps us to discard non-deterministic
changes that are the result of unreliable extension behavior.

• We also need to verify that our baseline calculation is
effective. In our test pages, we use a baseline element to de-
cide if a style was applied to an element or not. This baseline
element is located in a hierarchy that mimics the decoy one,
but with one important difference: it does not have any IDs
or class names. This way, if we detect differences between
the baseline element and the decoy trigger, we can build the
extension fingerprint from their differences.

Listing 5: Decoy trigger with the baseline elements.

<div class="trigger" id="26622">

<!-- Baseline Elements -->
<div orig_id="ww_hovercard">

<div orig_class="ww_image">

</div>
</div>

<!-- Trigger Elements -->
<div id="ww_hovercard">

<div class="ww_image">

</div>
</div>

</div>

Listing 5 shows the final code our system generated for
the trigger that we presented in Listing 4. The first structure
is the baseline one while the second one is the one where
the extension (if present) will apply the corresponding style.
The style differences between the two will form the style
fingerprint of the extension.

4.2.4 Verifying collisions between extensions

While the analysis of a single extension can obviously reveal
injected CSS styles, this is not sufficient to extract and craft
unique fingerprints. If a change of style is triggered by an ex-
tension, there is no guarantee that no other extension produces
the exact same style change. Some extensions could share
the same IDs and class names while others could inject very
generic rules. To characterize possible collisions, we exposed
each extension capable of injecting CSS against the triggers
of all extensions and recorded all the style changes.

5 Analysis

This section provides a detailed reporting of how extensions
are fingerprintable through the styles they inject. We look at
what makes them identifiable and, for the ones that are not
identifiable, we explore the reasons why. We focus on study-
ing extensions that inject style rules universally on all web
pages (and are therefore fingerprintable on all page). Finally,
we also look at older versions of the extensions present in
our dataset to understand whether extensions are becoming
fingerprintable over time.

5.1 Pipeline statistics

Table 2 reports on the impact of our pipeline on our complete
dataset of 116,485 Chrome extensions.

Table 2: Number of extensions and triggers kept after each step of the pipeline shown in Figure 3 (Ma=Manifest, My=Mystique)

Steps
Initial dataset 1 2 3 4

Extensions 116,485
6,543 (Ma) 137 (My)

6,645 (Combined) 5,885 4,806 4,446

Triggers - - 102,997 54,788 40,722

Step 1. After parsing the manifest.json file of all extensions,
17,712 extensions (15.2%) inject at least one CSS file through
the Content script directive and 6,543 of them are doing so
on any domain. By using Mystique, we detected 137 exten-
sions that rely on tabs.insertCSS to inject styles dynami-
cally into a page. Since 35 them were already injecting styles
declaratively, we ended up with 6,645 potential fingerprint-
able extensions. Note that this number represents the ceiling
of our fingerprinting technique. An extension that does not
inject CSS rules cannot be fingerprinted through them.

Step 2. To generate the corresponding triggers, we use the
rules present in CSS files listed in the manifests and the ones
recorded by Mystique. In total, we generated 102,997 decoy
triggers distributed across 5,885 test pages, one page for each
extension. For the extensions where we could not generate
triggers, it was mainly due to the presence of pseudo-classes
in the rules. Pseudo-classes are keywords in CSS that reflects
the state of an element like hover, focus or active and
they require specific user interaction to be activated. Even
though we could craft pages for these specific scenarios, our
goal is to study style fingerprinting that can happen in the
background without user interaction, so we discarded them.
Other extensions that had empty CSS files or with all rules
commented out were also removed at this stage.

Step 3. The goal of this step is to confirm that differences
in styles are indeed detectable. We ran all the extensions
on their own test pages with Selenium to collect the style
fingerprints. For some extensions, we observed no difference
between the trigger element and the baseline. This happened
when some of the rules were very generic and did not rely on a
specific classes or IDs. For other extensions, Selenium crashed
or did not return any data. At the end of this step, we had
54,788 confirmed triggers for 4,806 potentially fingerprintable
extensions.

Step 4. The final step is to make sure that no two extensions
share the exact same style fingerprint. We tested each of the
6,645 extensions on all the triggers from the 4,806 potentially
fingerprintable extensions to identify possible collisions be-
tween fingerprints. We describe the results of this particular
step in more detail in Section 5.4. After verification, we re-
moved 14,066 decoy triggers that produced the exact same
change between two or more extensions. 4,446 (3.8%) ex-
tensions out of our initial set of 116,485 extensions can be

uniquely identified on any webpage because of the styles they
inject.

5.2 Evaluating different fingerprinting
strategies

An advantage of style fingerprinting compared to more tradi-
tional browser fingerprinting, is that the quantity of collected
data can be adapted depending on the desired speed and pre-
cision of the fingerprinting process. This difference translates
into three different collection strategies:

1. Triggers: If an extension has a unique trigger that is not
shared with any other extension, it is sufficient to test if the
style of the trigger is different from the one of the baseline.
The identification is fast as there is no need for additional
data processing.

2. Triggers and properties: If several extensions share the
same trigger, it can be enough to collect the list of modi-
fied properties to identify each of them. For example, for
extensions modifying a link element, one extension may
increase the size of the font while another may change
the background color. By identifying which properties of
the styled element were modified, one can differentiate
between the two extensions.

3. Trigger, properties, and values: This last strategy is the
one that produces the most data but it can lead to more
precise results as you one can attribute a specific change
directly to the right extension.

Table 3 shows the number of fingerprintable extensions
depending on the chosen strategy. Strategies 2 and 3 offer
an improvement of 6% and 15% respectively from Strategy
1 but albeit at a slightly higher performance cost as more
data is collected and processed. When comparing the use of
computed styles and dimensions, the numbers are compara-
ble between the two with no major differences. Dimension
changes, however, could be sensitive to differences between
devices particularly when the database of fingerprints was gen-
erated with a device that had a much larger screen, compared
to the one that is being fingerprinted. One possible solution is
to have multiple databases of dimension-related style finger-
prints so that the fingerprinting algorithm can match the ones
that are the closest to the user’s own screen size. We view
this as an implementation detail to make the fingerprinting

Table 3: Numbers of extensions found to be fingerprintable via two CSS-originating leakages (i.e., computed styles and changed dimensions)
separately and together. Three implementation strategies give different number of uniquely attributed extensions.

Fingerprinting Strategy Change of Computed Styles Change of Dimensions Union
Strategy 1: Unique (trigger) 3,865 3,866 3,866
Strategy 2: Unique (trigger, parameters) 4,088 3,927 4,090
Strategy 3: Unique (trigger, parameters,values) 4,412 4,162 4,446

Table 4: Distribution of the number of users across fingerprintable
and non-fingerprintable extensions

Percentile
.25 .50 .75 .99

Fingerprintable 10.0 71.0 754.0 219,420.5
Non-fingerprintable 6.0 41.0 681.0 637,104.5

process more robust and hence we consider it as out of scope
for this paper.

5.3 Statistics on fingerprintable extensions
Mix between unique and shared triggers Out of the
4,446 uniquely identifiable extensions, 3,475 of them have at
least one trigger that is not shared with any other extension.
This means that the fingerprinting process for them is fast and
straightforward as a script only has to check a single trigger
for any difference in style compared to a baseline element.
For 846 extensions, they share all their triggers with other ex-
tensions but the changed properties and values are still unique
to them. Finally, for 125 extensions, they are detectable be-
cause of the unique combination of non-unique triggers they
change.

Distribution of popularity Looking at the number of users
in Table 4, there is no significant difference between finger-
printable and non-fingerprintable extensions. Both categories
have extensions with few users as well as extensions with
more than 10 million users. If we look closely at extensions
with more than 100,000 users, 68 of them are vulnerable to
style fingerprinting while 28 of them are not. Overall, we
do not observe a correlation between the popularity of an
extension and its fingerprintability as it is mainly tied to its
functionality and how it was coded.

Modified properties Injected styles can modify a wide
range of properties in HTML elements. Table 6 in Appendix B
list the top 50 properties that are the most modified by finger-
printable extensions. We want to highlight here some of our
findings.

At the top of the list are perspectiveOrigin,
transformOrigin, webkitPerspectiveOrigin and
webkitTransformOrigin. Even though few extensions
in our dataset explicitly set values for these properties,

0%

25%

50%

75%

100%

0 50 100 150 200

Cluster number

%
 o

f
e
xt

e
n

si
o

n
s

Figure 4: CDF graph of the distribution of collisions between non-
unique extensions that inject CSS.

96.8% of the tested extensions presented changes in them.
Many of these properties expose high-precision values (e.g.
six floating-point digits, such as “951.5px 0.046875px”)
which unfortunately lead to extensions being uniquely
fingerprintable because of them. In terms of dimensions, the
width and height of an element are high on our list with
96.0% and 84.2% of extensions affecting these properties,
respectively. Interestingly, color-related style changes are
not as common as we originally expected with the first
color-related property (backgroundColor) being on the 24th

position of Table 6.

5.4 Understanding non-uniquely fingerprint-
able extensions

Here, we investigate the reasons why some extensions that
inject CSS rules are not uniquely fingerprintable.

Distribution of collisions Figure 4 presents the distribution
of the clusters of collisions we have in our dataset. Most
of them are between a very small number of extensions as
confirmed by the long tail in our graph. Out of 218 different
clusters, 138 (63.3%) are between two extensions and 34
(15.6%) are between three. The 5 largest collision clusters we
identified are of size 44, 19, 15, 13 and 9.

Reasons for collisions We manually analyzed 50 different
extensions to understand why two extensions would share the

same style fingerprint. Our findings reveal that the majority
of collisions are due to very specific development behaviors:

• Same name with different IDs: Several extensions can
have different IDs but they share the exact same name.
One example is the “Antalyx Desktop Sharing” Chrome
extension which has 4 different IDs in our dataset. They
are linked to the same developer but every new version was
uploaded as a brand new extension instead of an update of
an existing one.

• Same developer with different variants: Extensions
can have different IDs but they are simply variants
coming from the same developer. One example is the
“Bonusway{.se,.ro,.cz...}” extension that is available in 13
different variants. The code across all extensions is iden-
tical but each of them embeds its own locale file for the
interface. Another example comes from a series of “Safe
Site” extensions we identified that only presented a differ-
ence in the branding. At first, we thought they belonged
to different companies as each of them linked to different
websites: Ultra VPN, Total AV, Safe VPN, ScanGuard, PC
Protect and Privacy Web. Yet, looking at their terms of use
revealed that all of them belong to the same group called
Protected.net.

• Copies: Extensions can simply be a copy of another exten-
sion that was uploaded to the store. One example of such
case is with “Privasee” that is a copy of an older version of
the “DuckDuckGo Privacy Essentials” extension.

• Same libraries: Extensions can share fingerprints if they
use the exact same list of libraries. Several extensions in our
dataset are only injecting styles based on jQuery: “jquery-
ui.css” and “jquery.qtip.css”. Moreover, if an extension
builds on top of other well-known libraries, this can lead
to additional collisions. For example, the “uPerform® In-
application Help” extension that is installed by more than
90,000 users relies on “jquery-ui” to build its UI founda-
tion. One of the triggers generated by our pipeline is the
following:

<div id="ancile-csh" class="ancile-csh">
<div trigger="yes" class="ui-front"></div>

</div>

The inner div will be triggered by all extensions with
“jquery-ui” while the outer one will only be triggered by
“uPerform”.

• Coincidence: Sometimes, two extensions share the same
fingerprint for no reason other than pure coincidence. We
detected one case in our whole dataset where two ex-
tensions have completely different goals but they share
one identical CSS rule. The “ePubby” and “Link Short-
cuts” extensions share the same rule on elements of class
css-isolation-popup.

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

10

1000

100000

10000000

0 10 20 30 40

Number of extensions with the same style fingerprint

N
u
m

b
e
r

o
f
u
s
e
rs

 i
n
 t
h
e
 s

a
m

e
 c

lu
s
te

r

Figure 5: Total number of users in clusters of extensions sharing an
identical style fingerprint

Impact of collisions on identifiability Being able to dis-
cover the exact list of extensions installed in a browser can
contribute to the overall device fingerprint and render its user
identifiable. Yet, there is a large difference between detecting
an extension shared by millions of users with one shared by a
few tens of users. To understand whether the extensions that
share style fingerprints have similar populations of users, we
investigate the impact of collisions on the identifiability of
their users.

In Figure 5, we clustered together the extensions with the
same fingerprint and combined their userbase to understand
how many users are present in each cluster. It should be noted
that we did not get the number of users for all extensions as
some of them were not available in the Chrome store at the
time of writing. We can see that there is no direct correlation
between the number of extensions in a cluster and the total
number of users. For example, there are 2,106,549 users in a
cluster containing 3 extensions while there are 411 users in
the one containing 44. Then, some clusters have as many as 10
million users while others can have as few as two users. In the
end, if the goal is to uniquely identify users, detecting a group
of several extensions can provide a lot more discriminating
information than detecting a single extension that is shared
by many users. Note that this discussion focuses entirely on
the discriminatory power of browser extensions, in terms of
differentiating users from each other. Orthogonally to this
issue, even extensions that are shared by millions of users can
reveal sensitive socioeconomic characteristics of their users.

5.5 Performance Benchmarks
In this section, we quantify the real-world performance of our
proposed extension fingerprinting method. Our evaluation is
based on our proof-of-concept fingerprinting script, which we
used for our video demo (https://vimeo.com/430428308)
that we mentioned in Section 3. Specifically, we measure the
time our script takes to detect random subsets of the 20 ex-
tensions that we used for the video demo, with subset sizes
varying from 1 to 20. We set up our script so that the detection
logic runs inside the window.onload event listener (i.e., the

https://vimeo.com/430428308

5 10 15 20
Extensions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
e
te

ct
io

n
 t

im
e
 (

m
s)

Figure 6: Average detection time for different numbers of installed
extensions, with whiskers representing 95% confidence intervals.

detection script is triggered after the page has loaded), and we
use the performance.now API for timing the execution of
our detection script (a start timestamp is taken on entrance to
the window.onload listener, and an end timestamp is taken
when all extensions in the subset are detected, and the de-
tection time is the difference of these two timestamps). The
tests were run on a laptop with Intel Core i7-6600U CPU and
12GB RAM. For each subset size from 1 to 20, we measure
the detection time 10 times and take the average.

Figure 6 shows the results of our benchmarks. One can
see an overall upward trend as the number of extensions be-
ing fingerprinted increases, while the variations are likely
attributed to changing system load during the measurement.
The increase in detection time as the number of fingerprinted
extensions grows is due to the fact that more trigger elements
need to be compared against their baseline (recall that for
each trigger we compare both the style rules returned by
getComputedStyle, as well as its position and dimensions).
However, note that even for 20 extensions, our detection script
still finishes in around 15 milliseconds. Therefore, the real-
world performance overhead of this fingerprinting vector is
clearly not going to be a hindrance against trackers using it to
fingerprint thousands of popular extensions.

5.6 Comparison with related work

Prior work has explored different ways to detect browser ex-
tensions: probing for Web Accessible Resources (WAR) [24],
detecting DOM modifications [47], and capturing messages
sent by postMessage [29, 45]. Figure 7 reports on the finger-
printability of our complete dataset by each of these tech-
niques, including our newly proposed, CSS-based extension
fingerprinting.

In total, CSS fingerprinting can uniquely detect 4,446 ex-
tensions. Only 30 extensions are covered by all methods and
1,074 extensions are now detectable through our CSS-based

30164

61

120

3255

2139

36

86

1074

1325

4
8

693

1307

5

30

CSS

DOM postMessage

WAR

Figure 7: Venn diagram showing the number of extensions detectable
by four fingerprinting techniques. Our newly-proposed method can
detect 1,074 extensions which are “invisible” to all other methods.

fingerprinting that were previously “invisible” to all other
fingerprinting techniques. If WAR fingerprinting were to dis-
appear, akin to the randomization of UUIDs present in Fire-
fox [8], CSS fingerprinting would be the only one to cover
an additional 1,325 extensions. Overall, Figure 7 shows that
there is no ultimate method to detect all browser extensions
as different techniques are able to fingerprint different sets of
extensions. Our findings are inline with the ones reported by
Karami et al. on a dataset of 102,482 extensions [29].

5.7 Longitudinal analysis
Lastly, to understand whether the injection of CSS rules by
extensions is a new phenomenon, we analyze a Chrome ex-
tension dataset that spans five years (mid 2014 to mid 2019).
It comprises 501,349 extensions which is reduced to 426,807
after excluding themes and apps. For an average month, our
dataset includes 4,384 new/updated extensions, with the store
size increasing from around 22K in 2014 to more than 116K
in 2019. Figure 8 presents the percentage of extensions in-
jecting CSS out of all collected extensions for this five-year
period. One can observe that the percentages of extensions
injecting CSS rules on all and some domains are largely stable
over time.

As a separate experiment, for the 4,446 universally finger-
printable extensions discovered in this paper, we tested their
corresponding detection triggers after about a year. Overall,
we discovered that, as of June 2020, only 940 extensions were
updated, i.e., 79% of extensions have the same style finger-
prints as they had a year ago. Out for the 940 extensions that
updated at least once, after re-running our testing pipeline, 776
triggered at least one of their previously discovered triggers.
In other words, 82.5% still remain fingerprintable despite their
updates.

Overall, when we consider these two experiments together,
we can conclude that i) extensions that are currently finger-
printable are likely to remain fingerprintable to CSS-based
fingerprinting, and ii) the trigger database that a tracker would

0%

5%

10%

15%

20%

%
 o

f
a
ll

e
x
te

n
si

o
n
s

0

20000

40000

60000

N
u
m

b
e
r

o
f
e
x
te

n
si

o
n
s

Injecting CSS on URLs Any Some

20
14

−0
3

20
14

−0
6

20
14

−0
9

20
14

−1
2

20
15

−0
3

20
15

−0
6

20
15

−0
9

20
15

−1
2

20
16

−0
3

20
16

−0
6

20
16

−0
9

20
16

−1
2

20
17

−0
3

20
17

−0
6

20
17

−0
9

20
17

−1
2

20
18

−0
3

20
18

−0
6

20
18

−0
9

20
18

−1
2

20
19

−0
3

20
19

−0
6

Year−Month

Figure 8: Extensions injecting CSS styles (into any visited web page,
or only on some specific URLs), shown over all collected extensions
in the Chrome Web Store from 2014 to 2019 at three-month intervals.

need to compile for the fingerprintable extensions can remain
effective for more than a year, before it would need to be
updated.

6 Countermeasures

Given the power of CSS-based extension fingerprinting, in
this section, we discuss possible countermeasures against it.
First, we examine how the getComputedStyle API that this
new fingerprinting technique relies on, is currently used in
the wild, and whether it is possible to simply remove support
for this API. Second, we present the design and evaluation of
an in-browser countermeasure that defends against this type
of attack, by hiding the effects of extension-originating styles
from the pages on which they are active.

6.1 Can getComputedStyle be removed?

To measure the prevalence of getComputedStyle usage and,
more importantly, understand its uses cases in the current
web, we crawl the Alexa top 100K websites using VISI-
BLEV8, an open-source tool which adds instrumentation to
Chromium so that all JavaScript API accesses during runtime
are logged [27]. In total, we found that 1) there are 61,414
unique scripts (as distinguished by their SHA-256 hashes) that
use the getComputedStyle API (hereafter for convenience
we refer to these as getComputedStyle scripts), 2) these
getComputedStyle scripts are served from 60,375 distinct
TLD+1 domains, and 3) 76,638 out of the top 100K websites

Table 5: Top 10 TLD+1 domains that serve scripts that use the
getComputedStyle API, by the number of script inclusions. In
our crawl, we observe a total of 283,516 such inclusions.

TLD+1 Domain # Inclusions % All # SHA256 (% All)
googlesyndication.com 54,966 19.39% 62 (0.10%)
facebook.com 14,950 5.27% 9,727 (15.84%)
ajax.googleapis.com 14,027 4.95% 135 (0.22%)
doubleclick.net 11,930 4.21% 28 (0.05%)
twitter.com 7,201 2.54% 4 (0.01%)
adsafeprotected.com 6,077 2.14% 2,588 (4.21%)
youtube.com 5,182 1.83% 29 (0.05%)
vidible.tv 4,497 1.59% 24 (0.04%)
2mdn.net 4,006 1.41% 198 (0.32%)
cloudflare.com 3,059 1.08% 411 (0.67%)
Total 145,979 51.49% 13,952 (22.72%)

in our crawl contain at least one getComputedStyle script
(i.e., in 76.64% of the crawled websites). By inclusion counts,
Table 5 shows the top 10 TLD+1 domains that served the most
getComputedStyle scripts. These domains alone account for
51.49% of all such script inclusions. For reference, we also list
in Table 5 the number of unique getComputedStyle scripts
(i.e., by SHA-256 hash) served from each domain.

Next, to shed light on the current usage scenarios of
getComputedStyle and whether it is already being used for
browser fingerprinting in the way that we describe in this
paper, we conducted a manual analysis of representative sets
of scripts that used getComputedStyle. These sets of scripts
include: 1) the top scripts (by inclusion counts, as identi-
fied by SHA-256 hash of the script) from the top 10 TLD+1
domains that served the most getComputedStyle scripts;
2) similar to the first set, but here we focus on the top 10
scripts served from URLs blacklisted by EasyList/EasyPri-
vacy (EL/EP); and lastly, 3) a random sample of 20 unique
scripts (again distinguished by their SHA-256 hashes) out
of all of the getComputedStyle scripts in our crawl. We
categorize their use cases in the rest of this section.

The use cases we present in the following para-
graphs are not intended to be an exhaustive list of all
getComputedStyle use cases from our sample scripts, but
rather our best-effort manual analysis of these scripts, given
that many of them are obfuscated and/or minified. The pri-
mary purpose of this section is to establish that 1) the fin-
gerprinting technique that we present in this paper cannot be
mitigated by simply removing the getComputedStyle API
given that API’s widespread usage, and 2) to demonstrate
that we did not find evidence of this fingerprinting technique
already being used in the wild.

Wrapper for Getting Element Styles The first category of
getComputedStyle usage we describe is a class of wrap-
per functions that encapsulate getComputedStyle, along
with Element.style and Element.currentStyle. List-
ing 6 shows one such wrapper from our manually examined
samples that encapsulates getComputedStyle. The primary

Listing 6: JS snippet showing the use of getComputedStyle as part
of a cross-browser compatibility layer

function get_element_style_property(elem , property
) {

var value;
if (elem.currentStyle)

value = elem.currentStyle[property];
else if (window.getComputedStyle)

value = window.getComputedStyle(elem).
getPropertyValue(property);

else
value = elem.style[property];

return value;
}

roles of these wrapper functions are two-fold: 1) they serve
as a cross-browser compatibility layer for reading the style
sheets of an HTML element (e.g., Element.currentStyle
is a proprietary version of getComputedStyle and available
only on old versions of Internet Explorer, which do not support
getComputedStyle), and 2) they provide a way to read the el-
ement’s inline style as fallback when the getComputedStyle
method is removed by scripts (e.g., by invoking delete
window.getComputedStyle).

Note that as shown in Listing 6, besides their primary roles
mentioned above, these wrapper functions often offer the
added convenience of returning the value of a particular CSS
property specified as one of the wrapper’s arguments.

Compatibility Tests The getComputedStyle API is also
used for compatibility testing. In such cases, CSS rules are
set for an element injected by the script on-the-fly, and the
script then immediately reads back the CSS properties of the
element using getComputedStyle. One example of this is
found in the popular jQuery, where the code sets the CSS
property top to be 1% and then checks whether the read-back
value is in pixels. The reason for this test is that for certain
CSS properties (e.g., top), some browsers will return their
percentage values rather than absolute pixel values (see [7]),
while the rest of the script is expecting pixel values.

Visibility Testing Another category of use cases for
getComputedStyle is to test the visibility of an element on
the page by checking, for example, if the value of the CSS
property display is set to none (which means the element is
not rendered on the page). Besides display, the properties
visibility and opacity are often also included in these
types of checks, as well as element dimensions, e.g., checking
if the value of the width property is zero.

Adblocker Detection We have observed a few cases from
our sample where the script is detecting whether the user has
installed an adblocking extension. Specifically, the script ac-
complishes this by injecting an element with an ID or class
name targeted by the filter rules of the adblocker, and checks
whether the adblocker prevents the injected element from be-

ing displayed on the page (e.g., by using visibility testing
methods that we described). In total, we observed this be-
havior in three out of the 40 sample scripts that we manually
examined (all three scripts are identified by EL/EP as trackers).
Although this method of adblocker detection is conceptually
similar to what we describe in this paper, an important dif-
ference is that ad-blockers are expected to hide content and
therefore checking for the absence of ad-like elements is a
straightforward technique, variations of which were known as
early as 2011 [32]. Contrastingly, our technique generalizes
over all types of extensions (not just ad-blockers) and allows
for the precise identification of an extension, as opposed to
merely knowing whether an ad-blocker is present or absent.

Toggling Style Properties Lastly, there is also a category
of getComputedStyle usage that probes for and toggles the
displayed visual properties of elements on the page (e.g.,
toggles the visibility of an element by first checking whether
the visibility property is set to hidden, and if so set it to
visible).

6.2 Hiding Extension Effects

Given that we cannot just retire the getComputedStyle API,
an alternative method for protecting users is to break the link
between the injected content styles and the values returned by
the getComputedStyle function. This would effectively hide
the presence of extensions from webpages and therefore pro-
tect the users of browser extensions from being fingerprinted.
This hiding can be done at different layers in the browser,
each with its advantages and disadvantages.

In this section, we explain how a browser extension can
replace the default getComputedStyle function with one
that ignores the styles injected by extensions. In Appendix A,
we provide the details of an alternative solution that modifies
the browser in order to achieve the same results. Our hope
is that, once browser vendors confirm that this is an issue
worth tackling, that these details can provide a roadmap for
the changes that need to happen.

Browser extension The biggest advantage of a browser
extension is that it is lightweight and easy to distribute but it
is limited to a finite set of browser APIs. Yet, making direct
modifications to the DOM can provide a robust protection
against CSS-based, extension fingerprinting, thanks to the
existence of Shadow DOMs. Figure 9 provides a high-level
overview of our approach.

A Shadow DOM is a hidden tree in the DOM that can be
attached to elements in the regular DOM tree. Its purpose is
to isolate all of its content from the regular DOM tree: IDs,
names and styles do not “leak out” from Shadow DOMs and
elements from the regular DOM tree also do not “bleed in.”
This feature was primarily introduced for developers to avoid
naming conflicts when designing Web Components and we

DOM

+
Page

stylesheets
Extension
stylesheetOriginal

getComputedStyle

Modified
getComputedStyle

Shadow DOM

Page
stylesheets

Extension

HTML
elements

+

HTML
elements +

Figure 9: Difference between the original and the modified getCom-
putedStyle function.

can leverage it to modify the behavior of getComputedStyle.
When injected as a content script on page loads, our extension
performs the following actions:

1. Attach a new Shadow DOM to the document body.

2. Copy the complete regular DOM tree into the Shadow
DOM. This creates a mirrored version of the regular DOM
with all inline styles and all page style sheets. Content
styles from extensions are not present as they do not have
a physical presence in the regular DOM. They are applied
seamlessly by the browser and, as such, cannot be copied
into the Shadow DOM.

3. Modify the code of getComputedStyle to use the Shadow
DOM. When the function is called on a element in the reg-
ular DOM, the modified function will look for the copy of
this element in the Shadow DOM and execute the original
getComputedStyle function on it. For optimization pur-
poses, we only reroute calls on elements that have an ID
or a class from one of the installed extensions.

In the end, the computed style will be the exact same as the
one from the regular DOM element but without any modifica-
tions from content styles. A video showing our extension in
action is available here: https://vimeo.com/430428277

Evaluation and performance In order to evaluate the per-
formance of our browser extension and identify any potential
breakage, we crawled the homepage of the Tranco top 200
websites [39] with and without our countermeasure. We used
Puppeteer [12] to pilot a Chrome web browser on a laptop
with an Intel i7 processor running on Ubuntu 19.10 and we
collected the following information:

• Loading times: We used the
PerformanceNavigationTiming API to collect the
responseEnd, domContentLoadedEventStart and
domComplete properties. These three metrics help us
calculate the overhead imposed by our solution as they
focus on the processing of documents and scripts after
all major HTTP requests have been performed. They are

0

1000

2000

3000

4000

5000

domContentLoadedEventStart domComplete

Timed event

T
im

e
 (

m
s)

Browser

Standard
With extension

Figure 10: Impact of the countermeasure on the loading times of
webpages.

independent of network speed, congestion, and other issues
that could impact our measurements.

• JavaScript errors: To identify if the injected code disrupts
the natural flow of JavaScript code execution, we collected
JavaScript errors directly from the browser. By checking
the number of errors with and without the extension, we can
see if the countermeasure causes any new breakage issues
that were not there before.

• Screenshots: As an extra verification step, we took screen-
shots of all visited pages with and without our browser ex-
tension, to check that our extension does not introduce any
potential side effects with visible artefacts. Since the visited
webpages include news websites with ever-changing, fea-
tured stories as well as dynamic ads, we opted to perform
this verification manually.

We repeated our measurements five times with and without
our extension to average the loading times and smooth out any
unusual discrepancies. The results are presented in Figure 10.

Looking at the loading times, both boxplots are almost iden-
tical with a difference between mean values of less than 0.5%.
In terms of JavaScript errors, only reuters.com presented ad-
ditional errors when our extension was present (6 with and
0 without). By analysing the script that crashed, we found
that getComputedStyle was called on a < g > container in
a SVG element that lacked an essential property that was used
in our extension’s logic. After adding one additional check,
we revisited the same website and discovered no errors. Fi-
nally, looking at screenshots with and without the extension,
we observed no noticeable differences between the two crawls
apart from changes in the dynamic content.

Given the near-zero performance overhead, the lack of new
JavaScript errors, and the visual confirmation that pages were
not affected by our extension, we argue that our countermea-
sure protects against style fingerprinting with minimal impact
on the overall user experience.

https://vimeo.com/430428277

7 Related work

Browser fingerprinting has received signification attention
from the research community over the last decade. Eckers-
ley [19], Laperdrix et al. [30] and Gómez-Boix et al. [23]
showed that it can be used to identify users on the Internet
even though this may prove difficult at a very large scale.
Moreover, later studies quantified the use of fingerprinting on
the public web and showed its growing adoption by popular
sites [14, 15, 20, 38]

Extension fingerprinting attacks Prior work has also inves-
tigated the specific problem of fingerprinting browser exten-
sions. Sjosten et al. [44] demonstrated how Web Accessible
Resources (WARs) could be abused to enumerate the presence
of specific browser extensions. Gulyás et al. [24] built on their
findings and performed a study on 16,393 users to understand
how WAR fingerprinting contributes to users’ uniqueness.
They found that 54.86% of users with at least one detectable
extension could be uniquely identified. Orthogonal to the use
of WARs, Starov and Nikiforakis [47] looked at the finger-
printability of extensions through DOM modifications. With
a tool named XHound, they tested the 10,000 most popular
Chrome extensions and found that 9% of them introduce mod-
ifications that are detectable on any domain. Sanchez-Rola et
al. [42] used a timing side-channel to infer the presence of any
browser extension installed in the browser, even if they are
disabled in incognito mode. Van Goethem and Joosen [49]
presented in the same year a variation of this attack to link a
user’s isolated browsing sessions. These side channels have
been fixed by the Chromium team [3, 4] and can therefore no
longer be used for extension fingerprinting. Finally, Karami et
al. [29] recently introduced a tool called Carnus to automate
the creation and detection of extension fingerprints. They
combine both WAR and behavioural fingerprints but also add
inter and intra-communication based enumeration. Out of
102,482 extensions, they can detect 29,428 of them.

To the best of our knowledge, we are the first to show
that injected style sheets can be used for detecting installed
browser extensions, and to measure the vulnerability of exten-
sions in the wild. As we showed in Section 5.6, this technique
allowed us to fingerprint more than 1,000 extensions which
were “invisible” to all other current methods of extension
fingerprinting.

Extension fingerprinting defences Three studies have pre-
sented extensive designs to mitigate extension fingerprinting.
Sjosten et al. [43] propose a defence system called Latex
Gloves to prevent WAR fingerprinting. Extensions are repack-
aged to modify the whitelist of websites on which they can run
and a special extension blocks unauthorized probing through
the webRequest API. Starov et al. [45] also uses a whitelist
to enforce strict access to browser extensions resources. Both
of these approaches can mitigate our presented attack by basi-
cally turning off an extension on an undesired website. How-

ever, it remains unclear whether users are capable of configur-
ing these whitelists and what is the real protection that these
mechanisms offer, in the presence of multiple JavaScript third
parties in popular sites who can take advantage of the trust
associated with the first-party website.

CloakX by Trickel et al. follows a different approach for
protecting extensions against fingerprinting [48]. It random-
izes what makes an extension identifiable while maintain-
ing equivalent functionality, i.e., it randomizes the path of
web accessible resources to prevent WAR probing attacks,
it changes the behavioural fingerprint by changing ID and
class names that are injected, and it adds a proxy to handle
dynamic references to randomized elements. CloakX does
not account for styles and therefore cannot stop our new CSS-
based, extension-fingerprinting attack.

8 Conclusion

Stateless tracking significantly affects the privacy of web users
and has recently received increased attention by researchers
and browser vendors. In this paper we focus on the CSS rules
that browser extensions inject in visited web pages as part of
their logic and show how these rules can be abused to identify
a user’s installed extensions. To understand the magnitude
of this problem, we developed a pipeline that leverages both
static and dynamic analysis of browser extensions in order
to identify a set of triggers that can be used for CSS-based,
extension fingerprinting. Our analysis of 116,485 extensions
revealed that 4,446 (3.8%) of them can be uniquely identified
on any webpage based on the styles they inject. We inves-
tigate how the involved browser APIs are used in the wild,
propose concrete countermeasures that browser vendors can
adopt to mitigate this problem, and provide a countermea-
sure solution via a browser extension that demonstrates our
defense mechanism.

Availability

The artifact accompanying this paper can be found
at https://github.com/plaperdr/fingerprinting-in-
style. Our defense prototype can be installed and tested on
a demo page in a Chromium-based browser. We also provide
the complete set of 4,446 extensions detectable through style
fingerprinting along with the generated trigger pages.

Acknowledgements

We thank the anonymous reviewers for their helpful feedback.
This project is partially funded by the Hauts-de-France region
in the context of the ASCOT project of the STaRS frame-
work, by the National Science Foundation (under awards
CNS-1941617, CNS-1703375 and CNS-1813974), and by the
Office of Naval Research under grant N00014-20-1-2720.

https://github.com/plaperdr/fingerprinting-in-style
https://github.com/plaperdr/fingerprinting-in-style

References

[1] :visited support allows queries into global history -
Mozilla Bug Tracker. https://bugzilla.mozilla.org/
show_bug.cgi?id=147777, 2002.

[2] Keep visited links private so that history info isn’t
leaked. - Webkit Bug Tracker. https://bugs.webkit.org/
show_bug.cgi?id=24300, 2009.

[3] Issue 611420: WebAccessibleResources take too long
to make a decision about loading if the extension
is installed. https://bugs.chromium.org/p/chromium/
issues/detail?id=611420, 2017.

[4] Issue 709464: Detecting the presence of extensions
through timing attacks (including Incognito) - Chromium
bug tracker. https://bugs.chromium.org/p/chromium/
issues/detail?id=709464, 2017.

[5] CSS Cascading and Inheritance Level 3 - W3C Candidate Rec-
ommendation. https://www.w3.org/TR/css3-cascade/
#cascading-origins, 2018.

[6] Stylish - Custom themes for any website -
Chrome Web Store. https://chrome.google.com/
webstore/detail/stylish-custom-themes-for/
fjnbnpbmkenffdnngjfgmeleoegfcffe, 2019.

[7] Bug 29084 - getComputedStyle returns percentage values
for left / right / top / bottom . https://bugs.webkit.org/
show_bug.cgi?id=29084, 2020.

[8] Chrome incompatibilities – Mozilla | MDN.
https://developer.mozilla.org/en-US/
docs/Mozilla/Add-ons/WebExtensions/
Chrome_incompatibilities#web_accessible_resources,
2020.

[9] Controlling CSS Animations and Transitions with
JavaScript. https://css-tricks.com/controlling-
css-animations-transitions-javascript/, 2020.

[10] Element.currentStyle. https://developer.mozilla.org/
en-US/docs/Web/API/Element/currentStyle, 2020.

[11] Match Patterns. https://developer.chrome.com/
extensions/match_patterns, 2020.

[12] Puppeteer: Headless Chrome Node.js API - GitHub. https:
//github.com/puppeteer/puppeteer, 2020.

[13] Window.getComputedStyle(). https://
developer.mozilla.org/en-US/docs/Web/API/Window/
getComputedStyle, 2020.

[14] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez,
Arvind Narayanan, and Claudia Diaz. The Web never forgets:
Persistent tracking mechanisms in the wild. In Proceedings of
the 21st ACM Conference on Computer and Communications
Security (CCS), 2014.

[15] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda
Gürses, Frank Piessens, and Bart Preneel. FPDetective: Dust-
ing the Web for fingerprinters. In Proceedings of the 20th
ACM Conference on Computer and Communications Security
(CCS), 2013.

[16] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan
Boneh. An analysis of private browsing modes in modern
browsers. In Proceedings of the 19th USENIX conference on
Security, pages 6–6. USENIX Association, 2010.

[17] Andrew Clover. CSS visited pages disclosure - BUGTRAQ
mailing listposting. https://seclists.org/bugtraq/
2002/Feb/271, 2002.

[18] Quan Chen and Alexandros Kapravelos. Mystique: Uncovering
information leakage from browser extensions. In Proceedings
of the ACM Conference on Computer and Communications
Security (CCS), 2018.

[19] Peter Eckersley. How Unique Is Your Browser? In Proceedings
of the Privacy Enhancing Technologies Symposium (PETS),
pages 1–17, 2010.

[20] Steven Englehardt and Arvind Narayanan. Online tracking: A
1-million-site measurement and analysis. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS, 2016.

[21] Cristiano Giuffrida, Stefano Ortolani, and Bruno Crispo. Mem-
oirs of a browser: A cross-browser detection model for privacy-
breaching extensions. In Proceedings of the 7th ACM Sympo-
sium on Information, Computer and Communications Security,
pages 10–11. ACM, 2012.

[22] Nicolas Golubovic. Attacking browser exten-
sions. Ruhr-Universitat Bochum, Volume 3, 2016.
https://golubovic.net/thesis/master.pdf.

[23] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry.
Hiding in the Crowd: an Analysis of the Effectiveness of
Browser Fingerprinting at Large Scale. In WWW 2018: The
2018 Web Conference, Lyon, France, April 2018.

[24] Gabor Gyorgy Gulyas, Doliere Francis Some, Nataliia Bielova,
and Claude Castelluccia. To extend or not to extend: On the
uniqueness of browser extensions and web logins. In Proceed-
ings of the 2018 Workshop on Privacy in the Electronic Society,
WPES’18, pages 14–27, 2018.

[25] Lin-Shung Huang, Zack Weinberg, Chris Evans, and Collin
Jackson. Protecting browsers from cross-origin CSS attacks.
In Proceedings of the 17th ACM conference on Computer and
communications security, pages 619–629, 2010.

[26] Artur Janc and Lukasz Olejnik. Feasibility and real-world
implications of web browser history detection. Proceedings of
W2SP, 2010.

[27] Jordan Jueckstock and Alexandros Kapravelos. VisibleV8: In-
browser Monitoring of JavaScript in the Wild. In Proceedings
of the ACM Internet Measurement Conference (IMC), 2019.

[28] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christo-
pher Kruegel, Giovanni Vigna, and Vern Paxson. Hulk: Elicit-
ing malicious behavior in browser extensions. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 641–654,
San Diego, CA, August 2014. USENIX Association.

[29] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Ja-
son Polakis. Carnus: Exploring the privacy threats of browser
extension fingerprinting. In 27th Annual Network and Dis-
tributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020, 2020.

https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://bugs.webkit.org/show_bug.cgi?id=24300
https://bugs.webkit.org/show_bug.cgi?id=24300
https://bugs.chromium.org/p/chromium/issues/detail?id=611420
https://bugs.chromium.org/p/chromium/issues/detail?id=611420
https://bugs.chromium.org/p/chromium/issues/detail?id=709464
https://bugs.chromium.org/p/chromium/issues/detail?id=709464
https://www.w3.org/TR/css3-cascade/#cascading-origins
https://www.w3.org/TR/css3-cascade/#cascading-origins
https://chrome.google.com/webstore/detail/stylish-custom-themes-for/fjnbnpbmkenffdnngjfgmeleoegfcffe
https://chrome.google.com/webstore/detail/stylish-custom-themes-for/fjnbnpbmkenffdnngjfgmeleoegfcffe
https://chrome.google.com/webstore/detail/stylish-custom-themes-for/fjnbnpbmkenffdnngjfgmeleoegfcffe
https://bugs.webkit.org/show_bug.cgi?id=29084
https://bugs.webkit.org/show_bug.cgi?id=29084
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Chrome_incompatibilities#web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Chrome_incompatibilities#web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Chrome_incompatibilities#web_accessible_resources
https://css-tricks.com/controlling-css-animations-transitions-javascript/
https://css-tricks.com/controlling-css-animations-transitions-javascript/
https://developer.mozilla.org/en-US/docs/Web/API/Element/currentStyle
https://developer.mozilla.org/en-US/docs/Web/API/Element/currentStyle
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/match_patterns
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle
https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle
https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle
https://seclists.org/bugtraq/2002/Feb/271
https://seclists.org/bugtraq/2002/Feb/271
https://golubovic.net/thesis/master.pdf

[30] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry.
Beauty and the Beast: Diverting modern web browsers to build
unique browser fingerprints. In 37th IEEE Symposium on Se-
curity and Privacy (S&P 2016), San Jose, United States, 2016.

[31] Zhuowei Li, XiaoFeng Wang, and Jong Choi. SpyShield: Pre-
serving privacy from spy add-ons. In Recent Advances in
Intrusion Detection, pages 296–316. Springer, 2007.

[32] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav
Shacham. Fingerprinting information in JavaScript implemen-
tations. In Helen Wang, editor, Proceedings of W2SP 2011.
IEEE Computer Society, May 2011.

[33] Keaton Mowery and Hovav Shacham. Pixel perfect: Finger-
printing canvas in HTML5. In Proceedings of the Web 2.0
Security & Privacy Workshop, 2012.

[34] Mystique Analyzer. https://mystique.csc.ncsu.edu/
about.

[35] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos,
Steven Van Acker, Wouter Joosen, Christopher Kruegel, Frank
Piessens, and Giovanni Vigna. You are what you include:
Large-scale evaluation of remote javascript inclusions. In
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 736–747, 2012.

[36] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Pri-
Varicator: Deceiving Fingerprinters with Little White Lies.
Research.Microsoft.Com, 2014.

[37] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting. In Proceedings of the IEEE Symposium
on Security and Privacy, SP ’13, pages 541–555, 2013.

[38] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting. In Proceedings of the 34th IEEE Sym-
posium on Security and Privacy (IEEE S&P), pages 541–555,
2013.

[39] Victor Le Pochat, Tom van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczynski, and Wouter Joosen. Tranco:
A research-oriented top sites ranking hardened against ma-
nipulation. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019.

[40] John Resig. Pro JavaScript Techniques, 2006.

[41] Franziska Roesner, Tadayoshi Kohno, and David Wetherall.
Detecting and defending against third-party tracking on the
web. In Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’12, pages
12–12, Berkeley, CA, USA, 2012. USENIX Association.

[42] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti.
Extension breakdown: Security analysis of browsers extension
resources control policies. In 26th USENIX Security Sympo-
sium, pages 679–694, 2017.

[43] Alexander Sjösten, Steven Van Acker, Pablo Picazo-Sanchez,
and Andrei Sabelfeld. Latex Gloves: Protecting Browser Ex-
tensions from Probing and Revelation Attacks. In 26th Annual

Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019, 2019.

[44] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld.
Discovering browser extensions via web accessible resources.
In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, CODASPY, 2017.

[45] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and
Nick Nikiforakis. Unnecessarily Identifiable: Quantifying the
Fingerprintability of Browser Extensions Due to Bloat. In The
World Wide Web Conference, WWW, 2019.

[46] Oleksii Starov and Nick Nikiforakis. Extended tracking pow-
ers: Measuring the privacy diffusion enabled by browser exten-
sions. In Proceedings of the 26th International Conference on
World Wide Web, pages 1481–1490. International World Wide
Web Conferences Steering Committee, 2017.

[47] Oleksii Starov and Nick Nikiforakis. XHOUND: quantifying
the fingerprintability of browser extensions. In 2017 IEEE
Symposium on Security and Privacy, SP 2017, pages 941–956,
2017.

[48] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Niki-
forakis, and Adam Doupé. Everyone is Different: Client-side
Diversification for Defending Against Extension Fingerprint-
ing. In 28th USENIX Security Symposium (USENIX Security
19), 2019.

[49] Tom Van Goethem and Wouter Joosen. One side-channel to
bring them all and in the darkness bind them: Associating
isolated browsing sessions. In WOOT, 8 2017.

[50] Michael Weissbacher, Enrico Mariconti, Guillermo Suarez-
Tangil, Gianluca Stringhini, William Robertson, and Engin
Kirda. Ex-Ray: Detection of history-leaking browser exten-
sions. In Annual Computer Security Applications Conference
(ACSAC), 2017.

A Countering style fingerprinting at the
browser level

While browser extensions are lightweight and can easily be
installed, their scope of actions is limited to the available
WebExtension APIs. A built-in protection can go beyond
in terms of flexibility and performance by having its logic
directly integrated with native code. We also argue that this
problem should be fixed directly by browser vendors to protect
all their users from style leakage. To that end, we provide here
a blueprint of the modifications that could be made to prevent
style leakage through extensions.

Overview Figure 11 provides information on how the
browser can be modified to provide protection. The approach
is similar in essence to the one applied to fix the visited history
leakage [1,2,17] but extended in many ways to fulfill our goal.
Throughout the entire page rendering pipeline, the only stage
that needs to be changed is the Style one. It is responsible for
collecting all style sheets and computing the style for each
individual element. In a nutshell, to prevent style leakage,

https://mystique.csc.ncsu.edu/about
https://mystique.csc.ncsu.edu/about

JS/CSS Style Layout Paint Composite

Step Action Modifications needed C++ classes

1
Gather all style rules and

index them
Add support for “ExtensionAuthor” and
“ExtensionUser” origins for a CSS rule

Document, WebDocument,
StyleEngine

2
Visit each element and see
what styles apply to them

-
Document, Element,

StyleResolver

3
Combine rules to get the final

computed style
Compute two styles: one with and one

without content styles
StyleResolver, StyleBuilder,

CSSProperty

Style
computation

Style
retrieval

Step Action Modifications needed C++ classes and methods

1
getComputedStyle call in

JavaScript
- V8Window

2
getComputedStyle call in the

window context
Add support for an

“allowExtensionStyles” boolean
LocalDomWindow

3
Get the right style value

depending on the context
Add a switch that selects the right

computed style
CSSComputedStyleDeclaration

CSSProperty

Figure 11: Overview of the built-in browser modifications.

the browser needs to maintain two computed styles for each
element: one with the style sheets from installed extensions
and one without.

Maintaining two computed styles Each style rule applied
on a webpage has one of three different CSS cascade ori-
gins [5]:

• Author Origin: this origin belongs to rules contained in
the source document or in external style sheets.

• User Origin: it comes from rules that the user has speci-
fied for a specific document (set through a special inter-
face or with an extension like Stylish [6]).

• User Agent Origin: this is the default style provided
by the browser. This style can be modified if the user
changes the default fonts or accessibility options.

These origins are important as they determine which rule
has priority over another one. Introducing additional origins
with new priorities is not appropriate as it will make the over-
all design of a webpage even more complicated for devel-
opers. Instead, we propose to extend the first two cascade
origins with two additional ones: Extension Author Origin
and Extension User Origin. They will have the exact same
priority as their non-extension counterpart but will carry the
additional information that they originate from a browser
extension. This way, thanks to a custom Style resolver, the
StyleFromElement function can properly compute two sep-
arate styles and maintain them throughout the lifetime of the
HTML element.

Modifying getComputedStyle Now that two distinct com-
puted styles exist, we need to modify the getComputedStyle
function to direct it to the right style depending on the ex-
ecution context. We propose to add a boolean called “al-
lowExtensionStyles” that can be propagated up to each CSS
property to select the proper value to return. For example,
if getComputedStyle is executed in a standard webpage, a
“false” value will be propagated to prevent style leakage. In
the context of using Chrome DevTools for debugging an ap-
plication, a “true” value will be sent, allowing the user to see
the true computed value with extension styles.

Protection at the Layout stage Some extensions may intro-
duce custom style sheets that have a direct impact on the size
of an element. For example, by changing the relative width
of an element from 20 to 30%, its actual size will change at
the Layout stage and could be detected by a malicious script.
To counter this problem, we can go even further by combin-
ing our approach with the one proposed by Nikiforakis et
al. in [36]. In it, they introduce randomization policies that
can be used to modify specific attributes of HTML elements.
In our case, we can use a policy to randomize an element’s
dimensions to prevent such leakage.

B Top modified properties by fingerprintable
extensions

Table 6: List of the top 50 properties ranked by the number of extensions modifying them with injected styles

Property Count
perspectiveOrigin 4302
transformOrigin 4302

webkitPerspectiveOrigin 4302
webkitTransformOrigin 4302

inlineSize 4268
webkitLogicalWidth 4268

width 4268
position 3749

blockSize 3743
height 3743

webkitLogicalHeight 3743
top 3662
left 3631

Property Count
background 3610

right 3583
bottom 3538
border 3439

borderBlockEnd 3403
borderBottom 3403

webkitBorderAfter 3403
borderInlineStart 3390

borderLeft 3390
webkitBorderStart 3390
backgroundColor 3387
borderInlineEnd 3361

borderRight 3361

Property Count
webkitBorderEnd 3361
borderBlockStart 3355

borderTop 3355
webkitBorderBefore 3355

borderColor 3348
borderBlockEndColor 3304
borderBottomColor 3304

webkitBorderAfterColor 3304
borderInlineStartColor 3303

borderLeftColor 3303
webkitBorderStartColor 3303
borderInlineEndColor 3269

borderRightColor 3269

Property Count
webkitBorderEndColor 3269
borderBlockStartColor 3265

borderTopColor 3265
webkitBorderBeforeColor 3265

padding 3166
zIndex 3166

font 3152
paddingInlineStart 3052
webkitPaddingStart 3052

paddingLeft 3051
paddingInlineEnd 2983

	Introduction
	Background
	Browser extensions and Style Sheets
	Risks of using and detecting browser extensions
	The getComputedStyle API
	Known Risks of getComputedStyle

	Style-Fingerprinting Example and Threat Models
	Data collection and processing
	Initial dataset
	Processing pipeline
	Extracting injected CSS
	Generating style triggers
	Confirming trigger fingerprints
	Verifying collisions between extensions

	Analysis
	Pipeline statistics
	Evaluating different fingerprintingstrategies
	Statistics on fingerprintable extensions
	Understanding non-uniquely fingerprintable extensions
	Performance Benchmarks
	Comparison with related work
	Longitudinal analysis

	Countermeasures
	Can getComputedStyle be removed?
	Hiding Extension Effects

	Related work
	Conclusion
	Countering style fingerprinting at the browser level
	Top modified properties by fingerprintable extensions

