
HAL Id: hal-03153391
https://hal.inria.fr/hal-03153391

Submitted on 26 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of Supervisors Robust Against Sensor
Deception Attacks

Romulo Meira-Goes, Stephane Lafortune, Hervé Marchand

To cite this version:
Romulo Meira-Goes, Stephane Lafortune, Hervé Marchand. Synthesis of Supervisors Robust
Against Sensor Deception Attacks. IEEE Transactions on Automatic Control, Institute of
Electrical and Electronics Engineers, 2021, IEEE Transactions on Automatic Control, pp.12.
�10.1109/TAC.2021.3051459�. �hal-03153391�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395676278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03153391
https://hal.archives-ouvertes.fr

ar
X

iv
:2

01
2.

12
93

2v
1

 [
ee

ss
.S

Y
]

 2
3

D
ec

 2
02

0
1

Synthesis of Supervisors Robust Against Sensor

Deception Attacks
Rômulo Meira-Góes Student, IEEE, Stéphane Lafortune Fellow, IEEE, Hervé Marchand

Abstract—We consider feedback control systems where sensor
readings may be compromised by a malicious attacker intending
on causing damage to the system. We study this problem
at the supervisory layer of the control system, using discrete
event systems techniques. We assume that the attacker can
edit the outputs from the sensors of the system before they
reach the supervisory controller. In this context, we formulate
the problem of synthesizing a supervisor that is robust against
the class of edit attacks on the sensor readings and present a
solution methodology for this problem. This methodology blends
techniques from games on automata with imperfect information
with results from supervisory control theory of partially-observed

discrete event systems. Necessary and sufficient conditions are
provided for the investigated problem.

Index Terms—cyber-physical systems, cyber-security, discrete-
event systems, supervisory control.

Protection of feedback control systems against cyber-attacks

in critical infrastructures is an increasingly important problem.

In this paper, we consider sensor deception attacks at the

supervisory layer of a feedback control system. We assume

that the underlying cyber-physical system has been abstracted

as a discrete transition system (the plant in this work), where

sensor outputs belong to a finite set of (observable) events.

These events drive the supervisory controller, or simply su-

pervisor, that controls the high-level behavior of the system

via actuator commands, which also belong to a finite set of

(controllable) events. In the context of this event-driven model,

we incorporate a malicious attacker that has compromised a

subset of the observable events and is able to delete actual

sensor readings or to inject fictitious ones in the communica-

tion channel to the supervisor. The goal of the attacker is to

leverage its knowledge of the plant and the supervisor models,

and to use its event-editing capabilities to steer the plant state

to a critical state where damage to the plant occurs. In this

work, we investigate the problem of synthesizing a supervisor

robust against any attacker with these capabilities.

Several works have addressed in recent years problems

of cyber-security in the above context. In [1], [2], [3], the

authors developed diagnostic tools to detect when controlled

systems are being attacked. Their work is closely related to

The work of R.Meira-Góes and S. Lafortune was supported in part by US
NSF grants CNS-1421122, CNS-1446298 and CNS-1738103.

R. Meira-Góes and S. Lafortune are with the Department of EECS, Univer-
sity of Michigan, MI 45109 USA (e-mail:{romulo,stephane}@umich.edu).

H. Marchand is with INRIA, Centre Rennes - Bretagne Atlantique, 35042
France (e-mail:herve.marchand@inria.fr).

©2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

the work on fault diagnosis in discrete event systems, and

it is applicable to both sensor and/or actuator attacks. Our

problem differs from the problem considered in these works

since we aim to compute a supervisor that is robust against

attacks without using a separate diagnostic tool. However, their

method only works for attacks that are detectable/diagnosable

(non-stealthy). Moreover, once an attack is detected, their

solution forces the supervisor to disable all controllable events.

There is also a vast literature in robust control in discrete

event systems [4], [5], [6], [7], [8], [9], [10]. However, ro-

bustness in the previous literature is related to communication

delays [8], [9], loss of information [10], or model uncertainty

[4], [5], [7], [6]. Exceptions to that are [11], [12], [13], [14],

where the problem of synthesizing supervisors robust against

attacks was investigated. The results of [13] are related to

actuator deception attacks.

In [11], [12], [13], [15], [14], the problem of synthesizing

supervisors robust against attacks was investigated. Our work

differs from [11], [12], [14] as we provide a general game-

theoretical framework that solves the problem of synthesizing

supervisors robust against general classes of sensor deception

attacks. The solution methodology in [11], [12], [14] follows

the standard supervisory control solution methodology, where

only results about one robust supervisor against a specific class

of sensor deception attacks is provided. Conditions on the

existence of robust supervisors against a possible set of sensor

deception attacks with a normality condition on the plant are

provided in [11]. A methodology to synthesize the supremal

controllable and normal robust supervisor against bounded

sensor deception attacks is given in [12]. The results of [13] are

related to actuator and sensor replacement deception attacks

while actuator and sensor deception attacks are considered

in [15]. However, the supervisory control framework in [15]

differs from the standard framework since the authors assume

that the supervisor can actively change the state of the physical

process. Finally, [14] provides a methodology to synthesize

a maximal controllable and observable supervisor against

unbounded sensor deception attacks.

The game-theoretical framework adopted in this paper pro-

vides necessary and sufficient conditions for the problems of

existence and synthesis of robust supervisors against general

classes of sensor deception attacks. This game-theoretical

approach provides a structure that incorporates all robust

supervisors against sensor deception attacks. Different robust

supervisors can be extracted from this structure, e.g., maximal

controllable and observable, supremal controllable and normal,

etc. In fact, the robust supervisors from [11], [14] are embed-

ded in this structure. Moreover, there is a natural extension of

http://arxiv.org/abs/2012.12932v1

2

our solution methodology such that robust supervisors from

[12] are embedded in this structure as well.

In summary, our work does not impose any normality

condition as imposed in [11], [12] and studies synthesis and

existence of robust supervisors against any sensor deception

attack. Our approach considers both bounded and unbounded

sensor deception attacks. Moreover, necessary and sufficient

conditions are provided for the existence and synthesis of

robust supervisors, whereas in [11] only existence conditions

are provided and in [12] only a sufficient condition is provided.

Of particular relevance to this paper is the work in [16],

where the synthesis of stealthy sensor deception attacks as-

suming a fixed and known supervisor is considered; in this

sense, [16] pertains to attack strategies. Herein, we consider

the “dual” problem of synthesizing a supervisor that is robust

against sensor deception attacks; thus, this paper is focused on

defense strategies.

We wish to synthesize a supervisor that provably prevents

the plant from reaching a critical state despite the fact that

the information it receives from the compromised sensors

may be inaccurate. Our problem formulation is based on the

following considerations. The attack strategy is a parameter

in our problem formulation, i.e., our problem formulation is

parameterized by different classes of sensor deception attacks.

If there is no prior information about the attack strategy,

then an “all-out” attack strategy is considered. Our solution

methodology comprises two steps and leverages techniques

from games on automata under imperfect information and

from supervisory control of partially-observed discrete event

systems. We build a game arena to capture the interaction

of the attacker and the supervisor, under the constraints of

the plant model. The arena defines the solution space over

which the problem of synthesizing supervisors with the desired

robustness properties can be formulated. In this solution space,

called meta-system, we use supervisory control techniques to

enforce such robustness properties. We leverage the existing

theory of supervisory control under partial observation [17],

[18], [19], [20] to solve this meta-supervisory control problem.

As formulated, the meta-supervisory control problem has a

unique solution. This solution embeds all robust supervisors

for the original plant, thereby providing a complete character-

ization of the problem addressed in this paper.

Our presentation is organized as follows. Section I intro-

duces necessary background and the notation used throughout

the paper. In Section II, we formalize the problem of synthesis

of supervisors robust against this attack model. We define

the construction of the game arena and present the solution

of the (meta-)synthesis problem in Section III. Section IV

discusses some benefits of our solution methodology. Finally,

we conclude the paper in Section VI.

I. PRELIMINARIES

We assume that the given cyber-physical system has been

abstracted as a discrete transition system that we model as a

finite-state automaton. A finite-state automaton G is defined

as a tuple G = (XG,Σ, δG, x0,G), where XG is the finite set

of states; Σ is the finite set of events; δG : XG × Σ → XG

is the partial transition function; x0,G ∈ XG is the initial

state. The function δG is extended in the usual manner to

domain XG×Σ∗. The language generated by G is defined as

L(G) = {s ∈ Σ∗|δG(x0,G, s)!}, where ! means “is defined”.

In the context of supervisory control of DES [17], system

G needs to be controlled in order to satisfy safety and liveness

specifications. In this work, we consider only safety specifi-

cations. In order to control G, the event set Σ is partitioned

into the set of controllable events and the set of uncontrollable

events, Σc and Σuc. The set of admissible admissible control

decisions is defined as Γ = {γ ⊆ Σ|Σuc ⊆ γ}. A supervisor,

denoted by S, dynamically disables events such that the

controlled behavior is provably “safe”. In other words, S only

disables controllable events to enforce the specification on G.

In addition, when the system is partially observed due to

limited sensing capabilities of G, the event set is also parti-

tioned into Σ = Σo ∪ Σuo, where Σo is the set of observable

events and Σuo is the set of unobservable events. Based on

this second partition, the projection function PΣΣo
: Σ∗ → Σ∗

o

is defined for s ∈ Σ∗
o and e ∈ Σ recursively as: PΣΣo

(ǫ) = ǫ
and PΣΣo

(se) = PΣΣo
(s)e if e ∈ Σo, PΣΣo

(s) otherwise.

The inverse projection P−1
ΣΣo

: Σ∗
o → 2Σ

∗

is defined as

P−1
ΣΣo

(t) = {s ∈ Σ∗|PΣΣo
(s) = t}.

Supervisor S makes its control decisions based on strings of

observable events. Formally, a partial observation supervisor

is a (partial) function S : Σ∗
o → Γ. The resulting controlled

behavior is a new DES denoted by S/G, resulting in the

closed-loop language L(S/G), defined in the usual manner

(see, e.g., [21]). Normally, a supervisor S is encoded by an

automaton R known as the supervisor realization, where every

state encodes a control decision. Throughout the paper, we use

interchangeably supervisor S and its realization R.

We also recall the notions of controllability, observability,

and normality for a prefix-closed language K ⊆ L(G). We

say the language K is

• controllable w.r.t. to Σc, if KΣuc ∩ L(G) ⊆ K;

• observable w.r.t. to Σo and Σc, if (∀s ∈ K, ∀e ∈ Σc :
se ∈ K)[P−1

ΣΣo
(PΣΣo

(s))e ∩ L(G) ⊆ K];

• normal w.r.t. to Σo and Σc, if K = P−1
ΣΣo

(PΣΣo
(K)) ∩

L(G).

Example I.1. We use the following example as illustrative

example throughout the paper. The plant G is depicted in

Fig. 1(a) where Σc = Σo = {a, b}. The supervisor shown

in Fig. 1(b) guarantees that state 4 is unreachable in the

supervised system R/G.

For convenience, we define useful operators and notation

that we use throughout this paper. First, ΓG(Q) is defined as

the set of active events at the set of states Q ⊆ XG of the

automaton G, given by:

ΓG(Q) := {e ∈ Σ|(∃x ∈ Q)[δG(x, e)!]} (1)

By an abuse of notation, we use ΓG(x) = ΓG({x}) for x ∈
XG.

3

b b

a

b

a

a

1 2

3 4
c

(a) Plant G with Σc = {a, b}
and Σo = {a, b}.

b b

a

A B

C c

c

c

(b) Supervisor R.

Fig. 1: Running example. Observable events have solid arrows

and unobservable events have dashed arrows. Controllable

events have marks across their arrows.

The unobservable reach of the subset of states Q ⊆ XG

under the subset of events γ ⊆ Γ is given by:

URγ(Q) := {x ∈ XG | (∃t ∈ (Σuo ∩ γ)∗)[x ∈ δG(Q, t)]}
(2)

where δG(Q, t) = ∪x∈Q{δG(x, t)} and we consider

δG(x, t) = ∅ if δG(x, t) is not defined. The observable reach

of the subset of states Q ⊆ XG given the execution of the

observable event e ∈ Σo is defined as:

NXe(Q) := δG(Q, e) (3)

We define by trim(G,Q) the operation that returns the

accessible subautomaton of G after deleting states Q ⊆ XG.

For any string s ∈ Σ∗, |s| is the length of s. We denote by eis
the ith event of s such that s = e1se

2
s . . . e

|s|
s . Lastly, si denotes

the ith prefix of s, i.e., si = e1s . . . e
i
s and s0 = ǫ.

II. ROBUST SUPERVISORY CONTROL AGAINST DECEPTION

ATTACKS

A. Notation

We first define useful notation for this section. Since we con-

sider that the observability properties of the events are static,

and not dynamic, we assume that the attacker only affects

observable events; clearly, an insertion of an unobservable

event would lead to immediate detection of the attacker by

the supervisor (whose transition function is only defined for

observable events). For this reason, we define the set Σa ⊆ Σo

to be the compromised event set. These are the events that the

attacker has the ability to alter, where “alter” means it can

insert or delete events.

We define the set of inserted events Σi
a = {ei | e ∈ Σa}

and the set of deleted events Σd
a = {ed | e ∈ Σa}. These sets

represent the actions of an attacker, and we use subscripts to

distinguish them from events generated by G such that Σi
a ∩

Σ = Σd
a ∩ Σ = Σi

a ∩ Σd
a = ∅. We call the events in Σ as

legitimate events, events that are not insertion nor deletion.

For convenience, we define Σe
a = Σi

a ∪ Σd
a, Σo,e = Σo ∪ Σe

a

and Σm = Σ ∪ Σe
a.

We define three projection operators with Σm as domain

and Σ as co-domain: (1)M is defined asM(ei) =M(ed) =
M(e) = e for e ∈ Σ; (2) PG(e) =M(e) for e ∈ Σ∪Σd

a and

PG(e) = ǫ for e ∈ Σi
a; (3) PS(e) =M(e) for e ∈ Σ ∪ Σi

a

and PS(e) = ǫ for e ∈ Σd
a. The mask M removes subscripts,

when present, from events in Σm, PG projects an event in Σm

to its actual event execution in G, and PS projects an event

in Σm to its event observation by S.

B. Modeling sensor deception attacks

We assume that the attacker hijacks the communication

channel between the plant and the supervisor and it can modify

the readings of events in Σa, as depicted in Fig. 3. Intuitively,

the attacker is modeled similarly as a supervisor. The attacker

takes its actions based on observing a new event e ∈ Σo

from G and its memory of the past modified string. Note

that, we assume that the attacker observes the same observable

events as the supervisors. Formally, we model an attacker as

a nondeterministic string edit function.

Definition II.1. Given a system G and a subset Σa ⊆ Σo,

an attacker is defined as a partial function fA : Σ∗
o,e × (Σo ∪

{ǫ}) → 2Σ
∗
o,e \ ∅ s.t. fA satisfies the following constraints

∀s ∈ Σ∗
o,e and e ∈ Σo:

1) fA(ǫ, ǫ) ⊆ Σi
a

∗
; fA(s, ǫ) = {ǫ} when s 6= ǫ;

2) If e ∈ Σo \ Σa: fA(s, e) ⊆ {e}Σi
a

∗
;

3) If e ∈ Σa: fA(s, e) ⊆ {e, ed}Σi
a

∗
.

The function fA captures a general model of deception

attack. Namely, fA defines a substitution rule where the

observation e is replaced by a string in the set fA(s, e).
Condition (1) allows event insertions when the plant is in

the initial state and constrains the substitution rule based on

observation of events from G1. Condition (2) constrains the

attacker from erasing e when e is outside of Σa. However,

the attacker may insert an arbitrary string t ∈ Σi
a

∗
after the

occurrence of e. Lastly, condition (3) allows events e ∈ Σa to

be edited to any string t ∈ {e, ed}Σi
a

∗
.

For simplicity, we assume that the function fA has been en-

coded into a finite-state automaton A = (XA,Σo,e, δA, x0,A)
where δA is complete with respect to Σo \ Σa and for any

(e ∈ Σa, q ∈ XA) then (δA(q, e)! ∨ δA(q, ed)!). This

assumption will be used later when we explain the composition

in the definition of the closed-loop behavior under attack. Let

A encode an fA, then the function fA is extracted from A as

follows: ∀s ∈ L(A) and e ∈ Σo, fA(s, e) = {t ∈ {e, ed}Σi
a

∗
|

δA(x0,A, st)!}, fA(ǫ, ǫ) = {t ∈ Σi
a

∗
| δA(x0,A, t)!}, and

fA(s, e) is undefined for all s ∈ Σ∗
o,e \ L(A) and e ∈ Σo.

In Appendix A, we show how to relax the above assumption

on automaton A to encode attack functions.

This formulation provides a simple way to handle attack

functions and it characterizes the behavior of the attacker. It

also provides a way to define specific attackers that are more

constrained than the constraints of Definition II.1, i.e., when

some prior knowledge about the attacker is available. In other

words, the automaton A can encode different attack strategies,

e.g., replacement attack, bounded attack, etc.

One important attack strategy for this problem is the “all-

out” attack strategy introduced in [2], [22]. In this model,

the attacker could attack whenever it is possible. Hereafter,

if there is no prior information about the attack strategy,

1Observe that clause (1) of Def. II.1 corrects a mistake in the corresponding
clause (1) of Def. 2 in [16], where ∅ was inadvertently used instead of {ǫ}
for initializing fA(s, ǫ).

4

then we assume that the attacker follows the all-out attack

strategy. The following example provides two attack strategies

for Example I.1, one of these strategies is the all-out strategy.

Example II.2. Attack functions fA1 and fA2 for the system

defined in Example I.1 and Σa = {b} were encoded in

automata A1 and A2 depicted in Fig. 2. Automaton A1

encodes the all-out strategy for this example. Although the all-

out strategy is a nondeterministic strategy since the attacker

can try all possible combinations of attacks, its automaton

representation is a deterministic automaton. Only one state

is necessary to encode the all-out strategy. Automaton A2

encodes a one sensor reading deletion attack strategy.

1

a,b,bd,bi

(a) A1 - all-out strategy.

1

a a,b

bd

(b) A2 - one deletion strategy

Fig. 2: Representation of two attack functions

C. Controlled system under sensor deception attack

The attacker in the controlled system induces a new con-

trolled language. Referring to Fig. 3, R, A and PS together

effectively generate a new supervisor SA for the system G.

Fig. 3: Sensor deception attack framework

To characterize the interaction of attacker A with the

system G and supervisor realization R, we must modify the

behavior of G and R such that it takes into account possible

modifications of A. We use the method in [14], where G and

R are augmented with attack actions providing an attacked

system Ga and an attacked supervisor Ra.

Definition II.2. Given G and Σa, we define the attacked plant

Ga as: Ga = (XGa
= XG,Σm = Σ∪Σe

a, δGa
, x0,Ga

= x0,G)
where δGa

(x, e) = δG(x, P
G(e)) and δG(x, ǫ) = x.

Similarly to the construction of Ga, we can modify the

behavior of R to reflect the modifications made by an attacker

on the communication channel.

Definition II.3. Given R and Σa, we define the attacked

supervisor as: Ra = (XRa
= XR,Σm, δRa

, x0,Ra
= x0,R)

where

δRa
(x, e) :=







δR(x, P
S(e)) if M(e) ∈ ΓR(x)

x if e ∈ Σi
a and M(e) 6∈ ΓR(x)

undefined otherwise

We assume that the supervisor “ignores” insertions of con-

trollable events that are not enabled by the current control

action at state x. This assumption is specified by the second

condition in the definition of δRa
. Namely, the insertion made

by the attacker is ineffective at this state. In some sense, this

means that the supervisor “knows” that this controllable event

has to be an insertion performed by the attacker, since it is

not an enabled event.

Based on Ga, Ra and A, we define the closed-loop language

of the attacked system to be L(SA/G) = PG(L(Ga||Ra||A)),
where || is the standard parallel composition operator [21].

Recall that the transition function of A is complete with

respect to Σo \ Σa and for any (e ∈ Σa, q ∈ XA) then

δA(q, e)! ∨ δA(q, ed)!. Therefore, the attacker is incapable of

disabling events of G.

Example II.3. We return to our running example. Figure 4

depicts the attacked system Ga, the attacked supervisor Ra,

and the supervised attacked system Ga||Ra||A
1, where A1 is

the all-out attack strategy shown in Fig. 2(a). Note that state

4 is reachable in the supervised attacked system.

b,bd b,bd

a

a

a

1 2

3 4
c

b,bd

bi bi

bi bi

(a) Ga

b,bi b,bi

a

A B

C c,bd

c,bi

c,bd

(b) Ra

bd

a

a

1,A

4,B

c

b
bi

bi

bi

bi

3,B

1,C

b

b

b

bd

bd

bi

bi

bibd

(c) Ga||Ra

Fig. 4: Supervisory control under sensor deception attack

Remark II.1. Even though the attack function fA is nonde-

terministic, the language generated by the attacked system

is uniquely defined, i.e., L(SA/G) = PG(L(Ga||Ra||A)).
In [11], the nondeterministic attack function defined therein

generates maximal and minimal attacked languages. Similar

to the problem encountered in [23], the maximal language

possibly contains strings that the supervised plant cannot

generate while the minimal does not define all possible strings

that this controlled plant generates. This issue does not arise

in our context. Our language definition also differs from the

one in [12]. Even though an attacker could have a string of

insertions to send to the supervisor, it does so by sending one

event at the time. On the other hand in [12], the attacker sends

the entire string modification to the supervisor.

D. Robustness against deception attacks

We investigate the problem of synthesizing a supervisor R
robust against the attack strategy A. We assume that the plant

G contains a set of critical states defined as Xcrit ⊂ XG;

these states are unsafe in the sense that they are states where

5

physical damage to the plant might occur. Although damage

is defined in relation to the set Xcrit, it could be generalized

in relation to any regular language by state space refinement.

Definition II.4. Supervisor R is robust (against sensor de-

ception attacks) with respect to G, Xcrit and A, if for any

s ∈ L(SA/G) then δG(x0,G, s) 6∈ Xcrit.

The definition of robustness is dependent on the attack

strategy A. Recall that the all-out strategy encompasses all

other attack strategies [2]. Therefore, a supervisor that is robust

against the all-out strategy is robust against any other A [14].

Problem II.1 (Synthesis of Robust Supervisor). Given G,

Xcrit and an attack strategy A, synthesize a robust supervisor

R, if one exists, with respect to G, Xcrit and A.

We are asking that the robust supervisor should prevent the

plant from reaching a critical state regardless of the fact that

it might receive inaccurate information. In other words, the

supervisor will react to every event that it receives, but since

it was designed to be robust to A, the insertions and deletions

that A performs will never cause G to reach Xcrit. This will

be guaranteed by the solution procedure presented in the next

section.

III. META-SUPERVISOR PROBLEM

In this section, we present our approach to solve Prob-

lem II.1. We briefly explain the idea of our approach. Figure 5

shows the connection of the problem formulation space (left

box) and the solution space (right box). The connection

between these two spaces is given by the arrows that cross

the two boxes. These arrows are labeled by results provided

in this section.

In the left box of Fig. 5, we have the problem formulation

space where the supervisor R is unknown. Based on G, Σo,

Σc and A, we construct a meta-system, called A, in a space

where all supervisors are defined. This construction is given

in Definition III.5. The meta-system is part of the proposed

solution space and it is represented in the right box of Fig. 5.

Although all supervisors are defined in A, which is shown

by Proposition III.1, we are only interested in robust supervi-

sors. In order to obtain robust supervisors, we use techniques

of partially observed supervisory control theory [19], [20] in

the meta-system. The structure Asup is obtained via Defini-

tion III.7 and it contains all robust supervisors against sensor

deception attacks on Σa.

Finally, to return to our problem formulation space, we ex-

tract one supervisor, if one exists, from Asup. Such extraction

is given by Algorithm 1.

Fig. 5: Relation of the system and the meta-system

A. Definition

Inspired by the techniques of two-player reachability games,

we construct an arena as it is constructed in these games. In

the arena, player 1 represents the supervisor while player 2

represents the adversarial environment. The arena exhaustively

captures the game between the supervisor and the environ-

ment, where the supervisor selects control decisions (Γ) and

the environment executes events (Σo,e). In the arena, player 1’s

transitions record a control decision made by the supervisor.

On the other hand, player 2’s transitions represent actions of

the plant G or actions of the attacker A. Formally, the arena

is defined as follows.

Definition III.5. Given plant G and attack function A, we

define the arena A as 4-tuple:

A = (Q1 ∪Q2, A1 ∪ A2, h1 ∪ h2, q0) (4)

where,

• Q1 ⊆ 2XG ×XA is the set of states where the supervisor

issues a control decision. Its states have the form of

(S1, S2), where S1 is the estimate of the states (as it

is executed by the plant) of G and S2 is the attacker’s

state. For convenience we define the projection operators

Ii((S1, S2)) = Si for i ∈ {1, 2};
• Q2 ⊆ 2XG×XA×Γ×({ǫ}∪Σa) is the set of states where

the adversarial environment issues a decision. Its states

have the form (S1, S2, γ, σ), where S1 and S2 are defined

as in Q1 states, γ is the last control decision made by the

supervisor, and σ is related to inserted events. The event

σ is equal to e ∈ Σa if the last transition was ei ∈ Σi
a,

otherwise it is equal to ǫ. We use the same projection

operators Ii for states in Q2 for i ∈ {1, 2};
• A1 = Γ and A2 = Σo,e are respectively the ac-

tions/decisions of player 1 and player 2;

• h1 : Q1 × A1 → Q2 is built as follows: for any q1 =
(S1, S2) ∈ Q1 and γ ∈ A1

h1(q1, γ) :=
(

URγ(S1), S2, γ, ǫ
)

(5)

• h2 : Q2 × A2 → Q1 ∪ Q2 is built as follows for any

q2 = (S1, S2, γ, σ) ∈ Q2:

Let e ∈ Σo:

h2(q2, e) =















(

NXe(S1), δA(S2, e)
)

if (e ∈ ΓG(S1) ∩ γ)∧
(e ∈ ΓA(S2)) ∧ (σ = ǫ)

(

S1, S2

)

if (σ = e)
undefined otherwise

(6)

Let e ∈ Σa:

h2(q2, ei) =







(

S1, δA(S2, ei), γ, e
)

if (ei ∈ ΓA(S2))∧
(σ = ǫ)

undefined otherwise

(7)

h2(q2, ed) =















(

URγ(NXe(S1)), δA(S2, ed), γ, ǫ
)

if (e ∈ ΓG(S1) ∩ γ)∧
(ed ∈ ΓA(S2)) ∧ (σ = ǫ)

undefined otherwise

(8)

6

• q0 ∈ Q1 is the initial S-state: q0 := ({x0,G}, x0,A).

We explain the definition of the transition functions h1 and

h2 in detail. The definition of h1 is simple and it defines a

transition from player 1 to player 2, which records a control

decision made by the supervisor, and it updates G’s state

estimate according to this decision. On the other hand, h2

is more complex since player 2 has two types of transitions.

The first type is transitions from player 2 to player 1 which

characterizes the visible decision made by the environment

and is related to events in Σo. These transitions are defined

in Eq. (6), and they are illustrated in Fig. 6. In Fig. 6(a), an

event e ∈ Σo that is feasible in G from some state in S1 is

selected; thus, both the state estimate and the attacker’s state

are updated. In Fig 6(b), q2 = (S1, S2, γ, e) ∈ Q2 is reached

after an insertion since e 6= ǫ; thus, G’s state estimate and the

attacker’s state remain unchanged.

(a) First transition of Eq. (6) (b) Second transition of Eq. (6)

Fig. 6: Transition function h2 from player 2 to player 1

Transitions from player 2 to itself characterize invisible,

from the supervisor’s perspective, decisions. They are only

defined for events in Σe
a . These transitions are defined by

Eqs. (7-8). An attacker can insert any event in e ∈ Σa, as long

as ei is allowed in the current attacker’s state. The inserted

events e ∈ Σi
a are not going to be seen by the supervisor,

as only the attacker knows it decided to insert the event.

Insertions will be seen by the supervisor as genuine events.

But ei represents here (in the context of the game arena) the

intention of the attacker to insert. Equation (7) (depicted in

Fig. 7(a)) is the unobservable part, where an insertion decision

was selected and the attacker’s state and the fourth component

of q2 ∈ Q2 are updated. The observable part is shown by

Fig. 6(b). In the case of a deleted event, from the supervisor’s

perspective, it is seen as an ǫ event as well. That is, the

supervisor cannot change its control decision when the attacker

deletes an event, as shown in Fig. 7(b).

(a) Transition of Eq. (7) (b) Transition of Eq. (8)

Fig. 7: Transition function h2 from player 2 to player 2

Remark 1: The elements of Q1 and Q2 are defined such

that they incorporate the “sufficient information” (in the sense

of information state in system theory) that each player needs

to make its respective decision. Equations (5-8) guarantee

by construction that the updates of the information states

are consistent with the plant dynamics and the actions of

the attacker. Overall, the arena constructed thereby captures

the possible attacks and all possible supervisors in a finite

structure. We prove both results later on.

Example III.4. We return to our illustrative example to show

results on the construction of the arena. We constructA for the

system G, Xcrit = {4} and A1 depicted in Fig. 2(a). Since

we construct A for the all-out attack strategy, we can omit

the attacker state. The arena has a total of 26 states.Figure 8

illustrates arena A constructed with respect to A1 and G. We

can observe the encoding of insertion and deletion in this

arena. For example, at state ({1}, {a, b, c}, ǫ) the transition

bi goes to state ({1}, {a, b, c}, b) and then transition b takes

state ({1}, {a, b, c}, b) to state ({1}).

For convenience, we extend the definition of h2 based on a

given control decision. Namely, we define a transition function

H2 that always start and end in Q2 states. This notation

simplifies walks in A.

Definition III.6. We define the function H2 : Q2×Σo,e×Γ→
Q2 as:

H2(q, e, γ) :=















h1(h2(q, e), γ), if e ∈ Σo

h2(q, e) if e ∈ Σd
a

h1(h2(h2(q, e),M(e)), γ), if e ∈ Σi
a

undefined, otherwise
(9)

The function H2 can be recursively extended for

strings s ∈ Σ∗
o,e given a sequence of control

decisions γ1 . . . γ|s|, i.e., H2(q, s, γ1 . . . γ|s|) =

H2(H2(q, s
|s|−1, γ1 . . . γ|s|−1), e

|s|
s , γ|s|).

B. Properties

For a fixed supervisor R and attacker A, we obtain the

language L(Ga||Ra||A) which contains the possible string

executions in the attacked system, e.g., strings of events in

Σm = Σ ∪ Σe
a. Given a string s ∈ PΣmΣo,e

(L(Ga||Ra||A)),
we can find the state estimate of Ga after execution of s, i.e.,

the state estimate of Ga under supervision of Ra and attack

strategy A. Formally, this state estimate is

RE(s) ={x ∈ XGa
| x = δGa

(x0,Ga
, t) for

t ∈ P−1
ΣmΣo,e

(s) ∩ L(Ga||Ra||A)} (10)

In the construction of A, we allow the attacker to insert

events that are not allowed by the current control decision

(see Eq. (7)). Therefore, given a supervisor R, we need to

define its control decisions for all s ∈ Σ∗
o, differing from the

usual definition only for s ∈ PΣΣo
(L(G)). For this reason, we

extend the function δR to be a complete function in Σo.

∆R(x, e) =

{

δR(x, e) if e ∈ ΓR(x)
x otherwise

(11)

for x ∈ R and e ∈ Σo. Intuitively, ∆R extends δR by simply

ignoring the events that are not defined in δR. The function

∆R is extended to s ∈ Σ∗
o as δR is extended. Lastly, we define

the control decision of R for any s ∈ Σ∗
o as:

CR(s) = ΓR(∆R(x0,R, s)) (12)

7

{1}

{2}
a

{a,b,c}

{2,3},{a,b,c},
{a,b,c}

{3},{a,b,c},

bd bd

{1},{a,b,c},b

{1},{a,b,c},

bi

b

{3}
b b,a

{1},{a,c},
a

{a,c}

{a,b,c}{a,c}

{b,c}

{c} bd

bi

bi

b

{c}
{b,c}

{c}

{b,c}

{a,c}

{1},{c}, {1},{b,c},

{2,3}

{1,4},{a,b,c},

{2,3},{c},

{2,3},{a,b,c},b

{2,3},{a,c},

{c} a

b
{a,b,c}

{2,3},{b,c}, {2,3},{b,c},b
bi

b

{a,c}

{b,c}

b

{1,4},{b,c},

bd

{1},{b,c},b
bi

b

{3},{a,c},

{3},{b,c},

{3},{c},
b

bd

bd

{3},{a,b,c},

{3},{b,c},b
bi

b

b

a

a

b

Fig. 8: Full arena A

Based on H2 and CR, we show that the arena A computes

the same state estimates based on the supervisor R and attacker

A as the ones computed based on Ga||Ra||A. This result is

shown in Proposition III.1 and its proof is in Appendix B.

Proposition III.1. Given a system G, a supervisor R,

an attack function A and arena A, then for any s ∈
PΣmΣo,e

(L(Ga||Ra||A)), we have that

H2(x0, s, γ1 . . . γ|s|)! (13)

I1(H2(x0, s, γ1 . . . γ|s|)) = RE(s) (14)

I2(H2(x0, s, γ1 . . . γ|s|)) = δA(x0,A, s) (15)

where x0 = h1(q0, CR(ǫ)) and γi = CR(PS(si)).

Recall that in the left box of Fig. 5 the supervisor is

unknown. Equation (13) tells us that the arena captures all

possible interactions between any supervisor R and attack

function A with the plant G. It captures all possible interac-

tions since Proposition III.1 is true regardless of the supervisor

R and of the attack function A. This is one of the main

benefits of constructing the arena A. It defines a space where

all supervisors and attacker actions based on A for the plant

G exist.

Moreover, Eqs. (14-15) says that the arena correctly cap-

tures the interaction between the attacker, supervisor and

plant. Equation (14) computes G’s state estimate of based

on the modified string s ∈ PΣmΣo,e
(L(Ga||Ra||A)) and the

control decisions taken by R along the observed string. These

estimates capture an agent that has full knowledge of the

modification on the string s and the decisions taken by R.

On the other hand, Eq. (15) establishes the correct state of the

attacker A in the construction of A.

The arena A has, in worst-case, |XA|2|XG| Q1-states and

|XA|(|Σa| + 1)2|XG|+|Σc| Q2-states given that |Γ| ≤ 2|Σc|.

Consequently, the worst-case running time of the construction

of the arena A is O(|XA||Σo|22|XG|+|Σc|) since Σa ⊆ Σo. We

can construct A starting from its initial state and performing

a breadth-first search based on equations h1 and h2.

C. Solution of the Meta-Control problem

Our approach to solve Problem II.1 is to consider the

above-constructed arena A as the uncontrolled system in a

meta-control problem, which is posed as a supervisory control

problem for a partially-observed discrete event system, as

originally considered in [18]. For that reason, we will refer

to A as the meta-system. As will become clear in the fol-

lowing discussion, this supervisory control approach naturally

captures our synthesis objectives, and moreover supervisory

control theory provides a complete characterization of the

solution. Such a methodology was previously used in [24],

[25] for instance; however, in these works the meta-control

problem is a control problem under full observation. The same

situation does not apply in our case, where events in Σe
a are

unobservable (from the supervisor’s perspective).

To formally pose the meta-control problem, we need a

specification for the meta-system. In fact, the specification

emerges from the corresponding specification in Problem II.1,

which states that the controlled system should never reach any

state in Xcrit. The same specification is to be enforced in A,

where the state estimate of G represents the reachable states

of G. Thus, the specification for the meta-control problem is

that the meta-controlled system should never reach any state

q ∈ Q1 ∪Q2 such that I1(q) ∩Xcrit 6= ∅.
The next step in the meta-control problem formulation is

to specify the controllable and observable events in the meta-

system A. We already mentioned that all e ∈ Σe
a are unobserv-

able events. In fact, they are the only unobservable events in

A since they are moves of the attacker that the supervisor does

not directly observe. In regard to the controllable events, the

supervisor makes decisions in order to react to the decisions

made by the environment. Therefore, the events in A1 \{Σuc}
are controllable, while those in A2∪{Σuc} are uncontrollable.

Note that, we explicitly exclude the control decision composed

only of uncontrollable events as a meta-controllable event;

the supervisor should always be able to at least enable the

uncontrollable events, otherwise it would not be admissible. In

this way, the supervisor can always issue at least one control

decision, i.e., enable all uncontrollable plant events. We are

now able to formulate the meta-control problem.

Definition III.7. Given A constructed with respect to G and

A, with events E = A1 ∪ A2, Ec = A1 \ {Σuc} as the set

of controllable events and Euo = Σe
a as the set of unobserv-

able events. Let Atrim = trim(A,M) be the specification

automaton, where M = {q ∈ QA
1 ∪ QA

2 |I1(q) ∩Xcrit 6= ∅}
2.

2We use superscripts to differentiate the different arena structures, e.g., A,
Atrim, etc.

8

Calculate the supremal controllable and normal sublanguage of

the language of Atrim with respect to the language of A, and

let this supremal sublanguage be generated by the solution-

arena denoted by Asup.

Note that all controllable events in the meta-control problem

are also observable, i.e., Ec ⊆ Eo. Therefore, the control-

lability and observability conditions are equivalent to the

controllability and normality conditions. Hence, in this case,

the supremal controllable and observable sublanguage exists

and is equal to the supremal controllable and normal sublan-

guage; see, e.g., §3.7.5 in [21]. As consequence a supremal

and unique solution of the meta-control problem exists. This

solution is the language generated by the solution-arena Asup.

The state structure of Asup will depend on the algorithm

used to compute the supremal controllable and normal sub-

language of Atrim. One example of the structure of Asup is

provided.

Example III.5. We return to our running example. Based on

A, we obtain Asup using an integrated (for controllability

and normality) iterative algorithm to compute the supre-

mal controllable and normal sublanguage that is based on

preprocessing the input automata to satisfy simultaneously

a strict sub-automaton [21] condition and a State Partition

Automaton [26] condition. As part of the algorithm, one needs

to refine A so that its observer is a state partition automa-

ton (using algorithm in [26]), i.e., to compute A||Obs(A),
where Obs is the observer operation with respect to Euo

[21]. The resulting Asup is depicted in Fig. 9. Each state

in Asup is a tuple, where the first component is a state

in A and the second component is a state in Obs(A),
where obs1 = {({1}, {b, c}, ǫ), ({1}, {b, c}, b), ({3}, {b, c}, ǫ),
({3}, {b, c}, b)} and obs2 = {({1}, {c}, ǫ), ({3}, {c}, ǫ)}.

{1},

{{1}}

{2},

{{2}}

{c} (�����c},)

{({1},{c},)}

{a,c}

a

({2,3},{c},),

{({2,3},{c},)}

{c}

{b,c}({1},{b,c},),

obs1

{1},

{{1},{3}}

{3},

{{1},{3}}

({3},{b,c},),

obs1

bd

bd

({1},{b,c},b),

obs1

({3},{b,c},b),

obs1

bi bi

bb bb

{b,c}{b,c}

({1},{c},),

obs2

({3},{c},),

obs2

{c}

{c}

({1},{a,c},),

{({1},{a,c},)}

Fig. 9: Asup

Regardless of the algorithm to obtainAsup, it has a structure

with Q1-like states and Q2-like states, since it accepts a

sublanguage of Atrim. Namely, it has states where only

control decisions are allowed (Q1 states) and states where only

transitions with events in Σo,e are defined (Q2 states). Thus,

we can use the functions previously defined for A in Asup.

Remark III.2. The worst-case running time to obtain the

supremal controllable and normal sublanguage is exponential

in product of the number of states of the system and the

specification [27]. Therefore, the worst-case running time to

obtain the Asup is O(2(|Q1|+|Q2|)
2

).

The way A is constructed is such that it embeds the set

of all supervisors for the original plant G. Therefore, the

uniqueness of the language generated by Asup and the fact

that it is the supremal solution of the meta-control problem

means that the structure Asup embeds a family of supervisors

S, where the controlled behavior generated by each member

of that family does not reach any state in Xcrit. Moreover,

since A is constructed taking into account the attack function

A, this family of supervisors is robust with respect to A. This

leads us to the following result. Its proof is in Appendix B.

Theorem III.1. A supervisor R is a robust

supervisor with respect to A if and only if

(∀s ∈ PΣmΣo,e
(L(Ga||Ra||A)))[HAsup

2 (x0, s, γ1 . . . γ|s|)!],
where x0 = h1(q

Asup

0 , CR(ǫ)) and γi = CR(PS(si)).

Corollary III.1. Asup = ∅ if and only if there does not exist

any robust supervisor R with respect to attacker A.

Theorem III.1 states that a supervisor is robust if and only if

it is embedded in Asup. Next, Corollary III.1 gives a necessary

and sufficient condition for the existence of a solution for

Problem II.1. Given that there exists a robust supervisor,

we provide an algorithm3 to extract a supervisor that solves

Problem II.1. First, we define function H1 as we defined H2.

Definition III.8. Let the function H1 : Q1 × Σo,e × Γ→ Q1

be defined as:

H1(q, e, γ) :=















h2(h1(q, γ), e), if e ∈ Σo

q if e ∈ Σd
a

h2(h2(h1(q, γ), e),M(e)), if e ∈ Σi
a

undefined, otherwise
(16)

Algorithm 1 Robust Supervisor Extraction

Input: Asup

Output: Rr = (XRr
,Σ, δRr

, x0,Rr
)

1: x0,Rr
= qA

sup

0

2: XRr
← {x0,Rr

}, δRr
← ∅

3: Expand(x0,Rr
)

4: procedure EXPAND(x)

5: select γ ∈ ΓAsup(x) s.t. ∀γ′ ∈ ΓAsup(x) : γ 6⊂ γ′

6: for all e ∈ Σ ∩ γ do

7: if e ∈ Σo then

8: y = HAsup

1 (x, e, γ), δRr
← δRr

∪ (x, e, y)
9: XRr

← XRr
∪ {y}

10: if y /∈ XRr
then

11: Expand(y)

12: else

13: δRr
← δRr

∪ (x, e, x)

Algorithm 1 starts at the initial state of Asup and performs

a Depth First Search by selecting the largest control decisions

at each state that it visits. By largest, we mean that it selects

a control decision that is not a subset of any other control

decision defined at state x, as described by line 5. Note that,

it is possible to have more than two decisions that satisfy

this condition. In this case, the algorithm selects one of the

3There are different manners for a designer to extract a robust supervisor.

9

possible decisions in a nondeterministic manner. The algorithm

terminates since Asup is finite. Moreover, the algorithm only

traverses player 1 states, where the control decisions are

defined.

Corollary III.2. A supervisor Rr constructed by Algorithm

1 is a solution for Problem II.1.

Remark III.3. The worst-case running time of Algorithm 1

is linear in the number of state of Asup. For this reason, the

running time of the entire synthesis procedure is exponential

in the number of states of A. Since the number of states of

A is exponential in the number of states of G, the overall

worst-case running time is double exponential in the number

of states of G, which is one exponential order smaller than

in [12] and one exponential order higher than in [14], two

references that were reviewed in Section I.

Example III.6. To conclude this section, we provide two

supervisors extracted via Algorithm 1. These two supervisors

are depicted in Fig. 10.

b

b

A B

cc

(a) Robust supervisor R1

a

A B

cc

(b) Robust supervisor R2

Fig. 10: Robust supervisors with respect to A1

IV. SELECTING SUPERVISORS IN THE ROBUST ARENA

Algorithm 1 provides one way of extracting robust super-

visors from Asup. As we explained before, it selects maximal

control decisions in the Q1 states that the algorithm visits.

Example III.6 shows that this extraction does not provide

specific information about the language generated by super-

vised system once a supervisor is selected, other than the

fact that we are choosing a locally maximal control decision.

While supervisor R1 in Fig. 10(a) generates a live language,

supervisor R2 in Fig. 10(b) is blocking. Nonetheless, the space

defined in Asup provides maximum flexibility in extracting

different supervisors since all robust supervisors are embedded

in Asup. The methods in [11], [12], [14] do not provide the

flexibility of Asup since they exploit algorithms of Supervisory

Control Theory where only one supervisor can be obtained at

a time. In fact, when explicit comparisons can be made, the

supervisors obtained by their methods are embedded in the

corresponding Asup.

Another benefit of the construction of Asup is the ability

to exploit results in the area of turn-based two-player graph-

games. Results from these areas can be leveraged to study

different manners of extracting robust supervisors, e.g., to

study quantitative versions of the robust supervisor problem

under some cost model [28], [29], [30].

We provide an example of a supervisor extraction algorithm

based on a quantitative measure. First, we define a measure

over the supervised system R/G, i.e., over the states of

the automaton G||R. Let the set Xdead = {x ∈ XG||R |
ΓG||R(δG||R(x, s)) = ∅ for s ∈ Σ∗

uo} be the set of states

in G||R that can reach a deadlock state via an unobservable

string. We define r : XG||R → [0,+∞) ∪ {−∞} to be a

reward function for any (x, y) ∈ XG||R and c ∈ [0,∞) as:

r((x, y)) =







−∞ if x ∈ Xcrit

0 if (x, y) ∈ Xdead

c otherwise

(17)

The reward function r punishes states from where the

system G||R might deadlock. Based on the reward function r,

we define the following total reward for the supervised system

G||R.

Reward(R,G) =
∑

x∈XG||R

r(x) (18)

We can generalize Algorithm 1 to incorporate this quanti-

tative measure such that it extracts a supervisor from Asup

that maximizes the measure Reward(R,G). In our running

example, this new method extracts supervisor R1. Further, we

can assume that the attacker tries to minimize Reward(R,G)
in this extraction method. In this scenario, we would pose a

minmax problem in order to select a supervisor from Asup.

We leave these extensions for future work.

V. ROBOT MOTION PLANNING EXAMPLE

We developed a tool4 to automatically construct A, as in

Definition III.5, and to compute Asup. Moreover, Algorithm 1

is also implemented in our tool. Our evaluation was done on

a Linux machine with 2.2GHz CPU and 16GB memory.

We consider a robot moving in a possibly hostile environ-

ment. The robot is assumed to have four different movement

modes that are modeled as controllable and observable events.

The robot moves freely in the workspace shown in Fig. 11(a).

Its initial state is the blue cell denoted as q0 and the red cells

are considered to be obstacles. Moreover, the shaded region

is assumed to be hostile and the sensor readings of the robot

could be under attack. This uncontrolled system is modeled

by the automaton depicted in Fig. 11(b). We want to design

a robust supervisor that enforces the following properties: (1)

the robot must avoid the obstacles; (2) the robot can always

access states q0 and q1.

The set of compromised events is Σa = {E∗,W∗, N∗, S∗}
since we consider that the sensor readings in the shaded

area might be under attack. First, we construct the arena A
considering the all-out attack strategy. The number of states

in A is 18649 states. The state space explosion is due to the

number of control decisions: there are 256 possible control

decisions.

After constructing A, we obtain Asup as described in

Definition III.7. To compute the supremal controllable and

normal sublanguage, we used the algorithm described in

Example III.5. The number of states in Asup is 65358 states.

Note that Asup has more states than A. The larger state space

in Asup is due to necessary preprocessing done by the iterative

algorithm for the computation of the supremal controllable and

normal sublaguage.

4Our software tool is available at: URL. URL will be included upon final
acceptance of the paper.

10

(a) Robot workspace: the robot
starts in the blue cell denoted
by q0; the shaded area is con-
sidered hostile and the sensor
readings in this area are com-
promised.

E

0 1

5

2

7

10

15

12

17

4

9

20 22

14

19

24

E E

E E* E

E E

E E

E E E

W W W

W W* W

W W

W W

W W W

S

S

S

S

S

S*

S

S S

S

S

S

S

S

N

N

N

N

N

N*

N N

N

N

N

N

N

N

S* E*

E*

S*

W*

W*

W* W*

S*

S*N*

N* N*

N*

E* E*

(b) Model of the robot in the
workspace: Σ = Σc = Σo =

{E,W,N, S,E∗,W ∗, N∗, S∗}

Fig. 11: Robot workspace and attack simulation

Finally, any supervisor selected from Asup is robust against

the all-out attack strategy, i.e., it satisfies property (1). There-

fore, we must select a supervisor that satisfies property (2).

For this reason, we modify Algorithm 1 to extract a supervisor

from Asup such that property (2) is satisfied. This supervisor

is depicted in Fig. 12.

0

1 2 3 4

6

8 10

5

7

12

13

E* E

W W

S

S

S

S

N

N

N

N

E*

W* W*

E

E

E

W

W

Fig. 12: Robust supervisor for robot in a hostile environment

VI. CONCLUSION

We have considered a class of problems in cyber-security

where sensor readings in a feedback control system may

be manipulated by a malicious attacker. By formulating the

problem at the supervisory control layer of a cyber-physical

system, we were able to leverage techniques from games

on automata under partial information and from supervisory

control of partially-observed discrete event systems to develop

a solution methodology to prevent damage to the system when

some sensor readings may be edited by the attacker. Our

problem formulation is parameterized by an attacker strategy

over a set of compromised events. In this manner, synthesis of

robust supervisors against sensor deception attack strategies is

considered, e.g., bounded attack strategies, replacement attack

strategies, etc. Moreover, if there is no prior information about

the attacker strategy, then we consider the general all-out

attack strategy. A supervisor robust against the all-out attack

strategy is robust against any other sensor deception attack

strategy.

The space defined in Asup provides maximum flexibility

in extracting different supervisors since all robust supervisors

are embedded in Asup. As discussed in Section IV, it would

be interesting to investigate methods to extract supervisors

from Asup in order to satisfy additional constraints, such as

optimality with respect to some quantitative criterion [29],

[28]. Finally, identifying ways to reduce the state space of

the arena by exploiting a suitable notion of state equivalence

is another important research direction.

APPENDIX A

ATTACK FUNCTION ENCODING

In Section II, we assume that the automaton A that encodes

an attack function fA has a transition function complete with

respect to Σo \ Σa and for any (e ∈ Σa, q ∈ XA) then

(δA(q, e)! ∨ δA(q, ed)!). To encode any attack function fA as

an automaton, this assumption does not need to be satisfied.

However, this means that the attacker might “block” the

controlled system if it receives an unexpected event executed

by the plant, i.e., fA(s, e) is undefined.

Based on the above assumption, we relax the completeness

assumption of δA in order to encode any attack function fA as

an automaton. Namely, the partial transition function δA of A
must satisfy one of the following conditions for any q ∈ XA:

(1) (∀e ∈ Σo \ Σa)[δA(q, e)!] and (∀e ∈ Σa)[δA(q, e)! ∨
δA(q, ed)!]; or

(2) (∀e ∈ Σo ∪ Σd
a)[δA(q, e) is not defined] and (∃e ∈

Σi
a)[δA(q, e)!];

Condition (2) allows attack strategies where event insertion

is faster than the plant executes events. Note that condition

(2) violates controllability since it temporarily blocks the plant

from executing events. The practicality of this assumption will

depend on the plant’s response time, i.e., this attack condition

is application dependent. Condition (1) remains unchanged,

i.e., the attacker does not block the plant in states that satisfy

this condition.

APPENDIX B

PROOFS

Proposition III.1

Proof. The result is proved by induction on the length of the

string s ∈ PΣmΣo,e
(L(Ga||Ra||A)).

Before we start the induction proof, we state two important

results. First, we define CRa
in the same manner as CR, but

11

the control decisions of Ra are defined over Σm. It can be

shown by induction that the following equality holds for any

s ∈ L(Ga||Ra||A):

CR(P
S(s)) = CRa

(s) ∩ Σ (19)

Intuitively, Eq. (19) follows since Ra is a copy or R with

insertion and deletions events added based on PS .

Second, the function RE can also be computed recursively

as follows for s ∈ Po,e(L(Ga||Ra||A)) and e ∈ Σo,e:

RE(se) ={x ∈ XGa
| x = δGa

(δGa
(RE(s), e), t) for

t ∈ (Σuo ∩ CRa
(se))∗} (20)

Σuo defines the unobservable events of Ga. Then, only super-

visor Ra disables events in Σuo to be executed in Ga since A
is defined over Σo,e. For this reason, Eq. 20 is equivalent to

Eq. 10.

Induction basis: s = ǫ.

We have that H2(x0, ǫ, ǫ) = h1(q0, CR(ǫ)) is well defined

since h1 is complete with respect to Γ. It also follows that

δA(x0,A, ǫ) = I2(x0) since ǫ ∈ L(Ga||Ra||A) and I2(x0) =
x0,A. We have that I1(H2(x0, ǫ, ǫ)) = URCR(ǫ)(x0,G).

RE(ǫ)
Eq.(10)
= {x ∈ XGa

| x = δGa
(x0,Ga

, t) for

t ∈ P−1
ΣmΣo,e

(ǫ) ∩ L(Ga||Ra||A)} (21)

Def.II.2
PΣmΣo,e

= {x ∈ XG | x = δG(x0,G, t) for

t ∈ Σ∗
uo ∩ L(Ga||Ra||A)} (22)

Def.II.3= {x ∈ XG | x = δG(x0,G, t) for

t ∈ (Σuo ∩ CRa
(ǫ))∗} (23)

Eq.(19)
= {x ∈ XG | x = δG(x0,G, t) for

t ∈ (Σuo ∩ CR(ǫ))
∗} (24)

Eq.(2)
= URCR(ǫ)(x0,G) (25)

Induction hypothesis: H2(x0, s, γ1 . . . γ|s|)!,
I1(H2(x0, s, γ1 . . . γ|s|)) = RE(s) and

I2(H2(x0, s, γ1 . . . γ|s|)) = δA(x0,A, s) for all

s ∈ L(Ga||Ra||A) and |s| = n.

Induction step: Let e ∈ Σo,e, s ∈ L(Ga||Ra||A),
|s| = n and se ∈ L(Ga||Ra||A). The induction hypothesis

gives us H2(x0, s, γ1 . . . γ|s|)!, I1(H2(x0, s, γ1 . . . γ|s|)) =
RE(s), and I2(H2(x0, s, γ1 . . . γ|s|)) = δA(x0,A, s). Let q =
H2(x0, s, γ1 . . . γ|s|).

Since se ∈ L(Ga||Ra||A) then it follows

that H2(q, e, γ|se|)!. Moreover, it follows that

I2(H2(x0, se, γ1 . . . γ|se|)) = δA(x0,A, se) by construction of

A.

For equality of Eq. (14), we divide the event e into three

cases.

First, e ∈ Σd
a. Then, γ|se| = γ|s| Based on the

construction of A, we have that I1(H2(q, e, γ|se|)) =

URγ|s|
(NXPG(e)(I1(q))).

RE(se)
Eq.(20)

= {x ∈ XGa
| x = δGa

(δGa
(RE(s), e), t) for

t ∈ (Σuo ∩ CRa
(se))∗} (26)

Def.II.2
Eq.(19)

= {x ∈ XG | x = δG(δG(RE(s), PG(e)), t) for

t ∈ (Σuo ∩ CR(P
S(se)))∗} (27)

Eq.(3)
γ|s|=γ|se|

= {x ∈ XG | x = δG(NXPG(e)(RE(s)), t) for

t ∈ (Σuo ∩ γ|s|)
∗} (28)

Eq.(2)
= URγ|s|

(NXPG(e)(RE(s))) (29)

= URγ|s|
(NXPG(e)(I1(q))) (30)

Let, e ∈ Σi
a. Based on the construction of A, we have that

I1(H2(q, e, γ|se|)) = URγ|se|
(I1(q)).

RE(se)
Eq.(20)

= {x ∈ XGa
| x = δGa

(δGa
(RE(s), e), t) for

t ∈ (Σuo ∩ CRa
(se))∗} (31)

Def.II.2
Eq.(19)

= {x ∈ XG | x = δG(δG(RE(s), PG(e)), t) for

t ∈ (Σuo ∩ CR(P
S(se)))∗} (32)

PG(e)=ǫ
= {x ∈ XG | x = δG(RE(s), t) for

t ∈ (Σuo ∩ γ|se|)
∗} (33)

Eq.(2)
= URγ|se|

(RE(s)) (34)

= URγ|se|
(I1(q)) (35)

Lastly, e ∈ Σo. Based on the construction of A, we have

that I1(H2(q, e, γ|se|)) = URγ|se|
(NXe(I1(q))).

RE(se)
Eq.(20)

= {x ∈ XGa
| x = δGa

(δGa
(RE(s), e), t) for

t ∈ (Σuo ∩ CRa
(se))∗} (36)

Def.II.2
Eq.(19)

= {x ∈ XG | x = δG(δG(RE(s), PG(e)), t) for

t ∈ (Σuo ∩ CR(P
S(se)))∗} (37)

Eq.(3)
PG(e)=e

= {x ∈ XG | x = δG(NXe(RE(s)), t) for

t ∈ (Σuo ∩ γ|se|)
∗} (38)

Eq.(2)
= URγ|se|

(NXe(RE(s))) (39)

= URγ|se|
(NXe(I1(q))) (40)

This concludes our proof.

Theorem III.1

Proof. We start with the only if part. Let R be a robust super-

visor. Proposition III.1 guarantees that HA
2 (x0, s, γ1 . . . γ|s|) is

defined for any s ∈ L(Ga||Ra||A) and for any attack function

representation A. To analyze the meta-system A, we have to

define some notation for it.

We are analyzingA as a meta-system, namely as an automa-

ton. The function h is a the combination of the functions h1

and h2. Let E = A1∪A2 be the event set of A, Eo = E \Σa
e

12

the observable event set, Ec = A1 \ {Σuc} the controllable

event set. Moreover, the function η : E∗ → Σ∗
o projects

strings in E∗ to strings in Σ∗
o. Intuitively, for any s ∈ L(A)

the function η(s) returns the string that is observed by the

supervisor.

We construct the language L ⊂ L(A) recursively as:

1) ǫ ∈ L
2) s ∈ L ∧ h(q0, s) ∈ QA

2 ⇒ se ∈ L, ∀e ∈ ΓA(h(q0, s))
3) s ∈ L∧h(q0, s) ∈ QA

1 ∧
(

e = {Σuc}∨e = CR(η(s))
)

⇒
se ∈ L

The language L is by construction controllable w.r.t. Ec and

L(A); we show that L is normal w.r.t. Eo and L(A). The result

is shown by contradiction. Assume that L is not normal, then

there exist shortest s ∈ L and t ∈ L(A) \L s.t. P (s) = P (t).
In the construction of L, player 2 is not constrained, meaning

that the shortest strings that belong to L(A) \ L end with an

event in A1 (control decisions). For this reason, e
|s|
s = e

|t|
t

and PEEo
(s|s|−1) = PEEo

(t|t|−1). It implies that η(s|s|−1) =
η(t|t|−1) and CR(η(s|s|−1)) = CR(η(t|t|−1)). By the definition

of L, t ∈ L. This contradicts our assumption.

It is also true that L ⊆ L(Atrim), otherwise R would not

be a robust supervisor. Intuitively, the actions made by player

2 are not constrained in the construction of L. This guarantees

that L embeds all actions of attacker A. The actions of player

1 are constrained based on R and {Σuc}. R is robust and

changing any of its control actions for any string by {Σuc}
will preserve robustness since {Σuc} ⊆ γ for any γ ∈ Γ.

Definition III.7 defines L(Asup) to be the supremal control-

lable and normal sublanguage of L(Atrim) w.r.t. Ec, Eo and

L(A). Since L ⊆ L(Atrim) and it is controllable and normal,

then L ⊆ L(Asup). Therefore, HAsup

2 (x0, s, γ1 . . . γ|s|)! holds

for all s ∈ PΣmΣo,e
(L(Ga||Ra||A)).

For the if part, the result follows from the construction of

A, Atrim and the properties of Asup.

ACKNOWLEDGMENT

It is a pleasure to acknowledge many useful discussions with

Loı̈c Hélouët in the preparation of this paper. The authors are

also grateful to the reviewers for their insightful comments.

REFERENCES

[1] D. Thorsley and D. Teneketzis, “Intrusion detection in controlled discrete
event systems,” in Proceedings of the 45th IEEE Conference on Decision

and Control, Dec 2006, pp. 6047–6054.
[2] L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection

and mitigation of classes of attacks in supervisory control systems,”
Automatica, vol. 97, pp. 121 – 133, 2018.

[3] P. M. Lima, M. V. S. Alves, L. K. Carvalho, and M. V. Moreira, “Security
against communication network attacks of cyber-physical systems,”
Journal of Control, Automation and Electrical Systems, vol. 30, no. 1,
pp. 125–135, Feb 2019.

[4] F. Lin, “Robust and adaptive supervisory control of discrete event
systems,” IEEE Transactions on Automatic Control, vol. 38, no. 12,
pp. 1848–1852, Dec 1993.

[5] J. Cury and B. Krogh, “Robustness of supervisors for discrete-event
systems,” IEEE Transactions on Automatic Control, vol. 44, no. 2, pp.
376–379, 1999.

[6] S. Xu and R. Kumar, “Discrete event control under nondeterministic par-
tial observation,” in 2009 IEEE International Conference on Automation
Science and Engineering, Aug 2009, pp. 127–132.

[7] S. Takai, “Maximizing robustness of supervisors for partially observed
discrete event systems,” Automatica, vol. 40, no. 3, pp. 531 – 535, 2004.

[8] K. Rohloff, “Bounded sensor failure tolerant supervisory control,” in
11th IFAC International Workshop on Discrete Event Systems, October
2012, pp. 272 – 277.

[9] M. V. S. Alves, J. C. Basilio, A. E. C. da Cunha, L. K. Carvalho, and
M. V. Moreira, “Robust supervisory control against intermittent loss of
observations,” in 12th IFAC International Workshop on Discrete Event
Systems, May 2014, pp. 294 – 299.

[10] F. Lin, “Control of networked discrete event systems: Dealing with
communication delays and losses,” SIAM Journal on Control and
Optimization, vol. 52, no. 2, pp. 1276–1298, 2014.

[11] M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control of
discrete-event systems under attacks,” Dynamic Games and Applica-

tions, Sep 2018.
[12] R. Su, “Supervisor synthesis to thwart cyber attack with bounded sensor

reading alterations,” Automatica, vol. 94, pp. 35 – 44, 2018.
[13] L. Lin, Y. Zhu, and R. Su, “Towards bounded synthesis of resilient

supervisors,” in 2019 IEEE 58th Conference on Decision and Control
(CDC), 2019, pp. 7659–7664.

[14] R. Meira-Góes, H. Marchand, and S. Lafortune, “Towards resilient
supervisors against sensor deception attacks,” in 2019 IEEE 58th Annual
Conference on Decision and Control (CDC), Dec 2019.

[15] Y. Wang and M. Pajic, “Attack-resilient supervisory control with in-
termittently secure communication,” in 2019 IEEE 58th Conference on

Decision and Control (CDC), 2019, pp. 2015–2020.
[16] R. Meira-Góes, E. Kang, R. H. Kwong, and S. Lafortune, “Synthesis

of sensor deception attacks at the supervisory layer of cyber–physical
systems,” Automatica, vol. 121, p. 109172, 2020.

[17] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, Jan. 1987.

[18] F. Lin and W. Wonham, “On observability of discrete-event systems,”
Information Sciences, vol. 44, no. 3, pp. 173 – 198, 1988.

[19] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya, “Supervisory
control of discrete-event processes with partial observations,” IEEE
Transactions on Automatic Control, vol. 33, no. 3, pp. 249–260, March
1988.

[20] H. Cho and S. I. Marcus, “On supremal languages of classes of
sublanguages that arise in supervisor synthesis problems with partial
observation,” Mathematics of Control, Signals and Systems, vol. 2, no. 1,
pp. 47–69, 1989.

[21] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2008.

[22] P. M. Lima, M. V. Alves, L. K. Carvalho, and M. V. Moreira, “Security
against network attacks in supervisory control systems,” in 20th IFAC

World Congress, 2017, pp. 12 333 – 12 338.
[23] S. Shu and F. Lin, “Supervisor synthesis for networked discrete event

systems with communication delays,” IEEE Transactions on Automatic

Control, vol. 60, no. 8, pp. 2183–2188, Aug 2015.
[24] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-

enforcing supervisors for partially-observed discrete-event systems,”
IEEE Transactions on Automatic Control, vol. 61, no. 8, pp. 2140–2154,
Aug 2016.

[25] Y. C. Wu and S. Lafortune, “Synthesis of optimal insertion functions for
opacity enforcement,” IEEE Transactions on Automatic Control, vol. 61,
no. 3, pp. 571–584, March 2016.

[26] G. Jirásková and T. Masopust, “On properties and state complexity
of deterministic state-partition automata,” in Proc. of 7th International

Conference on Theoretical Computer Science (IFIP TCS), ser. LNCS,
J. C. M. Baeten, T. Ball, and F. S. de Boer, Eds., vol. 7604. Springer,
2012, pp. 164–178.

[27] R. Brandt, V. Garg, R. Kumar, F. Lin, S. Marcus, and W. Wonham, “For-
mulas for calculating supremal controllable and normal sublanguages,”
Systems and Control Letters, vol. 15, no. 2, pp. 111 – 117, 1990.

[28] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods in System Design,
vol. 40, no. 1, pp. 88–115, 2012.

[29] Y. Ji, X. Yin, and S. Lafortune, “Mean payoff supervisory control under
partial observation,” in 2018 IEEE Conference on Decision and Control

(CDC), Dec 2018, pp. 3981–3987.
[30] R. Meira-Góes, R. Kwong, and S. Lafortune, “Synthesis of sensor

deception attacks for systems modeled as probabilistic automata,” in
2019 American Control Conference (ACC), July 2019.

	I Preliminaries
	II Robust Supervisory Control against Deception Attacks
	II-A Notation
	II-B Modeling sensor deception attacks
	II-C Controlled system under sensor deception attack
	II-D Robustness against deception attacks

	III Meta-Supervisor problem
	III-A Definition
	III-B Properties
	III-C Solution of the Meta-Control problem

	IV Selecting supervisors in the robust arena
	V Robot Motion Planning Example
	VI Conclusion
	Appendix A: Attack function encoding
	Appendix B: Proofs
	References

