
HAL Id: hal-03155647
https://hal.inria.fr/hal-03155647

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging APL and SPIR-V languages to write network
functions to be deployed on Vulkan compatible GPUs

Juuso Haavisto

To cite this version:
Juuso Haavisto. Leveraging APL and SPIR-V languages to write network functions to be deployed
on Vulkan compatible GPUs. Networking and Internet Architecture [cs.NI]. 2020. �hal-03155647�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395676236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03155647
https://hal.archives-ouvertes.fr


University of Lorraine
Master of Computer Science - MFLS
Master’s Thesis
Juuso Haavisto
Supervisor: Dr. Thibault Cholez
Research Team: RESIST
March 1, 2021

Leveraging APL and SPIR-V languages to write network
functions to be deployed on Vulkan compatible GPUs



1

Contents

I Introduction 2

II Previous research 2
II-A Microservice Runtimes . . . . . . . . 3

II-A1 Containers . . . . . . . . . 3
II-A2 Serverless . . . . . . . . . . 3
II-A3 Unikernels . . . . . . . . . 4
II-A4 Executing microservices

on GPU . . . . . . . . . . . 4
II-B Hardware acceleration for parallel

computing . . . . . . . . . . . . . . . 5
II-B1 Advanced Vector Extensions 5
II-B2 General-purpose comput-

ing on graphics processing
units . . . . . . . . . . . . . 6

III Contribution 8
III-A Python to APL translation . . . . . . 8
III-B Programming in SPIR-V . . . . . . . 13

III-B1 Subgroup operations . . . . 13
III-B2 Vulkan memory model . . . 14

III-C Orchestration of GPU compute re-
sources . . . . . . . . . . . . . . . . . 14
III-C1 Kubernetes Integration . . 15
III-C2 Vulkan-based Loader Pro-

gram . . . . . . . . . . . . . 17
III-D Results . . . . . . . . . . . . . . . . . 17

IV Discussion and Future Work 17

V Conclusion 19

Appendix 21

Abstract—Present-day computers apply parallelism
for high throughput and low latency calculations. How-
ever, writing of performant and concise parallel code is
usually tricky.

In this study, we tackle the problem by compro-
mising on programming language generality in favor
of conciseness. As a novelty, we do this by limiting
the language’s data structures to rank polymorphic
arrays. We apply our approach to the domain of Net-
work Function Virtualization (NFV). We use GPUs as
the target hardware. This complements NFV research
in replacing purpose-built hardware with commodity
hardware. Further, we present an empirical case study
of a random forest implementation used to classify
network traffic. We write the application for GPUs with
SPIR-V Intermediate Representation (IR) while using
APL as a modeling language.

To our knowledge, this approach is novel in three
ways. First, SPIR-V has not yet been demonstrated to
be used in machine learning applications. Second, we
translate a non-imperative language APL to SPIR-V
GPU IR. Using a non-imperative source language for
GPUs is rare in general. Third, we show how SPIR-
V programs can be used in Kubernetes microservice
orchestration system. This integrates our proposed par-
allel computation pipeline to industry NFV deployment
standards.

We benchmark the SPIR-V code against C with a
random forest of size 150x6000x300. We find 8-core
CPU runtime to average 380ms and RTX 2080 GPU
to average 480ms. Hence, space is left for further
improvements in future work, which we detail for both
the GPU pipeline and APL to GPU compilation.
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I. Introduction

In the software industry, progress in computation capa-
bility has historically followed Moore’s law. While it is an
open debate whether Moore’s law still holds, it’s without
a doubt that classical computer architectures have evolved
to multi-core. To elaborate, commodity computers in the
20th century were single-core systems. This paradigm saw
a big change at the start of the 21st century. During the
first decade, the physical core count started to increase
rapidly. First came the dual-core processors: in 2001, IBM
POWER4 became the first commercially available multi-
core microprocessor. Similarly, AMD released their first
dual-core system in 2005 under brand name Athlon 64 X2,
and Intel released Core Duo processor series in 2006. Core
count has then kept on steadily increasing on each micro-
processor release: in 2020, the flagship consumer multi-core
processor from AMD, called Ryzen Threadripper 3990X,
has 64 physical cores and 128 logical threads. Moreover,
in the graphics processing unit (GPU) landscape, the
difference is even larger. E.g., in 2005 a Nvidia flagship
GPU model GeForce 6800 GT had 16 cores for pixel
shaders. In 2020, a GeForce RTX 2080 Ti sports 4352
shader processors.

Yet, despite the hardware changing, most programmers
still think of software from the viewpoint of a single
thread. Performance-wise this is suboptimal, as it means
that the way software benefits from multi-core systems
are dependant on the smartness of the compiler. Further,
as parallelism is abstracted from the programmer, it is
easy to construct data-and control-structures which result
in execution logic that cannot be safely parallelized, or
parallelized without much performance gain compared to
single-core processing.

As such, an open research question remains: how parallel
software could be better programmed? Coincidentally,
this is the topic of this study. In particular, we focus
on GPUs. GPUs have recently found use as a general-
purpose computation accelerator for programs with high
parallelisms, such as machine learning. Here, the data
structures of these programs tend to be based on arrays:
languages which encode software for GPUs, e.g., Futhark
[1], is based on the purely functional array programming
paradigm. But, we take the array programming paradigm
a step further, inspired by A Programming Language
(APL) [2], which only permits array data structures. To
achieve such semantic in practice, we translate our pro-
gram into Standard Portable Intermediate Representation
V (SPIR-V). SPIR-V is the current technological spear-
head of GPU static single assignment (SSA) intermediate
representations (IRs). Our thesis is that by combining the
language and the execution environment to only match
the usual computation domain tackled with GPUs, we
could better reason about such programs. As such, this
directly addresses the problem of efficient use of current
computation hardware. Should it be possible to implic-
itly parallelize all computations while enforcing parallel
program construction, we could ensure that software runs

as fast as physically possible. To our knowledge, this is
the first attempt at creating a compute domain-specific
language (DSL) on top of SPIR-V.

The study is organized as follows: first in §II, we present
a literature review. The review considers cloud computing
models, and programming language approaches to achieve
parallelism. After this, we move onto the empirical part
in §III. First, in §III-A, we select a machine learning
application written in Python and look at how it uses a
C-language sub interpreter to produce parallel code for
central processing units (CPUs). The selected machine
learning application considers network function virtual-
ization (NFV), i.e., use-case in which machine learning
models are used for network processing. The machine
learning application in question comes from a previous
paper [3] of the research group under which this study
was conducted. Next, we manually translate its Python-
and-C implementation into APL. The APL code we then
manually translate into SPIR-V. Some technical details
of the SPIR-V translation are presented in §III-B. Next,
in §III-C we present the GPU system architecture. In
§III-C1, we start with the high-level view of how a Vulkan-
based GPU bootloader. We describe how the loader can be
integrated as a microservice in today’s de-facto industrial
cloud computing framework called Kubernetes. The loader
program in itself, which leverages a systems program-
ming language Rust and a low-level Vulkan application
programming (API) to control the GPU, is described in
§III-C2. After this, in §III-D we benchmark the SPIR-V
against the Python-C implementation. This marks a per-
formance comparison between a CPU and GPU processing
for the machine learning application. Yet, we concede to
the fact that the comparison is not evenly-leveled: the
CPU is given a headstart due to a small sample size. We
consider this an acceptable limitation in our research. This
is because it contributes to a tangential research question
about whether latency-sensitive computing, here, NFV,
can be accelerated with GPUs. Following the results, in
§IV, we contribute our findings on how our loader program
and APL to SPIR-V compilation could be improved.
Finally, the study is concluded in §V.

II. Previous research

In the introduction, we pointed how computer program-
ming has changed in the past 20 years in the form of
parallelity: multi-processor CPUs have become ubiquitous,
and GPUs are in increasing effect used for highly par-
allel workloads in domains of machine learning, where
thousands of cores are used to solve tasks. Similarly, the
way software is architected and turned into consumer
services has also changed. Early worldwide web appli-
cations were widely architected as a client-server model
with so-called monolithic application architecture. Here,
monolithic applications mean that a single program did
all possible computations required by the service and
was likely run on a single dedicated server computer.
While the client-server model has remained the standard
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during this century1, architectures have seen a prolifera-
tion towards microservices, which run in cloud computing
environments. Such microservices are globally distributed
within the cloud provider network, and provisioned inside
resource isolated containers [4] and, as of more recently,
inside virtual machines with formal semantics [5], [6]. In
general, computing can be seen to have higher execution
granularity than before, shifting from a single computer
execution towards distributed execution of highly par-
allelized individual threads. For example, in [7], video
processing is split among thousands of tiny threads across
many physical servers. Similarly, the Ethereum project
is an attempt at a so-called world computer concept. In
accordance with the microservice trend, Ethereum has
software ”contracts,” which are executed among multiple
computers to form a consensus of the world’s computer
state. However, both in Ethereum and in the cloud there
exists open safety challenges: it is 1) hard for programmers
to formally reason about the distributed execution of their
code, and 2) it is hard to ensure that the scheduler does
not leak confidential data when resources are re-used [8]
or that the scheduler is fair.

It could be considered that software that is architected
to be distributed is called cloud-native. In the following
subsections, we further inspect different ways to comprise
microservices that yield to this concept.

A. Microservice Runtimes
Microservice, as a term, has a loose definition. For the

sake of simplicity, in our study, we do not consider the
social aspects, but instead how the definition changes
depending on what the underlying technical runtime is.
To elaborate on the problem statement: a microservice
with a container runtime runs a whole operating system
on each container. As such, container-based microservices
have very lax technical limitations. This is because an
operating system has many processes, and in the end,
a microservice will be a process. But this introduces a
problem. Since the operating system can essentially an
arbitrary amount of processes, a single container may be
compromised of multiple microservices. While an organi-
zation can decide that each process that is not a vital
operating system process is a microservice, sometimes such
an approach is impractical. For example, a program may
have a proprietary dependency that may not listen to
network ports. In this case, a process-based definition for
a microservice would not work.

In general, it could be considered that when a mi-
croservice runtime is not restrictive, it becomes a social
problem to define it. As the following subsections will
show, some technical approaches have emerged which are
more restrictive. Here, the program granularity is reduced
from the container’s process towards a lambda function.
For the sake of conciseness, we evaluate what we consider
widely known approaches of microservice runtimes, shown
in Fig. II-A.

1Although, the term is now called ”cloud”

1) Containers: Arguably the most well-known pack-
aging format of software is currently containers, which
developers usually interface via Docker or some other
container runtime interface (CRI). As containers focus on
isolation and dependency minimization of arbitrary soft-
ware, it makes them a compelling basis for microservices.
In the abstract, the idea is that the developer creates a
reproducible and self-contained build-script for their ap-
plications from a clean-slate operating system installation.
This way, the developer may install any software required
to run their application while also making a reproducible
build system that allows restarts and migrations of the
container. Such features are relevant, as containers nowa-
days often run with orchestration systems such as Kuber-
netes [4]. Such orchestration systems claim to make man-
aging containers to equal managing applications rather
than machines [4], simplifying development operations,
and pooling all computation capabilities into a single
uniform abstraction. Further, these abstractions enable
the software development process to be streamlined and
simplified from the viewpoint of the developer: in our pre-
vious studies, e.g., [10], a Kubernetes-based installation is
coupled with a version-control integrated deployment pro-
cess. Such abstraction then even abstracts away the whole
concept of computing resources, which might, in turn, help
developers focus on business goals better. Especially in
the industry, a promise of a universal solution to deploy
software to production becomes compelling: according to
[4], containers isolate applications from operating systems,
making them possible to provide the same deployment
environment in both development and production, which,
in turn, improves deployment reliability and speeds up
development by reducing inconsistencies and friction.

Generally, containers are lightweight and fast: a single
server can have hundreds of containers running [11]. Yet,
containers also produce overhead in the form of nested
operation systems. Such challenges are to be considered,
especially for performance-centric microservices architec-
tures and, in our case, intensive I/O processing from
network interfaces. To elaborate, should one rent a virtual
server from a cloud provider such as Amazon, they already
operate above an abstraction as cloud providers tend to
rent only virtualized environments for customers. On top
of this abstraction, a container-based approach requires an
installation of the so-called host operating system (e.g.,
Ubuntu), on which the actual containers (e.g., Alpine
Linux) are run. As such, a containerized application can
quickly end up operating on top of three separate oper-
ating systems, each having their overhead. This may be
challenging, especially for networking: one study concludes
that containers decrease network performance by about
10% to 20% compared to bare-metal (i.e., non-nested
container) deployments [12].

2) Serverless: When it comes to modern microservice
runtimes, the serverless paradigm is the most recent and
finer in granularity: here, the packaging format is a single
function instead of the whole operating system. Such an
approach has some interesting traits: it has significantly
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TABLE I
Microservice runtimes

Technology Overhead Application Capabilities Orchestrator
VM Full OS + Full OS Full OS e.g., Xen

Containers Full OS + Partial OS Full OS Kubernetes [4]
Unikernels Partial OS Full OS e.g., iPXE
Serverless Full OS + WASM Runtime A function e.g., Lucet

TABLE II
NFV acceleration methods

Technology DSL Overhead Application Capabilities Orchestrator
GPUs e.g., SPIR-V Full OS + Graphics API + GPU A chain of functions e.g., Legate [9]

Linux kernel passthrough e.g., BPF Any deployment method on Linux A chain of functions
FPGAs e.g., P4 Specialized hardware A chain of functions

less overhead than containers, which make serverless ap-
plications much faster to respond to actions even if sched-
uled just-in-time. For example, the Amazon Firecracker
scheduler has boot times of around 150ms [13] compared
to seconds that it might take for a container on Kubernetes
to start. The so-called fast cold-start time is relevant
when thinking about more distributed and performance-
orientated microservice architecture: the orchestrator may
free memory and cycle capacity by turning off serverless
applications which are not receiving traffic. And as soon
as one receives a request, it can be started by almost im-
perceptible boot-up time. From a pragmatic perspective,
it is also cost-efficient: a serverless application may sleep
and start on-demand and also billed that way.

Yet, some studies, such as [14], argue that the serverless
paradigm is ”one step forward, two steps back.” One
argument concerns the packaging method, i.e., the IR, of
serverless applications: with containers, the Dockerfile be-
came the de-facto manifest format to declare container in-
stallations, which in itself resemble bash scripts by almost
one-to-one. Yet, with serverless applications, it may be a
bigger social problem to agree on how functions should
be written. This problem directly stems from the fact
that with containers, any language that can be installed
on any operating system works, but with serverless, the
users will likely become restricted on a single language.
While there already exists papers of envisions of what
the serverless paradigm will become, e.g., [15], we denote
that language-independent IRs are gaining a foothold in
the industry in the form of WebAssembly (Wasm) [5]. In
abstract, Wasm remarks a general shift from build-script
approaches of packaging software towards a compiler-
driven approach, in which the compiler backend produces
Wasm code instead of architecture-dependent bytecode.
Originally, Wasm was engineered to create faster and more
heterogeneous JavaScript, but the paralleling usefulness as
a non-hardware specific IR and the requirement of such in
the serverless paradigm is an apparent and promising fit.

3) Unikernels: A stark difference to the abstraction-
heavy container and serverless approach is unikernels.
Unikernels address both the performance pitfalls of layered
kerneling of containers and can be used to avoid restricted

language support of serverless by packaging software as
Linux kernels [16]. For example, MirageOS [17] supports
only application written in OCaml, whereas Rumprun
[cite] is a reduced version of NetBSD, and as such, sup-
ports NetBSD compatible programming languages. In gen-
eral, the unikernel approach means taking a constrained
application environment, and packaging it as a Linux ker-
nel [16] while stripping away operating system capabilities
unnecessary to the program. Relevant to our use of mi-
croservices, this also means that performance-wise, kernel-
passthrough approaches such as Berkeley Packet Filter
(BPF) are not required for solely performance reasons,
as the application already runs in kernel-mode. Further,
unikernels make applications generally faster by running
in privileged mode, as a lot of performance-degrading
bagging, which comes from Linux security architecture to
support a safe multi-user paradigm, is set aside. Consider-
ing the orchestration of unikernels, i.e., the deployment on
a scale, to our understanding, no de-facto method exists,
yet we see no reason why networked basic input/output
system (BIOS) bootloaders like netboot [cite] would not
work.

4) Executing microservices on GPU: Network-
processing has also been researched to be accelerated
using GPUs, e.g., via PacketShader [18]. Here, the idea
follows that computation tasks that concede well under
the physical constraints of GPUs are offloaded to a GPU.
This so-called general-purpose computing on graphics
processing units (GPGPU) paradigm has recently found
its foothold in the form of machine learning applications,
where especially neural networks concede well to the
physical constraints of GPUs, which include a limited
and relatively slow uniform memory and MapReduce-like
state synchronization. Hence, it can be concluded that
in the grand scheme of general computation paradigms,
GPUs follow the general direction of distributed state
like container deployments (MapReduce-like state
synchronization) and also the thread-granular parallelism
principles of serverless applications (slow uniform memory
enforces parallelism), but here within a single physical
component. As such, GPUs can also be thought of as a
microservice runtime, especially given support from an
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orchestrator such as Legate [9].
Yet, historically the GPGPU standards and approaches

have been dispersed at best: it remains commonplace to
still use shading languages like OpenGL Shading Language
(GLSL), meant to display graphics on a monitor, to be
tricked into computing matrix algebra by using a no-
display-producing graphics pipelines. There also exists
an open standard API called OpenCL, meant solely for
computation workloads, but the standardization is not
only meant for GPUs, but also for CPUs and FPGAs.
Further, some GPU manufacturers, such as Nvidia, have a
proprietary IR like the Parallel Thread Execution (PTX)
which is produced by Nvidia’s Compute Unified Device
Architecture (CUDA) API and as a backend target by
the Low Level Virtual Machine (LLVM) compiler infras-
tructure to offer generally the most performant GPGPU
code available today. However, PTX only works on Nvidia
GPUs. Coincidentally, this also means that programming
models for GPUs are also scattered: historically, the only
options have been either open standards like OpenCL
C or GLSL, or then manufacturer-specific languages like
CUDA. Somewhat surprisingly, the programming model
of these most common GPGPU languages is imperative,
whereas it has been commonplace for CPUs to have DSLs
with formal foundations on concurrency primitives like
communicating sequential processes [19] on recent lan-
guages for multi-core environments like Erlang or Go.

More recently, the open GPU standards working group
called Khronos, which is the organization behind GLSL
and OpenCL, among many other open initiatives in
the GPU space, has released GPGPU enablers to a
new cross-platform graphics API focused on performance,
called the Vulkan API. These new capabilities include a
cross-platform formally verified memory model called the
Vulkan memory model (further introduced in §III-B2),
and a class of cross-platform single instruction, multiple
data (SIMD) operands for non-uniform group operations
called subgroups (further introduced in §III-B1). Yet, the
Vulkan API, while released in 2016, has not seemingly
become the leading API so far in the GPGPU space, plau-
sibly affected by a design decision to only support a new
open standard IR called SPIR-V. As such, any application
which wishes to adopt Vulkan’s features would first need
to update all the GPU code to SPIR-V, which in practice
is done via cross-compilers which may not necessarily
translate the most performant code. Further, some of the
features, such as the Vulkan memory model was released
as recently as September 2019. We deem it likely that most
translators will require more time to adopt. As such, as a
consistent memory model is paramount for deterministic
computation results, it can be considered no subject of
wonder why the technology adoption may have been slow.
Finally, regarding microservices, a previous paper of ours
[20] studied the Vulkan and SPIR-V powered GPGPU
paradigm in light of cold-start times and interoperability:
it was found that the 99th percentile for starting the same
programs was 1.4ms for a commercial off-the-shelf (COTS)
desktop GPU (Nvidia RTX 2080), and 4.3ms for ARM-

based COTS mobile system on a chip (SoC) (Nvidia Jetson
TX2). So, in terms of cold-start times, this places a mod-
ern GPGPU microservice latency to the similar ballpark
as serverless applications hence significantly faster than
containers.

B. Hardware acceleration for parallel computing
When thinking about programming languages to de-

velop microservices, we can think of an abstraction shaped
like a triangle, shown in Fig. 1. On the left, we can
see how programming languages are located in different
parts of the triangle, portraying their focus on solving
problems. For example, C is considered general and highly
performant. However, C is not considered very productive
because it allows a class of bugs to happen, which are not
possible in other languages. On the other hand, scripting
languages like Python, which are oftentimes used in ma-
chine learning, are not very fast, but as a plus have general
problem domains and are arguably easy to program. On
the left side, we have languages that are not very general,
i.e., they require separate computing accelerator devices
like GPUs to work, but yet for that reason are easier to
program for domain-specificity. Hence, such languages can
assume more about the programming style than in CPU-
languages. Further, GPU languages do not have filesystem,
network, or persistent storage access. As such, reasoning
about accelerator languages can be considered easier, as
unpredictable sources of infinite input and output, e.g.,
file descriptors, do not exist.

Yet, it is also noteworthy to recognize that many ap-
proaches exist in accelerating the languages found from
the bottom side of the triangle can be ”lifted.” By lifting,
we mean there exist approaches for these languages which
move them towards the center of the triangle. In our
concept, a language that is at the center of the triangle
is considered an ideal programming language. But how
does this lifting work? In this section, we focus on some of
such approaches, namely 1) advanced vector extensions, 2)
general-purpose computing on graphics processing units.

1) Advanced Vector Extensions: Advanced Vector Ex-
tensions (AVX) can be considered the general method of
accelerating programming languages on today’s hardware.
AVX achieves this by only operating on a subset of
programs, which yield to SIMD instructions— in a sense,
considering Fig. 1, AVXs can be efficiently applied when
generality is cut down to only consist of array operations
and data-parallel data structures. Coincidentally, as a
result of domain-specificity of AVX on SIMD, the triangle
gets sliced from the angle of generality. In practice, this
angle-slicing effect is usually applied to languages through
scientific computing libraries, which essentially only in-
clude matrix algebra in them. For example, in Python,
the NumPy library is such a domain-restricted library.

Once a library like NumPy is used, what essentially
happens is that a sub interpreter or just-in-time compiler
gathers the program calls, which are compiled down to
platform-specific bytecode. This produced bytecode is then
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Fig. 1. How programming languages and approaches for machine learning are made faster: by removing generality and by compromising on
utmost performance. (Model inspired by [21])

Fig. 2. Compilation pipeline of different languages with multiple mid-
level IRs for language specific optimization with common backend for
multiple hardware targets. Source: [23]

the format on which the SIMD instructions have been ap-
plied. Yet, as the bytecode generation is platform-specific,
libraries like OpenMP exist. These abstractions aim to
compile the code to run as fast as possible regardless of
the platform. In practice, most of these libraries leverage
the LLVM compiler project to detect and interoperate on
a single shared IR. As seen, e.g., in Numba [22], the LLVM
IR is useful because as in some cases, it allows a single IR
to be compiled to vector instruction accelerated CPU and
GPU code.

As of very recent, the power of shared IR and the shared
compiler has also been applied to domain-specific purposes
itself, here, to deep neural networks, as in MLIR [23]. As
such, MLIR can be considered a problem-domain specific
SSA-based IR for heterogenous target platforms, which
include CPU, GPU, tensor programming unit (TPU),
and ”others.” We believe that this notion of compilers
having more features and compiler passes is interesting,
as pictured in Fig. 2. That is, in recent languages like
Swift, Rust, and Julia, further compiler passes allow the
developers to write compiler extension libraries in the
original language. In specific, this mid-level pass is one
that has passed the type-checker but has not yet generated
SSA code. As such, it seems generally prosperous future
development that the proliferation of more compiler passes
will help to move traditionally slow languages into faster

ones without any further input from the software devel-
oper.

In practice, we generalize those speed improvements are
achieved by effectively detecting code, which yields well
to SIMD and data-parallelism. Further, array-orientated
libraries like NumPy essentially function by exposing
domain-specific pragmas to compilers, which are often
tacit to the software developer.

2) General-purpose computing on graphics processing
units: GPGPU is a similar approach as AVX in the sense
that GPGPU revolves around a similar register-based pro-
gramming style. However, this approach can be considered
to be taken even further: in the GPGPU paradigm, the
software is essentially written from the viewpoint of a
single register. For example, in GPGPU, a vector sum is
something like the following:

1 lhs := float numbers[1, 2, 3, 4];
2 rhs := float numbers[4, 3, 2, 1];
3
4 main() {
5 uint index = InvocationID.x;
6 lhs.numbers[index] += rhs.numbers[index];
7 }

Here, we can see that the main function receives some
undefined structure called InvocationID, from which it
takes a value of x, which it uses as the index to add
numbers between the vectors of lhs and rhs. As the
main is ran only once, it would not be absurd to imagine
the result of lhs to be [5, 2, 3, 4]. Yet, in the GPGPU
paradigm, the result is [5, 5, 5, 5]. This is because the main
function is run per each invocation, which resembles a
thread. On a typical GPU, the maximum number of these
invocations per program is usually very high. On yours
truly laptop, the count is 1′073′741′823.

Some programs which would traditionally require ex-
plicit loops, such as the vector sum defined above, are
concisely presented in the GPGPU paradigm. However,
some programs are much trickier. For example, the el-
ementary operation of a sum reduction is hard because
of the register-centric style. Here, a reduction either re-
quires locking all other invocations while one of them
scans through the rest. Alternatively, every invocation
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Fig. 3. Sample code showing GPGPU paradigm seamlessly inte-
grated into Python’s NumPy. (Source: [9])

which’s ID is odd would read its neighbors’ value, and
add it to self. Such a map reduction format happens to
resemble much of the inner workings of neural nets, which
has resulted in GPGPU being prolific in the machine
learning space. In fact, much of the practical feasibility
of neural network training nowadays comes from the fact
that the GPGPU paradigm is available as an extension
to languages like Python through languages like CUDA.
A recent example of such work can be found from Nvidia
Legate [9]. In the paper, the authors show how Nvidia
CUDA is integrated with Python’s scientific array pro-
gramming library called NumPy in a convenient way, as
shown in Fig. 3. Previous work to Legate also exist in
form of CuPy [24] and Numba [22]. CuPy and Numba
compare closely to Legate, but without inter-device work
scheduling.

Projects like Legate, CuPy, and Numba are a prime
example of performance ”lifting” of productivity-focused
languages like Python towards more complete triangles,
per the mental model of Fig. 1. Arguably, from the
viewpoint of a developer who is satisfied with Python,
the triangle is complete – they have a) the performance
of CUDA (if GPU is present) and b) if not, they are
simply using CPU NumPy (which itself is accelerated with
OpenMP on CPU), and c) they are using a language they
feel is general and productive for them.

Given the possibility for the completeness of abstrac-
tions like Legate, it is no wonder that alternative ap-
proaches exist. For example, there exist GPGPU ”lifters”
for Matlab-like language Julia [25]. Some programmers
may find languages like Julia better suited for their use-
case, as the whole language is built on scientific comput-
ing. In specific, in Julia arrays and matrices as first-class,
whereas in Python, such traits are imported via libraries
like NumPy.

A differentiating take is Futhark [1] which is a functional
programming language with GPGPU as language built-
in feature. Interestingly, Futhark is able to represent the
GPGPUs register-orientated computing paradigm in the

1 + 1
2

1 + 1 2 3 4
2 3 4 5

mat ← 3 3 ⍴⍳9
1 2 3
4 5 6
7 8 9

1 + mat
2 3 4
5 6 7
8 9 10

Fig. 4. APL examples here show rank polymorphism on plus oper-
ation over scalar, vector, and matrix. Note that looping is implicit.
Also, note that APL is read right-to-left: definition of the mat is
a reshape of 1..9 vector over the left-hand-side argument, hence
producing 3x3 matrix with values taken from range 1..9.

functional programming paradigm, which is presented in
the more traditional non-parallel computing approach. For
example, average of a vector in Futhark is computed with:

1 let average (xs: []f64) = reduce (+) 0.0 xs / r64 (length
xs)

Here, it is worth noticing that the indices which would
traditionally be required in the GPGPU paradigm are
abstracted. Furthermore, some may find a functional pro-
gramming style preferable over imperative approaches of
Python and Julia.

Another approach to achieve performance for parallel
computing is to make the language the array programming
library. A family of languages that do this is known
informally as APLs, which are based on a 1962 paper
[26] by Kenneth Iverson (a recent historical view on the
language is provided in [2]). In the paper, a language called
A Programming Language for teaching matrix algebra was
introduced. An interesting and distinctive aspect of APLs
is that there is no explicit iteration or recursion in the
standard2 [27], but instead, operation ranks are automati-
cally lifted to higher dimensions. This means that, e.g.,
plus operation works irrespective of the array rank, as
demonstrated in Fig. 4. It has been argued [28] that such
abstraction solves the so-called von Neumann bottleneck
[29] which complements Iverson’s own argument for APL
being ”a tool of thought” [30]. In abstract, APL propo-
nents call the capability of rudimentary index operation
abstraction as a programming approach that contributes
to the correctness and brevity of computation solving.
In other words, as less effort is put into thinking about
programming paradigms, APLs free attention towards the
original mathematical problem on-hand. More recently
(e.g., see: [28], [31]), APL’s model of loop and recursion-
free array processing has gained research interest as a way
to simplify parallel computation. In specific, in [31], a

2But, as we will later see, newer versions of APL do include explicit
recursion.
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data-parallel compiler was introduced. Here, it was shown
that arrays could be used to represent abstract syntax
trees. The produced compiler [32], called co-dfns, is able
to produce C, CUDA, and OpenCL code from a subset of
APL when using the proprietary Dyalog APL interpreter.
As such, the project ascends APLs usability to modern-
day GPGPU computing. We deem this as an interesting
and fundamental development in terms of performance
implications for GPGPU code: as APL and its operands
amount to simple matrix operations, then by forcing such
array-based problem solving, it would force the developer
to write automatically parallel code. As argued in length in
[33], part of the reason parallel code is hard to write is that
developers fail to understand the underlying hardware.
As such, developers may unknowingly produce sequential
algorithms and data structures and cause the hardware to
compute redundancies, which slow computation. Redun-
dancies include, e.g., using branch predictor over binary
selector. According to Nvidia presentation [34], elimina-
tion of branch prediction can increase throughput by 2x
on GPUs.

III. Contribution
With a brief introduction to programming languages

and methods of hardware acceleration for parallel compu-
tation covered, we now focus on this study’s focus. First,
we present a high-level overview in Fig. 5. This figure
details how we combine four different aspects (machine
learning, computer networks, high-performance comput-
ing, and programming languages) in two different research
branches (AI and systems) by using software engineering
(which itself is a systems science) to produce a contri-
bution which combines these aspects into one integrated
process. Finally, we show that future work can be done to
extend our hereby presented contribution with theoretical
computer science by using logic and verification.

The context of our study is GPU microservices as a
method to accelerate NFV. We conclude from the previous
research that GPU microservices are a timely subject
because: 1) the new Vulkan API and SPIR-V IR can
fix interoperability problems of past GPGPU approaches
for microservices and 2) general trend in computation is
towards parallelism and fine-grained programs, for which
GPUs are a good fit for. Further, we decide to tackle the
domain with APL. This is because we notice that fast
parallelism is enabled by SIMD, and APL introduces us
to rank polymorphism. With rank polymorphism, APL
can transform any operation to vectors, which may benefit
from SIMD. Additionally, APL forces us to think from an
array-only mindset, which may produce unconventional
but highly parallel approaches to solving existing prob-
lems. This, in turn, compliments our guest for new ways
to do effective NFV services by replacing purpose-built
digital signal processors with commodity hardware such as
GPUs. With the convoluted problem statement, we next
move onto the empirical part of the study.

The empirical part of the work is a development to [3],
in which random forest (RF) prediction is used to label

encrypted hypertext data. We use the paper’s application
in this study by extracting the prediction algorithm as a
GPU microservice, using the CPU implementation exe-
cution time as the baseline to improve on. We choose this
application also because the binary decision tree traversed
by RF algorithms can be parallelized as each three is data-
independent. Further, the amount of the trees to traverse
is usually well above the amount of normal amount of
logical threads that a CPU may have. As a thesis, such
workload should see performance increase on GPUs, as the
GPUs have thousands of cores. To elaborate, the physical
processor of GPU is less likely to get throttled by its
physical capabilities compared to its CPU counterpart,
assuming that the execution time of the program takes
long enough time. Henceforth, when referring to the ”RF
algorithm,” or ”our algorithm,” we refer to this Python-
based algorithm, which we will translate to SPIR-V in this
study.

As mentioned, our approach to writing the GPU imple-
mentation is unusual: we rewrite the Python implemen-
tation in APL and use APL as a modeling language to
write SPIR-V assembly code from. We argue that hand-
writing APL operands in SPIR-V assembly are a worth-
while endeavor: APL is recently shown to produce well-
parallelizable code [35] and its domain-specificity in array
programming is already the base of modern machine learn-
ing libraries, such as NumPy, which we believe vouches
for APL’s fitness for machine learning acceleration. More
importantly, APL as a language is comprised of only
around 60 operations (albeit across four separate dimen-
sions of scalar, vector, matrix, and cuboid), for which we
deem it practically viable to offer hand-written SPIR-V
implementation for each procedure. Further, we find some
evidence that APL is strict enough to repel program-
mer constructions that diverge from parallel computation
principles: the side-effects of zealous array programming,
in specific, avoidance of explicit recursion and if-clauses
(i.e., thread divergence), forces the programmer to write
performant GPU code by default.

Yet, as GPUs are not typical computers, implementing
all the operations for a full compiler is not without its
eccentricities. As such, in §III-B, we describe some of the
underlying peculiarities that affect GPUs.

Next, in §III-C1, we notice that SPIR-V is a useful
IR for another reason: the produced binary files are few
kilobytes and can hence be inlined within text files. We
use this finding to propose a way to orchestrate GPU
network functions (NFs) on Kubernetes using Vulkan in
the following subsections.

A. Python to APL translation
In this study, we use paper Passive Monitoring of

HTTPS Service Use [3] as a case-study. The idea was to
reimplement the RF algorithm used for NFV use-case on
GPU. We decided to use APL as a modeling language. In
the end, we reimplemented three functions in APL:

1) apply←{{
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Fig. 5. High-level overview of the research done in this study, and how they relate to previous work

i←⍵
node←{⍵{(⍵+1)⌷,right[⍺;],left[⍺;]}⋄
i(⍵⌷feature)⌷x≤⍵⌷th}while{⍵⌷left≠0}1
out[i;]←node 1⌷values

}⍵}
2) {{1⌷[2]↑⍒¨↓⍵(÷⍤1 0){⍵+0÷⍵}+/⍵}⍵}
3) {a⊢←labels[⍵]@(∊∘⍵)a}¨∪res

Here, the third item labels the result received from
the second item. The second item normalizes and sums
prediction values received by traversing the RF trees.
The first item is the traversal algorithm of an RF tree,
and coincidentally, it is the most computationally heavy
function. In this study, we only implemented the full GPU
reimplementation of the first item. This was because this
function was the only part of the Python code which
had C-optimizations. As such, it would be the only part
which was accelerated in the Python version hence made
a good comparison against a GPU implementation. Next,
we describe our process of reimplementing the Python to
APL and then to SPIR-V IR.

Methodology The debugger with pyCharm IDE was
used to introspect the scikit and numpy models, from
which numpy.savetxt function was used to extract model
files to a .csv file. Using Sourcegraph, the scikit RF

implementation3, 4 was refactored using the pyCharm
debugger to produce APL program which produced the
same result. We used Dyalog 17.1 IDE to test the APL
code.

Remarks The APL program is model specific in the
sense that it assumes the user only wants a single result.
As such, there are no guarantees the same program works
across all possible RF models which are compatible with
Python. Yet, for the purpose of a simple case-study, we
accept limiting the model output to 1 as fine.

Translation The first call to prediction is in the
h2classifier rf_tools.py file. This file is part of our
Github project5, which remains internal to Inria for the
time being. Nevertheless, the file has a call as follows:

1 pred_lab = clf.predict(feat_)

Where clf is our model and feat_ are the samples.
This call forwards to a function like this in:

1 def predict(self, X):
2 proba = self.predict_proba(X)
3
4 if self.n_outputs_ == 1:

3https://sourcegraph.com/github.com/scikit-learn/scikit-learn@
9358a6ee8f93511fd615d3264fa7ee9de0f21b93/-/blob/sklearn/
ensemble/_forest.py#L673

4https://sourcegraph.com/github.com/scikit-learn/scikit-learn@
9358a6ee8f93511fd615d3264fa7ee9de0f21b93/-/blob/sklearn/tree/
_classes.py#L916

5https://github.com/toldjuuso/legendary-umbrella
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5 return self.classes_.take(np.argmax(proba, axis=1)
, axis=0)

6
7 else:
8 n_samples = proba[0].shape[0]
9 class_type = self.classes_[0].dtype

10 predictions = np.empty((n_samples, self.n_outputs_
),

11 dtype=class_type)
12
13 for k in range(self.n_outputs_):
14 predictions[:, k] = self.classes_[k].take(np.

argmax(proba[k], axis=1), axis=0)
15
16 return predictions

As our output size is 1, we only have to consider the first
if-clause. But before that, the self.predict_proba(X)
calls the following:

1 def predict_proba(self, X):
2 check_is_fitted(self)
3 # Check data
4 X = self._validate_X_predict(X)
5
6 # Assign chunk of trees to jobs
7 n_jobs, _, _ = _partition_estimators(self.n_estimators

, self.n_jobs)
8
9 # avoid storing the output of every estimator by

summing them here
10 all_proba = [np.zeros((X.shape[0], j), dtype=np.

float64)
11 for j in np.atleast_1d(self.n_classes_)]
12 lock = threading.Lock()
13 Parallel(n_jobs=n_jobs, verbose=self.verbose,
14 **_joblib_parallel_args(require="sharedmem"))

(
15 delayed(_accumulate_prediction)(e.predict_proba, X

, all_proba,
16 lock)
17 for e in self.estimators_)
18
19 for proba in all_proba:
20 proba /= len(self.estimators_)
21
22 if len(all_proba) == 1:
23 return all_proba[0]
24 else:
25 return all_proba

Here, we focus on the parallel code that Python evalu-
ates, specifically this block:

1 Parallel(n_jobs=n_jobs, verbose=self.verbose,
2 **_joblib_parallel_args(require="sharedmem"))(
3 delayed(_accumulate_prediction)(e.predict_proba, X,

all_proba,
4 lock)
5 for e in self.estimators_)

The way this call should be interpreted is the fol-
lowing: for each e in self.estimators_, calls the
_accumulate_prediction function, to which a function
parameter e.predict_proba among normal variables pa-
rameters X, all_proba, and lock are passed. This brings
us to the _accumulate_prediction function, which looks
like this:

1 def _accumulate_prediction(predict, X, out, lock):
2 prediction = predict(X, check_input=False)
3 with lock:
4 if len(out) == 1:
5 out[0] += prediction
6 else:

7 for i in range(len(out)):
8 out[i] += prediction[i]

Here, the predict is now the function parameter of
e.predict_proba, which brings us to the next function:

1 def predict_proba(self, X, check_input=True):
2 check_is_fitted(self)
3 X = self._validate_X_predict(X, check_input)
4 proba = self.tree_.predict(X)
5
6 if self.n_outputs_ == 1:
7 proba = proba[:, :self.n_classes_]
8 normalizer = proba.sum(axis=1)[:, np.newaxis]
9 normalizer[normalizer == 0.0] = 1.0

10 proba /= normalizer
11
12 return proba
13
14 else:
15 all_proba = []
16
17 for k in range(self.n_outputs_):
18 proba_k = proba[:, k, :self.n_classes_[k]]
19 normalizer = proba_k.sum(axis=1)[:, np.newaxis

]
20 normalizer[normalizer == 0.0] = 1.0
21 proba_k /= normalizer
22 all_proba.append(proba_k)
23
24 return all_proba

Again, we have to only consider the if-clause in which
the number of outputs is one, but before that, the function
self.tree_.predict is called. This brings us to the next
function:

1 def predict(self, *args, **kwargs): # real signature
unknown

2 """ Predict target for X. """
3 pass

Here, we see that the call-stack ”disappears” but in fact,
this means we are calling Cython, which is Python-like lan-
guage which compiles into platform-specific bytecode. In
general, when we install performance-accelerated libraries
like scikit, the fetch will compile the static libraries for
us. To see the actual source code, we have to clone the un-
compiled project. From here, we can see that the function
which is called is the following:

1 cpdef np.ndarray predict(self, object X):
2 """Predict target for X."""
3 out = self._get_value_ndarray().take(self.apply(X),

axis=0,
4 mode='clip')
5 if self.n_outputs == 1:
6 out = out.reshape(X.shape[0], self.max_n_classes)
7 return out

As can be seen, the dialect is now a mix of C and
Python. Here, self._get_value_ndarray() constructs
a numpy presentation of the tree_ object with which we
called the code, which uses the take() method to do the
actual RF model prediction. The constructor looks like
this:

1 cdef np.ndarray _get_value_ndarray(self):
2 """Wraps value as a 3−d NumPy array.
3 The array keeps a reference to this Tree, which

manages the underlying
4 memory.
5 """
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6 cdef np.npy_intp shape[3]
7 shape[0] = <np.npy_intp> self.node_count
8 shape[1] = <np.npy_intp> self.n_outputs
9 shape[2] = <np.npy_intp> self.max_n_classes

10 cdef np.ndarray arr
11 arr = np.PyArray_SimpleNewFromData(3, shape, np.

NPY_DOUBLE, self.value)
12 Py_INCREF(self)
13 arr.base = <PyObject*> self
14 return arr

The self.value variable here comes from the following
method:

1 def __setstate__(self, d):
2 """Setstate re−implementation, for unpickling."""
3 self.max_depth = d["max_depth"]
4 self.node_count = d["node_count"]
5
6 if 'nodes' not in d:
7 raise ValueError('YouhaveloadedTreeversion

which'
8 'cannotbeimported')
9

10 node_ndarray = d['nodes']
11 value_ndarray = d['values']
12
13 value_shape = (node_ndarray.shape[0], self.n_outputs,
14 self.max_n_classes)
15 if (node_ndarray.ndim != 1 or
16 node_ndarray.dtype != NODE_DTYPE or
17 not node_ndarray.flags.c_contiguous or
18 value_ndarray.shape != value_shape or
19 not value_ndarray.flags.c_contiguous or
20 value_ndarray.dtype != np.float64):
21 raise ValueError('Didnotrecogniseloadedarray

layout')
22
23 self.capacity = node_ndarray.shape[0]
24 if self._resize_c(self.capacity) != 0:
25 raise MemoryError("resizingtreeto%d" % self.

capacity)
26 nodes = memcpy(self.nodes, (<np.ndarray> node_ndarray)

.data,
27 self.capacity * sizeof(Node))
28 value = memcpy(self.value, (<np.ndarray> value_ndarray

).data,
29 self.capacity * self.value_stride *

sizeof(double))

Here, we can see that the self.value represents the
data that resides within the d["values"] structure. Next,
we may focus on the self.apply(X) call of the initial
predict function, which brings us to the following func-
tion:

1 cpdef np.ndarray apply(self, object X):
2 """Finds the terminal region (=leaf node) for each

sample in X."""
3 if issparse(X):
4 return self._apply_sparse_csr(X)
5 else:
6 return self._apply_dense(X)

Our tree is always dense, so we look at the dense call,
which brings us to this function:

1 cdef inline np.ndarray _apply_dense(self, object X):
2 """Finds the terminal region (=leaf node) for each

sample in X."""
3
4 # Check input
5 if not isinstance(X, np.ndarray):
6 raise ValueError("Xshouldbeinnp.ndarrayformat

,got%s"
7 % type(X))

8
9 if X.dtype != DTYPE:

10 raise ValueError("X.dtypeshouldbenp.float32,
got%s" % X.dtype)

11
12 # Extract input
13 cdef const DTYPE_t[:, :] X_ndarray = X
14 cdef SIZE_t n_samples = X.shape[0]
15
16 # Initialize output
17 cdef np.ndarray[SIZE_t] out = np.zeros((n_samples,),

dtype=np.intp)
18 cdef SIZE_t* out_ptr = <SIZE_t*> out.data
19
20 # Initialize auxiliary data−structure
21 cdef Node* node = NULL
22 cdef SIZE_t i = 0
23
24 with nogil:
25 for i in range(n_samples):
26 node = self.nodes
27 # While node not a leaf
28 while node.left_child != _TREE_LEAF:
29 # ... and node.right_child != _TREE_LEAF:
30 if X_ndarray[i, node.feature] <= node.

threshold:
31 node = &self.nodes[node.left_child]
32 else:
33 node = &self.nodes[node.right_child]
34
35 out_ptr[i] = <SIZE_t>(node − self.nodes) #

node offset
36
37 return out

This is now the bottom function of the call stack. We
focus on the with nogil: part and everything that comes
after it, as this is the parallel code we are looking for.
Informally, what happens here is the following: first, the
nogil notation is a pragma to OpenMP acceleration li-
brary which releases the global interpreter lock of Python.
Essentially, this is required for the code to run fast. Inside
of the pragma, we find that we iterate each sample in our
tree, and then do a binary selection on it. If the node in
the sample is TREE_LEAF, which is a constant of -1, then
we save the previous node index into a Cython pointer
structure. Once we return the function, we should have a
collection of indices which the Cython predict function
then uses to take values out of the initial tree model. It is
worth noticing that the node = self.nodes points to a
Node type. This is given earlier in the source code:

1 NODE_DTYPE = np.dtype({
2 'names': ['left_child', 'right_child', 'feature', '

threshold', 'impurity',
3 'n_node_samples', 'weighted_n_node_samples'

],
4 'formats': [np.intp, np.intp, np.intp, np.float64, np.

float64, np.intp,
5 np.float64],
6 'offsets': [
7 <Py_ssize_t> &(<Node*> NULL).left_child,
8 <Py_ssize_t> &(<Node*> NULL).right_child,
9 <Py_ssize_t> &(<Node*> NULL).feature,

10 <Py_ssize_t> &(<Node*> NULL).threshold,
11 <Py_ssize_t> &(<Node*> NULL).impurity,
12 <Py_ssize_t> &(<Node*> NULL).n_node_samples,
13 <Py_ssize_t> &(<Node*> NULL).

weighted_n_node_samples
14 ]
15 })
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This is an important remark because the Node structure
is another layer of abstraction: it creates relations between
different nodes and the tree’s decision tree. This can be
slightly misleading. For example, let us first consider an
APL candidate to replace the decision tree traversal:

apply←{{
i←⍵
node←{⍵{(⍵+1)⌷,right[⍺;],left[⍺;]}⋄
i(⍵⌷feature)⌷x≤⍵⌷th}while{⍵⌷left≠¯1}1
out[i;]←node 1⌷values

}⍵}

To do the translation, we first assume that
node = self.nodes refers to both the array’s address
and its contents, as typical in C. Next, we note that APL
is read right to the left. Next, we can assume the index of
1 to be the first parameter in the APL node definition.
After this, the APL uses a dfns while construct. The
loops conditional is:

⍵⌷left≠¯1

Here, we check whether the value of the left array at
omega is -1. Omega is the right-hand side parameter iden-
tifier in APL, which here amounts to one, per the reasoning
in the previous paragraph. Next, if the conditional is true,
then

⍵{⍵+1⌷,right[⍺;],left[⍺;]}i(⍵⌷feature+1)⌷x≤⍵⌷th

Here, the code has two blocks, of which

i(⍵⌷feature+1)⌷x≤⍵⌷th

Is executed first. Here, we take the variable i, which
amounts to the for loop’s index, as in the Cython code.
We then use clauses to calculate the index at omega on
the feature array and add 1 to it to fix a compatibility
issue with Python indexing (in Python, index 0 is the first
value, whereas in APL it is 1). These two calls mean that
we make a selection of row i and column ⍵⌷feature+1
of x array, which is the sample array. We then compare
the result with the one at position omega on array th
(threshold). The omega here is the index passed from the
right-hand side, that is, it is the value 1. Now, the call

i(⍵⌷feature+1)⌷x≤⍵⌷th

Will print either 0 or 1, corresponding to False or True.
This is then passed into the second part of the APL call:

⍵{⍵+1⌷,right[⍺;],left[⍺;]}

Here, we have first placed omega of the outer block (that
is, the value of 1) as the alpha argument (left-hand side)
to go inside the bracketed call. We do this because the
binary value from the above call will get passed as the
omega argument inside the bracketed call. The call itself
makes a selection: it adds 1 to the binary value and uses
this value to make a selection between the two arrays. This
means it retrieves either the value at position alpha from
the array right when the comparison call received False
or alternatively the position alpha from the array left

when the comparison was True. The resulting value will
then be returned as the omega parameter back to the while
condition. Once false, the while loop terminates, and the
previous value will be saved in the call

out[i]←node

Where the i is the loop iterator value, and the node is
the last loop value from the while. As an example, assume
that the binary selection is always True, and the left
array is (2 3 -1 4). Now, we would first pluck 2 from the
array and use the index to find the second value from the
left array again, assuming that the binary selection always
returns 1. We would then get 3, which gets looped again
because it is not -1. On the third iteration, we would find
-1 after which we would return from the loop, and have
the value 3 as the node value. In a usual case, we would
bounce between the right and left arrays until we would
find -1.

Yet, the APL implementation is slightly incorrect as
APL starts indexing from 1. To fix this, we modify the
code to follows:

apply←{{
i←⍵
node←{⍵{⍵+1⌷,right[⍺;],left[⍺;]}⋄
i(⍵⌷feature+1)⌷x≤⍵⌷th}while{⍵⌷left≠¯1}1
out[i]←node

}⍵}

This is now the RF tree traversal code refactored to
APL. As the main point, we see that traversing the RF
tree requires explicit recursion. This is a bad sign, as
it is telling us that the operation within it cannot be
parallelized in APL. In general, we would assume that in
this point the data structure has to be transformed to
something such as a parallel tree structure (i.e., see [cite])
for better performance, but in this case, we retain the
original approach of the Python code to better compare
CPU against GPU.

Next, we move up in the call stack back to the Python
functions. The APL equivalent of everything is:

{{1⌷[2]↑⍒¨↓⍵(÷⍤1 0){⍵+0÷⍵}+/⍵}⍵}

What we have here is a sum reduction +/⍵ applied to
a normalization ⍵(÷⍤1 0){⍵+0÷⍵}, after which for each
matrix column a descending indices sort is applied ⍒¨↓,
and the indices of each column are returned 1⌷[2]↑.

In general, it could be said that in Python, much
effort goes into dealing with asynchronous and paral-
lel code, which requires multiple methods, source files,
and libraries. In APL, these performance improvement
methodologies are implicit, and the math function of the
RF prediction is arguably more succinctly described. In
essence, the APL code produced at this time can be
written in seven lines of code, as shown in the Appendix.

As for the SPIR-V code, the final product is found in
the Appendix. In the SPIR-V code, we used the APL
implementation rather than the Python implementation
as the reference. The translation itself is rudimentary,
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with the idea being that in future work, these hand-
coded translations would be generated as the program
output whenever a given operation is used. Since APL
only has a limited amount of operations, an APL-SPIRV
compiler amounts ”only” to the implementation of the
supported mathematical operations. As such, given a
complete APL operand support, generating executables
equals to correctly interpreting APL calls to produce the
main function, which calls the manually coded SPIR-V.
Regarding novelty, its not exactly a proper compiler, but
the GPU targeting produces enough quirks and pitfalls to
keep things interesting (see: III-B).

Further, we saw that hand-writing SPIR-V code enabled
some novelty: on line 99, the SPIR-V IR stores a pointer
representing an array of 198 values in a single assignment.
This is interesting because the current cross-compilers for
GLSL and Metal Shading Language (MSL) are unable to
do so. As such, the only way to do such an operation with
the current SPIR-V tooling is to write it by hand. We
believe this vouches for the usefulness of a direct SPIR-V
target output in future work.

B. Programming in SPIR-V
During our research, we made an effort to translate

Python to APL to SPIR-V. During this time, we learned
about the details of SPIR-V, which we have documented
in the following chapters.

1) Subgroup operations: Whilst GPUs have many
threads, SIMD operations are not automatically applied.
Instead, similar to AVX programming, separate instruc-
tions must be used. On GPUs and SPIR-V hence Vulkan
in specific, such operations are called group operations.
Group operations historically abstracted away so-called
workgroup level operations, but nowadays, the best-
practice is to use a more refined class of instructions
belonging to subgroup operations6, which is as a named
concept specific to SPIR-V (i.e., Nvidia calls subgroup
operations as ”warps”). On the SPIR-V specification,
the subgroup operations are listed under 3.36.24. Non-
Uniform Instructions7. The usefulness of subgroup op-
erations is that the opcodes abstract the manufacturer-
specific approaches to do SIMD operations on each kind
of GPU, mobile or desktop. As a historical reference
to the avid reader, to understand more about subgroup
operations, we found online resources Vulkan Subgroup
Explained8 and Optimizing Parallel Reduction in CUDA9

the most helpful.
Because of the parallel hardware design, some opera-

tions are trickier on GPUs than on CPUs. E.g., let us
consider a reduce operation on a CPU. In the functional

6https://www.khronos.org/assets/uploads/developers/library/
2018-vulkan-devday/06-subgroups.pdf

7https://www.khronos.org/registry/spir-v/specs/unified1/
SPIRV.html#_a_id_non_uniform_a_non_uniform_instructions

8https://www.khronos.org/assets/uploads/developers/library/
2018-vulkan-devday/06-subgroups.pdf

9https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

programming paradigm, a reduce operation could be de-
scribed as a recursive function on a vector of natural
numbers: the last element of the vector is summed to
the previous element until the vector length is one. In
principle, the sum operation should, therefore, apply to
any non-empty vector.

On GPUs, it is possible, albeit extraordinarily ineffi-
cient, to use the same principle. This is because GPUs
launch a workgroup per a compute unit of a GPU, which
then each hold invocations which handle parallel tasks.
As explained with an example in §II-B2, GPUs essentially
hold a thread for each element of the vector, and the
program structure must be defined from the viewpoint of
a single thread (i.e., invocation). As an added complexity,
in SPIR-V, unless the size of the vector is coded in the
program source, it is to our understanding impossible10 to
define the length of the vector at runtime. Such constraints
are very rarely considered in CPU algorithms, which forces
us to fundamentally rethink many of our approaches.

Yet, neither is managing memory without its peculiari-
ties: an invocation cannot share stack memory with invo-
cations in other subgroups. Heap memory allocation during
runtime is also impossible. This means that it is impossible
to declare a function-local variable and compare it to
the values of other invocations unless the two invocations
reside within the same subgroup. In this sense, a subgroup
resembles an AVX SIMD-lane – register values beyond the
single SIMD lane are not accessible, and the width of the
SIMD lane is dependent on the physical attributes of the
hardware. In our tests, we noticed that Nvidia GPUs tend
to have a subgroup width of 32 registers and AMD GPUs
with a width of 64. Further, in some cases, the width can
change during runtime. However, these registers are very
efficient. Indifferent to CPU AVX instructions, which are
restricted by the byte-width of the register (e.g., AVX-
512 supports 512-bit registers), the registers on GPU are
not dependent on the size of the value in the register. This
means that it is possible to fit a 4x4 float matrix on a single
register on GPU, and as such, do arithmetic on 64x4x4
registers (on AMD) using a single operation call without
accessing the slow uniform-class memory storage.

But beyond subgroup sizes, communication between
invocations must be done via shared heap memory, which
must hold a particular visibility scope11 which are an im-
portant concept for performance. Heap-based communica-
tion also requires explicit synchronization: changes in the
heap are not visible to pointer references automatically,
but instead, must be synchronized via memory barriers,
which synchronize the state across programmer speci-
fied visibility Scope. Hence, understanding memory bar-
riers and memory synchronization are required for space-
efficient computation, and to avoid non-determinism. Fur-
ther, session-based synchronization primitives, prevalent
in concurrent programming languages, such as channels

10https://www.khronos.org/registry/spir-v/specs/unified1/
SPIRV.html#OpArrayLength

11https://www.khronos.org/registry/spir-v/specs/unified1/
SPIRV.html#Scope_-id-
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in Go and D, are not available. Instead, changes in the
heap memory are managed either by 1) atomic opera-
tions of integer and floating-point types or 2) via the
Vulkan memory model. Yet, there exists an exception to
this regarding our use-case in machine learning workloads
for the Vulkan memory model, which does not support
atomic operations on floats. A number of machine learning
applications deal with probabilities hence require floating-
point representation. This means that compute kernels
like ours, which use the Vulkan memory model in part
to understand more about Vulkan but also to support
even the most recent opcodes, are excluded from inter-
thread communication via atomic operations. Instead, the
pointer-based Vulkan memory model via memory barriers
must be used instead.

2) Vulkan memory model: The Vulkan memory model
is formally verified, open-source12 specification to ensure
well-founded memory management for GPUs. The Vulkan
memory model is written in Alloy [36], which is a model
checker designed to find bugs in parallel and asynchronous
software. As GPUs are parallel computers, ensuring cor-
rect ordering of memory accesses is paramount to avoid
non-deterministic results. Further, the Vulkan memory
model is deemed novel: according to the Khronos Group,
the open industry consortium responsible for both the
Vulkan graphics API and the SPIR-V IR language, the
Vulkan memory model is ”the world’s first graphics API
with a formal memory model.” 13

Relevant to our study, two concepts of the Vulkan
memory model, Availability and Visibility, are important.
We focus on these concepts as they are, as defined above,
the only memory operations that support interthread
communication on floating-point numbers, relevant to
our case-study of RF prediction algorithm. And as the
Vulkan memory model was mainlined into the SPIR-V
specification in the version 1.5, which was released on
September 13th, 2019, we also deem it relevant contribu-
tion to documenting our understanding and usage of it –
previous academic work regarding the use of these memory
primitives for compute kernels seem non-existent, likely
due to the recency of the specification.

Regarding the definition of the terms, according to a
blog post by Khronos14, ”Availability operations ensure
that values written to a memory location in one thread
can be made available to other threads. Visibility opera-
tions guarantee that values which are available are made
visible to a thread, to ensure that the correct values are
read. For typical devices supporting Vulkan, availability
and visibility operations will map to cache control (e.g.,
flushes/invalidates/bypass).” The blog post continues to
detail some general usages, of which to us the most
relevant is the Read-after-Write usage, as it models the

12https://github.com/KhronosGroup/Vulkan-MemoryModel
13https://www.khronos.org/blog/vulkan-has-just-become-the-

worlds-first-graphics-api-with-a-formal-memory-model.-so-what-is-
a-memory-model-and-why-should-i-care

14https://www.khronos.org/blog/comparing-the-vulkan-spir-v-memory-model-to-cs#
_availability_and_visibility

interthread communication between invocations in differ-
ent subgroups. According to the blog post, when a pointer
is read after writing, it requires the writer to be first made
available and then visible before the read. In practice,
per the SPIR-V documentation on memory operands15

this means that for memory operands which modify
shared data, we must apply MakePointerAvailable
or MakePointerVisible flag when calling OpStore or
OpLoad operand, respectively. The specification also spec-
ifies that these flags have to be accompanied by an ad-
ditional flag of NonPrivatePointer, which defines that
the memory access obeys inter-thread ordering. After the
flags, a memory scope identifier is also required. The scope
identifier allows the specification of how ”far” the pointer
operation will trickle in the memory domain. This is useful
for performance: the memory bandwidth, according to a
blog post which benchmarked subgroup operations against
threadgroups16, even for thread groups, which are higher-
order memory abstraction than subgroups, hence slower,
maybe up to 10x faster than global memory, and the
latency for memory access for thread groups is up to 40x
faster than for global memory. On the other hand, the
same blog post also remarks that it might be harder to use
subgroup operations than workgroup or global memory op-
erations. In this case, we found it to be the opposite when
writing SPIR-V by hand: thread group operations were
not supported by our hardware, while subgroup operations
were, and semantically there is no difference in SPIR-
V whether data is loaded and stored from a subgroup,
thread group, or global memory. In this light, we remark
that writing SPIR-V by hand, i.e., instead of using cross-
compilers, enables easier usage of the new performance-
improving primitives. Alas, this improved control over
performance does not come free: writing SPIR-V code,
which is an intermediate representation, after all, is much
more laborsome than, say, existing shader languages like
GLSL or MSL.

The bottom line is that computation on the GPUs
is tricky for memory reasons: both memory storage and
memory communication requires understanding GPU-
specific concepts. What follows is that also, many classical
algorithms do not work as-is on GPUs. Yet, for the sake
of the focus of this research, further considerations for
optimal algorithms or their correct implementations are
left for future research. As will be seen in the following
sections, a lot of systems understanding is required merely
to bootload GPU programs.

C. Orchestration of GPU compute resources
Similar to previous NFV approaches, such as Netbricks

[37], in this study, our microservice architecture lever-
ages Rust programming language. Further, also similar
to Netbricks, we run the NFs unvirtualized. Here, we

15https://www.khronos.org/registry/spir-v/specs/unified1/
SPIRV.html#Memory_Operands

16https://github.com/bzm3r/transpose-timing-
tests/blob/master/POST.md



15

Array Language SPIR-V Vulkan GPU

BPF Host ApplicationNetwork

Node (x86/ARM)

Fig. 6. An envisioned software stack of a GPU node.

leverage low-level Vulkan API bindings to allow us to
refine the GPU computation pipeline to accustom to
performance. To elaborate, we declare static resources
that exist along the complete lifetime of the program,
with other parts, such as program loading, working in
a dynamic manner (see: left side of Fig. 9). Next, to
allow GPU NFs to be orchestrated, we integrate our Rust-
loader application with Kubernetes Service abstractions
(see: Fig. 8). In particular, the novelty of our approach
here comes from the fact that SPIR-V kernels can be
inlined within Kubernetes Service abstraction as string-
valued metadata. This is possible because SPIR-V kernels
are small in size: our RF prediction algorithm weights
in at 2kb without compression. Furthermore, we achieve
a non-virtualized and non-container approach while still
managing to leverage Kubernetes APIs by defining the
GPU nodes inherently as non-schedulable (by not having
CRI installed, see: Fig. 7) and the Service abstractions
as services without selectors. This way, we achieve two
things: 1) Kubernetes does not try to schedule any ex-
isting worker nodes (for software stack, see: Fig. 6) to
spawn containers for the GPU Services as the Service
declarations lack selectors, and 2) the Services are still
exposing as a cluster-wide domain name system (DNS)
entry. This keeps our proposed approach non-invasive to
existing Kubernetes installations. Hence, we believe that
our proposal to orchestrate GPU NFs this way can be
practically viable. The major benefit of integrating with
the standard Kubernetes scheduling workflow, orientated
around the Service abstraction, is that the GPU Services
in our proposed architecture is automatically seen, routed,
and exposed within the cluster as any other standard
container-based service. This way, we can heavily simplify
our loader program: container network interface (CNI)
handles the networking, CoreDNS the routing, and etcd
the kv-storage. For example, for better networking per-
formance, CNI integrations like Cilium can be used to
automatically benefit from kernel-passthrough technology
BPF. Such an approach might be useful when running
the GPU NFs on the edge of the network, providing even
lower latency to data inference or simply to gain higher
packet throughput. The following subsections are meant
to further detail and visualize our proposed approach.

1) Kubernetes Integration: As mentioned, Kubernetes
[4] is an orchestrator system for containers, and can
be considered as a system which conglomerates multiple
physical servers into a single abstracted computing unit.

Kubernetes
Load-Balancer

Services
CoreDNS

kube-apiserver
kube-proxy

OCI

CNI
etcd
OS

CPU Primary Instance

kube-proxy
OCI

CNI
etcd
OS

CPU Secondary
Instance

kube-proxy
OCI

CNI
etcd
OS

CPU Secondary
Instance

kube-rs
Vulkan

CNI
etcd
OS

GPU Instance

Fig. 7. Kubernetes integration. Here, four instances form the Ku-
bernetes abstraction. Green instances are container-schedulable, the
red one is not.

Kubernetes is designed to schedule software packaged
into containers, but due to its modular design, it can be
retrofitted to also serve other purposes. In this study, we
propose a way to retrofit Kubernetes to orchestrate GPU
microservices in a cluster, which can also do containers
in the traditional way. As such, we consider our approach
”non-invasive”, as we do not limit the functionality of the
standard installation.

Due to Kubernetes’ modular design, the architecture
of each installation may vary. In our study, we propose
a barebone installation without making too many as-
sumptions about what the underlying modules are. To
illustrate our idea, we consider a network topology of a
four-node system, in which we have one primary node and
three secondaries (pictured in Fig. 7). Here, of the three
secondaries, two of them are container hosts, whereas one
of them is a GPU host. We propose that the GPU host
remains non-schedulable for containers, per arguments
regarding NF performance (e.g., see [37]). On the cluster
level, we do not simply cordon the GPU hosts, but instead,
never install a CRI on the host. This is a possible solution
when the Kubernetes cluster installation is done manually
(e.g., per instructions of [38]). However, even though the
GPU instance is unuseful hence in a sense redundant for
the cluster for running containers, it may still be part of
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1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: my−service
5 spec:
6 selector:
7 app: MyApp
8 ports:
9 − protocol: TCP

10 port: 80
11 targetPort: 9376

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: my−service
5 spirv:

AwIjBwAFAQAAAAcAWAAAAAAA
...

6 binding_count: 7
7 spec:
8 ports:
9 − protocol: TCP

10 port: 80
11 targetPort: 9376
12−−−
13
14 apiVersion: v1
15 kind: Endpoints
16 metadata:
17 name: my−service
18 subsets:
19 − addresses:
20 − ip: 192.0.2.42
21 ports:
22 − port: 9376

Fig. 8. Kubernetes Service declarations. On the left, one with
selectors, which would spawn container image MyApp. On the right,
a Service without a selector, which would not spawn any containers.
Our proposal uses the right-hand side version to spawn GPU NFs as
microservices.

the cluster as long as it has the CNI installed properly. The
CNI is just another module on the Kubernetes stack and
can be, e.g., flannel or something else. The CNIs then
rely on etcd which is a distributed kv-storage and one
of the most basic requirements for a Kubernetes instance.
We insist on the fact that in our proposed architecture,
the CNI, CRI and the GPU host operating system may
be whatever, as the software stack does not need to be
opinionated thanks to the modular interface provided by
Kubernetes (to a stark difference, e.g., in Legate [9] where
the software stack must be based on proprietary Nvidia
stack).

Once these basic services are installed on each node,
they should provide a DNS layer for proper addressing
withing the cluster. Usually, this is done via CoreDNS as it
has a Kubernetes integration, but may also be some other
DNS server. Relevant to our proposal, the DNS server is
required to correctly route Kubernetes Services, which is
the main interface our proposed architecture needs. To
quote the Kubernetes documentation, a Service is ”an
abstraction which defines a logical set of Pods and a policy
by which to access them (sometimes this pattern is called a
micro-service)”. In other words, Service is the Kubernetes-
native way of defining a microservice. As such, it is logical
for our proposal on the orchestration of GPU NFs as
microservices to interface with the Service abstraction.

Yet, we do not use the standard declaration of Service,
because we do not want to run the GPU NF microservices
inside of a container. To elaborate, using containers for
GPU applications is tricky and opinionated. For reference,

the Kubernetes documentation on using GPUs17 lists
that to use, e.g., Nvidia GPUs, the cluster has to: 1)
have Nvidia drivers pre-installed, 2) have nvidia-docker
installed (which only works on Linux), 3) use Docker
as the CRI. For AMD, the steps include similar tweaks,
including allowing the nodes to run in a privileged mode.
In essence, these approaches limit the flexibility of the
GPU node installations and require dangerous execution
modes for containers, which are usually meant to run
in an unprivileged mode. We note that in our proposal,
drivers still have to be installed, in addition to Vulkan, but
our proposal allows the GPU nodes to remain operating
system and CRI agnostic. We achieve this by declaring the
Service abstraction without a node selector. To compare
these declarations, consider Fig. 8. Further, for the Service
not to remain orphan, we must declare an Endpoint ab-
straction manually. This can be done in a single command
by separating the configuration declarations with three
dashes, as shown in Fig. 8.

As can be seen on Fig. 8, our proposal for declaring
GPU microservices within Kubernetes requires the SPIR-
V binary file to be inlined within the metadata description.
In our initial proposal, we do not compress the binaries,
and the binaries are encoded in base64. Also, the binding
count has to be included, which defines how many buffers
the SPIR-V kernel includes. The buffers in our initial
proposal are always defined as Vulkan Storage Buffers with
the Compute type.

After the creation of the Service file, CoreDNS trig-
gers a CNAME entry creation for the Service. We clar-
ify that this is a standard procedure in Kubernetes,
which is automatically triggered on Service creation.
By default, this would expose an endpoint by name
my-service.default.svc.cluster.local in each of
the cluster’s nodes’ routing table. In our proposal, what
follows is that the Service creation events would be listened
by the GPU nodes using a Kubernetes client-wrapper, e.g.,
kube-rs. This means that each GPU node is listening to
the primary Kubernetes node to announce changes in the
cluster Service entries. One such is found, the GPU nodes
would pull the declarations using the HTTP API. This
would reveal the SPIR-V binary encoded in base64 and
the number of buffer bindings that have to be created for
this particular GPU microservice. Finally, if the Endpoints
include the node-local IP address, the microservice is
provisioned using the Vulkan API. Once the microservice
is initialized, the according to port found in the Service
declaration is opened on the node. When the port receives
packets, the contents are unmarshaled to 1D vector array
buffers in Rust and passed to GPU. Once done, the result
is written back to the connection which it came from. As
such, it is the responsibility of the Kubernetes CNI to
route data in and out. Such reliance cuts two ways: on
the one hand, our proposal only works with Kubernetes.
But on the other hand, we do not make assumptions about

17https://kubernetes.io/docs/tasks/manage-gpus/
scheduling-gpus/
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what the Kubernetes installation has to be like. As such,
it is possible to leverage Kubernetes abstractions on top
of the GPU NFs, such as LoadBalancer, to balance the
load among many GPU nodes or any other networking
constructs. For example, to create a function-chain of
NFs, we would encourage the chaining to be declared on
Kubernetes-level. This way, the function-chain may mix
both GPU NFs and CPU NFs by interfacing via CNAME
entries. As such, we consider that our proposal can be used
to introduce GPU NFs and other microservices as part of a
heterogeneous system consisting of CPU and GPU nodes.

2) Vulkan-based Loader Program: Our Vulkan-based
loader program (see: 9 and high-performance computing
and software engineering level contribution on 5) uses a
Rust-wrapper library called ash18 to interface with the
GPU. In the abstract, ash provides conveniences, e.g.,
wrapping returned structures in vectors, and providing
default values for all API call structures. It is also a very
low-level in the sense that all operations are ”unsafe”,
which essentially means that the programmer must consult
the official Vulkan API documentation to avoid unde-
fined behavior. Coincidentally, this means that the Rust
compiler is less useful than usually in respect of memory
safety: unsafe calls are meant as code blocks in which the
programmer surpasses the type system, and everything in
ash is unsafe.

In Fig. 9 we demonstrate the program flow of the loader.
We start from declaring static variables, i.e., ones which
extend to the complete lifetime of the program. Once these
are initiated, the shader modules and pipeline layouts
of the shaders are retrieved from Kubernetes using a
Rust client library to Kubernetes called kube-rs19. This
could be considered as analogous to pulling a container
image from a registry to be ready-to-deploy. After this
initialization, we open the ports specified by the Kuber-
netes Services and start waiting for input to the kernels.
Once input is received, it goes through a standard Vulkan
compute pipeline, which we have detailed step-by-step
in the aforementioned figure. In the final step, once the
result is copied back to CPU memory, the result is written
back to the network socket specified by the Kubernetes
Service file. Here on, it is the job of Kubernetes CNI
to forward the response to wherever. As such, it could
be argued that this way, our approach yields itself well
to the working principles of chained NFs, allowing such
constructs to be modeled in Kubernetes, possibly spanning
multiple Services with GPU NFs and traditional CPU
containers complementing each other. Further, we yield
to the fact there should exist more performant ways to
traverse the Vulkan pipeline – understanding Vulkan to
use it in the most effective way is a subject of many
books, thus effectively out-of-scope of what could have
been prepared for this study. As such, further pipeline
optimizations are left for future studies.

18https://github.com/MaikKlein/ash
19https://github.com/clux/kube-rs

D. Results
The benchmarks were run on an Intel i7 processor

and Nvidia GTX 2080 GPU. As introduced previously,
the application was a RF prediction over 150x6000x300
dimensional trees (i.e., quite small). As shown in Fig. 10,
the Cython code on OpenMP was faster than the GPU
code: the average runtime of the Cython code was 380ms
(8 cores, 6000 threads) while the SPIR-V took on average
480ms (1024 cores) to execute. Further, the performance
variance on the GPU was higher than on the Cython code.

However, even though the GPU code was slower, we
estimate that there exists future work in making the GPU
approach faster. In specific, due to the time limits of our
research, each data buffer is copied separately to the GPU.
While the dataset is not big (our dataset weights in at
70MB in total), the memory copies happen sequentially.
Yet, it is possible to use Vulkan’s fine-grained performance
primitives to structure the data in such a way that a single
memory copy would suffice. Similarly, garbage collection
of the Vulkan resources could be done asynchronously,
whereas currently, the operations block each tree iteration.
Furthermore, the data structure of the binary decision
tree could be reformatted into a path matrix [35]. Such
a parallel data structure would allow the GPU to use its
y-dimension cores when traversing the tree.

Altogether, we think these results are promising. GPUs
are oftentimes thought to only be practical approach after
a certain threshold is met, but here we show it can be
almost comparable to CPU performance even for small
datasets.

IV. Discussion and Future Work
In our case-study in Section §III we relied on a hand-

coded SPIR-V program. But what about compiling APL
straight to SPIR-V and automatically creating the Ku-
bernetes manifest files? According to our research, such is
possible but does not come without its challenges. First,
the problem considers the well-researched subject of the
static compilation of APL. We found that as of recent,
the matter has been studied in [28] (2014). It seems
the work continues with two new pre-prints appearing
in 2019 [39], [40]. In abstract, these papers introduce a
new language that leverages dependant types to achieve
static rank polymorphism. Meanwhile, in [41] argument is
made against inventing a new language. In [41], the author
argues for using Haskell to implement a type checker for
static rank polymorphism and provides proof that the
issue of type checking APL is possible given the current
state of programming language theory and its tools.

Next, we detail why the type checking is important
in the context of our goals: one unique challenge GPU
environments introduce over the CPU is the non-existence
of shared stack memory and inability to allocate memory
at runtime. As such, for a generic compiler, the compiler
would need to infer the intermediate types after each
operation step until program termination. Interestingly,
this would also imply that the problem touches on so-
called static memory management, which has been an issue
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in recent programming language research (e.g., [42]). To
elaborate on the problem, let us suppose the following
program:

⍒ 4 4 ⍴ ?⍳16

which produces depending on randomness, e.g.,

3 4 2 1

I.e., create a random list of 16 integers, reshape them
into 4x4 matrix, and for each row of the matrix, sum the
values together, and rank then according to the sum value
from highest to lowest.

When this program is given to the loader program, the
problem is that the buffer dimensions inferred from the
initial argument (index of) 16 are not relevant considering
the output (of shape 4). This is a problem because the
output buffer has to be allocated prior to program execu-
tion, meaning that, what would be loaded from the GPU
memory would be: 3 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0. This is
a false result and would need to be either reshaped on the
GPU or the CPU, but regardless of which hardware it is
done, the type inference (more precisely in APL terms, the
shape inference) has to be known prior to the execution
of the kernel (to clear out the unneeded numbers). Yet,
the only way to know the final shape of the array is to
make a type of inference of the whole program as most
APL interpreters are made for CPU hardware they do
not concern type inference prior to the runtime as they
are able to allocate shared stack memory.

In addition, because of the rho which transforms the
list of 16 numbers into a 4x4 matrix, which is then
graded down using the indices sort function, we are also
introduced to an intermediate problem: the sorting needs
to be applied to a shared matrix (as sorting is data-
dependant on other threads values), but the matrix has
no physical mapping, nor is it the output of the program.
To our current knowledge, there are two apparent options
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to handle this:
1) Infer the matrix transformation prior to execution

and allocate an ”intermediate” physical global work
buffer Q, which is given as the target memory to the
reshape function. This would mean that there are
three memory allocations: one for the input (1x16,
class CPU-GPU), one for the reshape (4x4, class
GPU-only), and one for the output (1x4, class GPU-
CPU). Now, the reshape would map the memory into
a 4x4 device-class storage buffer, which could then
be manipulated using the Y dimension invocation
identifier. Hence, this would mean that the Y dimen-
sion of the workgroup should always be at least the
maximum of any intermediate shapes’ Y dimension.

2) Infer the matrix transformation prior to execution,
and either allocate or use any ”old” memory buffer
layouts (memory buffers which do not hold any
data-dependency to forthcoming executions) to fit
the data into. In this example, the input buffer
(1x16, class CPU-GPU) would fit our whole matrix
if laid into a one-dimensional format. Also, the input
buffer has served its purpose (the program does not
need it anymore), so the memory in there would
be safe to overwrite. Now, the reshape would map
the memory by using a stride identifier of 4. This
means, that even though the matrix is handled in
a one-dimensional array, the SPIR-V would keep an
additional variable in-memory to know that depend-
ing on the X dimension invocation identifier, that it
is not supposed to use the indices sort beyond the
stride. For example, if the invocation ID is 14, this ID
could be divided by the stride to infer the ”logical”
Y dimension of the array. As a benefit, the stride
could be coded as a function-local variable within
the compilation, hence saving access or allocation
in global memory. So, with this approach, it would
mean that there are two memory allocations: one for
the input (1x16, class CPU-GPU), and one for the
output (1x4, class GPU-CPU). The memory usage
has decreased, but this method would two-step of
one very complicated thing: identify orphan memory
+ use it such that it can fit the memory (what about
if the orphan memory is 3x10? it fits but not exactly,
requires more complex stride logic).

Yet, the 2) is logically an improvement over the 1), and
1) would be required at all times: if there simply will not
be eligible orphan memory, or it is too small, then memory
allocation should be inferred to the principle of 1).

However, this is good to think as it relates closely to
the way the information is fed to the GPU: even though it
would be possible to define input buffers to already adhere
to a matrix or vector dimensions, it might be limiting (and
slowing) factor if the original memory layout is probed to
be re-used.

A second aspect that would improve from the applica-
tion of computer science theory is the memory safety of
the programs. The more complicated the APL operands

become, the more error-prone it is to prove that the
algorithms do what they are supposed: GPU programs
are parallel constructs, and hence may act nondetermin-
istically. This act is further complicated by the way the
memory has to be handled as pointers in the program state
– pointers are generally known to be a very error-prone
concept. We stipulate that in the future the APL operands
of which the compiler stitches together should either be
verified with a model checker to avoid concurrency bugs,
or, e.g., use some form of separation logic to make sure
that certain parts of the program hold invariants.

As the bottom line, we deem it interesting to next
apply proper computer science logic to our contribution:
the arguably at-times hacky approach to combine many
aspects of system sciences together in this study seems
to be ripe to be improved by formalism next. Further, it
may well be that due to relation with high-performance
computing, the results found in later studies might be
practically viable, especially given the fact that should
the aforementioned Kubernetes approach be presented as
a software plugin rather than mere textual description.

V. Conclusion
This study was conducted in the context of NFV,

which seeks to replace purpose-built network hardware
with commodity hardware such as GPUs. In this study,
we used rank polymorphic programming language APL
as a parallel modeling language for SPIR-V IR GPU
code. In general, we studied how APL could work as a
compiled GPU DSL for NFV. Hence, we introduced a way
to deploy GPU code written this way to Kubernetes. We
also benchmarked an NFV ML application: we timed RF
tree prediction of size 150x6000x300 between CPU and
GPU. We found that OpenMP powered Cython code on
CPU was, on average, 26% faster than our hand-written
Vulkan SPIR-V GPU code. We remark that the bench-
mark does favor the CPU over GPU due to the small size
of the RF tree. We also suggest performance improvements
to our GPU implementation. We also discuss challenges
and opportunities for extending the APL DSL with type
inference. As a conclusion, given the groundwork done
in this study, we consider such future work prosperous.
In specific, future work would provide novel yet practical
features to NFV via ease of programming and verifiable
memory consumption policies.
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Fig. 11. APL refactor of the Python source code.

Appendix
Due to the font-problems of LaTeX, we present the

multiline source-code of APL as Fig. 11 instead of textual
representation.

1 ; SPIR−V
2 ; Version: 1.5
3 ; Generator: Khronos SPIR−V Tools Assembler; 0
4 ; Bound: 85
5 ; Schema: 0
6 OpCapability Shader
7 OpCapability VariablePointers
8 OpCapability VulkanMemoryModel
9 OpMemoryModel Logical Vulkan

10 OpEntryPoint GLCompute %1 "main" %
gl_GlobalInvocationID %3 %4 %5 %6 %7
%8 %9

11 OpExecutionMode %1 LocalSize 1024 1 1
12 OpDecorate %gl_GlobalInvocationID BuiltIn

GlobalInvocationId
13 OpDecorate %

_arr__arr_float_uint_198_uint_5788
ArrayStride 792

14 OpMemberDecorate %_struct_11 0 Offset 0
15 OpDecorate %_struct_11 Block
16 OpDecorate %3 DescriptorSet 0
17 OpDecorate %3 Binding 0
18 OpDecorate %3 Aliased
19 OpDecorate %_arr_float_uint_3285

ArrayStride 4
20 OpMemberDecorate %_struct_13 0 Offset 0
21 OpDecorate %_struct_13 Block
22 OpDecorate %4 DescriptorSet 0
23 OpDecorate %4 Binding 1
24 OpDecorate %5 DescriptorSet 0
25 OpDecorate %5 Binding 2
26 OpDecorate %6 DescriptorSet 0
27 OpDecorate %6 Binding 3
28 OpDecorate %7 DescriptorSet 0
29 OpDecorate %7 Binding 4
30 OpDecorate %_arr_float_uint_198 ArrayStride

4
31 OpDecorate %

_arr__arr_float_uint_198_uint_3285
ArrayStride 792

32 OpMemberDecorate %_struct_16 0 Offset 0
33 OpDecorate %_struct_16 Block
34 OpDecorate %8 DescriptorSet 0
35 OpDecorate %8 Binding 5
36 OpDecorate %_arr_float_uint_300 ArrayStride

4
37 OpDecorate %

_arr__arr_float_uint_300_uint_5788
ArrayStride 1200
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38 OpMemberDecorate %_struct_19 0 Offset 0
39 OpDecorate %_struct_19 Block
40 OpDecorate %9 DescriptorSet 0
41 OpDecorate %9 Binding 6
42 %uint = OpTypeInt 32 0
43 %int = OpTypeInt 32 1
44 %void = OpTypeVoid
45 %23 = OpTypeFunction %void
46 %bool = OpTypeBool
47 %float = OpTypeFloat 32
48 %uint_300 = OpConstant %uint 300
49 %uint_5788 = OpConstant %uint 5788
50 %uint_3285 = OpConstant %uint 3285
51 %uint_198 = OpConstant %uint 198
52 %v3uint = OpTypeVector %uint 3
53 %_ptr_Input_v3uint = OpTypePointer Input %v3uint
54 %gl_GlobalInvocationID = OpVariable %_ptr_Input_v3uint

Input
55 %_ptr_Input_uint = OpTypePointer Input %uint
56 %_arr_float_uint_3285 = OpTypeArray %float %uint_3285
57 %_struct_13 = OpTypeStruct %_arr_float_uint_3285
58 %_ptr_StorageBuffer__struct_13 = OpTypePointer

StorageBuffer %_struct_13
59 %4 = OpVariable %_ptr_StorageBuffer__struct_13

StorageBuffer
60 %5 = OpVariable %_ptr_StorageBuffer__struct_13

StorageBuffer
61 %6 = OpVariable %_ptr_StorageBuffer__struct_13

StorageBuffer
62 %7 = OpVariable %_ptr_StorageBuffer__struct_13

StorageBuffer
63 %_arr_float_uint_198 = OpTypeArray %float %uint_198
64 %_arr__arr_float_uint_198_uint_3285 = OpTypeArray %

_arr_float_uint_198 %uint_3285
65 %_struct_16 = OpTypeStruct %

_arr__arr_float_uint_198_uint_3285
66 %_ptr_StorageBuffer__struct_16 = OpTypePointer

StorageBuffer %_struct_16
67 %8 = OpVariable %_ptr_StorageBuffer__struct_16

StorageBuffer
68 %_arr_float_uint_300 = OpTypeArray %float %uint_300
69 %_arr__arr_float_uint_300_uint_5788 = OpTypeArray %

_arr_float_uint_300 %uint_5788
70 %_struct_19 = OpTypeStruct %

_arr__arr_float_uint_300_uint_5788
71 %_ptr_StorageBuffer__struct_19 = OpTypePointer

StorageBuffer %_struct_19
72 %9 = OpVariable %_ptr_StorageBuffer__struct_19

StorageBuffer
73 %_arr__arr_float_uint_198_uint_5788 = OpTypeArray %

_arr_float_uint_198 %uint_5788
74 %_struct_11 = OpTypeStruct %

_arr__arr_float_uint_198_uint_5788
75 %_ptr_StorageBuffer__struct_11 = OpTypePointer

StorageBuffer %_struct_11
76 %3 = OpVariable %_ptr_StorageBuffer__struct_11

StorageBuffer
77 %_ptr_Function_uint = OpTypePointer Function %uint
78 %_ptr_StorageBuffer__arr_float_uint_198 = OpTypePointer

StorageBuffer %_arr_float_uint_198
79 %_ptr_StorageBuffer_float = OpTypePointer StorageBuffer %

float
80 %_ptr_Function_float = OpTypePointer Function %float
81 %uint_0 = OpConstant %uint 0
82 %uint_1 = OpConstant %uint 1
83 %int_n1 = OpConstant %int −1
84 %float_0 = OpConstant %float 0
85 %float_n1 = OpConstant %float −1
86 %46 = OpTypeFunction %uint %uint
87 %1 = OpFunction %void None %23
88 %47 = OpLabel
89 %48 = OpAccessChain %_ptr_Input_uint %

gl_GlobalInvocationID %uint_0
90 %49 = OpLoad %uint %48
91 %50 = OpULessThan %bool %49 %uint_5788
92 OpSelectionMerge %51 None
93 OpBranchConditional %50 %52 %53

94 %52 = OpLabel
95 %54 = OpFunctionCall %uint %55 %49
96 %56 = OpAccessChain %

_ptr_StorageBuffer__arr_float_uint_198 %3 %
uint_0 %49

97 %57 = OpAccessChain %
_ptr_StorageBuffer__arr_float_uint_198 %8 %
uint_0 %54

98 %58 = OpLoad %_arr_float_uint_198 %57
99 OpStore %56 %58

100 OpBranch %51
101 %53 = OpLabel
102 OpBranch %51
103 %51 = OpLabel
104 OpReturn
105 OpFunctionEnd
106 %55 = OpFunction %uint None %46
107 %59 = OpFunctionParameter %uint
108 %60 = OpLabel
109 %61 = OpVariable %_ptr_Function_uint Function %

uint_0
110 OpBranch %62
111 %62 = OpLabel
112 OpLoopMerge %63 %64 None
113 OpBranch %65
114 %65 = OpLabel
115 %66 = OpLoad %uint %61
116 %67 = OpAccessChain %_ptr_StorageBuffer_float %4

%uint_0 %66
117 %68 = OpLoad %float %67
118 %69 = OpConvertFToS %int %68
119 %70 = OpINotEqual %bool %69 %int_n1
120 OpBranchConditional %70 %71 %63
121 %71 = OpLabel
122 %72 = OpAccessChain %_ptr_StorageBuffer_float %7

%uint_0 %66
123 %73 = OpLoad %float %72
124 %74 = OpConvertFToU %uint %73
125 %75 = OpAccessChain %_ptr_StorageBuffer_float %9

%uint_0 %59 %74
126 %76 = OpLoad %float %75
127 %77 = OpAccessChain %_ptr_StorageBuffer_float %6

%uint_0 %66
128 %78 = OpLoad %float %77
129 %79 = OpFOrdLessThanEqual %bool %76 %78
130 %80 = OpSelect %_ptr_StorageBuffer__struct_13 %79

%4 %5
131 %81 = OpAccessChain %_ptr_StorageBuffer_float %80

%uint_0 %66
132 %82 = OpLoad %float %81
133 %83 = OpConvertFToU %uint %82
134 OpStore %61 %83
135 OpBranch %64
136 %64 = OpLabel
137 OpBranch %62
138 %63 = OpLabel
139 %84 = OpLoad %uint %61
140 OpReturnValue %84
141 OpFunctionEnd


