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Abstract

It is common to accelerate the boundary element method by compression techniques
(FMM, H-matrix / ACA) that enable a more accurate solution or a solution in higher fre-
quency. In this work, we present a compression method based on a transformation of the
linear system into Tensor-Train format by the quantization technique. The method is ap-
plied to a scattering problem on a canonical object with a regular mesh and improves the
performance obtained from existing methods.
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Abstract

It is common to accelerate the boundary element method by compression techniques
(FMM, H-matrix/ACA) that enable a more accurate solution or a solution in higher fre-
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1 Introduction
Many applications in science and engineering are formulated in terms of boundary integral equa-
tions. This is namely the case in electromagnetic scattering to avoid the use of an artificial
condition to truncate the domain of study.

From a numerical point of view, the main difficulty is the solution of a full complex linear
system

Ax = b.

Many compression for accelerating the solution of this linear system have been developed, which
increase the amenable problem size from a few thousands to several millions. Continuing to im-
prove performance and accelerate solution remains a topical issue. In this work, we reformulate
the linear system in a tensor format and use tensor compression techniques for its storage and
solution.
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As a numerical example, we will consider the scattering by a perfectly conducting cylinder
Γ in the E-polarization (u = Ez). The involved boundary value problem to solve is then the
Helmholtz equation with a Dirichlet boundary condition and a radiation condition at infinity.

The BEM solution can be written with a single layer potential [1]∫
Γ

G(x, xs) j(xs) dγ(xs) = −uinc(x), ∀x on Γ, (1)

where Γ is the boundary, uinc the incident electric field, j the sought density current and G the
Green’s function.

In free space, this Green function is usually given by G(x, xs) = 1
4i H

(2)
0 (k|x − xs|) where i is

the imaginary unit, k the wave number and H(2)
0 the Hankel function of second kind.

2 Solution with tensor techniques
For many years, various types of problems have been formulated using tensors instead of the
classical matrix algebra [3]. More recently, tools have been developed to treat high order tensors
(dimension higher than 3) based on the implementation of low-rank techniques to effectively
reproduce the algebraic structure of the system. In the literature, among the most prominent
tensor formats for an efficient and stable ”hollow” representation of a very large system are
Tensor-Train (TT) and Hierarchical Tucker decomposition. In this work, we have chosen to
apply the TT format to formulate the integral equation problem for a fast solution.

2.1 Tensor-Train format
The TT format [2] consists of writing a d-dimensional tensor T ∈ Rn×...×n as a chain of 3-
dimensional tensors according to the formula

T (i1, · · · , id) =
∑

α0,···,αd

G1(α0, i1, α1)G2(α1, i2, α2) · · ·G1(αd−1, id, αd)

which could be rewritten in a matrix multiplication form

T (i1, · · · , id) = G1[i1]︸︷︷︸ G2[i2]︸ ︷︷ ︸ · · ·G3[i3]︸︷︷︸
r0 × r1 r1 × r2 rd−1 × rd

where

• Gi : TT-cores (matrices of size rk−1 × rk with r0 = rd = 1),

• ri : TT-ranks,

• r = max(ri) : The maximum rank among all cores.



The complexity of storage is O(dnr2) for a tensor with O(nd) elements. If r is small, the tensor is
of low-rank requiring significantly less number of elements in its TT representation. As a result,
operations involving the compressed low-rank tensor will be very fast.

The same format is given for a linear operator in Rnd×nd
which is represented by a 2d-

dimensional tensor A that couple elements as (in, jn) for n = 1, . . . , d resulting from the couple
(i, j). The TT representation of this tensor has the form

A(i1, · · · , id; j1, · · · , jd) = M1[i1, j1]︸     ︷︷     ︸ M2[i2, j2]︸      ︷︷      ︸ · · ·M3[i3, j3]︸     ︷︷     ︸
where Mk[ik, jk] is a matrix of size rk−1 × rk.

The TT format provides all corresponding algebraic operations (addition, matrix-vector prod-
uct, dot product, etc.) that are performed very efficiently for low-rank tensors owing to the re-
duced storage complexity.

2.2 Quantization and QTT format
Although some physical problems can naturally be formulated in terms of tensors and thereby
solved by adapted techniques, a key point for the application of a tensor compression technique
on integral equations is the quantization procedure [6], which enables a transition from a vector
or a matrix to a tensor representation. For a vector x ∈ RI and I, d ∈ N such that

I = I1I2 . . . Id where Ik ∈ N and for k = 1, . . . , d,

we can transform x to a d-dimensional tensor X as

xi = X(i1, ..., id) with ik = 0, 1, .., Ik − 1 for k = 1, . . . , d)

using the following flattening of the multi-index (i1, . . . , id):

i = i1 + i2I1 + .. + idI1I2...Id−1.

The low-rank representation of this vector in TT format is called Quantized Tensor-Train (QTT).
An equivalent procedure can be applied to obtain a QTT representation for a matrix A ∈ RI×I

with quantization in both dimensions.
This procedure has been successfully applied to approximate some functions or solutions of

PDEs sampled on an equispaced mesh or grid, and is shown to lose effectiveness with mesh
irregularities [6].

3 Solving Boundary Element Method with Tensor-Train For-
mat

3.1 Compression with the TT-cross algorithm
A tensor X in full format can be approximated by X̃ in the low-rank Tensor-Train (TT) format
with the TT-SVD algorithm [5] such that∥∥∥X̃−X∥∥∥

F
≤ ε ‖X‖F



where ‖.‖F is the Frobenius norm and ε > 0 the desired accuracy. The main limitation of this
algorithm is the need for a full tensor, which is impractical to construct in most cases. To avoid
this, cross-approximation techniques are developed that rely on the black-box evaluations of the
function f defining X, i.e.,

X = f (i1, . . . , id)

and construct the approximate tensor X̃ directly in the low-rank TT form [7]. TT-cross is an
iterative framework that starts with an initial guess on the ranks ofX, finds the best approximation
with these ranks, and finally increases the ranks to repeat the procedure until a convergence is
achieved in the approximations X̃ obtained in two successive iterations, which is determined
according to a relative error parameter ε > 0. The procedure performs O(Ndr2) evaluations of
f per iteration where r is the rank used for the iteration. It is also possible to further reduce
the ranks of this output tensor with an operation called TT-rounding [7] as TT-cross typically
overestimates the tensor rank.

A vector/matrix can first be quantized, then constructed directly in TT form (without con-
structing full vector/matrix) with the TT-cross algorithm. In our experiments, we used the TT-
cross implementation in the ttpy library, the Python version of TT-Toolbox [9].

3.2 Solution using AMEN solver
Once the matrix and vectors are expressed in the low-rank TT form, one needs to solve the linear
system efficiently in this compressed framework. To do this, many algorithms are developed in
the literature. Among the most prominent of these algorithms is the AMEN solver [7], which is a
variant of the alternating linearization scheme (ALS). It starts with an initial guess on the solution
vector x as well as its ranks, attempting to find the best solution for the core Gk in dimension k by
fixing the cores in other dimensions, and sweeping over all dimensions until convergence. In ad-
dition, it calculates the residual vector b−Ax in the TT form, and dynamically augments the rank
of the solution vector in this direction to reveal optimal ranks, thereby combining rank search
with a gradient descent step. Due to operating in low-rank tensor manifolds under very high
compression, the solver works very efficiently in practice while keeping the desired accuracy.

4 Numerical Results

4.1 Validation with an analytic reference solution
We first consider a numerical example involving a metallic cylinder of radius 1m illuminated by
an electromagnetic wave at frequency 0.6GHz (Fig. 1). This problem is well known and has an
analytic solution for comparison.

The cylinder is discretized using a regular mesh with N = 2d elements. Fig. 2 presents the
error with respect to the reference solution when a matrix of size N × N is built using TT-cross
algorithm using three different values of ε.



Figure 1: The scattering problem
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Figure 2: Error ‖u−ure f ‖

‖u‖ on a cylinder with r=1m and f=0.6Ghz

As expected, the QTT improves the accuracy when increasing the number of unknowns
thanks to the reduced storage. The accuracy is fixed by ε (compression accuract) because the
AMEN solver has very fine one εamen << ε.

The numerical study shows that the computed error grows with the number of unknowns.
Hence, to control it and keep the same accuracy, it is necessary to refine ε when increasing the
size of the problem.

In this section, we consider the same physical problem with two other boundaries (rough
surface) described as follows:

• Sinus profile

s(x) = h sin
(
2πx
L

)
, and (2)

• Weierstrass surface [8] given by

W(x) = h
n2∑

n=1

(
1

b(2−D)n cos
(
2πbnx

L

))
, (3)

with parameters D and b characterizing the fractal dimension and lacunarity of the surface and
n2 the number of scale in the surface.



These two examples are regularly discretized on the x-axis, though when h , 0 the mesh
becomes irregular.

4.2 Memory storage
4.2.1 Cylinder with a regular mesh

We first consider the memory storage results for the cylinder with a regular mesh. Table 1

d N Full Matrix H-matrix TT-cross TT-rounding
6 64 0.0625 MB 0.0568 MB 0.067 MB 0.007 MB
10 1024 16 MB 1.81 MB 0.33 MB 0.048 MB
14 16384 4 GB 39.32 MB 0.54 MB 0.063 MB
16 65536 64 GB 175.74 MB 0.7 MB 0.073 MB
18 262144 1 TB 770 MB 0.75 MB 0.079 MB
20 1048576 16 TB 1 MB 0.084 MB

Table 1: Memory storage for the matrix A

shows very promising compression rates obtained by the QTT technique in comparison with the
H-matrix technique [10]. We point out the effectiveness of the TT-rounding algorithm, which
further compresses the tensor in TT form obtained from the TT-cross algorithm. As mentioned,
this compression is possible due to TT-cross needing to overestimate the ranks in attaining a good
approximation, which is accounted for in a subsequent TT-rounding step providing the optimal
compression.

We now study the influence of the frequency on the memory storage, which is presented in
Fig. 3 using three discretization sizes for a metallic cylinder. We observe that the frequency has
a stronger influence on the memory storage than the size of discretization.
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Taking the previous observation into account, Fig. 4 draws the memory storage complexity
for three cases:

• (a): for a given frequency f=0.6Ghz,

• (b): for a given frequency but with ε = 10−4 f (N) (with f (N) < 1 adapting to the increase
in N to keep accuracy),

• (c): frequency increase with N relatively to the mesh (to keep the usual criterion of 10
points per wavelength)
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Figure 4: Memory storage using different frequency adaptation strategies

Comparing (a) with (b), we observe that refining ε to keep accuracy doesn’t impact the com-
pression significantly. We also note that despite the increase in frequency affecting the complex-
ity in (c), the complexity manages to stay under O(N).

4.2.2 Rough surface

Let us now study the QTT method when the object (and the mesh) lose some regularity. All
cases consider a mesh of 16384 unknows. Table 2 shows the storage for two frequencies (low
and high) for a sinus of length 10m and a variable heigh h.

Table 3 presents the storage for two frequencies (low and high) for a Weierstrass surface
(D = 1.5, b = 2) of length 10m and height 0.1m. The complexity of the surface and irregularity
of the mesh are governed by the number of scale n2.

As expected the QTT method loses its effectiveness in terms of compression in these cases.
On the same examples, the H-matrix is relatively stable, passing from 43 to 62 MB and from
44 to 85 MB for the sinus and from 44 to 51 MB and from 50 to 79 MB on the Weierstrass
surface for the same frequencies. The memory storage still remains better in the QTT case but
the computation time limits the use of the method when the complexity of the mesh/object grows.



h f=0.6Ghz f=30Ghz
0 0.05 0.07
0.01 0.07 0.14
0.1 0.14 0.43
0.2 0.18 0.86
0.5 0.30 3.65
1 0.47 5.81
2 0.90 7.09
5 2.59

Table 2: Storage (MB) for a sine surface

n2 f=0.6Ghz f=30Ghz
1 0.16 0.51
2 0.34 1.66
3 0.53 3.69
5 1.91 16.97
7 12.68

Table 3: Storage (MB) for a Weierstrass surface



4.3 Computation time
4.3.1 Cylinder

We now study the assembly and solver times, which are given in Table 4. The storage in terms of
number of elements and the number of function evaluations for the TT-cross algorithm are also
provided.

N Storage (#elem) f eval. Ass. time (s) Sol. time (s)
1024 19 421 71 248 0.16 0.02
4096 30 141 90 720 1.61 0.09
16384 53 433 188 256 1.06 0.44
65536 39 957 116 168 0.30 2.48
262144 51 569 150 368 0.32 12.18
1048576 55 813 160 712 0.39 135.47

Table 4: Computation times for cylinder

We note that the computations are very fast and the solver is the main cost. We also point
out that the number of function evaluations is very high relative to the number of elements in
the tensor obtained from TT-cross (which shrinks significantly after rounding). This observation
explains that the method stays efficient in memory usage while computation time becoming its
main limitation.

4.3.2 Rough surface

We conduct the same study on a Weierstrass surface with n2 = 3 whose results are provided in
Table 5. In this case, the compression remains very effective after rounding, yet the higher num-
ber of function evaluations done by TT-cross notably increases the assembly time. Nevertheless,
the solver time remains to be the dominant cost.

N Storage (#elem) f eval. Ass. time (s) Sol. time (s)
1024 93 313 599 932 2.67 0.05
4096 153 673 1 079 188 3.62 0.12
16384 202 617 1 411 484 4.69 0.26
65536 256 681 1 775 448 7.03 5.60
262144 313 569 2 177 000 9.42 34.21
1048576 354 185 2 425 948 32.32 125.33

Table 5: Computation times for Weierstrass surface



4.3.3 Comparison with H-matrix

In this last example shown in Fig. 5, we provide a comparison of the computation times (assem-
bly+solver) between the QTT method and H-matrix solver with respect to the frequency for two
mesh sizes. The considered object is the Weierstrass surface.
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Figure 5: Influence of mesh size and frequency using QTT and H-matrix

As we observe in Fig. 5, the choice of the fastest method depends on the size and frequency,
with QTT being more sensitive to the frequency increase and H-matrix to the mesh. In terms of
memory usage, QTT still remains the most efficient.

5 Conclusion
In this work, we applied the quantized Tensor-Train format to the 2D scattering problem. We
observed much higher compression and performance on canonical object and regular mesh than
those obtained by H-matrix techniques. The performance on more complex problems or geome-
tries has been numericaly studied. The method becomes less efficient but still remains useful in
some cases. When the regularity of the mesh is insufficient, it could still be convenient to apply
it as a preconditioner [4].
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