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Abstract This work focuses on the layout analysis of

historical handwritten registers, in which local religious

ceremonies were recorded. The aim of this work is to

delimit each record in these registers. To this end, two

approaches are proposed. Firstly, object detection net-

works are explored, as three state-of-the-art architec-

tures are compared. Further experiments are then con-

ducted on Mask R-CNN, as it yields the best perfor-

mance. Secondly, we introduce and investigate Deep

Syntax, a hybrid system that takes advantages of recur-

rent patterns to delimit each record, by combining u-

shaped networks and logical rules. Finally, these two ap-

proaches are evaluated on 3708 French records (16-18th

centuries), as well as on the Esposalles public database,

containing 253 Spanish records (17th century). While

both systems perform well on homogeneous documents,

we observe a significant drop in performance with Mask

R-CNN on heterogeneous documents, especially when

trained on a non-representative subset. By contrast,

Deep Syntax relies on steady patterns, and is there-

fore able to process a wider range of documents with

less training data. Not only Deep Syntax produces 15%

more match configurations and reduces the ZoneMap

surface error metric by 30% when both systems are

trained on 120 images, but it also outperforms Mask R-

CNN when trained on a database three times smaller.

As Deep Syntax generalizes better, we believe it can be

used in the context of massive document processing, as

collecting and annotating a sufficiently large and repre-

sentative set of training data is not always achievable.

Keywords Historical handwritten documents · Deep

neural networks · Hybrid systems · Layout analysis
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1 Introduction

French parish registers are handwritten books from the

16th century onward. Information about local religious

ceremonies, mainly baptisms, marriages and burials,

were recorded by the priests. These records were ini-

tially written to prevent bigamy and consanguineous

marriages. Parish registers are structured in acts - or

records - that are paragraphs describing a specific cer-

emony. The records are independent of each other, and

written in chronological order. A page from a parish

register is shown in Fig 1. These documents are espe-

cially useful to genealogists because they contain local

information on births, marriages and deaths. As a re-

sult, they are used to find ancestors and reconstruct

family links. An illustration of the recurrent informa-

tion that can be found in such records is provided in

Fig. 2. Moreover, parish registers are the only reliable

source of demographic data for French people born be-

(a) Original image (b) Record segmentation

Fig. 1: Page from a French parish register (a) and its record
segmentation (b). Figure best viewed in color.
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Fig. 2: Zoom on a burial record. Recurrent information is
highlighted: name, age, place, date, ceremony, witness, and
signature. Figure best viewed in color.

fore the French Revolution, as mandatory civil regis-

tration was established after the Revolution, in the late

18th century.

Recently, there has been a raising interest in scan-

ning the archives, as it eases access to the documents

while avoiding their degradation. In France, most parish

registers are now accessible online. In spite of this, the

search for ancestors remains time-consuming and labo-

rious as it is necessary to search the archives to find

relevant records. As a result, there is a need for au-

tomatic methods able to analyze the contents of these

documents. Structure analysis is a key step in this pro-

cess. Automatic delimitation of each record has an im-

mediate and practical advantage for genealogists, as it

eases the reading process and allows them to save only

the records that are relevant to their research. But it

is also the first step towards text recognition and word

spotting. Once each record is detected, it is possible

to train models to spot relevant keywords and extract

valuable knowledge, such as names, places and dates.

This could substantially ease the search for ancestors.

However, these documents are difficult to process.

Firstly, parish registers are poorly-structured since the
records were written one under the other, with no clear

separation. In some documents, there are patterns in-

dicating the localization of the records: signatures, ver-

tical spacing, horizontal lines, marginal annotations...

However, they are not consistent within the corpus as

they depend on the writer. The handwriting is often

compact with very few vertical spacing between succes-

sive records. Moreover, the writing style differs from one

page to another, but is uniform within a page since two

successive records were likely written by the same priest

at the same date. It is also frequent to have an overlap

between two successive records, mainly due to overlap-

ping text and signatures. On top of that, some doc-

uments are heavily degraded with notably ink stains,

ink fading, bleed-through and torn or cut pages. But

the main challenge of this work is the variability of

parish registers, as they come from churches from all

over France from three centuries. As such, they were

written by different priests, each with different writing

style and phrasing. In addition, they are unevenly pho-

(a) Page with 15 records from
1562.

(b) Page with 1 record from
1675

(c) Page with 7 records from
1701.

(d) Page with 4 records from
1749.

Fig. 3: Samples of pages from multiple French parish
churches at different periods.

tographed since different cameras were used for scan-

ning, as well as different poses, uneven illumination

and contrast variation. This variability is illustrated in

Fig. 3. Collecting and annotating documents from each

church and time period is not achievable in practice.

Thus, the aim of this work is to design a method that

can handle a wide variety of documents while being

trained on a small, non-representative subset.

In the next section, some approaches that tackle

document layout analysis of historical documents are

presented. Then, we introduce two strategies applied

to record detection. In section 3, several architectures

of object detection networks are compared, and further

experiments are performed on Mask R-CNN that yield

the best performance. In section 4, we introduce Deep

Syntax, a hybrid method based on neural networks and

logical rules. Finally, these two approaches are com-

pared on two databases in section 6. Results show that
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Deep Syntax is able to handle more heterogeneous doc-

uments while being trained on a few documents. It out-

performs object detection networks, even when trained

on a database three times smaller. As a result, it is more

adapted to the context of massive document processing

with few training examples.

2 Related works

Document layout analysis is the process of identify-

ing regions of interest in document images, such as

text-blocks, tables or graphics. It is a key step for au-

tomatic document understanding. In this section, an

overview of methods that have been developed to solve

this task is presented. It is worth noting that we fo-

cus on methods performing an image-based analysis,

although other methods also rely on Optical Character

Recognition (OCR) to delimit zones based on local text

cohesion [9, 27].

This study mostly focuses on methods applied to

handwritten or degraded documents. However, some in-

teresting methods applied on printed text are also con-

sidered. There are four main types of strategy used for

document layout analysis:

– Bottom-up strategies start from the smallest ele-

ments of the images (pixels, connected components...)

and group them based on similarity.

– Top-down strategies start from the whole page and

partition it into homogeneous zones.

– Hybrid strategies combine the two previous types

of approaches.

– Neural networks learn to recognize different lay-

outs from annotated examples.

2.1 Bottom-up or data-driven strategies

Bottom-up algorithms agglomerate the smallest com-

ponents of a document such as pixels, connected com-

ponents, words or text-lines to create homogeneous re-

gions. They are able to determine the structure of a

wide variety of documents without any prior knowl-

edge. However, they are sensitive to noise, and can es-

sentially be applied to documents with clearly delimited

areas (i.e. newspaper columns, text/image separation).

There are three main bottom-up strategies.

Mathematical morphology These algorithms rely on fil-

tering techniques to reveal areas of interest. In practice,

filters can be applied on printed documents to remove

graphics or noise [25]. They can also be used to de-

tect text-lines in printed and handwritten documents,

assuming that the text is not too slanted [12,42,63].

Clustering These approaches try to agglomerate ele-

ments based on specific sets of features. Some algo-

rithms rely on texture features to find homogeneous

zones, and a few of them have been applied to historical

documents. For instance, they can be used to separate

textual and graphical regions [45,46]. Journet et al. [38]

identify main areas in historical documents without any

prior knowledge by extracting five local texture charac-

teristics at different resolutions. These approaches have

also been applied to printed documents in the con-

text of text-block detection. In [30], the authors rely

on features derived from the geometry of the document

and perform hierarchical graph coloring to retrieve the

structure of postal mails. In [39] text-lines are grouped

based on alignment, distance and graphical features like

font, thickness and color to form homogeneous zones. It

is also common to gradually merge connected compo-

nents to obtain text-blocks in printed documents [4,37]

Clustering methods are also applied to find text-lines

using generic features, such as orientation features [40,

71]. In [14], the authors perform partitioning of con-

nected components at different resolutions on each color

layer. Geometrical features such as distance, area, and

density are also commonly used to extract text-lines

[23,70]

Classification These algorithms classify structural ele-

ments (pixels, letters, text-lines...) from a set of learned

features. Some of them have been successively applied

to separate handwritten annotations from printed text

by using connected component and patch level features

[53,54], shape context features [22] or more traditional

features [8]. In [36], structure detection of degraded

newspaper archives is achieved by localizing titles, text-

lines, background, separators and noise using a Condi-

tional Random Field.

These methods have also been applied to handwritten

documents. In [26], a structure analysis is performed

using relative location features. In [32], the authors

manage to detect initials, headings and text areas in

historical documents. Other works focus on historical

manuscripts to solve structure recognition [15, 65] as

well as text-line extraction [6, 16,28].

2.2 Top-Down strategies

Top-down strategies start from the whole page and par-

tition it into smaller homogeneous zones. These strate-

gies are useful to delimit well-defined and invariant struc-

tures, as they require a prior knowledge to guide the

analysis. They are generally very fast but are not suit-

able for documents with complex or varying structures.
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These methods mostly rely on document structure as-

sumption, projection profiles and function analysis.

Document structure assumption These strategies are

based on a strong prior knowledge of a document lay-

out, that is invariant and codified (e.g. forms, letters).

As a result, they are not very flexible since they are

not immediately applicable to other layouts. A docu-

ment structure description tool was proposed in 2006

by Coüasnon: DMOS [20]. Document structure is de-

scribed using logical rules to achieve segmentation and

classification of areas of interest. Although DMOS can

also rely on bottom-up analysis, the grammatical part

is essentially top-down. This method has been success-

fully applied to many layouts [41], such as correspon-

dence letters, administrative documents, historical news-

papers or musical scores. Although, some analysis is

based on bottom-up analysis A probabilistic method

was introduced by Shafait et al. [62]. For each docu-

ment, the method returns the most probable zones, us-

ing a prior user-defined breakdown. Finally, Alvaro et

al proposed a 2D Stochastic Grammar using two sets

of features: Gabor and RLF.

Projection profiles This strategy consists of identifying

physical boundaries between areas of interest. These

methods are very effective on documents containing

only text, but are difficult to apply to complex doc-

uments (e.g.presenting degradation, complex structure

or graphic elements...). For printed documents, it is

common to take advantage of the regular gaps between

text-lines to find text-block boundaries [4]. For instance,

the Viterbi algorithm is used in [52] to find text-lines

by locating optimal succession of text and gap areas.

In [17], the authors propose to analyze white spaces

to separate columns in old newspapers. This strategy

can also be applied to extract curved text-lines, such

as in [51], where text-line orientation is determined us-

ing the Wigner-Ville distribution on the projection his-

togram profile.

Function analysis This type of method is based on the

optimization of a function specifically designed to solve

a given problem. Bukhari et al. propose a method based

on active contours to delimit text-lines from the top and

bottom [11]. It has been successfully applied to printed

documents featuring extremely curved text-lines. The

method proposed by Ryu et al. [60] tackles text-line

segmentation in handwritten documents based on an

energy function designed in such a way that its mini-

mization yields text-lines. Yin et al. [69] propose to es-

timate the number of text-lines using a fuzzy filter and

then apply a variational Bayesian method to segment

text-lines. Weliwitage et al. [67] use an optimization

technique to minimize text pixels cut by the frontier be-

tween text lines on distorted handwritten documents.

Function analysis can also be used for layout analysis:

in [21], the authors propose to apply a Gaussian mix-

ture to the different regions of the page to obtain the

logical distribution of the handwritten document.

2.3 Hybrid strategies

These methods rely on a combination of bottom-up and

top-down strategies. They are efficient since they com-

bine advantages of both types of methods. However,

they take time to implement because many parameters

must be optimized for each type of document.

In [13], the authors use projection profile to find

text-lines and achieve text-block detection by taking

advantage of the rigid structure of their collection of

historical documents. Wei et al [66] study a hybrid selec-

tion of textual characteristics to tackle the task of lay-

out analysis on historical documents. In [7], connected

components are aggregated before vertical and horizon-

tal white spaces are detected to produce a mask of areas

of interest. Asi et al. [5] manage to simplify the layout of

historical documents by locating, segmenting, and de-

warping text lines with severe curvature. These strate-

gies have also been applied to segment text-lines. Claus-

ner et al. [18] propose to combine a connected compo-

nent analysis (bottom-up) with logical rules (top-down)

to obtain text-lines. Their study shows that their hy-

brid approach outperforms the purely bottom-up or

top-down approach.

2.4 Neural network-based strategies

These methods are the most recent and have taken the

lead in most competitions in the field since 2015.

Moysset et al. [48] were among the first to develop

a sequential RNN-LSTM model that allows to obtain

lines, text and paragraphs on various documents in the

MAURDOR database. Recently, neural networks, and

particularly fully convolutional networks, have gained

popularity and have proven to be particularly efficient

for text-line extraction and semantic segmentation in

historical documents [24, 47]. Grüning et al. have pro-

posed ARU-Net [33], a U-net with recurrent layers and

coupled to an attention network, which achieves the

best results for the detection of text lines in the cBAD

database. Renton et al [58] have also proposed a fully

convolutional network with dilated convolutions and

have obtained competitive results for the detection of

text-lines. Finally, Oliveira et al. have proposed dhSeg-

ment [50], a U-Net of which the contracting path con-
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sists of a ResNet-50 trained on ImageNet. The authors

demonstrated its genericity by successfully solving five

semantic segmentation tasks on historical documents:

page extraction, text line extraction, structure detec-

tion, decoration detection and photo detection. Alber-

tini et al. [3] have used the DeepDIVA framework [2] to

obtain high quality semantic segmentation before ex-

tracting text-lines. Alaasam et al. [1] have used siamese

networks at the patch level for semantic segmentation

of challenging historical Arabic manuscripts.

Deep neural networks have also been increasingly

applied for block detection and classification. Several

methods rely on object detection networks to locate

and classify text-blocks, tables, equations and figures in

complex printed documents [49,61,68]. These networks

can handle different layouts of printed documents, but

require many training examples - more than 1,000 doc-

uments in these studies. To the best of our knowledge,

the only attempt at applying object detection networks

on historical documents was done by Prusty et al. [55].

They have trained Mask R-CNN on 120 to 350 docu-

ments to find instances of different page objects, such

as text-lines and page boundaries, in historical Indic

manuscripts.

2.5 Discussion and outline of the paper

In this section, we discuss the applicability of these

strategies to parish registers within the context of mas-

sive document processing.

Many approaches are not applicable to parish regis-

ter structure, as their record structure does not appear

clearly. The layout is tight, with no clear separation

between two successive records (e.g. white space, sepa-

rator line). Text-lines can be skewed, and some words

can partially overlap with the text belonging to the

previous record. Moreover, these documents are old,

and therefore some pages are degraded. For these rea-

sons, bottom-up strategies do not appear to be the best

methods to be applied to these documents. Further-

more, the layout of parish registers is not rigid. The

page layout depends on the priest writing the register:

the number of records varies from one page to another,

some records are on two pages, some pages do not con-

tain any records. A few indicators help to delimit the

records, such as margin annotations, vertical and hori-

zontal spacing. However, they are not consistent within

the corpus. For these reasons, applying top-down meth-

ods relying on projection profiles and function analysis

might not be suited.

Yet, we believe that some strategies described in this

literature review can be successfully applied to parish

registers. First, numerous studies have shown the effi-

ciency of deep neural networks for layout analysis tasks.

These methods have the capacity to automatically ex-

tract relevant features for a wide range of layouts. U-

shaped networks are successfully applied to text-line

detection [33] [50], page extraction, layout analysis and

ornament extraction [50] in historical documents. How-

ever, they are not able to deal with overlapping re-

gions of a same class, and thus they cannot be ap-

plied for record segmentation. Whereas, object detec-

tion networks are able to retrieve overlapping instances

of a same class. Several methods rely on object detec-

tion networks to localize and classify text-blocks, tables,

equations and figures in printed documents [61] [68].

Consequently, we argue that deep neural networks seem

applicable to these documents. The main limit of these

methods is that they require a lot of representative

training records to learn relevant features. Consider-

ing the large variability of parish registers, collecting

and annotating such a database would require too much

time and effort. In this context, object detection neu-

ral networks might not be suitable. Another approach

to consider would be document structure assumption.

Although the page layout is not rigid, most records

present similar features, such as recurrent patterns and

keywords. These steady features could be exploited to

detect each record. As these patterns are stable, they

would likely be easier to learn with few training exam-

ples.

In this article, we propose to compare two systems

to find the records in these documents:

1. The Object Detection system. This strategy re-

lies on object detection neural networks trained to

directly detect the records. Three architectures are

compared and several experiments are carried out.

This approach is further described in section 3

2. The Deep Syntax system. This strategy com-

bines u-shaped neural networks and a syntactic ap-

proach. It relies on the recurrent first text-lines and

signatures to locate the beginning and the end of

each record. This strategy is further described in

section 4.

Finally, these approaches are compared in section 6.

3 Object detection networks

Deep neural networks have consistently outperformed

most of the other methods for document layout anal-

ysis. With enough training data, learning-based meth-

ods achieve great performance in addressing complex

layouts in both printed and handwritten documents.
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We believe that this approach could be successfully ap-

plied to historical handwritten documents. Indeed, the

records share similarities, both in structure and con-

tent: vertical and horizontal spacing, potential margin

annotations, capital letters, recurrent keywords, signa-

tures... These similarities could help the network to

learn a representation of the records. The challenge of

such a strategy is to learn to recognize complex, vary-

ing and overlapping objects, using few available training

data.

3.1 Selected architectures

We perform several experiments using state-of-the-art

neural networks: Mask R-CNN [35], RetinaNet [43] and

YOLOv3 [56].

Mask R-CNN [35] is a two-stage approach. First, a

Feature Pyramid Network is used as a backbone for fea-

ture extraction over the entire image, then the network

head is used for bounding-box classification and regres-

sion. Mask R-CNN is based on Faster R-CNN [57],

which has two outputs for each candidate object: a

class label and a bounding-box. To this, Mask R-CNN

adds a third branch that outputs the object mask, al-

lowing instance segmentation. Mask R-CNN also intro-

duces pixel-to-pixel alignment, which leads to consis-

tent improvement over Faster R-CNN for object detec-

tion tasks. Thus, we choose Mask R-CNN over Faster

R-CNN. Two-stage detectors such as Mask R-CNN are

generally more accurate than one stage detectors, but

are much slower.

RetinaNet [43] is a single shot detector. The net-

work architecture is composed of a backbone network

and two subnetworks. The backbone is a Feature Pyra-

mid Network that computes convolutional feature maps

over the entire image. The first subnetwork is used for

object classification and the second for bounding box

regression. The major improvement of RetinaNet comes

from a novel focal loss function that handles the class

imbalance. RetinaNet is able to match the speed of pre-

vious one-stage detectors while surpassing the accuracy

of many state-of-the-art two-stage detectors, including

Faster R-CNN [57].

YOLOv3 [56] is a single shot detector. The object

detection task is tackled as a regression problem to spa-

tially separate bounding boxes and class probabilities.

In this way, bounding boxes and class probabilities are

directly predicted from full images in one shot. The in-

put image is divided into a grid where each cell predicts

bounding boxes, confidence score, and class probabili-

ties. In YOLOv3 the prediction is done across three

different scales which improves the performance. This

architecture is simple and fast, yet accurate.

3.2 Experimental protocol

We propose to train these architectures for record de-

tection using similar experimental protocols. We now

detail the training setup used to compare Mask R-CNN

[35], Retina-Net [43] and YOLOv3 [56] for record de-

tection.

Raw images are given as an input. They are scaled

such as the larger side is equal to 1,000 pixels. Aug-

mentation consists of random horizontal flips and Gaus-

sian blur with sigma randomly chosen between 0.0 and

3.0. Each model is pre-trained on the COCO dataset

[44]. Early stopping is used during training. The model

yielding the best validation loss is saved and used. All

implementations rely on the Keras framework. Train-

ing is done using NVIDIA RTX 2080 Ti GPUs. For

post-processing, predictions with low confidence score

(< 0.5) are discarded. Record widths are then normal-

ized based on page borders if they are close enough to

predicted borders. The training setup relative to each

network is described as follows.

– Mask R-CNN1: Bounding boxes are transformed into

masks such as there is one mask for each bounding

box. ResNet-50 is used as a backbone. The back-

bone layers are frozen during the first stage of the

training, then unfrozen.

– RetinaNet2: Bounding boxes are represented with

their four coordinates and are shuffled before train-

ing. ResNet-50 is used as a backbone. The backbone

layers are frozen during the first stage of the train-

ing, then unfrozen.

– YOLOv33: Bounding boxes are represented with their

four coordinates and are shuffled before training.

Darknet-53 is used as a backbone. Early layers are

frozen during the first stage of the training, then

unfrozen.

Results are presented and discussed in section 6.

One of the limitations of object detection networks is

that they require a large training database. As pre-

viously mentioned, collecting and annotating such a

database is beyond our means. To overcome this con-

straint, we introduce Deep Syntax, a hybrid approach

that should be able to learn with less training data.

4 DeepSyntax: our proposed approach

combining neural networks and logical rules

In this section, Deep Syntax, our original contribution,

is presented. We propose to take advantage of recurrent

1 https://github.com/matterport/Mask RCNN
2 https://github.com/fizyr/keras-retinanet
3 https://github.com/qqwweee/keras-yolo3
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Page borders

dhSegment [50]

Text-lines
ARU-Net [33]

First text-lines
LARU-Net [33]

Signatures

LARU-Net [33]

Logical rules

Fig. 4: Overview of Deep Syntax. First, neural networks are used to predict several patterns: text-lines, first text-lines,
signatures and page borders. Then, logical rules are applied to group patterns belonging to the same record. Finally, record
borders are computed by taking the bounding box of each group. Figure best viewed in color.

patterns to spot the records in parish registers. Neural

networks are trained to find these patterns and logical

rules are applied to group them based on prior knowl-

edge regarding parish register layout. The workflow of

this system is summarized in Fig. 4.

4.1 Taking advantage of useful patterns

We argue that the records share common features that

can be used to spot the records [64]. In this section,

some helpful patterns for record segmentation in parish

registers are presented: signatures, first text-lines, page

borders and text-lines. Signatures and first text-lines

are especially helpful as they help to delimit the end

and the beginning of each record.

4.1.1 Signatures

One of the most consistent patterns that can be found

in the records is a signature. Indeed, each record was

generally signed by the priest. In some cases, it was

also signed by several witnesses. In some rare cases, the

record is not signed by anyone, as in Fig. 5a. Conse-

quently, extracting signatures can help to find the end

of each record, but our system should rely on other pat-

terns as well for record segmentation.

Extracting signatures can be done since they share

some common features such as localization and style.

Different methods were compared for signature segmen-

tation, as described in [64]. We trained a LARU-Net

using a database containing 200 images: 120 images are

used for training, 40 for validation and 40 for testing.

Five-fold cross-validation is used such as each image

is in the testing set at some point. For each pixel, the

network predicts its probability of belonging to a signa-

ture. A threshold is applied to probability maps and the

connected components that are too small are removed.

Signature extraction can be challenging, as they ap-

pear very similar to the main text. As a consequence,

signature detection can lead to prediction errors. For in-

stance, a signature can easily be missed, which triggers

a merge error at the record level. This is illustrated in

Fig 5b, where the signature looks a lot like the main

text. In opposition, the network can also produce a

false positive, which triggers a split error at the record

level. This is especially true on images such as Fig. 5c,

where names are more elaborate than signatures. Fi-

nally, there is a strong interaction between signatures

and the main text located below making the frontier

between records unclear and leading to small surface er-

rors. Sometimes, signatures and text even overlap, such

as in Fig. 5d.

4.1.2 First text-lines

The first text-line of each record is another striking pat-

tern as first text-lines present steady features over the

records. Firstly, they share similar textual content as

the same phrasing is used by different priests. As a

consequence, they contain recurrent, letters, words and

expressions. For example, ’fils/fille de’ (’son/daughter

of’), ’ce jour’ (’this day’), and ’le corps de’ (’the body

of’) are frequently found in the first text-line. Also,

grammatical articles such as ’le/la’ (’the’) are com-

monly used at the beginning of a sentence in French,

hence, first text-lines often begin with these words. Fi-

nally, names are usually located in the first text-line,
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(a) There is no signature. (b) Signatures are hard to distinguish from the main text.

(c) Names are more stylized than signatures. (d) Text and signatures overlap.

Fig. 5: Example of challenging records for signature detection. Signatures are enclosed by a red rectangle. On record (a), there
is no signature to signal the end of the record. Signature from record (b) is not obvious and could easily be missed. Names
and margin annotations from record (c) are elaborate and could be falsely detected as signatures. The text from record (d)
overlaps the signature of the previous record. Figure best viewed in color.

(a) Very compact handwriting. (b) The group of signatures show features similar to first text-lines,
mainly vertical spacing and capital letters.

(c) The first text-line is written around a seal. (d) A first text-line is crossed out and written again below.

Fig. 6: Example of challenging records for first text-line detection. First text-lines are underlined in purple. In (a), first
text-lines are hard to spot due to uniform line spacing. In record (b), the group of signatures could be falsely detected as first
text-line. On record (c), the first line is broken and can be missed. In record (d), a first text-line is crossed-out but would likely
be detected anyway. Figure best viewed in color.
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and can be easily spotted since they begin with a cap-

ital letter.

Secondly, several context-based indications can help to

localize first text-lines. On average, there is a white gap

above the first text-lines since vertical spacing is larger

between two records. Moreover, signatures are consis-

tently located above the first text-lines. In the same

way, margin annotations are often lined up with the

first text-lines. For these reasons, we believe that the

first text-line of each record can be found using neural

networks. This would allow to delimit the records.

We compared several architectures for this task. LARU-

Net clearly outperforms the other architectures. Exper-

iments regarding the input format are also performed:

we trained the network with two classes (first/other

text-lines or first/all text-lines) or only one class (first

text-lines). Experiments show that training using one

class outputs better results. The training is done us-

ing a database containing 200 images: 120 images are

used for training, 40 for validation and 40 for testing.

Five-fold cross-validation is used such as each image is

in the testing set at some point. For each pixel, the

network determines the probability of belonging to a

first text-line. Different post-processing have been com-

pared. The best method consists of extracting blurred

text-lines in predicted masks.

Fig. 6 gives an overview of some challenging records.

The main issue is that first text-lines can look similar

to other text-lines, especially in tight layouts, such as in

Fig. 6a. In this page, there is almost no vertical spacing

between two successive records. In this configuration, a

first text-line would likely be missed, which would trig-

ger a merge error at the record level. In Fig. 6c, the first
text-line can be missed as well as it is written around

two seals. In opposition, the network can produce false

positive first text-lines, which triggers a split error at

the record level. This is especially true on images such

as Fig. 6b where groups of signatures appear similar

to first text-lines: signatures are aligned with a signifi-

cant vertical spacing above. In Fig. 6d, a first text-line

is crossed out but would likely be detected anyway, as

well as the text-line below. In this case, small surface

errors would appear at the record level.

4.1.3 Text-lines

Text-lines are the main structural component of the

records. Extracting them is a key step in record seg-

mentation. Using logical rules based on signatures and

first text-lines, text-lines that likely belong to a same

record are grouped together. The records are found by

extracting the bounding box of each group.

ARU-Net [33] trained on cBad is used to extract

text baselines. Then, the post-processing introduced by

Oliveira et al. [50] is applied. Probability maps are fil-

tered using a Gaussian filter and hysteresis thresholding

is applied. Connected components in the binary map

are then converted to a polygonal line.

4.1.4 Page borders

Localizing page borders is useful to apply the analysis

within the page. They are also used to normalize the

width of each record.

Available pre-trained networks are usually designed

to handle single-page documents. As a result, we had

to train a model for single and double-page documents.

Experiments led us to select dhSegment [50] to perform

page segmentation. Training is done using a database

containing 200 images: 120 images are used for train-

ing, 40 for validation and 40 for testing. Five-fold cross-

validation is used such as each image is in the testing

set at some point. For each pixel, the network predicts

its probability of belonging inside the page. Probability

maps are then threshold and post-processed by finding

the smallest enclosing rectangle.

4.2 Building logical rules

Once these patterns are extracted, logical rules are ap-

plied so that the patterns that belong to a same record

are grouped together. Logical rules are implemented us-

ing an open framework based on DMOS and Enhanced

Position Formalism (EPF) [19]. Although most images

depict double-page documents, some of them feature

single-page documents. As a consequence, the first step

is to delimit each page in double-page documents. To

this end, we try to find a page separator by applying

a filter or by using text alignment. If no separator is

found, the assumption is made that the image contains

only one page.

Logical rules are then applied to each page. A page

is defined as a group of records, but a record can be

defined by several rules. The main rule states that a

record is composed of a first text-line followed by a

group of text-lines and a signature. The pseudo-code of

this main rule is provided below:

record := AT(topPage) &&

firstTextLine FTL &&

AT(under FTL) &&

signature S &&

AT(between FTL S) &&

textLines TLS.
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(a) Expected configuration: each record is composed of a
first text-line, several text-lines and a signature.

(b) Missed first text-line: the signature is used to spot the
end of the record if the first text-line is missed.

(c) Missing signatures: the records are not signed but are
found thanks to the first text-lines.

(d) False positive signature: the small signature located
in the last record is ignored.

Fig. 7: Illustration of frequent record configurations. For each sub-figure, the image located at the left depicts the patterns
predicted by neural networks: first text-lines are shown in purple, text-lines in blue and signature in red. The image located
at the right shows the output of the rules. Figure best viewed in color.

But several other rules are designed to overcome

frequent prediction errors of signatures and first text-

lines. The rules have been designed to obtain a trade-off

between split and merge errors. These rules mostly rely

on first text-lines to delimit the records, as they are

more accurately predicted than signatures. However, in

some configurations, signatures are also used to find

the end of the record. After these rules are applied, the

bounding box of each group is extracted to obtain the

outline of each record, as shown in Fig. 4.

Fig 7 illustrates some frequent cases. Fig. 7a shows

the main configuration: each record is composed of a

first text-line followed by text-lines and a signature. The

last record is cut due to the end of the page. In Fig 7b,

the first text-line of the second record is not found. In

this case, the record is detected thanks to the signature

of the first record that is big enough to be considered

reliable. In Fig. 7c, the records are not signed by the

priest. In such cases where signatures are missing or

missed by the network, the first text-lines are used to

delimit the records. Finally, in Fig. 7d, a small false

positive signature is found in the middle-right of the

last record. In this case, the signature is not considered

reliable and is ignored.

In this section, we have introduced our original con-

tribution: Deep Syntax. In section 5, we introduce the

database and metrics used for evaluation. Finally, re-

sults are presented and discussed in section 6.

5 Databases and evaluation protocols

In this section, the two databases used for this work

are presented, as well as the protocol used to evaluate

record detection.

5.1 Databases

We introduce the BMS database that contains images of

French parish registers. Due to proprietary reasons, this

database cannot be published. As a result, this work is

evaluated on the Esposalles public database [59] as well.

Table. 1 summarizes their main characteristics, and a

sample of each database is presented in Fig. 8.



Record segmentation in historical handwritten registers using few examples 11

5.1.1 The BMS database

These documents are provided by Les Archives

Départementales d’Ille-et-Vilaine (35, France). The cor-

pus contains over 300,000 images of parish registers

from 50 parish churches, dating from 16th to 19th cen-

tury. Documents from this database are heterogeneous.

Most images feature double-page documents, but some

of them feature single-page documents. Since the doc-

uments come from different churches and time periods,

each document was written by a different writer. As

a result, there is a wide variety of writing styles. This

variability has already been partially presented in Fig.

3. From this corpus, we have annotated two subsets:

1. The experimental subset: BMS-1-expe.

This subset contains 200 images (1,565 records) from

four different years: 1675, 1715, 1750, and 1775.

Four registers were extracted from each one of the

50 churches, and the seventh image of each regis-

ter was selected to avoid blank pages. This subset

is used for training, validation and evaluation using

five-fold cross-validation.

2. The testing subset: BMS-2-test. This subset

contains 209 images (2,143 records) from 1500 to

1775. The registers were selected at random from

the 50 churches so that they span the whole pe-

riod. From each register, the image number is also

selected at random. This subset is used exclusively

for evaluation.

The language and writing style of priests strongly

evolved over time. Thus, the BMS-1-expe subset is bi-

ased, as only four years are represented. Moreover, the

image number is fixed. As opposed, the BMS-2-test

(a) BMS (b) Esposalles

Fig. 8: Samples from each evaluation database. First text-
lines are overlaid with a purple line. Ending patterns are over-
laid in red: signatures for the BMS database, tax for the Es-
posalles database. Figure best viewed in color.

subset uniformly covers three centuries, and the im-

age number is randomized. One of the aims of our work

is to evaluate the ability of each method to generalize

well on the BMS-2-test subset, while learning from the

small, non-representative BMS-1-expe subset.

Each record is manually annotated such as its bound-

ing box contains the corresponding text and signatures.

The width of each record is then normalized to be con-

sistent with page borders. Since the text can be skewed

and signatures often overlap on text, successive bound-

ing boxes often overlap as well. The recurrent patterns

used for training Deep Syntax are annotated for the

BMS-1-expe subset only: page borders, text-lines, first

text-lines and signatures.

5.1.2 The Esposalles database

The Esposalles database was introduced in [59]. It was

notably used for the ICDAR2017 Competition on Infor-

mation Extraction in Historical Handwritten Records

[29].

This database is composed of 125 pages: 75 for train-

ing, 75 for validation, and 25 for testing. It consists of

historical handwritten marriage records from the Archives

of the Cathedral of Barcelona. Each image features a

single-page document extracted from a volume written

in old Catalan, from the 17th century.

Each marriage record contains information about

the husband, his wife, as well as their parents. In this

regard, these documents are similar to French parish

registers. However, there are some major differences.

Besides the change of language, the structure also ap-

pears more clearly. The records were all written by the

same writer over a short period, as a result the corpus

is very homogeneous. Also, the records are not signed,

but rather are marked with a tax symbol at the end. We

propose to take advantage of this symbol as the ending

pattern for Deep Syntax.

Table 1: Comparison of the two databases used for this work.

Database BMS Esposalles

Writers One writer for each
document

One writer for the
database

Period 1500-1790 1617-1619
Origin 50 churches, France 1 church, Spain
Layout Mostly double page Simple page
Records Baptism, marriage,

burial
Marriage

Patterns First text-lines and
signatures

First text-lines and
tax symbol

Variability + -
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Previous work on this database focus on handwrit-

ten text recognition, yet we use this database for struc-

ture detection. We produced a ground truth annotation

for each record. The bounding boxes of each record have

been partially built from the ground truth proposed

in [29], by taking the enclosing rectangle of the words

belonging to the same text region. Then, the width of

each record has been normalized to page borders to in-

clude marginal annotations and tax symbols. We have

also annotated page first text-lines and tax symbols.

These annotations are freely available4. One particu-

larity of this corpus is that some marriage records were

voided. These voided records are not annotated in the

ground truth, but look very similar to regular records.

5.2 Evaluation protocols

Many evaluation metrics have been proposed to assert

the quality of document layout analysis systems. How-

ever, few of them are able to process overlapping ground

truth zones belonging to the same class. We select sev-

eral metrics designed to assert the quality of object de-

tection methods, as well as quantify each type of errors.

5.2.1 Surface evaluation

This ZoneMap metric [31] has been specifically designed

for the detection and classification of areas in scanned

documents, as part of the Maurdor International eval-

uation campaign [10]. The ZoneMap score summarizes

a surface error that is computed on foreground pixels.
Reference and hypothesis zones are incrementally asso-

ciated based on their overlap such as they are in one of

the following configurations: Match (one-to-one), Miss

(one-to-zero), False Alarm (zero-to-one), Split (one-to-

many), Merge (many-to-one). For each configuration, a

specific surface error is computed on foreground pixels.

A perfect detection corresponds to a ZoneMap score

of 0. However, ZoneMap scores can exceed 100 if large

zones are inaccurately detected. As a consequence, the

metric score is hard to interpret. Nevertheless, it is use-

ful for comparing different methods on a given dataset.

We also report the average precision (AP) as it is

very common in object detection tasks. This metric

is more clear and straightforward than ZoneMap, but

was not designed for this task. We report AP for two

Intersection over Union (IoU) thresholds. We denote

AP@.50 the average precision computed with IoU =

0.5 and AP@.75 when computed with IoU = 0.75.

4 https://gitlab.inria.fr/starride/structure-esposalles

5.2.2 Matching evaluation

Counts of Miss, False Alarm, Split, Merge and Match

are computed by the ZoneMap evaluation tool [31].

These numbers are presented to compare qualitative

errors between methods. As the number of matching

records must be analyzed with respect to the number

of ground truth and predicted records, we also compute

the precision, recall and F1-score.

6 Evaluation of the Deep Syntax and Object

Detection systems for record detection

In this section, we present the experiments performed

for each strategy on the BMS-1-expe subset. Finally,

these two strategies are compared on three databases:

the BMS-1-expe subset, the BMS-2-test subset, and the

Esposalles database.

6.1 Experiments on the Object Detection system

First, we present the experiments performed on object

detection networks, and select the optimal architecture

and training setup.

6.1.1 Comparison of three architectures

We compare the performance of Mask R-CNN [35],

Retina-Net [43] and YOLOv3 [56] on the BMS-1-expe

subset. All networks were pre-trained on COCO. Five-

fold cross-validation is used, as described in section 3,

using 120 images for training, 40 images for validation

and 40 images for testing. As a result, 200 images (1,565

records) are evaluated.

Table 2 summarizes the performance of each net-

work. The BMS database presents several main difficul-

ties: no clearly delimited frontiers, high intra-class vari-

ability, overlapping objects and class imbalance. We ob-

serve that YOLOv3 struggles to detect the records. One

possible explanation could be that the feature extractor

might not be able to learn such difficult objects using

few training data. As opposed, Mask R-CNN and Reti-

naNet output acceptable results. They are both based

on Feature Pyramid Networks that generate multi-scale

feature maps. This feature extraction strategy can ex-

plain their performance. RetinaNet also takes advan-

tage of the focal loss to overcome the class imbalance.

Despite this, Mask R-CNN outperforms RetinaNet. The

superiority of Mask R-CNN likely comes from its pro-

posal mechanism. In two-stage detectors, such as Mask

R-CNN, the model proposes a set of regions of inter-

est, then a classifier processes the region candidates.
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Table 2: Performance of each network on the BMS experi-
mental subset (200 images, 1,565 records)

Model ZoneMap AP@.50 AP@.75

Mask R-CNN 31.9 86.8 66.1
RetinaNet 47.4 68.9 36.5
YOLOv3 76.3 24.3 0.8

(a) Ground-truth (b) Mask R-CNN
ZoneMap=19.8

(c) Retina-Net
ZoneMap=32.2

(d) YOLOv3
ZoneMap=76.7

Fig. 9: Performance of each method on a single image from
the BMS experimental subset - Each record is depicted with
a distinct color. A ZoneMap score is computed for each pre-
diction. Figure best viewed in color.

Two-stage approaches are generally more accurate than

one-stage networks.

Fig. 9 shows an illustration of the results on a single

image for each network. The output from Mask R-CNN
looks close to perfect since all the records are correctly

found. However, the score is penalized by small surface

errors, mostly due to bleed-through in the last record.

RetinaNet outputs zones with correct width on both

pages, however, they are highly imprecise, with large

overlaps between two successive records. It also trig-

gers many merge errors. YOLOv3 struggles to find rel-

evant zones, especially on the right page. Zone widths

are not consistent with page borders, and many records

are missed or merged. Moreover, records frontiers are

highly imprecise.

6.1.2 Experiments on Mask R-CNN

We have shown that Mask R-CNN outperforms other

architectures. In this section, further experiments are

performed, with a focus on the input, backbone archi-

tecture and data augmentation. Once the prediction is

done, the width of the records are post-processed based

(a) Original image (I). (b) Predicted text-lines (T).

Fig. 10: Input: the original image (I) is concatenated with
the text-lines (I+T) predicted using ARU-Net [33].

on predicted page borders. All the results are presented

in Table 3.

First, we compare the performance of Mask R-CNN

when trained on raw images (I) or on images associated

with their predicted text-lines (I+T), as depicted in

Fig. 10. This idea is motivated by the structure of the

records that strongly depends on text-lines. Overall, we

find that using the image concatenated with predicted

text-lines as an input consistently removes recurrent

errors. It especially helps on images featuring bleed-

through, as the text-line detector is able to distinguish

bleeding text-lines from actual text-lines. Using text-

line prediction as an input reduces the number of false

positives records.

We also compare the results when using a ResNet-

50 or ResNet-101 as a backbone. Both architecture were

pre-trained on COCO. Overall, the backbone architec-

ture does not have a significant impact on the perfor-

mance.

Experiments on data augmentation have also been

carried out. By default, a simple augmentation com-

posed of random flips and Gaussian blur is applied.

The best model was also trained with more advanced

augmentation consisting of a combination of horizon-

tal flips, crops, Gaussian blur, contrast normalization,

Gaussian noise, color variations and affine transforma-

tions. However, this did not improve the performance.

This study shows that Mask R-CNN outperforms

other architectures. Using simple augmentation and train-

ing on both images and text-lines (I+T) also improves

performance, as it helps to learn the underlying struc-

ture faster. In the following, we refer to the best model,

trained with ResNet-101, using I+T and simple data

augmentation, as the Object Detection system.

6.2 Experiments on Deep Syntax

In this section we evaluate the segmentation of recur-

rent patterns. We also compare several hybrid approaches

and show the interest of relying on multiple patterns.
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Table 3: Performance of each experiment on the testing set composed of 1,565 records. 5-fold cross-validation is used, with 120
images for training, 40 for validation and 40 for testing. As an input, the image (I) can be associated with predicted text-lines
(T). For a description of the experiments, see section 6.1.2.

Training parameters Scores

Comments Backbone Input Augmentation ZoneMap AP@.50 AP@.75

Model from Table 2 ResNet-50 I Simple 31.9 86.8 66.1
ResNet-50 I+T Simple 30.1 91.9 73.5

ResNet-101 I Simple 29.6 88.5 70.6
Selected model ResNet-101 I+T Simple 29.1 89.6 73.9

ResNet-101 I Advanced 39.2 81.8 32.2
ResNet-101 I+T Advanced 35.9 87.1 38.8

6.2.1 Evaluation of segmented patterns

All patterns were annotated and evaluated on the ex-

perimental database. For each training, five-fold cross-

validation was used so that each image is in the test set

once. The results presented in this section are obtained

on the experimental subset of the BMS database.

Predicted page borders are evaluated pixel-wise. The

precision, recall, F1 and IoU scores are presented in

Table 4. Results are close to perfect for most images,

but errors appear on documents featuring paper in the

background. However, these errors have little impact on

record segmentation as long as the left and right border

are correctly found.

First text-lines are evaluated using the method de-

scribed in [34]. The evaluation tool computes several

scores for each image in order to assert the quality of

the detection. The scores are then averaged over the

images to get the final metrics. The results are pre-

sented in Table 4. Recurrent errors have been described

in section 4. Many errors come from overlaps between

first text-lines and seals or signatures. Despite these re-

current confusions, first text-line prediction is overall

acceptable.

Post-processed signatures are evaluated pixel-wise.

Evaluation on foreground pixels is presented in Table 4.

Although not all relevant pixels are selected, those that

are selected are relevant: hence the low recall but high

precision. Ground truth often contains noise induced

by binarization, especially in documents featuring ink

stains, bleed-through or low contrast. As a consequence,

false positives are often due to imprecise segmentation

of signature outlines: 52% of false positive pixels are

located on the frontiers of ground truth signatures. As

a result, these false positives do not lead to false positive

records.

Table 4: Evaluation of patterns on the BMS experimental
subset. Pixel-wise evaluation of predicted page borders and
signatures are presented. For signatures, scores are computed
on foreground pixels. For first text-lines, the metric described
in [34] is used.

Task Method Precision Recall F1

Page borders Pixel-wise 0.97 0.99 0.98
Signatures Pixel-wise 0.85 0.48 0.61
First text-lines Custom [34] 0.92 0.91 0.92

Table 5: Surface evaluation of Deep Syntax on the BMS
experimental subset when using different patterns.

Patterns used ZoneMap AP@0.50 AP@0.75

Signatures 32.1 78.8 49.1
First text-lines 28.4 87.2 54.4
Both 27.1 89.5 69.8

6.2.2 Advantage of using multiple patterns

In this section, we show the advantage of using multiple

patterns for record segmentation in the BMS database.

In a previous section 4.2, we have presented sev-

eral examples where using multiple patterns is relevant.

Combining multiple patterns allows to overcome two

main difficulties. First, the ending pattern does not

appear systematically in the BMS database because

some records are not signed. Secondly, predicted signa-

tures and first text-lines can be missed or mistaken due

to high intra-class variability (multiple writing styles,

phrasing and layout). Using both patterns helps to in-

crease performance on the BMS database, as shown in

Table 5. Applying the logical rules with both patterns

yields to an increase of the AP@0.75 score of 28% when

compared with only first text-lines, and 42% when com-

pared with only signatures.

For easier databases, such as the Esposalles database,

combining multiple patterns might not be essential. As

there is only one writer that uses consistent phrasing,

layout and writing style is used for each record. Con-
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sequently, first text-lines and tax symbols have a lower

intra-class variability and are more easily learned. Be-

sides, the tax symbol appears systematically at the end

of each record. As a consequence, using either one of

these patterns would likely yield good performance.

6.3 Comparison on the BMS-1-expe heterogeneous

subset

In this section, the Deep Syntax and Object Detection

systems are evaluated on the BMS-1-expe subset. The

training is carried out using five-fold cross-validation.

As a result, the dataset is split into 5 sets of 40 images,

and 5 models are trained using 120 images for training,

40 images for validation, 40 images for testing. At a

result, each image has been tested once, and the mean

test error can be computed.

This subset allows the evaluation of both systems

on documents from the same period as the training set,

but written by different priests. Scores are presented in

Table. 6. Both systems obtain acceptable performance

on this subset. Results suggest that more match config-

urations are found using Deep Syntax, but that the ob-

ject detection network outputs better bounding boxes.

It is also worth noting that the object detection network

tends to merge records, especially the smallest ones. As

opposed, Deep Syntax produces more split errors, that

might be due to false positive patterns. There are sev-

eral false alarms that mostly appear on pages featuring

paragraphs written by priests to describe the registers.

In some cases, false alarms also appear on titles or on

pages featuring bleed-through. If both strategies yield

good precision, the Deep Syntax system yields a higher

recall. In that regard, Deep Syntax outperforms slightly

the Object Detection system.

However, our main concern is to select a system that

could be applicable to a wide variety of parish registers.

In that regard, we are interested in finding which sys-

tem is able to adapt to documents from different time

periods, with different phrasing and writing styles.

6.4 Assessment of the generalization ability when

trained on few examples

In this section, both systems, Deep Syntax and Object

Detection are trained and evaluated on the Esposalles

public database, showing that they can both learn ho-

mogeneous layouts from very few training data. The

two approaches are also compared on the BMS-2-test

subset to evaluate the ability of both systems to pro-

cess heterogeneous documents from different time peri-

ods. A study regarding the number of training examples

Table 6: Evaluation on the BMS-1-expe subset (1,565
records).

(a) Surface evaluation

Object Detection Deep Syntax

ZoneMap 29.1 27.1
AP@0.5 89.6 89.5
AP@0.75 73.9 69.8

(b) Matching evaluation

Object Detection Deep Syntax

Match 1293 1401
Split 40 71
Merge 107 42
False Alarm 22 16
Miss 2 1
Precision 0.86 0.87
Recall 0.83 0.90
F1-score 0.84 0.88

needed in each situation is also carried out, as this as-

sessment is critical within our industrial context.

6.4.1 Processing homogeneous documents with few

training examples

First, both systems are evaluated on the Esposalles

database. These registers feature a different layout than

French parish registers: records are smaller, there are no

signatures, and the language is different. As a result,

both systems must be re-trained on this database. We

investigate the influence of the training set size on the

performance of each system. Then the results of both

strategies are compared and discussed.

Both systems are trained on sub-sampled subsets

of the Esposalles training database, using 10, 25, 50

or 75 training examples. Detailed scores are presented

in Table. 7. They show that good performance can be

achieved using few training data on this database. In-

deed, the results suggest that both systems become ef-

ficient from 25 training documents, which corresponds

to approximately 250 records. This fast learning can be

explained by the homogeneity of the records, as there

is only one writer over a short period of time. For Deep

Syntax, experiments show that the tax symbol is well

learned from 10 images, while first text-lines are well

learned from 25 images. Fig. 11 depicts the prediction

produced by each strategy on a single image in this

condition.

If both systems manage to accurately recognize the

records, the Object Detection system manages to out-

put boxes that fit very well to the ground truth. The

ZoneMap surface error consistently decreases as the

training set size increases for the Object Detection,
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(a) Original image (b) Ground truth (c) Object Detection (d) Deep Syntax

Fig. 11: Comparison of both systems on the Esposalles database, when trained on 25 images. Figure best viewed in color.

Table 7: Evaluation on 253 records from the Esposalles database.

Object Detection Deep Syntax

Training set size (Esposalles) 10 25 50 75 10 25 50 75

Surface evaluation ZoneMap 18.5 14.6 12.8 11.9 17.1 13.9 14.3 14.1
AP@0.5 96.1 98.3 98.7 99.1 95.1 97.6 97.2 98.2

AP@0.75 70.0 85.6 89.5 89.6 74.2 82.3 82.6 81.4

Matching evaluation Match 241 249 252 251 240 248 248 249
Split 4 2 1 2 5 6 5 4

Merge 4 1 0 0 1 0 0 0
False Alarm 2 5 3 1 3 3 3 3

Miss 0 0 0 0 6 0 0 0
Precision 0.95 0.98 0.98 0.98 0.95 0.95 0.95 0.96

Recall 0.95 0.98 1.00 0.99 0.95 0.98 0.98 0.98
F1-score 0.95 0.98 0.99 0.98 0.95 0.96 0.96 0.97

(a) Original image (b) Ground truth (c) Object Detection (d) Deep Syntax

Fig. 12: Comparison of both systems on the BMS-2-test subset when trained on 120 images of the BMS-1-expe subset. Figure
best viewed in color.

Table 8: Evaluation on the 2,143 records of the BMS-2-test subset.

Object Detection Deep Syntax

Training set size (BMS-1-expe) 60 120 180 60 120 180

Surface evaluation ZoneMap 23.0 20.2 17.9 14.7 14.1 13.7
AP@0.5 80.1 77.4 82.0 83.3 84.0 83.1

AP@0.75 52.3 59.0 63.8 59.6 62.8 61.1

Matching evaluation Match 1576 1547 1653 1762 1787 1794
Split 54 14 21 80 56 67

Merge 205 224 183 122 121 105
False Alarm 2 2 4 4 3 5

Miss 5 5 4 1 1 4
Precision 0.83 0.86 0.88 0.85 0.88 0.88

Recall 0.74 0.72 0.77 0.82 0.83 0.84
F1-score 0.78 0.78 0.82 0.84 0.86 0.86
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while it remains almost constant for Deep Syntax. A

possible explanation is that Deep Syntax produces bound-

ing boxes constrained by rules. As a consequence, small

surface errors remain, even with perfect pattern predic-

tions. As opposed, object detection networks learn to

adapt to each record.

The matching evaluation shows that errors occurs

on few records, while the large majority of records are

correctly found. Deep Syntax produces 3 false positives.

They correspond to the three voided records that ap-

pear in the testing set. We observe almost no merge

errors or miss errors, however, several split errors are

created. For the Object Detection system, there are also

a few split and merge errors, however, they tend to dis-

appear when the training set size increases. The three

records that have been voided in the testing set present

difficulties for both system, even when trained with the

maximum number of images.

6.4.2 Processing heterogeneous documents when

trained on a small, non reprentative subset

Both systems are evaluated on the BMS-2-test, when

trained on 60, 120, or 180 documents from the BMS-

1-expe subset. This BMS-2-test subset is difficult to

process, as it contains images from periods that are

not represented in the training set. As the writing style

and the language evolve with time, older records appear

different. This subset is representative of the difficulties

faced in an industrial context, as collecting and anno-

tating a large, representative database is not achievable.

The results are presented in Table. 8, and an example

of prediction can be observed in Fig. 12.

As compared to the evaluation on the BMS-1-expe

subset, a significant drop of performance is observed

on the Object Detection system: the F1-score decreases

by 7% when using 120 training images. A possible ex-

planation is that the documents from the BMS-2-test

subset are older and feature tighter layouts. As a re-

sult, successive records are often merged. If increas-

ing the number of training examples does increase the

performance a bit, it is not sufficient to compete with

those obtained by Deep Syntax. Fig. 12 shows that the

bounding boxes produced by the Object Detection sys-

tem are less accurate, and are therefore not usable in

practice. That being said, the object detection system

would certainly improve if more documents from more

time periods were also annotated.

As opposed, Deep Syntax’s performance tends to re-

main stable over both subsets. The main difference is

that the system produces more merge errors than split

errors on the BMS-2-test subset, while it produces more

split errors than merge errors on the BMS-1-expe sub-

set. This difference can be linked to the tighter layouts

that compose the BMS-2-test subset. As the size of the

training set increases, the performance slowly increases.

When trained on the same training set size, Deep

Syntax produces in average 12% more match configu-

rations while reducing the ZoneMap surface error by

30%. When trained on three times less data, Deep Syn-

tax still manages to output 7% more match configura-

tions and to lower the ZoneMap score by 18%. Thus, it

would be more easily applicable for massive processing

of French parish registers.

6.5 Discussion

In this section, we discuss the strengths and weaknesses

of both approaches.

The Object Detection system yields good perfor-

mance on the Esposalles database because the records

are structured and appear similar. On this database,

it easily outperforms Deep Syntax, as bounding boxes

fit the ground truth very well. However, performance

decreases on more complex databases. On the BMS

database, the Object Detection system tends to retrieve

paragraphs. As a consequence it struggles to find small

records and has trouble performing well on tight lay-

outs. Predicted bounding boxes are imprecise, with large

overlaps between successive records. The Object De-

tection system also produces recurrent errors on this

database: small records are merged or missed, and large

records are split. We believe that more training im-

ages should be used to capture the variability of the

records. Indeed, the performance drops even more on

the BMS-2-test, that contains images that look different

from training data. However, producing more ground

truth annotations would require a tremendous amount

of time and effort.

In contrast, the Deep Syntax system relies on sim-

pler objects, e.g. signatures and text-lines, that can be

learned from few examples. As a result, this strategy

outputs strong results for record detection, even if few

available training data are available. The main limita-

tion of Deep Syntax is that its workflow is complex.

Moreover, bounding boxes are constrained by rules, so

they do not adapt to the specificity of each record. De-

spite these, we argue that Deep Syntax is perfectly ap-

plicable in the context of record detection. Taking ad-

vantage of structural patterns helps to simplify the de-

tection task. Rather than learning to recognize a com-

plex object, it can be easier to learn to recognize the

separation between these objects. Moreover, using mul-

tiple patterns helps to strengthen the output, but is not

required to obtain acceptable results.
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Fig. 13: F1-score on each database for both systems, when
both systems are trained on 25 documents for the Esposalles
database, and 120 documents for the BMS database. The
database variability increases from left to right, showing that
Deep Syntax generalizes better than the Object Detection
system.

7 Conclusion

In this paper, we have presented two strategies for record

detection in historical parish registers. The first one

is based on object detection networks. We have com-

pared three architectures in similar training conditions

and performed several experiments on the architecture

that seems best adapted for this task: Mask R-CNN.

The second one is our original contribution, Deep Syn-

tax, that relies on a combination of u-shaped networks

and logical rules. Recurrent patterns are predicted us-

ing neural networks: page borders, text-lines, first text-

lines and signatures.

We have studied their applicability within the con-

text of massive data processing, where only a few data

are available for training. To this end, we have com-

pared both systems when trained with different train-

ing set sizes. We have also applied both systems to a

complex subset of parish registers, featuring documents

from various time periods that were not represented in

the training set. Finally, we have applied them to the

homogeneous records of the Esposalles public database,

to ease future comparison with this work.

We observe that object detection networks achieve

very good performance when they are applied to a ho-

mogeneous database: only 25-50 training documents are

required to obtain a F1-score of 0.99 on the Esposalles

database. However, they struggle on heterogeneous doc-

uments. Fig. 13 shows that their performance drops

when the corpus variability increases. For instance, when

trained on 120 pages of parish registers, Mask R-CNN is

not able to generalize well to parish registers from other

time periods. The results suggest that object detec-

tion networks require a lot more training data to han-

dle heterogeneous documents, as the training database

must be representative of the corpus to process. Typ-

ically, thousands of annotated documents are used to

detect tables and figures in PDF documents [61, 68].

But in the context of massive processing of archival

documents, the task is even more complex: documents

are poorly-structured, unevenly photographed, and fea-

ture various writing styles and degradation. As a re-

sult, object detection networks would require a sub-

stantially large training database, including documents

from various time periods and locations. Collecting and

annotating such a database is not always achievable in

practice. This limitation highlights the interest of us-

ing hybrid methods that learn from few examples, such

as Deep Syntax. As it relies on simpler, recurrent pat-

ters, it learns from few training examples while being

able to generalize well on documents from different time

periods. When trained on the same training database,

Deep Syntax is able to produce 12% more matching

configurations than Mask R-CNN, while reducing the

ZoneMap surface error metric by 30%, in average. Deep

Syntax also outperforms Mask R-CNN when trained on

a database three times smaller. We plan to apply Deep

Syntax to parish registers from all over France, from

1550 to 1790. This project aims to ease the reading of

these registers by genealogists.

Future works will focus on the textual content of

each record. The first step would be to spot recurrent

keywords in parish registers, as it would help to classify

each record into its corresponding type, e.g. marriage,

baptism, burial. But recurrent keywords could also be

integrated to Deep Syntax to make record detection

more reliable. The second step would be to achieve text

recognition, in order to extract information that would

be helpful to genealogists.
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33. Grüning, T., Leifert, G., Strauß, T., Labahn, R.: A two-
stage method for text line detection in historical docu-
ments. CoRR abs/1802.03345 (2018)
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