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ABSTRACT The results presented in this paper deal with the design of a current sensorless delay—
based controller for the closed—loop stabilization of a photovoltaic system under an MPPT scheme using
a boost dc/dc converter. Some applications of such topology are dc microgrids, solar vehicles, or stand-
alone systems, to mention a few. The basis of this control scheme relies on the feedback linearization
control technique coupled with a delay—based low-order controller. In order to study the stability, the
proposed approach uses a geometric point of view which allows the partitioning of the controller parameters
space into regions with similar stability characteristics (same number of unstable characteristic roots). The
most important contribution of the paper relies on providing practical guidelines to tune the gains of the
proposed delay—based controller, ensuring asymptotic stability of the closed—loop system and fulfilling the
requirements for photovoltaic applications. In addition, the proposed approach allows the design a non-
fragile controller with respect to the controller gains. Furthermore, in order to test the effectiveness of the
control scheme presented, experimental results evaluating the closed—loop system performance under set-
point changes and abrupt irradiance disturbances are addressed using a solar array simulator and a battery
bank as load.

INDEX TERMS DC/DC Converter, Delay-Based Controller, Feedback Linearization, MPPT Scheme, PV

Systems.

I. INTRODUCTION

ENEWABLE energies have been one of the main areas

of interest by governments and organizations of almost
all countries, since these type of energy sources are consid-
ered the cleanest for the environment. As it has been stated
in [25], among the alternatives of renewable energies, pho-
tovoltaic (PV) systems has experienced significant growth in
recent years, close to 60% in Europe. In fact, as discussed in
[8], [15], these systems are being integrated to the electrical
grid more commonly than in past years.

Based on the above observations, it becomes evident that
higher precision and safety requirements will be demanded
by the power grid companies as this tendency continues to
expand. In order to provide such features, Power Electronics
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(PE) attends directly the high efficiency power conversion
problem. In PV systems, it is well known that one of the
main solutions to this problem is the application of Maximum
Power Point Tracking (MPPT) techniques [5]. In this sense,
the most important task relies on the proper control scheme
designed to be applied to a PE device.

The main idea behind MPPT techniques consists in find-
ing the Maximum Power Point (MPP) by adjusting the
impedance perceived by the Photovoltaic Module (PVM).
This process consists in two dependent tasks. First, a control
scheme is proposed to regulate the PV voltage at the MPP.
Second, an algorithm to compute the optimal reference must
be designed. In order to solve such control problems, this
work uses a topology based on a boost dc/dc converter. As
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TABLE 1. Comparative Table of Control Techniques for PV MPPT Systems Using a Boost dc/dc Converter

References | Number of Sensors in the Control Scheme Control Strategy Settling Time | Evaluation Under Transient Conditions
[6] 2—(Vpu, ipv) Sliding Mode Control 0.2ms v
[30] 2—(vpu,tir) Adaptive Control 14.3ms X
[21] 3—(Vpv, tpuv,iL) Double Integral Sliding Mode Control 150ms X
[10] 2—(Vpu, ipv) Sliding Mode Control 0.5ms v
[24] 3—(Vpus tpw, iL) Adaptive Passivity Based Control 300ms X
[7] 4—(Vpw, tpv, iL, Vo) Backstepping Sliding Mode Control 50ms v
[1] 4—(Vpo, tpv, i1, Vo) Sliding Mode Control 1ms v

a first approach to the development of a MPPT strategy, our
main contribution is focused on the PV voltage regulation
problem. As discussed in [14], [27], a variety of benefits can
be achieved by using MPPT techniques in conjunction with
closed—loop control strategies, such as efficiency improve-
ment and low frequency disturbances rejection in the load
terminals.

It is worth mentioning that there exist several works that
have considered a similar topology but using different control
methods. Some of these works are summarized in Table 1.
From this table, one can note a variety of control techniques
with different needs for its implementation. One may notice
the following observations: (i) all solutions require at least
two sensors; (ii) moreover, at least a current sensor is needed;
(iii) not all solutions are evaluated under transient conditions.
By contrast, the delay-based control scheme proposed in this
work requires: (i’) only one voltage sensor and consequently,
(i1’) no current sensors are needed; (iii’) also, experimental
results considering abrupt irradiance disturbances are pre-
sented.

Let us emphasize briefly some of the advantages of not
requiring a current measurement. One of the main benefits is
that current sensors are often large and of expensive imple-
mentation in the control system. By contrast, it is worth men-
tioning that current measurements are commonly available
on MPPT systems since such measurements are regularly
required in MPPT algorithms such as P&O. However, it is
also worth to mention that these can also be avoided by using
the fractional method (see, for instance, [16]) and moreover,
it can be also estimated; such is the case in [17], in which
a model-based predictive control principle is used to predict
the states of the PV system.

The method proposed in the sequel is inspired by the
ideas developed by the authors in [9], [20] and [31]. On
one hand, the work made in [9] proposes the use of a buck
dc/dc converter using feedback linearization and a low or-
der controller of PID (Proportional-Integral-Derivative) type.
Among low-order controllers, those of PID-type have shown
a well-known suitable performance coping with parametrical
uncertainties and undesired disturbances, also, to achieve
elimination of steady-state errors and transient response ma-
nipulation (see, for instance, [3], [22]). However, as reported
in [2], [3], one of the main drawbacks of PID controllers
is related to the tuning of the derivative action which may
amplify additive high-frequency noise in measurements.

On the other hand, in order to circumvent the above

mentioned problem, one can notice that the Euler’s approach
to an approximation of the derivative:
R TE)

for small h > 0, suggests to replace the derivative action
by using delays [28]. As seen in the sequel, the feedback
linearized system using a boost dc/dc converter has a relative
degree two, that roughly speaking, consists in a chain of
two integrators. Thus, one of the main contributions of this
paper is to propose a delay—based control scheme in con-
junction with explicit analytical tools that allows designing
non-fragile stabilizing controller for these types of systems.
In the remaining part of the paper, this scheme will be called
Pé (Proportional-Delayed) controller.

In this vein, a more complex behavior is proposed through
the delay—based feedback loop. In contrast with the obtained
second order open—loop transfer function, a delayed system
has an infinite number of characteristic roots. On one hand,
due to the fact that these roots are deeply related to the
behavior of the output of the system, we are dealing with a
more diverse system in terms of dynamical behavior. On the
other hand, this mere fact complicates the overall stability
analysis, since the classical Routh-Hurwitz criterion of linear
systems is no longer applicable. Nevertheless, as stated in
[13], besides the fact that including a delay will induce a
more complex behavior, it is important to point out that the
delay phenomenon can also promote the system’s stability,
where classical PID controllers fail to stabilize the closed-
loop system.

Encouraged by the previous observations, in this work we
propose the use of PId controllers instead of standard of
PID type in order to achieve two technical objectives. First,
as seen in the experimental results section, to decrease the
number of sensors needed for the implementation to only one
voltage sensor. Second, as mentioned in [12] and references
therein, to reduce the processing effort in the application of
such controller in comparison to one of PID type. This is
due to the fact that delaying a signal is numerically simpler
than derivating it, in which some numerical procedure or
algorithm is required. Moreover, we propose the adding of an
integral action by designing a Proportional-Integral-Delayed
(P10) controller to achieve steady state error equal to zero
in its experimental application and to cope with parametric
uncertainties.

The main contributions of this work can be summarized as
follows:
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C1: We present a control scheme for the proper regulation
of the PV voltage of a PVM by using a boost dc/dc
converter and a delay—based controller guaranteeing
internal stability;

C2: A tunning methodology for a PI§ controller is pre-
sented. In fact, this methodology provides necessary
and sufficient conditions for the stabilization of the
closed-loop system;

C3: The fragility problem of the PI§ controller is studied in
terms of the integral and delayed actions;

C4: Experimental tests for this delay—based control scheme
are addressed using a 350 W boost dc/dc prototype
and a solar array simulator. Particularly, we test the
closed-loop scheme under set-point changes and solar
irradiation disturbances.

The experimental test bench used for the validation of this
control scheme consists in a standalone PV system with a
battery bank as load. The main goal is to validate a scenario
with a fixed dc bus, in this case emulated by a battery bank.
This situation is typicaly founded in stand-alone applications,
where a battery bank is used as energy storage when solar
irradiation is not available. Moreover, this can be applied in
the same manner to an MPPT distributed system in which
such voltage output is not fixed. Finally, notice that even
without a constant output voltage only voltage sensors are
required, and still no current sensors are needed.

The remaining paper is organized as follows: Section
IT discusses the modeling of the boost dc/dc converter on
an MPPT system. Section III describes the control scheme
proposed and some important remarks are addressed, such
as the stability of the zero dynamics. Section IV concerns to
the presentation of the necessary results to develop a stability
analysis of such delayed control scheme through a frequency-
based approach (see also the ideas proposed by Neimark
[19], related to D-partition curves). In addition, this section
discusses the fragility problem of the PI§ controller. Section
V shows an illustrative example on how such results can be
applied in order to tune the PI§ controller. Moreover, several
experimental tests using a solar array simulator in order to
verify the performance of the control strategy are proposed.
Finally, Section VI discusses some concluding remarks on
the main results of this work.

Il. PV BOOST DC/DC CONVERTER SYSTEM

This section describes the open-loop system considered
along this work, as well as some assumptions that will
be taken into account in order to perform its closed—loop
stability analysis. The methodology presented in the sequel
follows similar steps to those proposed in [9], but applied to
the analysis of a boost dc/dc converter and using a delay-
based controller.

The topology consisting of the equivalent electrical circuit
of the boost dc/dc power converter, a PV module and a load
element is illustrated in Fig. 1.

From this figure, the average model is described by the
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FIGURE 1. MPPT System considering a Boost dc/dc converter.

following equation:

&= f(z) +g(x)u, y=h(x)=ua, (1
with
—o 2t g 0
F@)=| qoi—fas | gl@):= 7 | @
c¥2 = glo o2
where the state vector is defined by # = [z1, 22, 23] =

[Vpv, i1, vo) 7, Upy Tepresents the input voltage in the termi-
nals of the capacitor C,,, i1, denotes the current through
the inductor L and v, is the output voltage in terminals
of the capacitor C. In addition, i,, denotes the PV current
generated by the PV module, i, is the load current and
u € [0, 1] defines the limited control variable (duty cycle for
the switch Q1).

Remark 1: As mentioned in the introduction, our main goal
in the closed—loop scheme, is the proper regulation of the
PVM voltage vy,. This constant reference defined as vy, is
obtained by an external MPP tracking algorithm as shown
in Fig. 2. It is worthy of remark that the MPP tracking
is by itself a relevant research problem to be considered
(see, for instance, [4], [29]), where important phenomena are
associated, such as partial shading, mismatch conditions (due
to the interconnection of solar cells or modules with different
properties), just to mention a few. In this vein, this work will
focus on the regulation problem.

ipy
Qi- BOOST
\ 4 dc/dc Converter + | Battery
1 Bank
PV Module :Cp‘u — . Vo

| | I
| 1 _| o J__
I | |
I 1 L T
] 1 |
| | A |
| I [ I
1 1 r--'-- - 1
v y "~ "™ Global ; |

MPP : Control - -

Searching (P&0) [ T, ™ Strategic |

FIGURE 2. MPPT System Schematic.

In the remaining part of the paper, we consider the follow-
ing assumptions:
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Assumption 1: The voltage reference v,

piecewise constant signal.

Assumption 2: The current iy, is considered as a very low—
frequency signal.

Assumption 3: The inductance value of the boost converter is
as low as possible, ie., 0 < L < 1.

The ideal voltage reference vy, is located at the maximum
power point v,,,,. We consider Assumption 1 since the
MPP is a slow time-varying signal which mainly changes
by effects of the ambient temperature. In a similar manner,
we consider Assumption 2 since, ideally, i,, must be of
a direct current type and it changes with respect to solar
irradiation disturbances. Finally, as can be seen in the sequel,
Assumption 3 is nothing else than a design consideration
helpful for the control scheme design. Furthermore, as can
be seen from (1), the input capacitor voltage vy, is chosen as
the output of the system. It is worth mentioning that similar
assumptions have been considered in [9] and [31].

» 1s considered as a

lll. GLOBAL CONTROL STRATEGY
This section presents the proposed control scheme for the
regulation problem of the PV system. The procedure consists
in two basic steps. First, a feedback linearization control
scheme is designed to obtain an input-output linear mapping.
Second, we propose a delayed controller in order to stabilize
the resulting dynamics.

By computing the derivatives of the output y = =z, the
following set of equations are derived:

vay = —X2+ Z-pva 3)

d
LCyi = —x1+23—x3u+ L— (ipy)- )

dt

Since the control signal v appears up to the second derivative,
the system has a relative degree p = 2 in an open and not
connected set 3 = {:L' ER3|z3#0 } Thus, by considering
Assumption 2 into (4) we obtain:

1
u:(l—xl)—v, )
T3 I3

which reduces the input-output mapping to:
Lvay =, (6)

where v is considered as an auxiliary control law.

A. PI5 CONTROL STRATEGY

As mentioned in the Introduction, the main focus of this work
concerns the design of a PIj controller for the regulation of
the output of system (6). In this vein, considering the constant
voltage reference v, we propose the following auxiliary
control law as:

t

v (t) =kp(vg, —y(t)) + ks (vp, —ylt — 7)) + k:i/(v;v —y(s)) ds.
0
)

Hence, we can rewrite the system (6) in terms of the output
error e(t) := y(t) — vy,» as follows:
t
LC,,é(t) + ks / e(s)ds + kpe(t) + kse(t —7) =0, (8)
0

where 7 is a fixed delay value. It is worth mentioning
that the form of the system (6) suggests the use of a
proportional-derivative controller to achieve asymptotic sta-
bilization. Nevertheless, as we will detail in Section IV,
the delay-based controller can asymptotically stabilize the
closed-loop system by a proper choice of the controller
parameters (kj, ks, 7). This implies that as ¢ — oo, then,
e(t) — 0 and therefore y — wv;,. In addition, in order
to improve the system’s performance, we have included the
integral term in (7) with the aim to cope with the paramet-
ric uncertainties. The analytical procedure to tuning such a
PI§—controller (ky,, k;, ks, 7) will be explained in detail in
the Section IV.

B. ZERO DYNAMICS
As mentioned previously, the system (1) has a relative degree
p = 2. As it is well known in the literature (see, for instance
[26]), there exists a zero dynamics which has to be properly
analyzed in order to be able to consider the linear mapping
(6). This section covers in detail the characterization of such
dynamics.

First, as mentioned in [26], we need to find a diffeomor-
fism, also described as the change of coordinates:

€1 h(:ﬂ)
z=|e| =T(x) = |(Vh, )|, 9)
n o(x)
with inverse:
x =T '(2). (10)

Next, in order to express the dynamics of the change of
coordinates (9) in the normal form, the function ¢(x) must
satisfy the following condition:

(Ve,g) =0. (a1
Hence, following (11) we get:

dp o
Cr3—— = Lro——. 12
3 B2, To D25 (12)
It is clear to see, that a solution of the partial differential
equation (12) can be easily computed by assuming a solution

p satisfying:

0 0
I o oLwy, ZE — o0, (13)
(9l‘2 8.133
The above consideration leads to the solution:
p(x) = La3 + Caj. (14)
Hence, this diffeomorfism and its inverse are given by:
Z1
z=T(@)= |~c %2+ ip|, (15)
Lz} + Cx}
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€1
7va62 + ipv

V& (1= 1 = in?)

Now, in order to model a battery bank as load, let us
consider i, = y(x3), where y has the property that sgn(vy) =
sgn(zs) for all z3 € R. Let € := [e1, 5], by computing
the time derivative of z and considering (6) and (15), the
dynamics of z can be split into a linear system:

(16)

x=T '(z)=

. 0 1 0 1
€= [O O} €+ [1] —chvv 17
in conjunction with a nonlinear one:
0= —2y(@a()es(n) + 26 (Cpoez —ipe). (18

Finally, in order to characterize the zero dynamics of the
system we assume that as ¢ — oo, then € — [0,0]” and:

1 L.
z3(n) — el 6Z%v~ (19)

Considering the above results, the zero dynamics of the
system is given as:

n = —2y(x3(n))w3(n). (20)

In order to verify the stability of such dynamics, we propose
the classical Lyapunov function:

1
V()= gn’ @1
Computing its time derivative yields:
V = —2y(x3(n))z3(n)n. (22)

Now, according to (14) and (19) we observe that n > 0 and
x3(n) > 0, respectively. Hence, v > 0 implying that V < 0.
This last condition allows concluding the stability of the zero
dynamics.

IV. Pl6 CONTROLLER DESIGN
As mentioned above, the proposed auxiliary control law
consists in the use of a PI§ controller. The most important
contribution of this paper lies in the development of the
necessary tools to implement an appropriate tunning of the
controller parameters (k,,, k;, ks) with a delay value 7.

The proposed approach relies in two steps. First, assuming
k; = 0 we aim to find at least one stability region in the
parameters space (k,, ks) with a fixed delay value 7. Second,
in order to tune the integral gain k;, we take into account a
stabilizing controller pair (k;, k5 ), and we establish a similar
method to find a stability region on the parameters space
(ks, k;). Such a procedure will be explained in detail in the
sequel.

Consider the system (6) together with the proposed control
law (7). Hence, the closed—loop transfer function of the
linearized system is given as:

 (kpt ks )5+ Ky
 LCpys3 + (ky + kse7)s + ki

Gal(s) (23)
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Thus, the closed—loop characteristic equation is given by the
following quasi-polynomial:

A (s3kp, ks, ki, T) = LCpys® + (kp + kse™™)s + k; = 0.
(24)
Notice that by considering only a proportional-delay con-
troller (i.e., kK, = 0) in (23) the characteristic equation
behaves as:

A (s3kp, ksT) = LCyys* + ky + kse ™ = 0. (25)

Remark 2: Tt is well known that the stability of a linear system
free of delay, is directly related to the location of the roots
of its characteristic equation. More precisely, the system is
asymptotically stable, if and only if, all roots of its character-
istic equation lie on the left-half plane of the complex plane.
This argument is also true for delayed linear systems (see, for
instance, [18]). However, unlike the free delay case, in time-
delay systems, it is well known that the quasi-polynomial
(25) (or (24)) has an infinite number of roots that depend
continuously on the parameter (k,, ks, 7) (or (ky, ks, ki, T)).
Hence, the corresponding closed-loop system will be asymp-
totically stable if and only if the rightmost characteristic root
is located in C_.

A. STABILITY CROSSING CURVES
CHARACTERIZATION

Now, with the purpose of developing a stability analysis, we
first derive the stability crossing boundaries. In other words,
we characterize the controller parameters choice (ky, ks, k;)
such that the quasi-polynomial (25) has at least one root on
the imaginary axis (at s = *jw) of the complex plane. In
order to introduce formally such ideas, consider the following
definitions.

Definition 1 (Frequency crossing set): The frequency cross-
ing set 2 € R is the set of all w such that, there exists a
parameters choice (kp, ki, ks, T) (or (kp, ks, T)) such that:

A(]wv kp7ki7k577—) = 0. (26)

Remark 3: Taking the complex conjugate of (26), the follow-
ing is true:

A (—jws kp, ki ks, 7) = A (jw; kp, ki, ks, 7).
Therefore, in the sequel only nonnegative frequencies are
considered, i.e., Q@ C Ry U {0}.

Definition 2 (Stability Crossing Curves): The stability cross-
ing curves 7 is the set of all parameters (ky, k;, ks, 7) €
R? x R, for which there exists at least one w € Ry U {0}
such that A (jw; kp, ki, ks, 7) = 0. For a fixed delay value
7% € Ry, any point k € T is known as a crossing point.
Remark 4: For analysis purpose, in some situations we
consider 7* as a fixed parameter. In such cases 7 will be
composed by the parameters (ky, ki, ks, 7*) € R? x Ry
satisfying Definition 2. Similar definitions hold for A, i.e.,
for the Pd—controller.

Proposition 1: Let 7 € R be a fixed delay value. Then, the
characteristic equation of the closed—loop system A has at

5
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least one pair of roots on the imaginary axis (at s = +jw), if
and only if, the controller gains k(w) := [k, k5], are given
as:

ks =(—1)" ( ky + LOPUW n2>, for w = = (27
T
ky=LCpo?® & ks =0, forwe(( u m) (28)

for all n € Z . Furthermore, it has a single root at the origin
(w = 0) if and only if:

ks = —k, and k, #0. (29)

Proof 1: As a first step let us consider the characteristic
equation (25) at s = jw, yielding to

—LCpyw? + kyp + ks cos(tw) — jkssin(tw) = 0. (30)

Clearly (30) holds whenever n € Z and w = %, or when
ks = 0. Thus, considering such situations in (30) we derive
(27) and (28), respectively. Finally, by setting s = 0 in (30)
and following similar arguments than those presented above,
leads to (29).

Remark 5: 1t is clear to see from the structure of A or A, that
in the absence of the delay term, the closed-loop system will
be oscillatory (if k£, > 0) or even unstable (if k£, < 0). Such
an observation is congruent with the derived experimental
results (see, for instance, the behavior of controller cs, in
section V-B).

Proposition 2: Let 7 € Ry and k), € R be fixed values. The
characteristic equation of the closed—loop system has a pair
of roots on the imaginary axis (s = jw), if and only if the
controller gains k(w) = [ks(w), ki(w)]T, are given as:

- LG -k
ki(w) = -—wtan(tw)(LCpw?® — k%),  (32)

for all w € R such that w # M withn € Z, U {0}.

Furthermore, it has a single root at the origin (w = 0) iff:

ki=0 and ks# —k,. (33)
Proof 2: Consider the characteristic equation (24) with s =
jw7

(kswsin(tw) + k;) + j (ksw cos(Tw) + kpw — LCpyw?) = 0.
(34
It is clear to see that (34) is fulfilled, as long as the following

equation holds:
1) |ks| _ 0
0| [ki| — |LCpow? — kywl|”

(2n+1

[

Thus, assuming that w # , Vn € Z4 U{0} we derive
(31) and (32). In a similar way, by setting s = 0 in A leads
to (33).

Based on the previous results, for a fixed delay value
7* € R, the stability crossing curves for a P§ controller

6

k = [k, ks]"
manifolds:

are characterized by means of the following

kaZ(—)<k+ nQ)}7

TE={k € B |k = [LCpue? 0] we( (=1 2n)}

Lvaﬁ

T ::{k € R?

where n € Z,. The curve characterizing a real simple
crossing is given by:

To={ke€R?|ks+k,=0andk, #0}.

For the PId controller, consider k := [ks, k;]7 and let 7* €
Ry and k; € R be fixed values. Then, the stability crossing
curves are defined as:

~ ~ sgnn)(2n—1)=w n -
b — k)( ) E(( g )27— 7(2 ;—1) >},

for n € Z, U {0}, and the curve characterizing a real simple
crossing is given by

7= {k €R?

T, = {IEGR2|ki:Oandk57A—k;}. (35)
Thus, the stability crossing curves can be described as
T=UT/UTPUT, (36)
n n
T=UT7"UT,, (37)

for the P and PI§ controllers, respectively.

B. CROSSING DIRECTIONS

In order to compute a stability index, which is the number
of roots in the RHP for a given parametrical region, it is of
interest to characterize the behavior of the roots as a function
of the corresponding parameter, when a parameter deviates
from any boundary. The following results are the main tools
to achieve such a task.

Proposition 3: Let T € R, be a fixed delay value. Then, as
k crosses in any direction from left to right of: T n €7y
traversing the point k = [kp, kg] € T, one pair of roots
of the characteristic equation (25) moves from the LHP to
the RHP of the complex plane if k satisfies the following
conditions:

ks > 0 forn even, ks < 0 for n odd. (38)

Furthermore, the crossing of the roots is from the RHP to the
LHP if these inequalities are reversed.

Proof 3: Consider the characteristic equation (25). Now, by
the Implicit Function Theorem (see, for instance, [11]), we
have:

oA dA
ds_ Bods_ Gh g,
dk, o %—f ’ dks %—é ’
where:

0A ,

55 = 2LCpys — Thse ", (40)
O0A OA
— = — = 75 41
ok, = 0ky “h
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Then, by taking s = jnZ, forn € Z, yields

ds]™
dk,
ds

Since, 7 € R, and jTi = We’”, we can conclude:
P

ds
ds
Sgn{%{dké S_ljm}} =

Therefore, the proof follows straightforwardly by simply
observing that (43)-(44) imply (38).

Proposition 4: Let 7 € R, be a fixed delay value. Then,
one pair of roots of the characteristic equation (25) moves
from the LHP to the RHP of the complex plane as k crosses
the curve 77 in the increasing direction of k; if n is odd.
Furthermore, the crossing is from the RHP to the LHP if n is
even.

= Tkg(—l)n —J

_;nm
S=15

ornL
2mLCh )
.

sgn{(—1)"ks}. (43)

sgn{ks}. (44)

Proof 4: Consider the characteristic equation (25). Making
use of the Implicit Function Theorem and following similar
arguments than those presented in the proof of Proposition 3,
one gets:

-1
[j]:] = 7k — 2LC,ppse™. (45)
§

Now, by considering the set of stability crossing curves
TP, s = jwforw € I, := (£(n—1),Zn) and k =
[LCpuw?,0], yields

—1
D(w) =R { [ds} } = 2LCp,wsin(Tw). (46)
dks

The proof ends