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NURBS-based Isogeometric analysis of standard and phase

reduction On-Surface Radiation Condition formulations for acoustic

scattering

Xavier ANTOINE1 and Tahsin KHAJAH2

Abstract

This paper is devoted to the NURBS-based Isogeometric analysis of the On-Surface Radiation
Condition (OSRC) method for solving two- and three-dimensional time-harmonic acoustic
scattering problems. In addition, a Phase Reduction of the OSRC formulation based on a
plane wave ansatz is introduced. This leads to an efficient and accurate implementation of
OSRC methods. Some numerical tests for two- and three-dimensional problems illustrate the
proposed approach.
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4.1 Padé parameters for IGA-OSRC . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Accuracy of IGA-OSRC and IGA-PR-OSRC . . . . . . . . . . . . . . . . . . 12

5 Scattering by a submarine-like shaped scatterer 16
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1. Introduction

The numerical solution of high frequency time-harmonic acoustic, electromagnetic and
elastic wave scattering problems is very challenging in computational science because of its
importance in numerous technological and industrial applications. In the present paper, we
consider the specific case of the exterior Helmholtz equation which models 2D/3D acoustics
and 2D TE/TM electromagnetic waves propagation. Among the most standard accurate
computational approaches, let us mention e.g. the high-order finite difference/finite element
methods with absorbing/artificial boundary conditions or PMLs [6, 16, 17, 18, 19, 20, 23, 27,
36, 39, 45, 50, 51, 52, 69, 73, 74, 76, 80, 82] to get a bounded computational domain and solved
by iterative or hybrid solvers [12, 22, 40, 41, 42, 53], the boundary element approximation of
preconditioned iterative integral equation formulations [9, 24, 28, 64] accelerated by fast eval-
uation algorithms like the Fast Multipole Method [25, 26, 46, 56, 70] or H-matrix algorithms
[21, 47, 57], and the infinite element methods [13]. Concerning the asymptotic numerical ap-
proaches, the On-Surface Radiation Condition (OSRC) method [1, 2, 3, 4, 5, 10, 14, 58, 62, 63]
has proved to be an interesting prediction tool to efficiently compute far field patterns or as
a key ingredient in a more accurate standard numerical method, e.g. as a preconditioner in
integral equations formulations [7, 8, 9] or as transmitting boundary conditions for optimized
Schwarz domain decomposition methods [12, 22, 41, 42]. All these developments are first
formulated at the continuous level, and next a numerical approximation scheme (e.g. finite
element or boundary element method) is applied to discretize the resulting equations. For
scattering problems, it is desirable to go towards accurate numerical discretization schemes
to minimize e.g. the pollution/dispersion effects arising in the numerical approximations,
while also considering a highly precise representation of the scattering surface.

Among the numerical methods that combine high precision representations of both the
geometry and physical solution, Isogeometric analysis (IGA) has proved to be an extremely
powerful tool to compute highly accurate PDE solutions in various fields of interest in engi-
neering. Introduced by Hughes et al. in 2005 [48], the use of Non-Uniform Rational B-Spline
(NURBS) allows to extend the finite element method not only to represent the solution to
the physical problem but also the geometry, which bridges the gap between the finite ele-
ment method and computer aided design (CAD) tools [31, 32, 49, 65, 66, 81]. In particular,
NURBS-based IGA was applied successfully in [54] to high-frequency 2D/3D acoustic scat-
tering problems for the volume formulation with low- and high-order absorbing boundary
conditions. It was shown that IGA can indeed lead to high precision solutions while reduc-
ing notably the pollution/dispersion error that can be met e.g. in finite element methods.
Extensions were later reported e.g. in [15, 34, 35, 37, 55, 79] for various improvements.
IGA approximation was also applied with success in [72] for the numerical approximation of
standard integral equation formulations arising in acoustic scattering, resulting in IGABEM
approximations (see also [29, 38, 67, 68, 77, 83]). IGA with infinite element was also proposed
very recently [78]. These references show again that IGA has a great potentiality to compute
accurate wave fields.
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As previously noticed, since the OSRC method is used as a tool for both volume and
surface acoustic formulations, and that many recent contributions have shown that IGA
is a very interesting discretization technique for both volume and surface formulations, it
is natural to analyze the behavior of IGA when approximating the OSRC formulations,
which is the first goal of the paper, resulting in the IGA-OSRC method. In addition, in
several high frequency methods [11, 43, 44, 59, 60, 61, 75], an ansatz of the solution can
be used to partially cancel the high oscillations arising in the unknown wave field, leading
therefore to the possibility of reducing greatly the number of degrees of freedom involved in
the numerical method, and, as a consequence, of the size of the linear system to resolve. Here,
we propose a Phase Reduction (PR) formulation [11, 43] of the OSRC method, called PR-
OSRC formulation, using the plane wave approximation as ansatz (but other possible ansatz
could be similarly used according to the situation). The PR-OSRC is also next approximated
by IGA, leading therefore to the IGA-PR-OSRC method, that is favorably compared with the
IGA-OSRC scheme. This opens the possibility to directly implement efficient and accurate
OSRC-based formulations that could be used later to improve volume and surface based wave
scattering formulations approximated by IGA.

The plan of the paper is the following. Section 2 presents the OSRC and PR-OSRC
formulations by considering the Padé-type OSRC developed in [10]. The IGA approximation
of both formulations is then explained in Section 3. The simple case of the disk is analyzed
in details in Section 4 to understand the different features of the methods. More numerical
examples are presented in Section 5 in 2D and Section 6 in 3D. We finally end by a conclusion
in Section 7.

2. OSRC and PR-OSRC formulations

2.1. The time-harmonic scattering problem

Let us denote the scatterer by Ω−, defined as a d-dimensional bounded set of Rd with
boundary Γ := ∂Ω−. We introduce the corresponding exterior domain of propagation Ω+ :=
Rd\Ω−. We assume that a Dirichlet or a Neumann boundary condition (sound-soft/sound-
hard boundary condition) is prescribed on Γ by a function g. Our goal is to compute the
time-harmonic wave field u solution to

∆u+ k2u = 0, in Ω+,
u = g or ∂nu|Γ = g on Γ,

lim
||x||→+∞

||x||(d−1)/2(∇u · x

||x||
− iku) = 0,

(1)

where ∆ is the Laplacian operator, ∇ the gradient operator and n is the outwardly directed
unit normal vector to Ω−. The wave number k is related to the wavelength λ by the relation:
λ := 2π/k. Denoting by a · b the hermitian inner-product of two complex-valued vector
fields a and b, then the last equation of system (1) is known as the Sommerfeld’s radiation
condition at infinity [28, 64], ensuring the uniqueness of the solution to the BVP.

2.2. The OSRC method and its standard formulation

The technique of On-Surface Radiation Conditions (OSRC) for scattering problems con-
sists in writing an approximation Λapp of the exact DtN operator Λex defining the exact
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nonlocal relation ∂nu = Λexu over the scattering surface Γ. This results in an approximate
relation ψ = Λappρ, with ψ ≈ ∂nu or/and ρ ≈ u on Γ. One of the fundamental requirements
related to OSRCs is that they are defined explicitly or implicitly by a local operator, i.e. a
surface PDE, or a system of surface PDEs on Γ. In the present paper, we illustrate the full
methodology by considering the Padé-type OSRC introduced in [10] which has been proved
to be accurate, in particular when considering the high-frequency regime corresponding to λ
small compared to the characteristic size of Ω−.

More precisely, the approximation of Λex uses the α-rotated Padé’s approximation of order
N of the square-root OSRC

ψ = ik
√
I +Xρ, (2)

with

X = divΓ(
1

k2
ε

∇Γ·), (3)

leading to the local PDE representation [10]

ψ = ik(c0ρ+
N∑
j=1

cjφj), on Γ, (4)

with

divΓ(
dj
k2
ε

∇Γφj) + φj = divΓ(
1

k2
ε

∇Γρ), on Γ. (5)

In the above equation, ∇Γ designates the surface gradient over Γ of a scalar surface field
while divΓ is the divergence of a surface vector field. The identity operator on Γ is denoted
by I. The complex wavenumber kε is such that: kε := k+ iε, where ε := 0.4k1/3H2/3, with H
the local mean curvature of Γ. For j = 1 · · ·N , the complex-valued Padé coefficients of order
N are given by

c0 = eiα/2RN(e−iα − 1), cj =
e−i

α
2 aj

(1 + bj(e−iα − 1))2 , dj =
e−iαbj

1 + bj(e−iα − 1)
, (6)

with

aj =
2

2N + 1
sin2(

jπ

2N + 1
), bj = cos2

(
jπ

2N + 1

)
, (7)

and the standard real-valued Padé approximation of order N is

RN(z) = 1 +
N∑
j=1

ajz

1 + bjz
. (8)

The resulting rotating Padé approximation is then given by

RN,α(z) = c0 +
N∑
j=1

cjz

1 + djz
. (9)

Let us consider now that we are solving a sound-soft scattering problem. Then, we
set ρ = g = −ui on Γ, where ui is the incident field (usually a plane wave). The OSRC
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method with Padé’s approximation can be decomposed into two steps. First, we determine
the auxiliary surface functions φj, j = 1, ..., N , solutions to the weak variational formulation:
find φj ∈ H1(Γ), such that, ∀vj ∈ H1(Γ),

−
∫

Γ

dj
k2
ε

∇Γφj · ∇ΓvjdΓ +

∫
Γ

φjvjdΓ =

∫
Γ

1

k2
ε

∇Γu
i · ∇ΓvjdΓ. (10)

Next, the normal derivative trace ∂nu|Γ is approximated by ψ based on

ψ = ik(−c0u
i +

N∑
j=1

cjφj), (11)

which completes the Cauchy data required to calculate the scattered field. Indeed, we have
the exact Helmholtz integral representation formula, for x ∈ Ω+,

u(x) =

∫
Γ

[
∂n(y)G(x,y)u(y)−G(x,y)∂n(y)u(y)

]
dΓ(y), (12)

which allows us to determine the exterior wavefield, where G designates the Green’s function
given in 2D by

G(x,y) =
i

4
H

(1)
0 (k||x− y||) (13)

and in 3D through

G(x,y) =
eik||x−y||

4π||x− y||
. (14)

Here, H
(1)
0 stands for the first-kind Hankel function of order zero. From the approximate

OSRC Cauchy data (ρ, ψ) = (−ui, ψ), we evaluate the scattered field by replacing (u, ∂nu|Γ)
by its OSRC approximation in (12). Similarly, we can compute the far-field pattern (Radar
Cross Section (RCS)) in 2D based on the formula (in decibels (dB))

RCS(θ) = 10 log10

(
2π|a0(θ)|2

)
(dB), (15)

where (r, θ) is the polar coordinate system and a0(θ) is the r-independent scattering amplitude
[9, 28, 64] given by

a0(θ) =
e
iπ
4

√
8πik

∫
Γ

(
∂n(y)u(y) + ikθ · n(y)u(y)

)
e−ikθ·ydΓ(y), (16)

where θ = (cos(θ), sin(θ))T is the vector of observation in the polar coordinate system. In
3D, one gets the expression

RCS(θ, ϕ) = 10 log10

(
4π|a0(θ, ϕ)|2

)
(db), (17)

where (r, θ, ϕ) are the spherical coordinates, and a0(θ, ϕ) is the scattering amplitude in the
(θ, ϕ)-direction defined by

a0(θ, ϕ) =
1

4π

∫
Γ

(
∂n(y)u(y) + ikθ · n(y)u(y)

)
e−ikθ·ydΓ(y), (18)
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setting θ := (cos(θ) cos(φ), sin(θ) cos(ϕ), sin(ϕ))T .
In the case of a Neumann boundary condition (sound-hard acoustic problem), then we

have: ψ = ∂nu|Γ = g = −∂nui
|Γ . Therefore, based on the Padé’s OSRC approximation,

we have to solve the following coupled system of PDEs: find ρ ≈ u ∈ H1(Γ) such that,
∀v ∈ H1(Γ),

ikc0

∫
Γ

ρvΓ + ik

N∑
j=1

∫
Γ

cjφjvΓ = −
∫

Γ

∂nu
i
|ΓvdΓ, (19)

together with: for 1 ≤ j ≤ N , find φj ∈ H1(Γ) such that, ∀vj ∈ H1(Γ),∫
Γ

1

k2
ε

∇Γρ · ∇ΓvjdΓ−
∫

Γ

dj
k2
ε

∇Γφj · ∇ΓvjdΓ +

∫
Γ

φjvjdΓ = 0. (20)

The approximate Cauchy data (ρ,−∂nui
|Γ) can then be used to evaluate the scattered field,

and most particularly the RCS. The extension to other kinds of boundary conditions is direct.
Finally, let us remark that an alternative formulation could be derived based on the

following idea. We can formally write a new OSRC equation

√
I +Xψ = ik(I +X)ρ

which corresponds to composing the initial square-root OSRC equation (2) on both sides by√
I +X. Now, for the Neumann problem, ψ is known, and we solve the equation in two

steps, first computing
W =

√
I +Xψ (21)

which is localized thanks to the Padé approximants to get W , and next

ik(I +X)ρ = W, (22)

to obtain ρ. This means that for (21) we can easily adapt the Dirichlet code to get the
approximation of W . Even if the method is interesting since the first step leads to solving
uncoupled equations, this formulation usually provides a less accurate numerical solution and
is not considered in the paper.

2.3. Phase Reduction OSRC formulation (PR-OSRC)

We now propose to develop a Phase Reduction OSRC (called PR-OSRC) formulation
based on a plane wave approximation approach.

Let us first fix the Dirichlet problem for a plane wave illuminating the obstacle, i.e.
ui(x) := eik

i·x. We set the trace u as: u(x) := −eiki·x over Γ, where ki = kθi and θi is the
incidence vector. More generally, we have

∇Γ(A(x)eik
i·x) = ∇(A(x)eik

i·x)− n(n · ∇(A(x)eik
i·x))

= ((∇A+ ikiA)− n(n · (∇A+ ikiA)))eik
i·x

= (∇ΓA+ i(ki − n(n · ki))A)eik
i·x

= (∇ΓA+ iki
ΓA)eik

i·x,
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where the tangential incident wavenumber ki
Γ is defined by: ki

Γ := ki − (n · ki)n. Therefore,
writing similar relations for both φj = Aje

iki·x and vj := Bje
−iki·x, one gets, for j = 1, ..., N ,

the PR-OSRC formulation of system (10)∫
Γ

−dj
k2
ε

(∇ΓAj + iki
ΓAj) · (∇ΓBj − iki

ΓBj) + AjBjdΓ

=

∫
Γ

1

k2
ε

iki
Γ · (∇ΓBj − iki

ΓBj)dΓ,
(23)

since ∇Γu
i = iki

Γe
iki·x. The functions Aj and Bj are supposed to be some complex-valued

functions with low frequency oscillations, similarly to the PR method developed for volume
formulations in [11, 43]. Expanding the above formulation, we obtain∫

Γ

−dj
k2
ε

∇ΓAj · ∇ΓBj − i
dj
k2
ε

(Aj(k
i
Γ · ∇ΓBj)− (ki

Γ · ∇ΓAj)Bj)

+(1− dj
k2
ε

||ki
Γ||2)AjBjdΓ =

∫
Γ

1

k2
ε

iki
Γ · (∇ΓBj − iBjk

i
Γ)dΓ.

(24)

Then, in a second step, the normal derivative trace is approximated thanks to the slowly
varying amplitude Ψ

∂nu|Γ ≈ ψ := Ψ(x)eik
i·x

and

Ψ(x) = ik(−c0 +
N∑
j=1

cjAj(x)). (25)

Once these quantities are obtained, the Cauchy data are approximated by (u|Γ, ∂nu|Γ) ≈
(−1,Ψ)eik

i·x. In the present paper, for the RCS computations, we directly inject the Cauchy
data evaluated against the plane wave function in (16) or (18), leading for example to the
2D PR-OSRC approximation of a0

a0(θ) ≈ aPR
0 (θ) =

1√
8πk

∫
Γ

(Ψ(y) + ikθ · n(y)) eik(θi−θ)·ydΓ(y). (26)

Specific methods could also be used, even within the framework of IGA, by considering
quadrature rules for approximating highly oscillatory functions or techniques as the ones
related to high frequency integral equations [33]. However, we only apply a direct quadrature
evaluation in the paper.

Finally, the PR-OSRC method can be extended to the Neumann problem based on the
previous formulation (19)-(20). More precisely, setting ρ(x) = U(x)eik

i·x and with ∂nu|Γ =

−i(ki · n)eik
i·x, by using the same notations as above, one gets from (19)

ikc0

∫
Γ

UBdΓ + ik
N∑
j=1

∫
Γ

cjAjBdΓ =

∫
Γ

iki · nBdΓ, (27)
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and, for (20), we obtain∫
Γ

1

k2
ε

∇ΓU · ∇ΓBj +
i

k2
ε

(U(ki
Γ · ∇ΓBj)− (ki

Γ · ∇ΓU)Bj) +
||ki

Γ||2

k2
ε

UBjdΓ

−
∫

Γ

dj
k2
ε

∇ΓAj · ∇ΓBj +
idj
k2
ε

(Aj(k
i
Γ · ∇ΓBj)− (ki

Γ · ∇ΓAj)Bj)

+
dj
k2
ε

||ki
Γ||2AjBjdΓ +

∫
Γ

AjBjdΓ = 0.

(28)

3. IGA approximation of OSRC formulations

3.1. A brief overview of IGA

In [10], the OSRC formulation is approximated by a linear finite element method. Since
the OSRC leads to solving systems of surface PDEs, it appears that developing numerical
approximation schemes involving directly the geometry description would perfectly fit. In ad-
dition, since we are solving (2D) Helmholtz-type surface problems, it is known that pollution
effects could arise in a finite element method, even in 2D.

Here, we prospect the possibility of using directly high-order representations of the sur-
face fields and the geometry considering Isogeometric Finite Element Methods (IGA). It was
originally developed to directly adopt the computational domain model generated by Com-
puter Aided Design (CAD) in conventional Finite Element Analysis [31, 32, 49, 65, 66, 81].
To achieve this, the basis functions used to describe the domain geometry were considered
to estimate the solution. More specifically, B-Splines and Non Uniform Rational B-Splines
(NURBS) were used to describe both the physical domain and the solution in IGA. It was
shown that IGA can yield higher accuracy per degree of freedom when compared to conven-
tional FEM. Exact geometry based on both polynomials and conic sections such as circles,
spheres, and ellipsoids can be represented even using very coarse meshes. Therefore, this
exact geometry representation combined with convenient high order analysis makes IGA a
promising tool for the analysis of wave propagation problems. For example, the effects of
adopting B-Splines on the pollution error was studied for 2D/3D acoustics. In particular, it
was observed [54] that the pollution error can be strongly limited by maintaining the dis-
cretization density fixed for basis orders p ≥ 3, even at very high frequencies. IGA also
benefits from attractive refinement possibilities such as k-refinement which has no equiva-
lent in conventional FEM. Furthermore, r-refinement for IGA was developed to increase the
density of control points where curvature based monitor functions are maximum [84].

In IGA, the parametric definition of the B-Splines/NURBS basis function is directly
adopted to discretize a 3D curve. A knot vector is defined as a set of non-decreasing para-
metric coordinates ξ = {ξ1, ξ2, ..., ξ(n+p+1)}, ξi ≤ ξi+1, where ξi is the ith knot and i is the knot
index, i = 1, 2, · · · , n + p + 1, where p is the polynomial order and n is the number of basis
functions. The mapping of a non-zero knot span in parametric space to physical space is
defined as an element. When a knot ξi is repeated k times in the knot vector, its multiplicity
is ki and the B-Spline exhibit Cp−k continuity in the corresponding physical point. Usually,
open knot vectors are used in IGA where the first and the last knot values appear p + 1
times, in other words, first and last knots have k = p + 1 multiplicity which results in C0

continuity at the surface patch boundaries or curve end points. This also provides Krönecker
delta property at the end points which does not hold for the interior points.
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The Cox-de Boor recursion formula is used to define a B-Spline recursively by starting
with the zeroth order (p = 0) basis function:

for p = 0, Np
i (ξ) =

{
1 ξi ≤ ξ ≤ ξi+1,

0 otherwise,
(29)

for p = 1, 2, 3, · · · Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ), (30)

where 0/0 is defined to be zero. The first-order B-Spline functions are identical to their
Lagrangian (FEM) counterparts. B-Splines also provide the partition of unity property,∑n

i=0Ni,p(ξ) = 1. The number of required shape functions for order p analysis is p + 1;
Ni,p(ξ) 6= 0 only when ξ ∈ [ξi, ξi+p+1]. We define

Rp
i (ξ) =

Np
i (ξ)wi
W (ξ)

=
Np
i (ξ)wi∑n

i=1N
p
i (ξ)wi

, (31)

where {Np
i }ni=1 is a set of B-Splines basis functions and {wi}ni=1 is a set of positive NURBS

weights. For equal weights, NURBS basis functions reduce to their B-Splines counterparts,
Rp
i = Np

i , and the corresponding curve becomes a non-rational polynomial again. Hence,
B-Splines are a subset of NURBS. Multivariate NURBS basis functions are generated as the
tensor product of univariate basis:

Rp,q
i,j (ξ, η) =

Np
i (ξ)Mj,q(η)wi,j∑n

i=1

∑m
j=1N

p
i (ξ)Mj,q(η)wi,j

, (32)

where Np
i (ξ), and M q

j (η) are B-Splines basis functions of order p, and q respectively. NURBS
curves and surfaces are defined as a linear combination of these basis functions and the
corresponding control points denoted with B, leading to

C(ξ) =
n∑
i=1

Rp
i (ξ)Bi, S(ξ, η) =

n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Bi,j. (33)

For completeness, we recommend the review papers [65, 66] for the reader interested in IGA.

3.2. Computation of geometrical features in IGA for OSRC

Benefiting from smoothness of the functions in IGA, we can readily calculate the mean
curvature H (and possibly other geometrical quantities) at each integration point on the
surface of the scatterer which is required to calculate the complex wave number kε = k + iε
involved in the OSRC definition, with ε := 0.4k1/3H2/3. It is known that

H =
||C,ξ ×C,ξξ ||
||C,ξ ||3

=
x,ξ y,ξξ −y,ξ x,ξξ

(x,2ξ +y,2ξ )3/2
, (34)

where x,ξ and y,ξ are the first-order derivatives of the physical map with respect to ξ, while
x,ξξ and y,ξξ are the second-order derivatives. The curvature at a physical point on the surface
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(x, y) can be characterized through principal curvatures and curvature directions which can
be obtained respectively as the eigenvalues and eigenvectors of the following matrix:

A = −TcT
−1
m , (35)

where Tc and Tm are the metric and curvature tensors of the surface, respectively [71], given
by

Tm =

[
E F
F G

]
=

[
C,ξ ·C,ξ C,ξ ·C,η
C,η ·C,ξ C,η ·C,η

]
(36)

and

Tc =

[
e f
f g

]
=

[
n ·C,ξξ n ·C,ξη
n ·C,ηξ n ·C,ηη

]
, (37)

where n is the unit normal vector to the surface

n =
C,ξ ×C,η
||C,ξ ×C,η ||

. (38)

Then, the principal curvatures H1,2 (and H = (H1 +H2)/2) are calculated by

H1,2 =
−B ±

√
B2 − 4AC

2A
, (39)

where
A = det(Tm), B = 2Ff −Ge− Eg, C = det(Tc). (40)

The calculated curvature can be the basis of r-refinement which reduces the error by moving
the degrees of freedom [71, 84].

3.3. IGA approximation of the OSRC and PR-OSRC formulations

When compared to a conventional finite element analysis, IGA uses basis functions char-
acterized by a larger support but providing an improved accuracy, for a given approximation
order p. In practice, most particularly here in 2D for the OSRC method, this leads to a
moderate higher computational cost in the matrix assembly process than the finite element
method but for a much better precision. In the following, we denote by nλ the number
of degrees of freedom per wavelength λ involved in the IGA approximation process. The
total number of functions overlapping the support of a particular shape function is 2p + 1,
which is similar to that of the conventional finite element method, resulting in the same
matrix bandwidth. For 3D acoustics, since we are solving two-dimensional complex-valued
Helmholtz-type problems for the OSRC and PR-OSRC formulations with IGA, all the result-
ing sparse linear systems can be efficiently solved by a LU factorization at a reasonable cost,
depending on the matrix size. During the numerical examples reported in the next sections,
we show that the PR-OSRC formulation combined with IGA leads to small size sparse linear
systems to resolve, while maintaining the accuracy of the OSRC approach.
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4. Numerical example: two-dimensional scattering by a disk

4.1. Padé parameters for IGA-OSRC

Let us start by considering the scattering problem by the sound-soft circular cylinder Cr0
of radius r0 (Dirichlet boundary condition), centered at the origin. Then, in this case, for an
incident plane wave with zero incidence, we can analytically compute the reference normal
derivative trace over the surface Γ = Cr0 as

∂ru
ex(r0, θ) = −k

+∞∑
n=0

εni
n Jn(kr0)

H
(1)
n (kr0)

H(1)
′

n (kr0) cos(nθ), (41)

where εn is the Neumann function, which is equal to 1 for n = 0 and 2 otherwise, and
θ ∈ [0; 2π]. The Bessel function of order n is Jn while H

(1)
n denotes the first-kind n-th order

Hankel function. When using the Padé approximation RN,α(z) of order N and angle α, given
by (9), we have the following form of the analytical solution

ψPade(r0, θ) = −ik
∞∑
n=0

εni
nRN,α(− n2

k2
ε r

2
0

)Jn(kr0) cos(nθ), (42)

with ε := 0.4k1/3r
−2/3
0 . Similarly, for the Neumann boundary condition (sound-hard scat-

terer), we obtain the analytical form of the OSRC solution for the Padé approximation

ρPade(r0, θ) = −i
∞∑
n=0

εni
n 1

RN,α(− n2

k2
ε r

2
0
)
J ′n(kr0) cos(nθ). (43)

Let us start by analyzing the optimal values for the Padé order N and rotating angle
α for minimizing the relative L2(Γ)-error for the IGA solution, with order p and density of
degrees of freedom per wavelength nλ, for a given wave number k. The objective function
of this optimization problem is defined as the relative error between the numerical IGA
approximation of the Padé OSRC-based normal derivative trace ψ in (4) and the exact
reference normal derivative trace ∂ru

ex given by (41), i.e.

εk,p(N,α) =
||ψ − ∂ruex||0,Γ
||∂ruex||0,Γ

, (44)

where ||f ||0,Γ is the L2(Γ)-norm of a function f defined over Γ. The minimum of the objective
function εk,p(N,α) is computed by the Differential Evolution algorithm which is known for
its speed and ability to find the global solution. Let us remark here that the imposition
of the non-homogeneous Dirichlet boundary condition is not straightforward in IGA due to
lack of Krönecker delta property. More precisely, when using an open knot vector only the
end points satisfy the Krönecker delta property and therefore the value of the boundary
condition at these points can be directly applied by setting the control variable equal to the
prescribed value. However, this direct imposition is not possible for intermediate control
variables where additional treatments become necessary similarly to those common in mesh-
less methods. Usual methods include e.g. Transformation method, Nitsche’s method, least
squares minimization approach, Lagrange multiplier, penalty and the augmented Lagrangian
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methods. In this study, we force the non-homogeneous boundary condition by using the
L2-projection method as described in [30]. The optimal values of the design variables found
by the approach (for an error of about 10−2.2) are listed in Table 1 according to k, for nλ = 5
(and p = 5). In addition, the relative error εk,p(N,α) (in log10 scale) with Padé order N and
rotation angle α for k = 50, and p = 1, · · · , 4 (and nλ = 5) are plotted in Fig. 1. It was
observed that higher Padé orders N are required for higher frequencies and/or discretization
densities nλ and that, interestingly, the optimum Padé angles α found are decreasing with
increased frequency. We also see that the optimal values do not depend on p, which is very
interesting in practice for IGA. In [10], it was shown that θ = π/4 is a relatively fair choice
whatever is N . Figures 1 show that this indeed seems to be again a reasonable global choice
in the context of IGA-OSRC, most particularly when p ≥ 2.

k 10 20 30 40 50 60 100 200 500

N 1 2 2 2 2 3 3 4 5
α 0.677 0.7903 0.6919 0.6148 0.5353 0.7521 0.6117 0.6134 0.398

Table 1: Optimal values of the complex Padé approximation parameters (N,α) vs k (nλ = 5).

4.2. Accuracy of IGA-OSRC and IGA-PR-OSRC

We consider now the IGA-OSRC and IGA-PR-OSRC approximations for comparison.
Since IGA-PR-OSRC is another formulation of IGA-OSRC involving oscillating functions,
we consider the same Padé parameters for both formulations. To illustrate this claim, we
report on Figure 2 the behavior of the error thanks to nλ and N for both formulations, and
k = 40, p = 2 and α = 0.62. We can indeed see that the error is similar according to N (but
of course for different values of nλ).

The IGA-OSRC numerical results on the normal derivative trace and RCS for the sound-
soft acoustic problem for k = 40, p = 2, N = 2, α = 0.62 and nλ = 5 (corresponding to
2 × 197 Degrees of Freedom (DOF)) are reported on Fig. 3. They are compared with the
exact reference solution given by expression (41), leading to an error εk,p(N,α) = 4.3× 10−3.
We can decrease a little bit the number of DOF (nDOF) for nλ = 4 by increasing the order p
of IGA (see Fig. 4). Then one gets nDOF= 2× 157 for p = 5 and εk,p(N,α) = 4.5× 10−3. If
we keep on decreasing nλ from 4 to 3, we start to observe some errors in the computation of
the normal derivative trace as seen on Figure 5 for nDOF= 2× 117 in IGA-OSRC increasing
then the error to εk,p(N,α) = 2.5 × 10−2. However, the RCS is still accurate on Figure 5,
which is probably due to the fact that averaging arises in the computation of the integral
definition of the scattering amplitude (see Eq. (16)). This example shows that increasing the
order p in IGA-OSRC improves the accuracy and allows to have less DOFs. Nevertheless, it
is limited by nλ to correctly represent the oscillations of the surface field.

When using IGA-PR-OSRC, the reduction in nDOF is clearly improved. The IGA-PR-
OSRC results for k = 40, p = 2 and nλ = 0.8 (corresponding to 2 × 29 DOFs) are reported
in Fig. 6a. We observe that both the IGA-OSRC (for nλ = 5) and IGA-PR-OSRC (with
nλ = 0.8) formulations lead to solutions that superpose the plot of the exact reference
solution, with a similar relative error of 4.3 × 10−3. In addition, when increasing p, we can
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(b) IGA basis order p = 2
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(c) IGA basis order p = 3
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(d) IGA basis order p = 4

Figure 1: Dirichlet problem, IGA-OSRC: relative error εk,p(N,α) (in log10-scale) with Padé order N and
rotation angle α for k = 50, and p = 1, · · · , 4 in IGA.
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(b) IGA-PR-OSRC

Figure 2: Dirichlet problem: evolution of relative error εk,p(N,nλ) (in log10-scale) with Padé order N and
discretization density nλ for k = 40, and p = 2, and α = 0.62 in (a) IGA-OSRC and (b) IGA-PR-OSRC.

decrease nλ to 0.6 for nDOF= 2 × 21, which is very low (see Fig. 6b). We observe some
small amplitude errors in the normal derivative trace (εk,p(N,α) = 4.9 × 10−3) but obtain
an accurate RCS. These comments extend to other wave numbers k, showing that IGA-PR-
OSRC allows to clearly go to only a few DOFs for solving the OSRC formulation, reducing
then the computational costs and memory requirements.
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Figure 3: Dirichlet problem: RCS (dB) and amplitude of the normal derivative trace calculated using IGA-
OSRC for k = 40, p = 2, nλ = 5 and nDOF = 2× 197.

To further illustrate this claim for the Dirichlet problem, we report on Figures 7 the
convergence curves for the error

εPade
k,p,nλ

(N,α) =
||ψ − ψPade||0,Γ
||ψPade||0,Γ

(45)

14



0 0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

R
C

S
 a

n
d
 t

h
e
 m

o
d
u
lu

s
 o

f 
th

e

n
o
rm

a
l 

d
e
ri

v
a
ti

v
e
 t

ra
c
e

Figure 4: Dirichlet problem: RCS (dB) and amplitude of the normal derivative trace calculated using IGA-
OSRC for k = 40, p = 5, nλ = 4 and nDOF = 2× 157.
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Figure 5: Dirichlet problem: RCS (dB) and amplitude of the normal derivative trace calculated using IGA-
OSRC for k = 40, p = 5, nλ = 3 and nDOF = 2× 117.
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(a) p = 2, nλ = 0.8 and nDOF = 2× 29
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(b) p = 5, nλ = 0.6 and nDOF = 2× 21

Figure 6: Dirichlet problem (k = 40) and IGA-PR-OSRC: RCS (dB) and amplitude of the normal derivative
trace.

vs the discretization density nλ (and nDOF), for IGA-OSRC and IGA-PR-OSRC and various
orders p. We fix N = 2 and α = 0.54, for k = 50. We directly see that increasing the IGA
order p increases the accuracy and leads to smaller nDOF. In addition, the IGA-PR-OSRC
requires less DOF for a given accuracy considering a small value of nλ. IGA-PR-OSRC is
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therefore considered as a suitable formulation for the OSRC solution with Dirichlet boundary
condition.
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Figure 7: Dirichlet problem (k = 50): evolution of the relative error εPadek,p,nλ
(N,α) vs. nλ(nDOF) for various

values of p.

Now, let us fix the Neumann problem (sound-hard scattering). We define the error
εk,p(N,α) by

εk,p(N,α) =
||ρ− uex||0,Γ
||uex||0,Γ

, (46)

with

uex(r0, θ) = −
+∞∑
n=0

εni
n J ′n(kr0)

H ′n
(1)(kr0)

H(1)
n (kr0) cos(nθ). (47)

We also introduce the error

εPade
k,p,nλ

(N,α) =
||ρ− ρPade||0,Γ
||ρPade||0,Γ

.

The trace and RCS for the IGA-PR-OSRC solution of the sound-hard acoustic problem for
k = 40, p = 5, N = 3, α = 0.62 and nλ = 3 (corresponding to 3 × 117 DOF) are reported
on Fig. 8. They are compared with the exact reference solution given by expression (47),
leading to an error εk,p(N,α) = 1.37 × 10−2. The IGA-PR-OSRC is always more accurate
than IGA-OSRC for a given density of degrees of freedom, but the difference is more moderate
than for the Dirichlet problem. This can be understood from the plane wave ansatz which
is probably more adapted to the Dirichlet than Neumann problem. Other choices of ansatz
can be considered, even for more complicate objects, since the IGA-PR-OSRC approach
can be adapted to other phase functions. To illustrate the behavior of IGA-PR-OSRC vs
IGA-OSRC, we plot the convergence curves εPade

k,p,nλ
(N,α) for various values of the order p by

refining. We indeed see that IGA-PR-OSRC remains better than IGA-OSRC. Here, we fixed
N = 2 and α = 0.54.

5. Scattering by a submarine-like shaped scatterer

Now, let us consider a more complicate scatterer which models a simplified submarine-
like obstacle. To analyze the IGA-PR-OSRC approach, we decompose the analysis into three
intermediate geometrical cases: i) the main convex part of the toy submarine (see Fig. 10a),
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Figure 8: Neumann problem: numerical solution using IGA-PR-OSRC for k = 40, p = 5, nλ = 3, εk,p(N,α) =
1.37× 10−2.
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Figure 9: Neumann problem (k = 50): evolution of the relative error εPadek,p,nλ
(N,α) vs. nλ(nDOF) for various

values of p.

ii) the convex part plus the stabilizer fins (see Figure 11a), and then iii) the full scatterer
by adding a tower (Figure 12a). We consider an incident plane wave with k = 30 and
incidence θi := (cos(θi), sin(θi)), setting θi = 5π/6. In all what follows, the reference solution
is accurately computed thanks to the IGA-FEABC method developed in [55], which consists
in a volume variational formulation with high-order ABC and IGA discretization.

Let us start with the convex part of the submarine (Fig. 10a). The reference solution in
the domain is plotted on Figure 10b. For IGA-PR-OSRC, we consider N = 2 Padé functions
for the rotating angle α = 0.69. IGA is based on a mesh involving 74 points. Let us remark
that this is needed to describe correctly the geometry of the submarine. The IGA-PR-OSRC
solution (RCS and normal derivative trace) is computed by using basis order p = 2 and
only nDOF = 2 × 74 degrees of freedom. We report the RCS on Figure 10c for both IGA-
PR-OSRC and IGA-FEABC. We see that IGA-PR-OSRC leads to an accurate solution at
low computational cost. For completeness, we also plot on Figure 10d the amplitude of the
approximate normal derivative traces with respect to the curvilinear abscissa s over Γ (s
starts at (1, 0) and is counterclockwise directed). We again see that the surface field is well
reproduced even if a discrepancy arises at point (1, 0).

We now modify the shape by adding the stabilizer fins as shown in Fig. 11a and obtain
the reference solution again by using IGA-FEABC as shown in Fig. 11b. IGA-PR-OSRC
is based on the basis of order p = 2, for N = 2 Padé functions and α = 0.69, leading
to nDOF = 2 × 106. The corresponding RCS are plotted for IGA-PR-OSRC and IGA-
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Figure 10: Scattering by the convex part of a simplified sound-soft submarine. The plane wave is characterized
by k = 30 and θi = 5π/6. IGA-PR-OSRC uses basis functions of order p = 2 and considers nDOF = 2× 74.

FEABC in Fig. 11c. We observe again a good agreement between the solutions, even if the
OSRC approach deteriorates due to the presence of a locally concave part. Nevertheless,
this difficulty is inherent to the OSRC and not the numerical scheme itself. Future works
will address this problem based on computational procedures. Finally, we report on Figure
11d the magnitude of the approximate normal derivatives and see that the field is correctly
reproduced even if some errors are locally visible near the stabilizer.

To end this analysis for the sound-soft case, we consider the full submarine-like shaped
obstacle (see Fig. 12a). The total field is represented in Fig. 12b. We observe a more
complicate pattern since waves can be multiply scattered, most particularly by the tower. On
Figure 12c, we see that this clearly impacts the accuracy of the far-field pattern computation
by IGA-PR-OSRC, where N = 2, α = 0.69, p = 5, and nDOF = 2×78. This is indeed related
to the local error loss on the surface fields based on the OSRC, as seen on Figure 12d. This
difficulty needs to be solved to lead to fully useful numerical methods related to the OSRC
approximation. In addition, increasing p allows for this situation to also maintain a very low
number of unknowns to nDOF = 2× 78. Let us finally remark that using IGA-OSRC would
also require much more points than IGA-PR-OSRC.

Let us now focus on the sound-hard toy submarine. First, we solve with IGA-PR-OSRC
the scattering problem by the convex part of the submarine. As noticed for the circular
cylinder case, we need a finer discretization because the plane wave ansatz is probably less
adapted to the Neumann problem and should be improved. We report on Figure 13 both the
RCS (left) and the amplitude of the approximate trace (right). To this end, we use p = 2
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Figure 11: Adding the stabilizer to the convex part of the sound-soft submarine. The plane wave is char-
acterized by k = 30 and θi = 5π/6. IGA-PR-OSRC uses basis functions of order p = 2 and considers
nDOF = 2× 106.

for IGA, leading to nDOF = 2× 272, since again N = 2 and α = 0.69 are used for the Padé
approximation. We can observe that the two quantities are relatively accurate compared with
the IGA-FEABC reference solution. Let us also remark that nDOF could also be smaller
by keeping a relatively correct solution, in particular when the OSRC quality deteriorates
as seen on the two next examples. We report on Figure 14 the same situation but with the
stabilizer fins. Here, we use p = 2 leading to nDOF = 2×114, for the same Padé parameters.
We see that we already capture the OSRC accuracy even at this discretization level. To end,
we consider the full toy submarine on Figure 15. IGA is based on the basis functions of order
p = 2, then leading to nDOF = 2 × 83, with the same Padé parameters. Even if clearly
some accuracy is lost because of the limits of the OSRC for non convex obstacles, we obtain
a good approximation of the RCS at a very low computational cost.

6. Three-dimensional scattering

For completeness, we end by reporting a few computations for three-dimensional prob-
lems. Let us start with the scattering problem by the unit sphere. A multi-patch model
was developed for both IGA and IGA-PR-OSRC as shown in Figures 16a-16b. The dimen-
sion reduction offered by IGA-PR-OSRC is expected to considerably reduce the difficulties
encountered when meshing the space around the scatterer in FEM and IGA, avoiding then
the solution of a large size linear system. For IGA-FEABC, we use the method introduced
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(a) Submarine-like scatterer (b) Total field with IGA-FEABC
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Figure 12: Full sound-soft submarine-like shaped scatterer. The plane wave is characterized by k = 30 and
θi = 5π/6. IGA-PR-OSRC uses basis functions of order p = 5 and considers nDOF = 2× 78.

(a) RCS (dB) (b) Amplitude of the trace

Figure 13: Scattering by the convex part of a simplified sound-hard submarine. The plane wave is char-
acterized by k = 30 and θi = 5π/6. IGA-PR-OSRC uses basis functions of order p = 2 and considers
nDOF = 2× 272.

in [37] based on the Wilcox’s far-field expansion which serves as a reference computational
method for general shapes. The ABC is set on an outer spherical surface of radius 2. For the
spherical case, we can alternatively use the exact Mie series expansion (”Exact solution”) for
comparison.

We first consider the scattering of a plane wave with vector wavenumber ki = k(1, 0, 0)T ,
for k = 20 and k = 40, by the sound-soft sphere. The modulus of the normal derivative trace
over the unit sphere computed by using IGA-PR-OSRC is shown in Fig. 17a for k = 40
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(a) RCS (dB) (b) Amplitude of the trace

Figure 14: Adding the stabilizer to the convex part of the sound-hard submarine. The plane wave is char-
acterized by k = 30 and θi = 5π/6. IGA-PR-OSRC uses basis functions of order p = 2 and considers
nDOF = 2× 114.

(a) RCS (dB) (b) Amplitude of the trace

Figure 15: Full sound-hard submarine-like shaped scatterer. The plane wave is characterized by k = 30 and
θi = 5π/6. IGA-PR-OSRC uses basis functions of order p = 5 and considers nDOF = 2× 83.

(a) IGA-PR-OSRC - multi-patch sphere model
(b) IGA-FEMABC - multi-patch mesh between the two con-
centric spheres

Figure 16: (a): Only the scatterer surface is meshed in IGA-PR-OSRC reducing the space dimension by
one, leading to an important mesh reduction and low computational times. (b): IGA-FEABC needs the 3D
meshing between the two concentric spheres.

and compared with the accurate solution based on the combination of IGA and Wilcox’s
expansion ABC (Fig. 17b). The IGA-PR-OSRC results were found with basis order p = 2
and only nDOF = 2×296 degrees of freedom for k = 20 and nDOF = 2×1016 for k = 40. We
fixed the rotation angle for the OSRC to α = 0.69. The accuracy of the results increases with
the frequency k. The RCS = RCS(θ, 0) in the plane (x1, x2, 0) computed by IGA-PR-OSRC
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for k = 20 and k = 40 are shown in Figures 18a and 18b. For comparison, we also report the
RCS for the exact solution related to the Mie series expansion.

(a) IGA-PR-OSRC (b) IGA-FEABC

Figure 17: Amplitude of the normal derivative trace over the sphere based on IGA-PR-OSRC (a) and IGA-
FEABC (b).
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(a) RCS (dB): IGA-PR-OSRC - k = 20, nDOF = 2× 296.
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(b) RCS (dB): IGA-PR-OSRC - k = 40, nDOF = 2× 1016

Figure 18: RCS = RCS(θ, 0) (dB) calculated for the sound-soft sphere by IGA-PR-OSRC and compared with
exact solution for (a): k = 20 and (b): k = 40. The numerical results were obtained for the basis order p = 2
with nDOF = 2× 296 and nDOF = 2× 1016, respectively.

We next compare the RCS calculated by using IGA-PR-OSRC for the sound-hard sphere
with the exact solution in Fig. 19. These results were obtained by considering the basis order
p = 2, and nDOF = 2× 1016 degrees of freedom for both k = 20 and k = 40. The accuracy
improves with the frequency without increasing the basis order p or the number of degrees
of freedom nDOF. In terms of computational time, the resulting IGA-PR-OSRC method is
extremely efficient and requires a very low memory storage.

To end, we consider the scattering problem by a sound-hard torpedo-shaped object (see
Fig. 20a The plane wave is given by the parameter values k = 20 and θi = 145◦. We
report on Fig. 20b the amplitude of the surface field based on IGA-FEABC. Here, the basis
order is p = 5 for nDOF = 165, 480 to obtain the reference solution. We plot on Figures
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Figure 19: RCS for the sound-hard unit sphere based on IGA-PR-OSRC and comparison with the exact
solution for k = 20 and k = 40. The numerical results were computed for the basis order p = 2 with
nDOF = 2× 1016.

20c and 20d the modulus of the trace computed by IGA-PR-OSRC for nDOF = 2 × 200
and nDOF = 2 × 12728, respectively. We observe a relatively good agreement, even for a
very small number of degrees of freedom. Some accuracy is lost but this is mainly due to a
lack of modelling of the OSRC operator in the case of the presence of a non convex part in
the scatterer. Getting such a solution is however obtained extremely fast with low memory
requirement. Increasing the accuracy for non convex obstacles will be studied in a future
work. Finally, we report on Fig. 21a the related RCS in the plane {x2 = 0}, i.e. in the slice
along the longitudinal axis. We observe that a good estimation of the RCS is found using
only nDOF = 2× 200 degrees of freedom. The comparison is made with the reference RCS
computed with IGA-FEABC. We note that higher accuracy is expected for larger frequencies.
We finally increase the number of degrees of freedom to nDOF = 2 × 12728 and report the
RCS on Figure 21b. We remark then that the improvement of the RCS calculation is not
significant.

7. Conclusion

In this paper, we developed the NURBS-based IGA of both standard and Phase-Reduction
OSRC formulations for 2D/3D acoustic scattering problems. In this framework, a Padé-type
OSRC is analyzed and its tuning parameters are fixed by a numerical study. The case of a
circular cylinder is fully investigated for both Dirichlet and Neumann boundary conditions. It
appears that IGA allows to reduce greatly the number of discretization points of the method
resulting in the IGA-OSRC method. In addition, using the Phase Reduction based on the
plane wave ansatz, also leads to diminishing the number of points. This last method, called
IGA-PR-OSRC, is then applied to a few more complicate two-dimensional scatterers, and
simple three-dimensional shapes to validate the methodology. The resulting IGA-OSRC and
IGA-PR-OSRC can serve later as interesting tools to improve more standard formulations
for acoustic scattering solved by volume or surface integral formulations and approximated
by IGA. Finally, the way to improve the accuracy of the method for non convex scatterers
will be prospected in further works.
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Figure 20: The modulus of the trace calculated for k = 20 and θi = 145◦ using IGA-PR-OSRC is compared
to the IGA-FEABC solution for a sound-hard torpedo shaped model. The IGA-PR-OSRC analysis was
performed for the basis order p = 2 using (c) nDOF = 2× 200 (d) and nDOF = 2× 12728.
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Figure 21: RCS for the sound-hard torpedo based on IGA-PR-OSRC and comparison with the IGA-FEABC
solution for k = 20 and θi = 145◦. The numerical results were computed for the basis order p = 2 with
nDOF = 2× 200, and nDOF = 2× 12728 respectively.
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[18] J.P. Bérenger. A perfectly matched layer for the absorption of electromagnetic waves.
Journal of Computational Physics, 114:185–200, 1994.

[19] A. Bermudez, L. Hervella-Nieto, A. Prieto, and R. Rodriguez. An optimal perfectly
matched layer with unbounded absorbing function for time-harmonic acoustic scattering
problems. Journal of Computational Physics, 223:469–488, 2007.

[20] A. Bermudez, L. Hervella-Nieto, A. Prieto, and R. Rodriguez. Perfectly matched layers
for time-harmonic second order elliptic problems. Archives for Computational Methods
in Engineering, 17:77–107, 2010.
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[38] J. Dölz, H. Harbrecht, S. Kurz, S. Schöps, and F. Wolf. A fast isogeometric BEM for
the three dimensional Laplace- and Helmholtz problems. Computer Methods in Applied
Mechanics and Engineering, 330:83–101, 2018.

[39] B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulation
of waves. Mathematics of Computation, 31:629–651, 1977.

[40] Y. Erlangga. Advances in iterative methods and preconditioners for the Helmholtz
equation. Archives for Computational Methods in Engineering, 15:37–66, 2008.

27



[41] O. Ernst and M.J. Gander. Why it is Difficult to Solve Helmholtz Problems with
Classical Iterative Methods. In O. Lakkis I. Graham, T. Hou and R. Scheichl, editors,
Numerical Analysis of Multiscale Problems, pages 325–363. Springer Verlag, 2012.

[42] M.J. Gander, F. Magoulès, and F. Nataf. Optimized Schwarz methods without overlap
for the Helmholtz equation. SIAM Journal on Scientific Computing, 24(1):38–60, 2002.

[43] C. Geuzaine, J. Bedrossian, and X. Antoine. An amplitude formulation to reduce the
pollution error in the finite element solution of time-harmonic scattering problems. IEEE
Transactions on Magnetics, 44(6):782–785, June 2008.

[44] E. Giladi and J.B. Keller. A hybrid numerical asymptotic method for scattering prob-
lems. Journal of Computational Physics, 174(1):226–247, 2001.

[45] D. Givoli. High-order local non-reflecting boundary conditions : a review. Wave Motion,
39:319–326, 2004.

[46] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of
Computational Physics, 2(73):325–348, 1987.

[47] W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis, volume 49. Springer
Series in Computational Mathematics, Springer, Heidelberg, 2015.

[48] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, Finite
Elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied
Mechanics and Engineering, 194(39-41):4135–4195, 2005.

[49] T.J.R. Hughes, J.A. Evans, and A. Reali. Finite element and NURBS approximations of
eigenvalue, boundary-value, and initial-value problems. Computer Methods in Applied
Mechanics and Engineering, 272:290–320, 2014.

[50] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering. Springer, 1998.
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