
HAL Id: hal-03169377
https://hal.inria.fr/hal-03169377

Submitted on 15 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Appendix To Software Migration: A Theoretical
Framework A Grounded Theory approach on Systematic

Literature Review
Santiago Bragagnolo, Nicolas Anquetil, Stéphane Ducasse, Abderrahmane

Seriai, Mustapha Derras

To cite this version:
Santiago Bragagnolo, Nicolas Anquetil, Stéphane Ducasse, Abderrahmane Seriai, Mustapha Derras.
Appendix To Software Migration: A Theoretical Framework A Grounded Theory approach on Sys-
tematic Literature Review. 2021. �hal-03169377�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395675973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03169377
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Appendix To Software Migration: A Theoretical
Framework

A Grounded Theory approach on Systematic Literature
Review

Santiago Bragagnolo · Nicolas Anquetil ·
Stephane Ducasse · Abderrahmane
Seriai · Mustapha Derras

Received: date / Accepted: date

Abstract Software migration has been a research subject for a long time.
Major research and industrial implementations have been conducted, shaping
not only the techniques available nowadays, but also a good part of Soft-
ware evolution jargon. To understand systematically the literature and grasp
the major concepts is challenging and time consuming. Even more, research
evolves, and it does based on the assumption that there is a single meaning
that we all share redounding in the pollution of words with multiple and many
times opposite meanings. In our quest to understand, share and contribute sci-
entifically in this domain, we recognise this situation as a problem. To tackle
down this problem we propose a taxonomy on the subject as a theoretical
framework grounded on a systematic literature review. In this study we con-
tribute a bottom-up taxonomy that links from the object of a migration to

Santiago Bragagnolo
Université de Lille, CNRS, Inria, Centrale Lille,
UMR 9189 – CRIStAL France,
Berger-Levrault
E-mail: santiago.bragagnolo@berger-levrault.com

Nicolas Anquetil
Université de Lille, CNRS, Inria, Centrale Lille,
UMR 9189 – CRIStAL France,
E-mail: nicolas.anquetil@inria.fr

Stephane Ducasse
Université de Lille, CNRS, Inria, Centrale Lille,
UMR 9189 – CRIStAL France,
E-mail: stephane.ducasse@inria.fr

Abderrahmane Seriai
Berger-Levrault, France
E-mail: abderrahmane.seriai@berger-levrault.com

Mustapha Derras
Berger-Levrault, France
E-mail: mustapha.derras@berger-levrault.com

2 Santiago Bragagnolo et al.

the procedure nature migration, passing by migration drivers, objectives and
approaches. We contribute a classification of all our readings, and a list of
research directions discovered on the process of this study.

Keywords Software Reengineering · Migration · Modernisation · Taxonomy

1 Appendix I: Detailed Reporting

According to the different parts that appear on most of the migration projects
we discover with this SLR, we propose our reporting to be split as follow: legacy
system, drivers, options to migration, target, migration process, iterativity and
incrementality.

1.1 Legacy Systems

[21] points that about legacy systems, their lack of documentation ”Legacy
systems are poorly documented, and poorly understood. Many times the only
thing left are the source code and binary files”. And how complexity is what
turns a system into a legacy system: ”Software systems eventually to become
legacy systems is the fact that a great deal of the complexity in software
systems is purely accidental”. And explains that ”Accidental complexity of a
system and make the system harder to understand.”, implying the impact on
maintenance.

[16] remarks the critical nature of legacy systems ”Many businesses are
choosing to reengineer their critical applications to better fit the needs of the
organisation and to take advantage of new technologies”, as well as remarking
the legacy systems to be in charge of being responsible of the organisation
needs.

[13] Points out the difficulty of maintenance related to legacy systems
”Some components of the system are not owned by any member of the devel-
opment team and are therefore very difficult to maintain”, and the inability
of software teams to take over this complexity: ”Not surprisingly, the team
is reluctant to perform radical changes to its structure since this may affect
negatively its overall performance.”. Finally it also sustain the critical na-
ture of legacy systems, and it business value: ”Legacy software systems are
software systems that have been in operation for many years, have evolved
to meet changing organisational demands and computing platforms, and are
often mission critical for the organisation that owns and operates them.”

[27] implies the lack of maintainability with ”The target migrant sys-
tem is intended to be more maintainable than the original system and to
possess an open programmatic interface (API)”. and recognise the impossi-
bility of more reasonable methods, because of the lack of documentation
”The method is based on documentation and informal information, such as
user manuals, requirement and design specifications, and naming convention.
However, for legacy systems, the external information is not always available”.

Appendix To Software Migration: A Theoretical Framework 3

It does also implies by ”A procedural legacy system can be migrated to an
object-oriented platform” and ”The main objective to leverage the business
value of legacy software systems into Web-enabled environment” that legacy
system lack some technological feature.

[14] stands also for legacy systems to be critical systems ”Candidates for
language conversion are usually the most critical systems of a business; thus,
an emphasis must be put on the reliability of the conversion process”

[26] stands also for the critical aspect ”Legacy systems refer to mission
critical software systems that are still in operation”, as well as the decadence
of the state ”Quality and expected operational life is constantly deteriorating
due to prolonged maintenance and technology updates”.

[24] claims that the legacy systems has been built to serve as monolithic
applications ”When legacy systems were built, they served as monolithic ap-
plications containing all the business rules and processing logic”. And that
they lack some technological feature that would give some new flexibility
”Legacy systems can be leveraged in both service requester side and service
provider side”, ”The legacy system for ACCA course management is based on
client/server architecture.All the business logic is implemented in the client
side. It is a typical fat-client application”. It does also stand by the deca-
dence of the code ”In the legacy code refinement phase, an optimisation
removed dead code, refactored several classes and functions, and refined the
interfaces.”, and it stands as well for the lack of proper documentation
”Most of the code suffers from poor documentation.”.

[7] implies the reliability of the legacy systems, and their critic nature
”Many legacy systems are business critical and can operate up to 24 h a day”.
It also relates their status of legacy system to a legacy language ”They
are written in some legacy language such as COBOL”. It also classifies the
legacy systems according to their de-composability ”Legacy system is classified
as being decomposable, semi-decomposable, or non-decomposable”. By other
hand [20] ”Legacy systems are old computer systems or application program
that continues to be used”. This systems may be considered as decadent
systems, since they ”have suffered from many problems, such as outdated
technologies decayed architectures, lack of documents”, implying finally their
expensive maintenance cost ”These problems make the maintenance cost
higher and higher”.

[1] implies thelack of some architectural variable or technological
feature ”Therefore, during legacy systems migration, the evolved architecture
must satisfy the elasticity requirements”. It does also remarks the complexity
and heterogeneity of legacy systems ”In a practical context it is common
to have legacy code represented in different programming languages and devel-
oped on different platforms.” and their critical nature for the organisation
”increasing number of organisational business-critical applications so called
legacy systems are being migrated to cloud computing”

Finally, [12] remarks the decadence and complexity of legacy systems
”A number of key organisations are sustaining the decades old complex legacy
systems despite their types of services and operating environment.”, and their

4 Santiago Bragagnolo et al.

architectural nature ”For any traditional software system, following a lay-
ered architecture, three main constituent layers are presentation layer for user-
application interaction”

1.2 Drivers

As drivers we point out the reasons that are used as a reason to allocate a
large amount of resources for migration.

[15] hypothesise that ”your company is moving from PCs to workstations,
and the program must be migrated. Compounding the problem is the fact that
the user interface technology in the PC version is proprietary and will have
to be replaced” would be an unavoidable problem. Or maybe ”Other variants
include grafting a graphical user interface (GUI) onto a batch application,
upgrading character-oriented display software to bit- mapped workstations,
and keeping software up-to-date with respect to industry standards”

[21] remarks the importance of human resources ”Can you bring a new
person into the project, and, given nothing but readily available project ma-
terials, expect the new person to come up to speed on the system?”, implying
that ease the understanding of a software, would be a motive. It does also
points to other potential motive for conducting some large engineering task
on existing code ”the problems with existing OO systems or libraries have two
rather orthogonal aspects: getting better code and using old code in new
ways”.

[13] Remarks the reason for management to find solutions: ”Managing such
systems is difficult because of frequent breakdowns, spiralling maintenance
costs and shortages of qualified personnel who are willing to work with
obsolete programming languages and operating platforms.”. It does also re-
marks the expected outcomes of the project, as a reason for the project to
be accepted ”There are requirements such as the migrant code must run at
least as fast as the original code, or the migrant system must be easier
to maintain”.

[27] Points the general internet revolution architectures related to the
”With the widespread use of the Internet and pervasive computing technolo-
gies, distributed object technologies have been widely adopted to construct
network-centric architectures, using Web Services, CORBA, and DCOM. This
use has triggered a plethora of research with the main objective to lever-
age the business value of legacy software systems into Web-enabled environ-
ments”

[14] Indicates relationship with competitiveness ”Electronic commerce over
the Internet plays an important role in today’s economy. To stay competitive
in the global marketplace, companies have to offer their services and products
to current and prospective customers online through Internet client”. It does
also points the possible access to the computational capability of the clients:
”As soon as value-added services are to be offered, it is desirable to have the

Appendix To Software Migration: A Theoretical Framework 5

Internet client not only access data from the company’s information systems,
but also perform computations on the data”

[19] Indicates a hardware and software lack as a driver ”Herzberg In-
stitute of Astrophysics(HIA) is interested in migrating the application to the
network-enabled, component based platform of our industrial partner”.

[26] claims as reason ”To leverage business values entailed in such
systems, a possible solution is to migrate selected parts of such systems to
modern platforms and designs”, and points out the possibility of reuse and un-
lock specific technology ”With properties, such as information hiding, inheri-
tance and polymorphism inherent in object-oriented designs, essential parts of
such a reengineered system can be reused or integrated with other applica-
tions using network centric Web technologies, enterprise integration solutions,
or distributed systems.”

[9] claims the need to unlock new running environments for widening usage:
”heterogeneity demands for GUIs adaptation to a variety of hardware and
software platforms” .

[7] brings some business factors ”often other non-technical factors influ-
ence the decision as to how to deal with legacy systems, factors such as the
need to move to a modern Internet based infrastructure in order to remain
competitive in the global market”.

[5] briefly explains the industrial partner pain: ”These include difficulty
in hiring qualified programmers, limited availability of third-party
libraries, lack of vendor support for the language tools, limited or
delayed support for new technologies, and enterprise integration after an
acquisition”. It does also details one specific point ”third-party libraries that
their products relied on were becoming unsupported and libraries for
new functionality were not available.”. And it points out the strongest
arguments ”But the most compelling reason for their switch was ProfitStars’
desire to utilise the latest .NET technologies with their legacy appli-
cations. Another contributing factor for the migration was that they were
acquired by Jack Henry & Associates, which primarily used C# in their
program”

[6] links the evolution of libraries as driver ”software libraries are sus-
ceptible to the same environmental pressures to change that all software
systems face. As a result, library maintainers need to evolve their systems in
ways that sometimes result in an incompatibility between the old and
new versions of their API. This raises a dilemma for both API developers
and client developers: whether to migrate to the new API version and endure
the adaptive effort, or to refuse to migrate”

[4] Claims cost reduction and architectural variables to be the reason of a
large migration phenomena ”Since cloud computing aims at improving the
quality of delivered services concerning rapid elasticity and high availabil-
ity, as well as at reducing costs of software operation by a ‘pay-as-you-go’
pricing model, there is an increasing need to move legacy software into the
cloud of services”

6 Santiago Bragagnolo et al.

[1] uses as argument a citation to a survey ”A recent study of Capegemini
– based on interviews with 460 business and IT executives – has concluded
that migration of legacy applications to cloud-based system is driven by the
organisational needs to achieve business agility and cost efficiency”. It
also exposes research drivers for the migration field ”Our focus on architecture-
driven migration was motivated by the potential benefits” and to propose an
approach ”that enable a systematic cloudification of existing on premise
legacy software to clouds (A Framework for Architecture-driven Migration of
Legacy”.

[12] points many architectural variables to be main drivers ”the advantages
like elastic storage, load balancing services, auto scalability over a
distributed network, and virtual private cloud”. Alongside with availability
”Microsoft’s data centres are the one where the data gets stored safely and
with 24x7 availability support.” . All variables of the cloud architectural
paradigm.

[10] accuses as driver the passage of time ”evolution is motivated by dif-
ferent reasons such as the obsolescence of a technology”, the users re-
quirements ”The pressure of users”, and some extraordinary events such as
company fusion ”the need to build a single coherent information system
when companies merge”.

[22] points ”GWT is no longer being updated with only one major
release since 2015. As a consequence, Berger-Levrault decided to migrate its
applications to Angular 6 (GUI Migration using MDE from GWT to Angular
6”.

1.3 Proposals profiling: Contexts, proposals and definitions: What is to
migrate?

In this subsection we give context, proposition and how do they perceive mi-
gration, based on their claims.

[15] Takes place in the context of multi-platform GUI migration.
Proposes to map origin and destination widgets based on features and

requirements, and use it for assessing the generation of the new GUI.
Recognises migration as knowledge mapping and code generation ”The

migration system then determines which widget has been selected, retrieves
the defining properties and constructs a request for CLASSIC. CLASSIC, in
turn, infers a list of replacement candidates”

[11] Takes place in the context of discussing and unifying the research
directions of programming languages and software engineering.

Proposes To leverage each other technological developments and research
problems. (Such as language interpretation usable for language compiling and
for software static analysis)

Recognises migration as a problem to be addressed with technologies emerg-
ing from programming language theorisation and implementation.

[16] Takes place in the context of text-based UI to GUI migration.

Appendix To Software Migration: A Theoretical Framework 7

Proposes to map code/ast patterns to kinds of widgets. By example the
pattern in the listing should match a kind of menu widget.

cho i c e := getanswer (l a s t c h o i c e) ;
case cho i c e o f

’ a ’ : answer
end ;

Recognises migration to be a reengineering process to enable new technolo-
gies. ”With the advent of client-server technology, open systems, and high-
powered graphical workstations, many businesses are choosing to reengineer
their critical applications to better fit the needs of the organisation and to
take advantage of new technologies.” ”If the user interface components can be
extracted from the computational code and expressed in an abstract model,
then maintenance and future migrations can be made much simpler, since only
the user interface components would need to evolve”.

[8] Takes place in the context of the shifting of control paradigm of a
software, going from batch to interactive usage.

Proposes to use source code analysis to analyse and understand the main
control and flow assumptions used during the software development. Some of
this assumptions are related with Execution duration, Incremental processing
(in an interactive software we have stages to persist of a process, in a batch
process all intermediate information is volatile), Error handling, Error report-
ing, etc. And then conduct adaptive reengineering for modifying the system
into an interactive system. The article provides a large amount of advices on
how to conduct the adaptive reengineering.

Recognises migration as an evolutionary change that implies at least the
adaptation of the system ”One of the most common evolutionary changes
is migration from batch to interactive use. This minimally requires adding
capability to invoke the system’s operations one at a time and to provide
visibility into the intermediate results.”

[17] Takes place in the context of analysing software engineering migration
related problem.

Proposes a collection of strategies and techniques.
Recognises migration as a reengineering process ”Software reengineering is

the process of examining and altering a subject system to reconstitute it in a
new form. The spectrum of reengineering activities includes re-documentation,
restructuring of source code, transformation of source code, abstraction recov-
ery, and reimplementation. ”

[13] Takes place in the context of PL/IX to C language migration.
Proposes to map data types and AST node types for code transliteration.
Recognises migration as a risky large code transliteration with impact on

three levels: code, paradigm usage enhancement and architecture. ”Unfortu-
nately, re-engineering a large system not only requires a very high commitment
of human resources, but also introduces a number of risk factors such as in-
tegration errors, introduction of faulty code and non-compliance with global
constraints on performance, maintainability, etc.” ”At lowest levels, migration

8 Santiago Bragagnolo et al.

takes the form of transforming (or, ”transliterating”) the code from one lan-
guage into another.” ” level At higher levels, the structure of the system may
be changed as well to make it, for instance, more object-oriented. ” ”At still
higher levels, the global architecture of the system may be changed as part of
the migration process.”

[27] Takes place in the context the creation of a framework for tackling
down procedural to object-oriented paradigm migration.

Proposes the usage of an XML language agnostic model to represent syn-
tactical constructs of the origin source code (allowing the merging of different
languages sources). It proposes also the usage of different heuristics over the
unified representation of the origin to infer different possible object-oriented
paradigm constructs. From hard concepts such as classes and methods, to more
soft like inheritance and polymorphism. It also proposes devices to choose in
between different possible results, and resulting target generation.

Recognises migration Migration is multiple-possible results process. A chance
of quality enhancement. A device to enable new technologies. ”To facilitate the
reengineering of legacy services in web enabled environments, our approach
proposes a framework where components of a procedural legacy system can
be migrated to an object-oriented platform” ”When more than one design
decision is possible, a collection of source code features is used to assist the
user to select the object model that optimises specific metrics and quality
characteristics”

[14] Takes place in the context of C to Java language migration
Proposes a three step transliteration: (i) unifying to Kernighan and Ritchie

C style (ii) data type / type conversions analysis (iii) transliteration .
Recognises different kind of migrations: Dialect conversion (translitera-

tion), API Migration (adaptation), Language Migration (transliteration, adap-
tation API, adaptation paradigm) ”Dialect conversion is the conversion of a
program from one dialect of a programming language to another dialect of
the same programming language” ”API migration is the adaptation of a pro-
gram to a new set of API” ”Language migration is the conversion from one
programming language to a different one possibly involving dialect conversion
and API migration.”

[19] Takes place in the context of embedded system for telescope control
adaptation to enable networking. In this context of adaptation there is some
hardware adaptation and migration imposed by the required technology.

Proposes a process that contemplates the enabling of networking on an ex-
isting heterogeneous embedded system. The adaptation process includes the
unification of different embedded systems, the hardware adaptation and or ex-
change, compiler compatibility and eventual migration, and source code adap-
tation. ”Our goal for this case study is to convert HIA’s embedded legacy soft-
ware into a network-centric component and attempt to learn from this process
in order to automate it. This component will then be integrated into a network
that provides HIA with more effective functionality. ” ”Evaluate hardware and
upgrade if necessary.” ”Integrate the delivery network service” ”Turbo C had
no problem compiling the code. Microsoft Visual C++ had several problems

Appendix To Software Migration: A Theoretical Framework 9

due to old DOS include files. Since AspectC code used the Borland C++ 5.5
compiler, that compiler was also tested on the code” Recognises migration as
large complex process of adaptive reengineering.

[24] Takes place in the context of monolithic C++ to Service oriented
Architecture served in Java.

Proposes to mine possible services by clustering by conceptual properties.
Modify the candidates to be able to be called from java. Wrap them with java
code. Serve the project on Tomcat.

Recognises migration as a reengineering process aiming to restructure the
artefacts composition. ”the assessment in order to consider many aspects alto-
gether. Reengineering decisions are made according to this assessment.” ”The
sub-domain identification determinate the boundaries of sub-domains and de-
composes the whole problem domain. The further sub-domain analysis focuses
on modelling a particular part of the problem domain”.

[26] Takes place in the context of Procedural to object-oriented paradigm
migration.

Proposes to Model and apply unified rules to transform the code from
procedural to object-oriented, and choose best possible outcome by applying
quality metrics comparisons.

Recognises migration as a transformation, that may not be deterministic.
”we consider a migration process as a state transition system, denoted by
a sequence of transformations that alter a system being migrated” ”During
the object model extraction process, many alternative object models can be
considered” ”Similarly, functions and procedures in the original system become
primary candidates for methods and are attached to the aforementioned
identified classes”

[9] Takes place in the context of migrating AWT GUI to XIML description
for being able to adjust content and support multiple devices with different
sizes (phones, pocket-pc, desktop)

Proposes to Interpret the AWT GUI definition of the project, transform it
into XIML description, allow the generation of multiple versions according to
target device.

Recognises migration as a transformation and adaptation reverse engineer-
ing process Transformation and adaptation : The adaptation and rendering
phases follow the reverse engineering phase. During the transformation phase,
for each XIML widget description produced in the previous phase, the devel-
oper prepares multiple XIML descriptions, each one suitable for the platform
that can be used to show the user interface”

[25] Takes place in the context of threading library migration, from RTLinux
to ThreadX.

Proposes to refine an ontology able to give semantic the different enti-
ties involved in the libraries, where the ontology instances are meant to be
AST nodes, and being able to map the origin nodes to the equivalents on the
destination semantic representation.

Recognises migration as a ”knowledge intensive activity” ”As an inherently
knowledge intensive activity, software migration requires a great number of

10 Santiago Bragagnolo et al.

knowledge covers from expertise to experience in the application domains.”
[7] Takes place in the context of an architectural migration, migrating existing
software developed as client / server to a web-based environment.

Proposes For the front end, to recreate the Cobol screens into JSP pages.
For the backend, the instrumentation of a middleware that bridges the com-
munication in between a light java server and the existing software logic. The
software logic would require to be modified and adapted to the interaction
with the middleware. The java server access the middleware as a DLL. And
the middleware provides a basic set of communications and synchronisation
between the COBOL application and the Java server.

Recognises migration as a complex processes with many different approaches,
and highly dependant of the internal qualities of the source code and archi-
tecture. ”Generally, the migration of a legacy system is a complex task, which
is influenced by several concerns. One concern, pointed out by Brodie and
Stonebraker, is that the migration of a legacy system depends on its decom-
posability.”

[3] Takes place in the context of enhancing the understanding of source
code for monolith to SOA migration.

Proposes to use object-oriented design pattern recognition for understand-
ing and assessing how to rather leverage or deal with those design patterns
implications during migration.

Recognises migration to be an adaptation that requires structural insight.
”What components can be mined to derive these services? What changes are
needed to accomplished the migration?” ” Independently from the approach
or methodology adopted during the migration process, to understand a sys-
tem it is crucial to know its software architecture and to recover high level
representations of the source code”

[20] Takes place in the context of enhancing the performance of a migration
project.

Proposes to parallelise tasks based on the dependance analysis of the ex-
pected tasks.

Recognises migration as a reengineering process ”These problems make the
maintenance cost higher and higher. Methods are promoted for reengineering
legacy systems such as “Chicken Little Strategy” and “Butterfly Methodology”
These methodologies all have deficiencies in data migration and access”

[5] Takes place in the context of translation from Delphi to C#

Proposes to use a rule based rewriting engine that allows to define specific
transformation directives based on syntactic node recognition and/or pattern
matching.

Recognises migration as the translation of a source code from an origin
language with usage of language dependant libraries to a target language with
their own libraries. ”Our approach for migrating is to build a set of trans-
formation rules that convert the code” ”If a library in the old language is
substantially different from the new library, often it is easier to create a new
component in the new language that behaves like the old one”

Appendix To Software Migration: A Theoretical Framework 11

[23] Takes place in the context of the migration of entities from one meta-
model version to a new version (such as UML).

Proposes to find the required modifications to reach the acceptance of the
new metamodel as a search problem.

Recognises migration as a search problem. ”Search-Based Software Engi-
neering (SBSE) is predicated on the fact that it is often easier to determine
whether one solution to a problem is better than another, than it is to develop
an optimal solution to that problem. Software engineering problems can be re-
formulated as an optimisation problem, and meta-heuristic algorithms search
over the space of possible solutions to the problem.”.

[6] Takes place in the context the study of a corpus of API Change.
Proposes to analyse the changes on an API and to map it to the nature of

the impact of these changes on projects that depends on this API. According
to the nature of the impact it proposes a categorisation of the solutions based
on the difficulty of the adapting process. It also proposes to recommend the
possible required adaptations (this recommendations seems to be useful in
only 20% of the cases).

Recognises migration The adaptation of existing code from the usage of on
library API to the usage of another API of the same library.

”We were also interested in understanding how changes in libraries poten-
tially impacted the effectiveness of techniques that are intended to detect such
changes, or to adapt source code to them”

[18] Takes place in the context of understanding how do industry deals
with migration to service architectures.

Proposes to conduct a survey, gathering the point of view of consultants
and engineers involved in migration projects.

Recognises migration as a reengineering transforming process. ”Tradition-
ally, there are two generic categories of migration lifecycles: the ones address-
ing incremental migration (e.g. chicken little), and those with complete, sud-
den, migration (e.g. cold turkey).”. ”All elicited migration approaches include
transforming the pre-existing applications as-a-whole to new target services.
Transformation here entails wrapping the legacy system without decomposing
it.”.

[4] Takes place in the context of migrating software to cloud environments.
Proposes a unified process to tackle down the planning and strategy of the

project.
Recognises migration as a model transformation and code generation pro-

cess. ”Developing and applying model transformations to obtain platform-
independent representations of the legacy software from which representations
can be derived that are optimised to cloud-based capabilities”, ”Generating
source code that realise the migrated software.”

[1] Takes place in the context of migration of software to cloud environ-
ment.

Proposes a theoretical process framework that specialises the ISO reengi-
neering horseshoe, to be applied to the particular case of migration to cloud
environment.

12 Santiago Bragagnolo et al.

Recognises migration as an architecture transformation and reengineering
process ”The architecture transformation process evolves the legacy architec-
ture towards a service-driven cloud architecture.”

[12] Takes place in the context defining a roadmap for legacy system mod-
ernisation to cloud architecture.

Proposes a roadmap with processes based on systematic review.

Recognises migration as a meta-process with many possible processes to
choose according to reasons to migrate (expected architectural benefits), and
possible modernisation approaches (different according to the effort and cost)

[10] Takes place in the context of the GUI migration of Oracle Forms
projects to Java.

Proposes the extraction of a model from origin, passing to a technological
agnostic model, then to a target technological model, finally to generate the
code.

Recognises migration as a modernisation, model transformation and code
generation process. “Steps involved in any modernisation: (1) Understanding
and (2) transforming ”. “We defined a multi-tiered architecture for the Forms
Modernisation project. The transformation takes Oracle Forms code as in-
put and produces a modernised application as output that implements this
architecture in Java technology.”

[2], Takes place in the context of the implementation of an engine to trans-
form knowledge models to platform specific models (under the understanding
of the Architecture driven modernisation from OMG) .

Proposes an engine based on rules for mapping from knowledge model to
platform specific model, with the specific implementation of the transforma-
tion from model to java platform specific model. ”The goal of the activity
is twofold; the first one is to define which PSM (Java Model, C# model,
Service-Oriented Model, etc) will be used as the target metamodel because
the forward transformation will generate instances of this PSM. The second
one is to choose a reverse-engineering tool/parser that generates a PSM from
source code. The output of this activity are the PSM and the tool for reverse
engineering.”

Recognises migration as a model transformation and after code generation.

[22] Takes place in the context of GWT to Angular 6 GUI migration.

Proposes to use an MDE approach, based on extracting the GUI visual
model and behavioural model, transform it into a pivot technology agnostic
model, and generate the visual and behavioural code.

Recognises migration as an adaptable model transformation and code gen-
eration process ”Our approach should be as adaptable as possible to different
contexts. For example, it can be used with different source and target lan-
guages.”. ”Our approach should produce code that looks familiar to the de-
velopers of the source application. As far as possible, the target code should
keep the same structure, identifiers and comments”.

Appendix To Software Migration: A Theoretical Framework 13

1.4 Options to Migration

In this subsection we analyse the claims on options to migration.
[11] Exposes a way to solve the migration issue as a programming language

possibility ”Another example of a binding-time change is the migration of
a system to a new implementation language. This can be addressed to a
limited extent via linguistic mechanisms—for example, by making C11
essentially upwards compatible with C. However, this is clearly only a
partial solution: Even though C11 is essentially upwards compatible with C,
there are still interesting issues that arise in such a conversion process, in
particular, how to discover places in the code where the improved features of
C11 can be exploited (such as the ability to have C11 templates)”

[13] Points out some proposals coming from management areas ”Not sur-
prisingly, management is looking for alternatives, which sometimes take the
route of totally replacing the legacy system in question with a new one, or
re-engineering it.”

[7] proposes different kind of possibilities (including migration) before stat-
ing that migration is the most suitable for their case: ”Typical solutions in-
clude discarding the legacy system and building a replacement system, freezing
the system and using it as a component of a new larger system, and modifying
the system to give it a new lease on life.” Then the article remarks kinds of
modifications ” Changes may range from a simplification of the system
through a reduction in size and complexity, to preventive maintenance opera-
tions such as re-documentation, restructuring, and reengineering, to an
adaptive maintenance process entailing interface modification, wrapping,
migration. These alternatives are not mutually exclusive, and the decision as
to which approach, or combination of approaches, to take is generally based
on an assessment of the quality and business value of the system.”

[5] points that ”Several approaches have been tried to reimplement large
software projects.”. The main option to migration cited is ”The most common
approach is the Redesigning rewrite. In this, software development on the
original system halts, or at least is significantly reduced, while the team man-
ually reimplements the system in the new language. This reimplementation
may be a complete redesign or a manual conversion of the existing source”

[12] Makes migration one of different modernisation approaches. Between
the other approaches it proposes the following three: ”Replacement involves
the usage of commercially available off-the-shelf (COTS) systems and soft-
ware components to reduce the time and cost of re-writing all of them. Accord-
ing to the structure of the legacy components, the fraction of reuse is decided,
ex. a well-defined structured system can undergo an incremental replacement
of its components with lesser risk of failure.”. ”Black-box Wrapping in-
volves the new interface to an older system components for easier access. In
black box fashion, only interface is changed and no internal functionality is
changed. When the size of legacy system is comparatively smaller and re-
writing the code results in an expensive way. A high quality business code
containing legacy systems is good for wrapping in a quick way. It includes

14 Santiago Bragagnolo et al.

the collection of user interactions and then reverse engineering and analysis
of navigation paths to gather the information about interface and informa-
tion exchange” . ”Software reengineering is an umbrella term for processes
such as reverse engineering, refactoring and forward engineering of
an already existing application. It involves the understanding the software
(specifications, design and implementation), reimplementing the system with
new functionalities and in turn improving the performance and maintainabil-
ity of the application. Reengineering requires the adjustment and analysis of
legacy system including activities such as redesigning, restructuring, re im-
plementing the software system. It involves creation of evolution plan and
execution of it. Architecture selection and evolution of system are the main
issues to be considered”. For this last option, proposes two flavours ”System
Re-engineering It involves the process to reengineer the entire system full in
one go. System includes all the data files, platform, source code etc. after
the validation of the newer functionality, the implementation of the system is
performed. Older legacy systems are retired instantly if they are centralised
and can be subjected to periodic upgrades if decentralised.” and ”Partial or
Incremental Re-engineering includes basic criteria as re-integration. For small
software changes, which do not require alteration in the source code language,
reengineered modules are re-integrated into the existing system. But this is
applicable in some of the systems where re-structuring is not needed”

[10] Enumerates experiences on modernisation ”In cooperation with indus-
try partners, we have carried out projects to tackle different modernisation
challenges: (1) Migration from Oracle Forms to Java; (2) Restructuring of
Java Enterprise Edition (JEE) applications from monolithic architectures to
microservices; and (3) Maintenance of Ruby on Rails (RoR) applications de-
veloped by Agile practitioners”.

1.5 Processes

[13]
Responds to the language migration from PL/IX to C language migration
Process Activities (i) Decompose the general system (ii) Select the mi-

gration recognised components (iii) Transformation of its data structures (iv)
Generation of supporting utilities (constructs not available on the destination
language) (v) Generation of the new system by source code transformation.

Iterativity It achieves iterativity by giving criteria to prioritise and or-
ganise the different increments. ”Subsystems which degrade in quality and
performance due to the lack of resources are also good candidates for migra-
tion” ”Subsystems between 5-10KLOC are ideal candidates since they can be
manually examined and inspected”

Incrementality The proposal achieves incrementality as a risk reduction
strategy, by understanding decomposing and selecting pieces of the origin sys-
tem to be migrated. ”Another constraint often adopted in order to reduce the
risk of migration projects is that the process must be incremental, i.e., can be

Appendix To Software Migration: A Theoretical Framework 15

conducted so that certain components of the legacy system are selected and
migrated.”

[26] and [27] To respond to the procedural to object-oriented paradigm
semi-automatic migration (without runtime modification), by model transfor-
mations, proposes

Process Activities (i) the extraction of a procedural representation of the
origin source code. ”The first phase focuses on representing the procedural
code of the system being analysed in terms of an annotated Abstract Syntax
Tree (ASTs) or entity relationship model.” (ii) the application of transforma-
tion on the extracted model ”We are interested in transforming a system from
its original procedural language implementation to an object-oriented design
without altering its external behaviours.” (iii) measure and evaluate quality
”Each transformation is selected to alter source code features in the original
system, and is assessed according to its potential impact on the desired qual-
ities for the target system. Consequently, the resulting system is evaluated
against the desired goals”

Incrementality is required to reduce risks ”To keep the complexity and
the risk of the migration of large system into manageable levels, we provide
an incremental approach”. It relies on decomposability of the origin system
”incremental approach that allows for the decomposition of legacy systems
into smaller manageable units”. An incremental process requires merging the
increment-results ”Then an incremental merging process allows for the amal-
gamation of the different partial object models into an aggregate composite
model for the whole system ”

Iterativity organises the order of migration increments ”the proposed qual-
ity driven migration approach is applied iteratively to every cluster. In each
cluster, the migration process is divided into a sequence of states and trans-
formations”

Evaluation is done in the form of experiments ”WELTAB has been anal-
ysed and migrated to an object-oriented platform, from its original C imple-
mentation.”, migrating to C++ ”Finally, the migrant C++ source code is
automatically generated, by using the extracted object model”

[20]

Responds to the meta problematic of efficient migration process planning.

Process Activities (i) Recognise system components to migrate (ii) Recog-
nise data shared in between components (ii) Schedule the migration process
in terms of data dependancy

Iterativity The approach claims iterativity based on the ability of the
method to recognise data dependancy and effective prioritisation. The method
is able to recognise which tasks can be taken over in parallel, according to the
data dependancy. ”The approach has three phases and is iterative and incre-
mental, where in each cycle, one transformation rule is developed/evolved”

Evaluation The article proposes to measure Performance Effect Percentage
from the proposed roadmap and a sequential roadmap. The article claims the
usage of this process during a large migration. The evaluation uses information

16 Santiago Bragagnolo et al.

gathered from the process, and it compares it to a the expected equivalents
from a traditional approach, based on a simulation.

[5]
Responds to the language migration from Delphi to C#.
Process Activities (i) Select an independent part of system to translate (ii)

Develop/reuse and refine a translating rule (ii) Translate the selected part of
the system

Iterativity The project finds iterativity on the division of independent and
testable milestones. ”The project was broken into 11 milestones that could
be independently tested and monitored for their progress. They had a logical
progression from simple external utility programs to the main software assets.”

Incrementality The project finds incrementality by determining the size
of the tasks, and how this tasks will affect the next tasks. To keep some of
the initial milestones from including too much source, we had to break some
dependencies. We may have needed a particular method or class in some unit
(file) for the milestone, but we did not need all classes and methods in the
unit for the milestone”

[18] In the context of understanding architectural migration to service
oriented architecture, the article exposes

Process Activities (i) understanding the origin and target software ”To
gain understanding about the As-Is and To-Be states all enterprises extract
the relevant portion of enterprise architecture (EA) of both legacy systems and
target service-based systems”. Accomplished by interviewing ”This is because
the knowledge about the preexisting system mainly resides in the stakehold-
ers’ minds” (ii) analysing the gap ”Gap analysis aims at understanding the
gaps between the legacy system and the target service-based system. ” (iii)
conducting forward engineering ”forward engineering includes analysis, de-
sign and implementation of software services” (iv) transforming legacy assets
to services. ”All elicited migration approaches include transforming the pre-
existing applications as-a-whole to new target services. Transformation here
entails wrapping the legacy system without decomposing it.”

Planning Planning is an essential part ”Not surprisingly, migration in in-
dustrial approaches starts with lifecycle planning” . Required for costs and
risks management ”The panel emphasised that what is especially important
for them is to explicitly know the costs and risks of each migration activity.
Associating costs and risks to core activities makes the core an even more
powerful tool for planning how to do migration.”

Incrementality Is to be planned ”The plan must reflect important decisions
such as the number of increments, or the order by which existing assets are
migrated.” Achieve by detecting independent elements to migrate ”As such,
they can select independent increments to migrate legacy elements that can be
migrated independently of each other” Increments are related with migration
drivers ”Not surprisingly, the decisions related to migration increments are
made in-line with business goals”

[1] Defines architectural migration theoretical framework to cloud archi-
tecture.

Appendix To Software Migration: A Theoretical Framework 17

Process Activities (i) Architecture Migration Planning: (i.i) Feasibility Study.
(i.ii) Requirement Analysis. (i.iii) Decision on Cloud Providers (i.iv) Archi-
tecture Migration Strategy (ii) Architecture Recovery (ii.i) Consolidation of
the Legacy Source Code (ii.ii) Pattern and Style Extraction from Code Model
(ii.iii) Legacy Architecture Description (ii.iv) Legacy Architecture Consistency
Conformance (iii) Architecture Transformation (iii.i) Architecture Change Im-
plementation (iii.ii) Architecture Property Preservation (iii.iiii) Applying Ar-
chitecture Transformation Patterns (iv) Architecture-based Development (iv.i)
Cloud-service Architecture Description (iv.ii) Application of Cloud Patterns
and Styles (iv.iii)Code Generation and Consistency Conformance

Incrementality This article achieves incrementality by task-size subpro-
cesses. “By incremental migration, we mean a decomposition of the coarse-
grained architectural migration process into a set of fine-grained sub-processes
and activities that can be tackled in a stepwise manner to enable architectural
migration.”

[7] Responds to an architectural migration to enable web technologies on
a client / server system.

Process Activities (i) Assessing the current systems (ii) Defining the tar-
get environment (iii) Identifying problems and risks (iv) Pre-processing (v)
Wrapping (vi) GUI-Reengineering (vii) Integration and Deployment

Incrementality Achieves incrementality by delaying a more dramatic mi-
gration, but yet allowing modernisation by white-box-wrapping .

“Legacy information systems or part of them can be encapsulated in a
modernised set of legacy components, thus enabling the integration with newly
developed or purchased applications through the wrapper interface. This ap-
proach also enables an incremental migration of the original system”. “The
black-box wrapping techniques have the advantage that they can be reused
without intimate knowledge of the component’s internals. Unfortunately, in-
cremental migration strategies are not effectively supported as the wrapped
component can be neither customised nor adapted ”

Evaluation The article proposes a pilot project using the process and tech-
nology proposed. It measures the results of the pilot

[10]
Responds to GUI semi-automatic migration, by using a model driven en-

gineering approach.
Process Activities (i) Extracting a model from the origin ”A parser receives

the legacy application as a set of legacy artefacts and produces a low-level
model (so-called Technology Specific Model). ” (ii) Refining an agnostic model
from the first model ”A transformation takes the Technology Specific Model as
input and generates a model that conforms to the Technology Agnostic Meta-
model” (iii) Configure the target architecture ”We classify this information
into the following concerns: data access, quality attributes, and configuration
process” (iv) Generates target code ”model-to-text transformation creates the
new code from the elements in the technology agnostic model.”

Iterativity responds to the process of refinement of the migrating process
”each iteration, the developer can configure how to transform a set of legacy

18 Santiago Bragagnolo et al.

artefacts (third step), and generate, complete, and test the corresponding new
code (steps 4 to 6), until satisfying the scope of a given modernisation project”

Evaluation ”The evaluation had two parts: a proof of concept and a pilot
study. Asesoftware provided five applications that were taken as the dataset to
perform the proof of concept”. The case of the study is a based on comparison
”Our study is aimed at analysing two methods for Oracle Forms applica-
tion transformation: “manual” and “(semi)automated through the white-box
method”, for the purpose of comparison with respect to their productivity and
quality from the perspective of practitioners”

[2]

Responds to Knowledge model to platform specific model automatic trans-
formation, by model transformation based on model driven engineering stan-
dard.

Process Activities (i) Defining the Code Snippet to be Represented by the
Models (ii) Generating the PSM origin (iii) Generating the KDM instance
(iv) Transforming KDM instance onto PSM target (v) Generating destination
snippet.

Iterativity & Incrementality The approach claims iterativity based on the
development one at the time of the transformation rules. The approach claims
incrementality on increments of rule-size, because each rule can be developed
independently. ”The approach has three phases and is iterative and incremen-
tal, where in each cycle, one transformation rule is developed/evolved. ”

Evaluation

The evaluation is based on the correctness on the transformations. For
measuring the proposal is to apply the transformations to randomly picked
projects from GitHub that respond to some basic criteria such as being de-
veloped in Java. Afterwards the evaluation follows by applying the different
proposed rules, and measuring the results.

References

1. Ahmad, A., Babar, M.A.: A framework for architecture-driven migration of legacy sys-
tems to cloud-enabled software. In: Proceedings of the WICSA 2014 Companion Volume,
WICSA ’14 Companion. Association for Computing Machinery, New York, NY, USA
(2014). DOI 10.1145/2578128.2578232. URL https://doi.org/10.1145/2578128.2578232

2. Angulo, G., Mart́ın, D.S., Santos, B., Ferrari, F.C., de Camargo, V.V.: An approach for
creating kdm2psm transformation engines in adm context: The rute-k2j case. In: Pro-
ceedings of the VII Brazilian Symposium on Software Components, Architectures, and
Reuse, SBCARS ’18, p. 92–101. Association for Computing Machinery, New York, NY,
USA (2018). DOI 10.1145/3267183.3267193. URL https://doi.org/10.1145/3267183.
3267193

3. Arcelli, F., Tosi, C., Zanoni, M.: Can design pattern detection be useful for legacy
systemmigration towards soa? In: Proceedings of the 2nd International Workshop on
Systems Development in SOA Environments, SDSOA ’08, p. 63 to 68. Association for
Computing Machinery, New York, NY, USA (2008). DOI 10.1145/1370916.1370932.
URL https://doi.org/10.1145/1370916.1370932

4. Bergmayr, A., Bruneliere, H., Izquierdo, J.L.C., Gorronogoitia, J., Kousiouris, G., Kyr-
iazis, D., Langer, P., Menychtas, A., Orue-Echevarria, L., Pezuela, C., et al.: Migrating

https://doi.org/10.1145/2578128.2578232
https://doi.org/10.1145/3267183.3267193
https://doi.org/10.1145/3267183.3267193
https://doi.org/10.1145/1370916.1370932

Appendix To Software Migration: A Theoretical Framework 19

legacy software to the cloud with artist. In: 2013 17th European Conference on Software
Maintenance and Reengineering, pp. 465–468. IEEE (2013)

5. Brant, J., Roberts, D., Plendl, B., Prince, J.: Extreme maintenance: Transforming Del-
phi into C#. In: ICSM’10 (2010)

6. Cossette, B.E., Walker, R.J.: Seeking the ground truth: A retroactive study on the
evolution and migration of software libraries. In: Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering, FSE ’12,
pp. 55:1–55:11. ACM, New York, NY, USA (2012). DOI 10.1145/2393596.2393661. URL
http://doi.acm.org/10.1145/2393596.2393661

7. De Lucia, A., Francese, R., Scanniello, G., Tortora, G.: Developing legacy system mi-
gration methods and tools for technology transfer. Software: Practice and Experi-
ence 38(13), 1333–1364 (2008). DOI https://doi.org/10.1002/spe.870. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/spe.870

8. DeLine, R., Zelesnik, G., Shaw, M.: Lessons on converting batch systems to support
interaction: Experience report. In: Proceedings of the 19th International Conference on
Software Engineering, ICSE ’97, p. 195 to 204. Association for Computing Machinery,
New York, NY, USA (1997). DOI 10.1145/253228.253267. URL https://doi.org/10.
1145/253228.253267

9. Di Santo, G., Zimeo, E.: Reversing guis to ximl descriptions for the adaptation to hetero-
geneous devices. In: Proceedings of the 2007 ACM Symposium on Applied Computing,
SAC ’07, p. 1456 to 1460. Association for Computing Machinery, New York, NY, USA
(2007). DOI 10.1145/1244002.1244314. URL https://doi.org/10.1145/1244002.1244314

10. Garcés, K., Casallas, R., Álvarez, C., Sandoval, E., Salamanca, A., Viera, F., Melo,
F., Soto, J.M.: White-box modernization of legacy applications: The oracle forms case
study. Computer Standards & Interfaces pp. 110–122 (2017). DOI https://doi.org/10.
1016/j.csi.2017.10.004

11. Gunter, C., Mitchell, J., Notkin, D.: Strategic directions in software engineering and
programming languages. ACM Comput. Surv. 28(4), 727 to 737 (1996). DOI 10.1145/
242223.242283. URL https://doi.org/10.1145/242223.242283

12. Jain, S., Chana, I.: Modernization of legacy systems: A generalised roadmap. In:
Proceedings of the Sixth International Conference on Computer and Communication
Technology 2015, ICCCT ’15, p. 62 to 67. Association for Computing Machinery, New
York, NY, USA (2015). DOI 10.1145/2818567.2818579. URL https://doi.org/10.1145/
2818567.2818579

13. Kontogiannis, K., Martin, J., Wong, K., Gregory, R., Müller, H., Mylopoulos, J.: Code
migration through transformations: An experience report. In: Proceedings of the 1998
Conference of the Centre for Advanced Studies on Collaborative Research, CASCON
’98, p. 13. IBM Press (1998)

14. Martin, J., Muller, H.A.: C to java migration experiences. In: Proceedings of the Sixth
European Conference on Software Maintenance and Reengineering, pp. 143–153. IEEE
(2002)

15. Moore, Rugaber, Seaver: Knowledge-based user interface migration. In: Proceedings
1994 International Conference on Software Maintenance, pp. 72–79. IEEE Comput.
Soc. Press (1994). DOI 10.1109/ICSM.1994.336788. URL http://ieeexplore.ieee.org/
document/336788/

16. Moore, M.M.: Rule-based detection for reverse engineering user interfaces. In: Proceed-
ings of WCRE’96: 4rd Working Conference on Reverse Engineering, pp. 42–48. IEEE
(1996)

17. Müller, H.A.: Reverse engineering strategies for software migration (tutorial). In: Pro-
ceedings of the 19th International Conference on Software Engineering, ICSE ’97, p.
659 to 660. Association for Computing Machinery, New York, NY, USA (1997). DOI
10.1145/253228.253799. URL https://doi.org/10.1145/253228.253799

18. Razavian, M., Lago, P.: A lean and mean strategy for migration to services. In: Pro-
ceedings of the WICSA/ECSA 2012 Companion Volume, WICSA/ECSA ’12, p. 61
to 68. Association for Computing Machinery, New York, NY, USA (2012). DOI
10.1145/2361999.2362009. URL https://doi.org/10.1145/2361999.2362009

19. de Souza, P., McNair, A., Jahnke, J.H.: Network-centric migration of embedded control
software: a case study. In: Proceedings of the 2003 conference of the Centre for Advanced
Studies on Collaborative research, pp. 54–65 (2003)

http://doi.acm.org/10.1145/2393596.2393661
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.870
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.870
https://doi.org/10.1145/253228.253267
https://doi.org/10.1145/253228.253267
https://doi.org/10.1145/1244002.1244314
https://doi.org/10.1145/242223.242283
https://doi.org/10.1145/2818567.2818579
https://doi.org/10.1145/2818567.2818579
http://ieeexplore.ieee.org/document/336788/
http://ieeexplore.ieee.org/document/336788/
https://doi.org/10.1145/253228.253799
https://doi.org/10.1145/2361999.2362009

20 Santiago Bragagnolo et al.

20. Su, X., Yang, X., Li, J., Wu, D.: Parallel iterative reengineering model of legacy systems.
In: 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 4054–
4058. IEEE (2009)

21. Taivalsaari, A., Trauter, R., Casais, E.: Workshop on object-oriented legacy systems
and software evolution. SIGPLAN OOPS Mess. 6(4), 180 to 185 (1995). DOI 10.1145/
260111.260276. URL https://doi.org/10.1145/260111.260276

22. Verhaeghe, B., Etien, A., Anquetil, N., Seriai, A., Deruelle, L., Ducasse, S., Derras,
M.: GUI migration using MDE from GWT to Angular 6: An industrial case. In: 2019
IEEE 26th International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER’19), pp. 579–583. Hangzhou, China (2019). DOI 10.1109/SANER.2019.
8667989. URL https://hal.inria.fr/hal-02019015

23. Williams, J.R., Paige, R.F., Polack, F.A.C.: Searching for model migration strategies.
In: Proceedings of the 6th International Workshop on Models and Evolution, ME ’12,
p. 39 to 44. Association for Computing Machinery, New York, NY, USA (2012). DOI
10.1145/2523599.2523607. URL https://doi.org/10.1145/2523599.2523607

24. Zhang, Z., Yang, H.: Incubating services in legacy systems for architectural migration.
In: 11th Asia-Pacific Software Engineering Conference, p. 196 to 203. IEEE (2004)

25. Zhou, H., Kang, J., Chen, F., Yang, H.: Optima: an ontology-based platform-specific
software migration approach. In: Seventh International Conference on Quality Software
(QSIC 2007), pp. 143–152. IEEE (2007)

26. Zou, Y.: Quality driven software migration of procedural code to object-oriented design.
In: 21st IEEE International Conference on Software Maintenance (ICSM’05), pp. 709–
713. IEEE (2005)

27. Zou, Y., Kontogiannis, K.: A framework for migrating procedural code to object-oriented
platforms. In: Proceedings Eighth Asia-Pacific Software Engineering Conference, p. 390
to 399. IEEE (2001)

https://doi.org/10.1145/260111.260276
https://hal.inria.fr/hal-02019015
https://doi.org/10.1145/2523599.2523607

	Appendix I: Detailed Reporting

