
HAL Id: hal-03157442
https://hal.inria.fr/hal-03157442v2

Submitted on 3 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A game theory-based route planning approach for
automated vehicle collection

Mohamed Hadded, Pascale Minet, Jean-Marc Lasgouttes

To cite this version:
Mohamed Hadded, Pascale Minet, Jean-Marc Lasgouttes. A game theory-based route planning ap-
proach for automated vehicle collection. Concurrency and Computation: Practice and Experience,
Wiley, 2021, �10.1002/cpe.6246�. �hal-03157442v2�

https://hal.inria.fr/hal-03157442v2
https://hal.archives-ouvertes.fr

A Game Theory-based Route Planning Approach

for Automated Vehicle Collection

Mohamed Hadded*� Pascale Minet� Jean-Marc Lasgouttes*

March 3, 2021

Abstract

We consider a shared transportation system in an urban environment
where human drivers collect vehicles that are no longer being used. Each
driver, also called a platoon leader, is in charge of driving collected vehicles
as a platoon to bring them back to some given location (e.g. an airport,
a railway station). Platoon allocation and route planning for picking
up and returning automated vehicles is one of the major issues of shared
transportation systems that need to be addressed. In this paper, we propose
a coalition game approach to compute 1) the allocation of unused vehicles to
a minimal number of platoons, 2) the optimized tour of each platoon and 3)
the minimum energy consumed to collect all these vehicles. In this coalition
game, the players are the parked vehicles, and the coalitions are the
platoons that are formed. This game, where each player joins the coalition
that maximizes its payoff, converges to a stable solution. The quality of the
solution obtained is evaluated with regard to three optimization criteria and
its complexity is measured by the computation time required. Simulation
experiments are carried out in various configurations. They show that this
approach is very efficient to solve the multi-objective optimization problem
considered, since it provides the optimal number of platoons in less than
a second for 300 vehicles to be collected, and considerably outperforms
other well-known optimization approaches like MOPSO (Multi-Objective
Particle Swarm Optimization) and NSGA-II (Non dominated Sorting
Genetic Algorithm).

1 Introduction

Road traffic is considered to be responsible for a third of all polluting gas
emissions [1]. The dispersion and the increase in the concentration of pollutant
levels in the air have adverse effects on the environment and human health.
Environmentally-friendly cities tend to promote shared transportation systems

*Inria Paris, RITS Project-team
�Vedecom, REVECOM Team, mohamed.elhadad@vedecom.fr
�Inria Paris, EVA Project-team

1

like electric carsharing services [2] or car rental, which have been designed for
people who do not use a vehicle regularly but wish to use one occasionally. There
exist two types of rental services for electric vehicles: one-way and two-way
systems [3]. In two-way (or round-trip) systems, the user returns the vehicle to
the rental station where it was originally rented. One-way systems provide more
freedom to the user, who may leave the vehicle where he/she wants, provided the
location has been indicated to the rental station. As a consequence, users may
leave the rented vehicles at any parking place, regular or dedicated to electric
vehicle charging or carsharing. These unused vehicles must then be collected
and returned to a rental station. This is the problem we address in this paper.

Among shared transportation systems, one-way sharing systems like SHARE
NOW1 or Mobilib2 are favored by users because they allow them to leave rented
vehicles anywhere in the urban network. However, the management of such a
service requires more effort from the service provider, in order to maintain a
distribution of vehicles adapted to demand. In the long term, fully autonomous
vehicles seem to be the best approach to this redistribution task. However, due to
technical and legal concerns, this is only a long-term solution, and less ambitious
ones have to be explored in the meantime. Asking individual professional drivers
to collect the vehicles and to redistribute them is an expensive and non-optimal
procedure. The intermediate solution is to adopt a human supervised mode, but
with as little human intervention as possible. This is possible if the human is
guiding several vehicles at a time. A first idea is to use trucks [4] to collect the
unused vehicles. While small trucks are used successfully in most bike-sharing
systems, the use of bigger trucks in city centers raises acceptability issues, at
least in Europe. Another solution is to rely on towing, where a human-driven
leader vehicle pulls several empty ones. This towing can either be physical (like
the stackable vehicles of the European ESPRIT project3) or virtual, in which
case the term “platooning” is preferred.

The French ANR VALET project4, based on earlier pioneering work [5,
6], investigated this platooning solution, with unused vehicles having enough
automation capabilities to be collected and returned to the rental station in
an urban platoon: one human-driven vehicle is followed by typically up to 5
vehicles which track it automatically. The technology required to form a platoon
is the same as for Cooperative Adaptive Cruise Control (CACC) [7]. It relies
on sensors (lidar, camera. . .) for environment perception, and multiple wireless
interfaces, which enable the vehicles to communicate with each other and with
the infrastructure. The number of platoons required to collect all the parked
vehicles should be minimized for cost-efficiency reasons. The longest platoon
tour duration should be minimized for time-efficiency reasons. In addition, the

1https://www.share-now.com/.
2Paris launches new Mobilib car-sharing service, https://newmobility.news/2019/05/07/

paris-launches-new-mobilib-car-sharing-service/, May 2019.
3H2020 ESPRIT, Easily diStributed Personal RapId Transit, https://cordis.europa.eu/

project/id/653395.
4ANR VALET project: Automatic redistribution of carsharing vehicles and realization of a

parking Valet, https://anr.fr/Project-ANR-15-CE22-0013.

2

total energy consumed by all the platoons should also be minimized for energy-
efficiency reasons. That is why each platoon should follow an optimized route to
pick up the parked vehicles and return to the rental station. However, several
constraints must be taken into account. The residual energy of the vehicles in the
platoon should not be depleted before they arrive back at the rental station. The
number of vehicles in a platoon is limited for safety reasons. Each platoon leader
starts and ends his/her tour at the rental station. Each parked vehicle is picked
up by exactly one platoon leader. Together, these criteria and constraints form
the PROPAV problem (Platoon Route Optimization for Picking up Automated
Vehicles) [8].

For the sake of simplicity, we will assume here that all vehicles have to be
returned to the same station. This is usually true for rental cars, and also for
car-sharing when vehicles have to be serviced. There are undoubtedly many
variations to this problem: several rental stations instead of one, choice of
reallocation strategy, different performance criteria. These questions will become
natural when one goes beyond the proof-of-concept stage and designs a real-world
service with an industrial partner. For now, our intent is to study a reference
problem that can be extended later; our belief is that our algorithm and our
findings will remain valid with few adaptations.

The goal of this paper is to show how to use game theory to define the
problem considered and find 1) the optimized number of platoons needed, 2) the
optimized tour followed by each platoon leader, while 3) minimizing the total
energy consumed. We start with a short overview of related work. Section 3 shows
how a coalition game can model the vehicle collection by platoons. Section 4
reports experimental results obtained in an extensive performance evaluation.
The results obtained by the coalition game are compared with those obtained
by well-known optimization heuristics, namely MOPSO and NSGA-II. Finally,
Section 6 summarizes the main contributions of the paper and presents future
directions.

2 Related work

Independently of the technique used to relocate vehicles, an efficient algorithm
is essential in terms of monetary cost, but also occupation of the public road
network. A Tabu search has been proposed to optimize the tours of trucks in
charge of picking up unused vehicles [4]. This approach has been extended by
using three heuristics to minimize the time needed to collect and return the
vehicles to the rental station [9]. Another approach is to consider two objectives:
minimizing the staff required and the number of shared vehicles necessary to
meet user demand [10]. The electric vehicle relocation problem can also be
formulated as a pickup and delivery problem [11]. This requires that, on the one
hand, each tour starts and ends at the rental station and, on the other hand,
each tour has a duration that is less than or equal to an acceptable threshold.

As part of the assessment of VALET, the PROPAV problem has been specified
as an integer linear programming problem [8], and then solved for various

3

configurations, using NSGA-II (Non-dominated Sorting Genetic Algorithm II)
[12].

An earlier work used a genetic algorithm to solve the Vehicle Routing Problem
(VRP), which has similarities to the PROPAV problem [13]: the vehicles in the
VRP stand for the platoon leaders, whereas the customers waiting to be served
stand for the parked vehicles to collect. However, the objectives to optimize and
the constraints to meet differ.

In this paper, we use a totally different framework based on game theory. More
precisely, the PROPAV problem is modeled as a coalition formation game [14].
Each final coalition represents a platoon. The number of coalitions obtained is
equal to the number of human drivers required to collect the unused vehicles. In
order to prove the efficiency of the proposed game theory-based optimization
framework, we compare the simulation results obtained with those obtained
previously [8] with MOPSO (Multi-Objective Particle Swarm Optimization) [15]
and NSGA-II.

Coalition game theory has been used in multiple applications. An example is
wireless communication networks [14], where some wireless agents are used to
collect data from tasks arbitrarily located and transmit them to a centralized
wireless receiver. In this problem, modeled as a coalition game, each coalition
consists of some agents that move between the different tasks present in the
coalition to collect their data. The agents join a coalition to improve their
benefit by means of a higher throughput and a smaller latency. Simulation
results highlight a benefit greater than 30% for a network with 5 agents and 25
tasks compared to a fair allocation of the tasks to the closest agents.

Another application is concerned with Content Delivery Networks (CDNs)
[16], where video content items are organized into clusters having similar request
profiles. The popularity of each cluster member can be deduced from the
popularity of its cluster representative, which allows a very strong decrease in the
number of predictors used to predict the popularity of video content in the next
time interval, based on its popularity in the past. The main goal is to greatly
improve the Quality of Service perceived by the user (i.e. a shorter delay to
provide the video content requested) by storing the most popular content items
close to end users. Using traces of a real CDN, simulation results show that
the coalition game provides a much more accurate clustering than the K-means
algorithm. Furthermore, the time required by K-means is much greater than
that of the coalition game (e.g. more than 3 times for 50 video content items).

The very good results obtained by the coalition game with respect to the
state-of-the-art entice us to apply the coalition game to the PROPAV problem.
The results can then be assessed by comparison with NSGA-II and MOPSO,
both in terms of quality of the solution and of computation time.

4

Figure 1: Six vehicles collected by two platoon leaders: a yellow one and a blue
one.

3 Problem statement

3.1 Intuitive idea

Given a set of automated electric vehicles parked at various locations in a city
and localized by their GPS positions, one rental station and a set of human
drivers, the PROPAV problem consists in computing, on the one hand, the
minimum number of human drivers needed to pick up these parked vehicles,
drive them in platoon (one platoon per human driver) back to the rental station
and, on the other hand, the optimized tours to be followed by the human drivers.

In the example depicted in Figure 1, two human drivers are needed to drive
the unused vehicles back to the parking lot of the rental station. The optimized
tours are represented in blue (v1, v2 and v3) and yellow (v4, v5 and v6).

Let D be the number of available platoon drivers. Intuitively, the PROPAV
problem consists in designing the tour of each of the K platoons, with 1 ≤ K ≤ D,
such that 1) the longest platoon tour duration, 2) the number of platoons, and
3) the total energy consumed by the platoon leaders and the vehicles that are
picked up are minimized. The constraints to take into account are: 1) each
vehicle in the platoon should have enough energy to get back to the rental station
while following the platoon driver (i.e. the tour duration should meet the energy
constraint of the vehicles in the platoon which includes both the leader and its
followers); 2) the rental station is the starting point and the ending point of each
tour; 3) each parked vehicle should be picked up.

3.2 PROPAV as an optimization problem

Before defining the PROPAV problem as a multi-objective optimization problem,
we introduce in Table 1 the notation adopted in this paper. The following

5

Table 1: Notation.

Notation Meaning

D the number of human drivers.
N the number of parked vehicles to collect.
o the rental station.
d a driver ∈ [1, D].
l a location to visit to collect a parked vehicle

∈ [1, N].
v a vehicle ∈ [1, N] ∪ [1, D], either platoon

leader or follower.
s the average speed of a vehicle in a platoon.
dij the distance between i and j.
pow the power consumed by any vehicle.
resv the residual energy of vehicle v ∈ [1, N] ∪

[1, D], leader or follower in its platoon.
Q the maximum number of vehicles per pla-

toon.
md

ij a binary decision variable equal to 1 if driver
d ∈ [1, D] moves directly from location i to
location j, and 0 otherwise.

precdij a binary variable equal to 1 if driver d ∈
[1, D] has already visited location i when
he/she visits location j, and 0 otherwise.

6

assumptions are made in this paper:

� At each location, there is only one parked vehicle. Hence, the number of
vehicles to collect is equal to the number of locations to visit. If there are
several vehicles at a location, then the location can be duplicated.

� The driving vehicle (leader) and its following vehicles consume the same
amount of energy to travel the same distance.

� All the vehicles (i.e. the leader and the followers) in a platoon require the
same amount of power and travel at the same average speed. It has been
observed that most electric vehicles cover 100 km over 10 kWh without
taking into account air conditioning, heating, etc.

� The energy consumed by a vehicle is equal to the vehicle power times the
distance traveled, divided by the average speed.

The platoon route optimization for collecting parking vehicles can be modeled
as a multi-objective minimization problem with three objectives, subject to some
constraints, with the notations introduced in Table 1.

The PROPAV problem: Minimize:

� the maximum tour length

min max
d∈[1,D]

N∑
i=0

N∑
j=0

md
ij dij , (1)

� the number of platoons

min

D∑
d=1

N∑
j=1

md
0j , (2)

� and the total energy required to collect unused vehicles

min

N∑
i=0

N∑
j=0

D∑
d=1

(1 +

N∑
v=1

precdvi)m
d
ij pow di,j/s, (3)

subject to the following constraints:

� All parked vehicles are visited exactly once:

N∑
d=1

N∑
i=1

md
ij = 1,∀j ∈ [1, N] (4)

� No driver stays at a parked vehicle:

N∑
i=0

md
il −

N∑
j=0

md
lj = 0,∀l ∈ [1, N],∀d ∈ [1, D] (5)

7

� All drivers start at the rental station:

N∑
j=1

md
oj = 1,∀d ∈ [1, D] (6)

� All drivers finish at the rental station:

N∑
j=1

md
jo = 1,∀d ∈ [1, D] (7)

� No leading vehicle consumes more than its residual energy:

N∑
i=0

N∑
j=0

md
ij pow dij/s ≤ resd,∀d ∈ [1, D] (8)

� No following vehicle consumes more than its residual energy:

N∑
i=0

N∑
j=0

md
ij prec

d
vi pow dij/s ≤ resv, ∀v ∈ [1, N],∀d ∈ [1, D] (9)

� No subtour:

udi − udj +Nmd
ij ≤ N − 1,∀i ∈ [1, N], ∀j 6= i ∈ [1, N],∀d ∈ [1, D], (10)

where udi denotes the number of followers in the platoon led by the driver d
when visiting location i. This subtour elimination constraint [17] imposes
that ∀d ∈ [1, D], when md

ij = 0, udi − udj ≤ N − 1 and, when md
ij = 1,

udj ≥ udi + 1.

� Each platoon is limited to a maximum of Q vehicles:

N∑
i=0

N∑
j=1

md
ij < Q,∀d ∈ [1, D] (11)

� md
ij a binary decision variable:

md
ij ∈ {0, 1},∀i ∈ [0, N],∀j 6= i ∈ [0, N],∀d ∈ [1, D]. (12)

� precdij a binary variable:

precdij ∈ {0, 1},∀i ∈ [0, N],∀j ∈ [1, N] (13)

Solving this multi-objective optimization problem consists in finding the
values of:

8

� the decision variable md
ij , ∀i ∈ [0, N],∀j 6= i ∈ [0, N],∀d ∈ [1, D]. By

definition mii = 0 ∀i ∈ [0, N].

� the binary variable precdij , ∀i ∈ [0, N],∀j 6= i ∈ [1, N],∀d ∈ [1, D]. By
definition precii = 0 ∀i ∈ [0, N].

Two necessary feasibility conditions related to the residual energy of vehicles
can be given. If one of these conditions is not met, the PROPAV problem is not
feasible:

� Feasibility condition for the parked vehicles: If there exists a parked vehicle
that does not have enough residual energy to return to the rental station,

∃v ∈ [1, N] such that dv,o pow/s > resv. (14)

� Feasibility condition for the leader vehicles: If there exists a parked vehicle
such that no leader vehicle has enough energy to pick up this vehicle and
return to the rental station,

∃v ∈ [1, N] such that ∀d ∈ [1, D],

(dov + dv,o) pow/s > resd.
(15)

3.3 PROPAV as a game theory problem

In this paper, we formulate the platoon trajectory optimization problem as a
coalition game. A coalition formation game is a model of game theory, where
players form coalitions in order to maximize their payoff resulting from their
membership of a coalition. In the PROPAV problem, the players are the parked
vehicles and each coalition represents a platoon. Hence, the number of coalitions
formed represents the number of platoon leaders required to collect the parked
vehicles.

3.3.1 Definitions

A coalition formation game can be considered as a couple (N , f) where:

� N is a finite set of players. Let N denote the number of players. For the
sake of simplicity, any player is denoted by i ∈ [1, N].

� f is a value function that assigns a real value to each coalition C. Again,
for the sake of simplicity and without loss of generality, we assume that
the value of the coalition is given as a payoff to each player that is member
of this coalition.

For each player i ∈ [1, N], let fi(C) be the payoff of player i when it belongs
to coalition C. According to our assumption, we have:

∀i ∈ [1, N], fi(C) =

{
f(C) if i ∈ C,
0 otherwise.

(16)

Players are assumed to be rational. Players play one after the other. We
introduce the concept of round, such that in one round, each player plays exactly
once.

9

3.3.2 Hedonic coalition formation

A coalition formation is said to be hedonic, if and only if the following two
conditions are met [14]:

� The payoff of any player i member of coalition C depends only on the
players that are members of C.

� Each player joins a coalition that improves its payoff.

Whatever the initial partition, the hedonic coalition game converges towards a
Nash stable and individually stable partition [14].

PROPAV is modeled here as a hedonic coalition game with N rational players,
where each player is a parked vehicle to collect. Initially, each parked vehicle
constitutes a coalition. After convergence, each coalition represents the set of
vehicles belonging to a same platoon driven by a human. The coalition game
ensures that:

� any player belongs to exactly one coalition. Any parked vehicle is collected
by exactly one human driver;

� the number of coalitions formed is the number of human drivers needed to
drive the parked vehicles back to the rental station.

The value of a coalition is computed in order to:

� strongly discourage a player to rejoin a coalition that it previously joined
and left.

� increase with the number of vehicles collected until a limit given by the
maximum number of vehicles per platoon.

� favor coalitions that for a given number of collected vehicles minimize the
tour duration.

In this coalition game, each player is selfish: it leaves a coalition to join
another independently of the consequences of its move on the other players. Its
only goal is to increase its payoff by applying the switching rule as follows:

Switching rule: any player i ∈ [1, N] leaves its current coalition C to join
coalition C ′ ∈ C, where C denotes the set of coalitions present when i is
playing, if and only if fi(C

′ ∪ {i}) > fi(C).

The payoff fi(C) of a player i belonging to coalition C is computed according
to Algorithm 1, where:

� MaxTimev is the maximum time that vehicle v can spend in the platoon
taking into account its residual energy. Knowing the power consumed
by the vehicle, the constraint on the residual energy of the vehicle can
easily be expressed as a maximum duration in the platoon for this vehicle.
To meet the residual energy constraint, the tour of the platoon must be
such that each vehicle v spends a time less than or equal to MaxTimev,
otherwise the payoff of the player will be very low.

10

Algorithm 1 Payoff of player i ∈ C.

1: Run by player i ∈ C
2: Inputs: C, N , Historyi, resi, resv ∀v ∈ C, pow, MaxTimev ∀v ∈ C
3: Outputs: fi(C)
4: MaxTimei ← resi/pow
5: OverLimit← 0
6: for each vehicle v ∈ C ∪ {i} do
7: NewTimev ← time spent by v in an optimized tour visiting C ∪ {i, o}
8: if NewTimev > MaxTimev then
9: OverLimit← 1

10: end if
11: end for
12: if C ∈ Historyi or |C| > Q or OverLimit then
13: fi(C) = −∞ // discourage i to join C
14: else
15: if |C| = 1 then
16: fi(C) = −MaxDistance−N − 1 // encourage i to join a coalition

with more members if possible
17: else
18: fi(C) = maxk∈C dk,centroid(C) − N/|C| // encourage i to join the

closest coalition if possible
19: end if
20: end if

11

� centroid(C) denotes the centroid of the parked vehicles members of coali-
tion C. A player is discouraged, by a poor payoff, from joining a coalition
whose maximum distance of its members to the new centroid would increase;
this distance is given by maxk∈C di,centroid(C).

� |C| is the size of the coalition (i.e. the number of its members). This size
should never exceed Q, otherwise the payoff of the player will be very
low. Notice that if all coalitions had the size of coalition C, the number of
coalitions would be N/|C|.

� MaxDistance is the maximum distance between two parked vehicles.
Notice that the value −MaxDistance − N − 1 is a payoff value that is
never reached by a parked vehicle belonging to a coalition with several
members. This means that any player is encouraged to join a coalition
with several members rather than a partition of which it would be the only
member.

� Historyi is the history of player i. It contains all the coalitions that player
i joined. Any player is strongly discouraged from joining a coalition it
already joined in the past by means of a very low payoff.

Notice that Algorithm 1 requires the computation of an optimized tour in
each coalition tested. For the performance evaluation reported in Section 4, the
2-opt algorithm [18] is used for this purpose.

Algorithm 2 determines the formation of coalitions. It starts from the initial
partition where each player is alone in its own coalition. Since the hedonic
coalition game converges to a final stable solution whatever the initial partition,
the algorithm stops when the convergence is reached. Thus, in the last round of
Algorithm 2, no player can increase its payoff by leaving its current coalition
to join another one. A null number of coalition switches is thus the stopping
criterion of the algorithm.

4 Performance evaluation

In this section, we first present the framework used for the simulations. We then
discuss the simulation results obtained by game theory and finally compare its
performances to two well-known algorithms used to solve many multi-objective
optimization problems: MOPSO [15] and NSGA-II [12], which are the multi-
objective version of Particle Swarm Optimization and Non-dominated Sorting
Genetic Algorithm, respectively. Both select the non-dominated solutions among
the solutions explored to build Pareto fronts.

4.1 Simulation framework

We implemented these methods in Java and carried out the simulations on Intel
Core i7 computers equipped with Windows 10. We evaluated the performance of
these algorithms using 7 configurations (see Table 2) with different numbers of

12

Algorithm 2 Coalition formation algorithm for PROPAV.

1: Inputs: N , N , set of initial coalitions C0

2: Outputs: set of Coalitions Cfinal

3: Initialize the initial coalitions with a coalition per parked vehicle
4: C0 ← {{1}, {2}, . . . {N}}
5: r ← 0 // current round number
6: Cr ← C0 // Cr set of coalitions at round r
7: repeat
8: change← 0 // is set to 1 if Cr is changed in r
9: P ← {∅} // P is the current set of players having already played in

round r
10: for k ← 1; k < N ; k ← k + 1 do
11: Select a random player i, while i ∈ N − P
12: P ← P ∪ {i} // add i to the set of already played
13: Preferred← Current // i ∈ Current ∈ Cr

14: Payoff ← fi(Preferred)
15: for j ← 0; j < |Cr|; j ← j + 1 do
16: Calculate f ′i(Cj ∪ {i}) // payoff of i if i joins Cj

17: if f ′i(Cj ∪ {i}) > Payoff then
18: Preferred← Cj

19: Payoff ← fi(Preferred ∪ {i})
20: change← 1
21: end if
22: end for
23: if Preferred 6= Current then
24: i joins Preferred
25: Remove i from Current in Cr

26: Add i in Preferred in Cr

27: Historyi ← Historyi ∪ {Preferred}
28: if Current == {∅} then
29: Remove Current from Cr

30: end if
31: end if
32: end for
33: r ← r + 1
34: until change = 0

return Cr // the final set of coalitions

13

Table 2: Simulation parameters.

Simulation parameter Value

Number of parked vehicles 10, 40, 100, 150, 200, 250, 300
Geographic distribution of vehicles uniform
Parking lot limits defined by the four points of coordinates:

• (lat: 48.8367, long: 2.1015)
• (lat: 48.8369, long: 2.1026)
• (lat: 48.8367, long: 2.1026)
• (lat: 48.8365, long: 2.1016)

Vehicle’s energy level uniform distribution in [10, 100]

Table 3: Parameter settings for NSGA-II and MOPSO.

Algorithm Parameter Symbol Value

NSGA-II crossover probability Cr 0.9
mutation probability µ 0.1

MOPSO local coefficient ϕ1 2.0
social coefficient ϕ1 2.0
inertia weight w 0.5
population size τ 40

vehicles {10; 40; 100; 150; 200; 250; 300}. The parameters specific to NSGA-II
and MOPSO, which determine their performance, are given in Table 3.

The input of our proposed optimization solution is a JSON file that contains
information about platoon leaders and a list of the automated vehicles involved.
The output of the game theory algorithm is another JSON file containing the
set of the platoons’ trajectories with their associated leader and vehicle IDs.
An example of input an output JSON files defining 2 trajectories is given in
Appendix B.

Each result depicted in Figures 2 to 6 and in Table 4 is the average of 15
simulation runs. We used OSRM5, an online API to compute the shortest paths
between the different locations of the parked vehicles.

All the evaluation criteria used in this paper are quantified as a function of
the number of vehicles to collect. We distinguish two types of evaluation criteria,
which are related to:

� the quality of the solution found which concerns the three objectives to
minimize, namely 1) the number of platoons, 2) the maximum tour duration,
and 3) the total energy consumed.

� the complexity of the strategy used to get the solution, which is measured
by 1) the average number of rounds needed to get the final coalitions, 2)

5OSRM: Open Source Routing Machine, http://project-osrm.org/

14

Figure 2: The average number of platoons as a function of the number of parked
vehicles.

Figure 3: The average longest tour duration as a function of the number of
parked vehicles.

the simulation duration, and 3) the total number of switches made by the
players. This number stands for the total number of coalition changes
made by the players.

4.2 Game theory results

4.2.1 Quality of the solution

We first study the impact of the number of parked vehicles to collect on 1) the
number of platoons formed, 2) the longest tour duration and 3) the total energy
consumed to collect all these parked vehicles.

Since the order in which the players play an iteration may influence the
quality of the solution generated, we compare the results obtained with different
orderings. Before starting a new iteration, the order in which the players will
play this iteration is determined. Three orders are usually considered:

� the random order, where at each iteration, the order of players is selected
randomly. This is the simplest strategy and does not require any additional
computation.

15

Figure 4: The average total energy consumed as a function of the number of
parked vehicles.

� the poor-to-rich order, where before starting a new iteration, the players
evaluate their payoff. The player with the smallest payoff is invited to play
first. With this order, all the players play according to the increasing order
of their payoff in the iteration considered.

� the rich-to-poor order is the reverse order: the player with the greatest
payoff is invited to play first. All players play according to the decreasing
order of their payoff in this iteration.

Notice that the rich-to-poor strategy and the poor-to-rich strategy require
sorting the player payoffs, unlike the random strategy. The question is: does
this additional computation on the players’ payoffs improve the quality of the
solution obtained? Simulation results are depicted in Figure 2 to 4.

As depicted in Figure 2, the average number of platoons increases with the
number of parked vehicles. The play order has no impact on the number of
platoons formed. The three strategies converge to the optimal number of platoons,
which is equal to the number of parked vehicles divided by the maximum size of
a platoon.

The longest tour duration averaged on multiple simulations is depicted in
Figure 3. It starts by decreasing for a number of parked vehicles in [40, 100],
where the three play orders provide very similar results for the longest tour
duration. For a number of parked vehicles in [100, 300), the longest tour duration
stabilizes at a value less than 29 s for the three play orders. However, the
random order provides the smallest value of the longest tour duration. The
rich-to-poor order gives better results than the poor-to-rich. This stabilization
can be explained by the fact that on the one hand, the number of vehicles per
platoon is limited to Q and on the other hand, the energy of each vehicle is
limited.

The total energy consumed, averaged on multiple simulations, is depicted in
Figure 4. As expected, it increases with the number of parked vehicles to collect.
The three orders under study give almost the same results, and the random
order provides the smallest total energy consumed for any number of parked

16

Figure 5: The average computation time as a function of the number of parked
vehicles.

Figure 6: The average number of switches as a function of the number of parked
vehicles.

vehicles less than 300.
As a conclusion, the best quality solution is provided by the random order.

4.2.2 Complexity of the strategy

The complexity of each strategy is evaluated by measuring the impact of the
number of parked vehicles to collect on the computation time and on the number
of coalition switches. Figure 5 depicts the average computation time as a function
of the number of parked vehicles. Since the rich-to-poor order and the poor-to-
rich order require sorting the players’ payoffs, the computation time strongly
increases with the number of parked vehicles, whereas it is worth noting that it
increases very weakly with the random order.

The total number of switches averaged on multiple simulations is illustrated
in Figure 6. It tends to increase with the number of parked vehicles. This can
be explained by the increase in the number of coalitions formed, which leads to
a greater number of coalitions improving the current payoff of the player. With
regard to the six configurations tested, it can be observed that the three ordering
methods produce comparable results.

17

As a conclusion, since the random order provides a solution of excellent
quality while requiring the smallest computation time, it is the strategy used to
compare the coalition game with MOPSO and NSGA-II.

4.3 Comparison with MOPSO and NSGA-II

The comparison between game theory, MOPSO and NSGA-II is made first by
assuming no computation limits. The results are given in Table 4, where each
time is expressed with a number of decimals corresponding to the millisecond.
For each configuration evaluated, the best results appear in bold as well as the
best strategy.

Table 4: Performance Comparison between Game theory and MOPSO, NSGA-II.

vehicles Method # platoons Longest tour Tour energy Computation
duration (min) (kWh) time (s)

10 Game theory 2 29.81 1.42 0.02
MOPSO 2 31.12 1.49 1.20
NSGA-II 2 33.10 1.64 0.32

40 Game theory 8 35.31 6.50 0.07
MOPSO 8 48.09 7.66 3.96
NSGA-II 9 39.93 7.10 0.45

100 Game theory 20 26.11 10.05 0.15
MOPSO 27 36.98 11.51 19.74
NSGA-II 22 30.69 12.89 6.23

150 Game theory 30 24.95 12.65 0.23
MOPSO 44 36.86 15.83 69.54
NSGA-II 37 27.94 17.37 16.68

200 Game theory 40 23.98 21.11 0.29
MOPSO 62 32.35 22.12 111.06
NSGA-II 55 26.08 22.00 44.43

250 Game theory 50 26.82 28.07 0.40
MOPSO 67 43.56 29.35 195.54
NSGA-II 63 31.26 34.42 84.21

300 Game theory 60 24.48 32.26 0.47
MOPSO 72 30.87 33.83 560.28
NSGA-II 68 27.95 35.11 314.41

Game theory strongly outperforms both MOPSO and NSGA-II in terms of
the quality of the solution produced. It always provides the smallest number of
platoons, which is very important in practice, since it represents a great benefit
for the shared transportation operator. Furthermore, game theory provides the
smallest longest tour duration and the lowest amount of energy consumed, which

18

Figure 7: The average computation time as a function of the number of parked
vehicles for game theory, MOPSO and NSGA-II

are also sources of benefit. For instance, for a number of parked vehicles equal to
100, game theory gives 1) a number of platoons 35% smaller than MOPSO and
10% less than NSGA-II, 2) a longest tour duration 42% smaller than MOPSO
and 18% smaller than NSGA-II, and 3) a total amount of energy consumed 14%
less than MOPSO and 28% less than NSGA-II. For a number of parked vehicles
equal to 300, game theory gives 1) a number of platoons 20% smaller than
MOPSO and 13% less than NSGA-II, 2) a longest tour duration 26% smaller
than MOPSO and 14% smaller than NSGA-II, and 3) a total amount of energy
consumed 5% less than MOPSO and 9% less than NSGA-II.

With regard to the number of platoons and the longest tour duration, NSGA-
II outperforms MOPSO except for 10 and 40 parked vehicles, whereas MOPSO
outperforms NSGA-II for the energy consumed except for 40 parked vehicles.

With regard to the computation time required to produce the solution, game
theory always requires the shortest computation time (Figure 7): it always
converges in less than a second, whereas MOPSO (resp. NSGA-II) can require
up to 9’20” (resp. 5’14”). This difference is very important in an operational
setting, where a solution could become obsolete if it takes too long to compute
it.

Finally, the evolution of the quality of the solution provided by game theory,
MOPSO and NSGA-II is compared as a function of computation time. Such
simulation results can be used to decide whether it is worth waiting longer to
obtain a better solution. We consider a number of parked vehicles equal to 300.

We focus on the first optimization criterion, which is the number of platoons.
This is the most important criterion from the economic point-of-view, since it can
lead to a reduction in operating costs. Simulation results are depicted in Figure 8.
Game theory starts with a number of platoons equal to the number of parked
vehicles and very quickly converges to the optimal number of platoons, which is
60. Both NSGA-II and MOPSO start with 100 platoons. After 13 s, NSGA-II
provides a smaller number of platoons than MOPSO. The difference seems to
remain constant, even if both algorithms continue to very slowly decrease the

19

Figure 8: Evolution of the number of platoons over computation time for game
theory, MOPSO and NSGA-II with 300 parked vehicles.

number of platoons. Thus, for game theory, it is better to wait until the end
of the program, which is very fast (i.e. 0.468 s). For NSGA-II and MOPSO,
the decrease in the number of platoons is extremely slow, with an advantage to
NSGA-II that always gives a number of platoons less than MOPSO.

As a conclusion, game theory is by far the most efficient strategy.

5 Discussion

With regard to the excellent quality of the solution produced by the coalition
game in a very short time, the coalition game with a random order of players
very greatly outperforms both MOPSO and NSGA-II. Two questions arise from
this: 1) which reasons can explain this result? and 2) can the coalition game be
applied to problems other than PROPAV?

The most obvious reason for the low complexity of the coalition game is the
simplicity of its algorithm: each player tries to maximize its payoff by joining the
coalition that gives the highest payoff. The key to a successful coalition game
lies in the design of the payoff function.

The payoff function is designed in order to meet the following two objectives:

� First, it should discourage players from forming unacceptable coalitions. A
coalition is said to be unacceptable if and only if it violates the constraints
of the problem to solve. For example, in the PROPAV problem, any
coalition with more than Q members or any coalition which requires an
amount of energy higher than the residual energy of one of its members.
Consequently, the payoff of any unacceptable coalition is set to the worst
value. Furthermore, the coalition game presented in this paper requires
that any member should never join a coalition that it had already joined
and left in the past. This is in order to ensure convergence and it is a
necessary condition whatever the problem considered.

20

� Second, it should give an incentive to players to join a better coalition.
A coalition is said to be better if and only if it optimizes at least one
optimization criterion without degrading the other optimization criteria.
Hence, the payoff function should reflect the improvement of the coalition
with regard to the optimization criteria. Thus, it will make switching to a
better coalition a greater incentive for the players. Usually, in the initial
state of the coalition game presented in this paper, each player forms its
own coalition. In the PROPAV problem, the payoff function of any coalition
C meeting all the constraints is set to maxk∈C dk,centroid(C)−N/|C|, where
dk,centroid(C) is the Euclidian distance of k to the centroid of C, N is the
number of players and |C| the size of C. This payoff encourages players
to join nearby coalitions, as doing so minimizes the tour duration and the
energy consumed.

As a conclusion, the coalition game can be applied to any clustering problem
where the clusters are subject to constraints and certain criteria need to be
optimized. All the subtlety required to apply the coalition game lies in the
design of the payoff function, which should reject unacceptable clusters and favor
clusters optimizing the optimization criteria.

6 Conclusion

In this paper, we defined the PROPAV problem as a coalition game, where
the players are the electric automated vehicles to be picked up and returned
to the rental station. The three optimization criteria are 1) the number of
platoons, which is minimized, 2) the tour duration of each platoon leader, which
is minimized and 3) the total energy consumed is also minimized. Multiple
constraints are taken into account such as the maximum number of vehicles per
platoon, and the residual energy of each vehicle in the platoon. The coalition
game very quickly converges to a set of coalitions, where each coalition is a
platoon driven by a platoon leader.

Simulation results obtained for various configurations where the number of
vehicles to pick up ranges from 10 to 300 show that game theory always provides
the best quality solution in terms of the three optimization criteria. The coalition
game always provides the optimal number of platoons, which results in 20%
fewer platoons than MOPSO and 13% fewer platoons than NSGA-II in the case
of 300 vehicles to collect.

Furthermore, the complexity of the coalition game evaluated by both the
computation time and the number of switches is much smaller than that of
MOPSO and NSGA-II. The computation time remains below 1 s for all tested
cases, whereas the other methods require several minutes. This difference is
crucial in an operational setting.

To build upon this study, three further aspects could be taken into consid-
eration in future work. First, we can extend the optimization approach based
on this coalition game so as to take into account multiple rental stations. One
strategy would be to assign an additional unknown to each unused vehicle, that is

21

the rental station to which it should be brought. Alternatively, only the number
of vehicles to return to each rental station can be specified. This second solution
is probably the most suited for a carsharing system. However, it would only
make sense when coupled with an algorithm that decides what stations should
be refilled to match demand.

Second, additional objectives or constraints can be considered in the PROPAV
problem to better reflect real-world conditions. For example, signalized inter-
sections can cause platoon dispersion and the separation of some vehicles from
the platoon to which they belong. Hence, the number of road crossings in the
platoons’ tour should be kept as low as possible [8].

Finally, in the long term, all the problems that are well suited to this coalition
game should be characterized.

References

[1] World Health Organization et al., Ambient air pollution: A global assessment
of exposure and burden of disease, published by World Health Organization,
2016.

[2] B. Zhou and K. M. Kockelman, Opportunities for and Impacts of Carsharing:
A Survey of the Austin, Texas Market, International Journal of Sustainable
Transportation, vol. 5, no. 3, pp. 135–152, 2011.

[3] M. Nourinejad and M. J. Roorda, Carsharing operations policies: a com-
parison between one-way and two-way systems, Transportation, vol. 42, no.
3, pp. 497–518, 2015.

[4] M. Dror, D. Fortin and C. Roucairol, Redistribution of self-service electric
cars: A case of pickup and delivery, Technical Report W.P. 3543, INRIA-
Rocquencourt, France, 1998.

[5] P. Daviet and M. Parent, Platooning techniques for empty vehicle distribu-
tion in the Praxitèle project, Proceedings of the 4th IEEE Mediterranean
Symposium on New Directions in Control & Automation, Maleme, Greece,
June 1996.

[6] M. Marouf, E. Pollard and F. Nashashibi, Automatic parallel parking and
platooning to redistribute electric vehicles in a car-sharing application, IEEE
Intelligent Vehicles Symposium IV, Dearborn, Michigan, United States, Jun
2014, pp. 486–491.

[7] C. Flores, P. Merdrignac, R. de Charette, F. Navas, V. Milanés, and F.
Nashashibi, A Cooperative Car-Following/Emergency Braking System With
Prediction-Based Pedestrian Avoidance Capabilities, IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 5, pp. 1837–1846, 2019.

[8] M. Hadded, J-M. Lasgouttes, F. Nashashibi, I. Xydias. Platoon Route
Optimization for Picking up Automated Vehicles in an Urban Network, ITSC

22

2018, 21st IEEE International Conference on Intelligent Transportation
Systems, Nov 2018, Maui, United States. https://hal.inria.fr/hal-01880388

[9] N. Hafez, M. Parent and J. M. Proth, Management of a pool of self-service
cars, IEEE Intelligent Transportation Systems ITSC, Oakland, USA, Aug
2001, pp. 943–948.

[10] A. Febbraro, N. Sacco, M. Saeednia, One-way carsharing: Solving the
relocation problem, Transportation Research Board 91st Annual Meeting,
2012.

[11] M. Bruglieri, A. Colorni and A. Lue, The vehicle relocation problem for
the one-way electric vehicle sharing, an application to the Milan Networks,
Social and Behavioral Sciences, vol. 64, no. 4, pp. 292–305, 2014.

[12] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multi-
objective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[13] B. M. Baker and M. Ayechew, A genetic algorithm for the vehicle routing
problem, Computers & Operations Research, vol. 30, no. 5, pp. 787–800,
2003.

[14] W. Saad, H. Zu, T. Basar, M. Debbah, A. Hjrungnesng, Hedonic coalition
formation for distributed task allocation among wireless agents, IEEE Trans.
on Mobile Computing, vol. 10, no. 9, Sep. 2011.

[15] Y. Marinakis, M. Marinaki and A. Migdalas, Particle Swarm Optimization
for the Vehicle Routing Problem: A Survey and a Comparative Analysis,
Handbook of Heuristics, pp. 1–34, Oct. 2017.

[16] N. Ben Hassine, P. Minet, M.-A. Koulali, M. Erradi, D. Marinca, D. Barth,
Coalition Game for Video Content Clustering in Content Delivery Net-
works, the 14th Annual IEEE Consumer Communications & Networking
Conference, CCNC 2017, Las Vegas, Nevada, January 2017.

[17] C. E. Miller, A. W. Tucker and R. A. Zemlin, Integer Programming Formu-
lation of Traveling Salesman Problems Journal of the ACM, Vol. 7 I. 4, pp.
326–329, 1960.

[18] G. A. Croes, A method for solving traveling-salesman problems, Operations
Research, vol. 6, no. 6, pp. 791–812, 1958.

A Example of a JSON input file

The JSON input file given below defines the geographical location of the rental
station and the limits of the area where vehicles are parked, the allocated
computation time, and vehicle database with 2 automated vehicles identified by
"type": "automated" and 1 platoon leader identified by "type": "leader".

23

Each vehicle has its own charge level. In the example, one automated vehicle is
a Volkswagen Beetle, and the other is a Renault Clio.

1 {"parkings": /* parking lots location */ [

2 {
3 "id": "PA12",

4 "latitude": 48.836995,

5 "longitude": 2.103342,

6 "limits": [

7 {
8 "coordinates": {
9 "latitude": 48.83673885,

10 "longitude": 2.1015541

11 }
12 },
13 {
14 "coordinates": {
15 "latitude": 48.8369617,

16 "longitude": 2.10262325

17 }
18 },
19 {
20 "coordinates": {
21 "latitude": 48.83676733,

22 "longitude": 2.10269994

23 }
24 },
25 {
26 "coordinates": {
27 "latitude": 48.8365594,

28 "longitude": 2.10163369

29 }
30 }
31 }
32],

33 "vehicles": /* vehicles database */ [

34 {
35 {
36 "chargeLevel": 20,

37 "currentStatus": "waiting mission",

38 "id": "Leader1",

39 "lastConnection": "14:12:10",

40 "latitude": 48.8688815,

41 "longitude": 2.3920687,

42 "signalLevel": 20,

43 "type": "leader"

24

44 },
45 {
46 "chargeLevel": 55,

47 "currentStatus": "waiting mission",

48 "id": "volkswagen_coccinelle_1",

49 "lastConnection": "11:00:00",

50 "latitude": 48.8590063052678,

51 "longitude": 2.36838227211365,

52 "signalLevel": 18,

53 "type": "automated"

54 },
55 {
56 "chargeLevel": 72,

57 "currentStatus": "waiting mission",

58 "id": "renault_clio_1",

59 "lastConnection": "11:00:00",

60 "latitude": 48.8616624758818,

61 "longitude": 2.38818416296454,

62 "signalLevel": 98,

63 "type": "automated"

64 }
65],

66 "allocatedComputeTime": 60 /* in seconds */

67 }

B Example of a JSON output file

The JSON output file given below defines two platoons, with for each: 1) its
platoon leader, 2) the id of all the platoon members and 3) its trajectory.

1 ["platoons":

2 {
3 "platoon_leader_id": "Leader1",/* The ID of

platoon leader */

4 "vehicles": [

5 {
6 "cid":"citroen_E -mehari_4"

7 },
8 {
9 "cid":"renault_clio_1"

10 },
11 {
12 "cid":"peugeot_508_2"

13 }

25

14] /* the list of parked vehicles that will

be retrieved by the platoon leader */

15 "platoon_trajectory" : /* The path with its

associated way -points that will be followed by

the platoon leader */

16 {
17 .

18 .

19 }
20 }
21

22 {
23 "platoon_leader_id" : "Leader2",

24 "vehicles": [

25 {
26 "cid":"bmw_serie3_2"

27 },
28 {
29 "cid":"peugeot_2008_1"

30 },
31 {
32 "cid":"peugeot_5008_1"

33 }
34]

35 "platoon_trajectory" :

36 {
37 .

38 .

39 }
40 }
41 }
42]

26

