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Control of Average and Deviation
in Large-Scale Linear Networks

Denis Nikitin, Carlos Canudas-de-Wit and Paolo Frasca

Abstract—This paper deals with the problem of controlling
the average state of a large-scale linear network to a constant
reference value. We design an output-feedback controller such
that no information about state vector or system matrices is
needed. For this controller to have arbitrary positive gains, it is
sufficient that only a sign condition on system matrices should
be satisfied. To assure that the states of the network are close
to the average state, the problem of deviation minimization is
solved in addition, using a novel extremum seeking algorithm.

Index Terms—Networks Control, Large-Scale Control, Ex-
tremum Seeking

I. INTRODUCTION

THE control of large-scale dynamical networks is a chal-
lenging and important question in modern control theory.

Its importance originates from its multiple applications to
vital systems in technology, nature and society, such as urban
traffic networks [1], social networks [2], fleets of robots [3]
and power networks [4]. Its difficulty originates from the
large dimensionality of these real-world networks, where the
number of states can reach millions. These large networks
challenge the scalability of control methods from several
points of view. First, the computation of traditional control
algorithms becomes too expensive. Second, the structure and
the detailed dynamics of the network may not be fully known.
Third, the number of actuators and sensors is often much
lower than the number of nodes, so that state feedback is not
possible: see for instance biological neural networks, where
only an average neuronal activity is measured by electrodes.
Another difficulty is that the amount of energy needed to
control all nodes of the network can grow unbounded as the
number of nodes increases: the growth is actually exponential
for some network structures [5], [6], [7]. In assessing energy-
efficient control problems, it has been shown that several
aspects such as network centrality [8], [9] and number of
control nodes [10] play a fundamental role, but still energy
analysis of large-scale network controllability is a very hard
task to perform [11].

The control community has often approached the issue of
network control by looking for distributed control algorithms,
in which the control is applied locally at all nodes and uses
only local information. Instead, in this paper we choose to
work in a centralized setting, where an external operator has
limited information about the network and limited access
to few nodes for sensing or actuation purposes. In view of
these limitations, the operator shall aim at controlling some
aggregate function of the network state, rather than controlling
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all of its individual nodes. A natural choice for such aggregate
function is the average of the node states, which has indeed
been defined as a control objective in some prior work that
was motivated by opinion dynamics in social networks [12],
[13]. More broadly, the control of a generic output of a large-
scale network was studied in [14], [15], [16], [17], [18]: the
energy required to control aggregated outputs instead of all
states is much less.

In this paper, we focus on the problem of controlling the
average state of the network, together with the concurrent
minimization of its deviation. The average state of the network
is defined as an average over all node states of the network,
while the squared deviation is defined as an average over
all squared differences between node states and the average
state. While using a controller for the average state, it is
natural to desire the system states to be close to the average:
this behavior can be obtained by minimizing their squared
deviation. In opposition to previous work, it is assumed that
the only values that are measured and regulated are the values
of the system outputs, i.e. the average state and the squared
deviation. Moreover, we make sure that the system model is
not used in the controller. Thus, the controller directly utilizes
only system outputs and reference point and the equilibrium
of internal states is never computed explicitly. Not using
the system model circumvents all issues about computational
complexity and uncertainties that affect large networks.

In our problem formulation we assume that the network
operator has knowledge of the average and the squared de-
viation values. There are many physical examples of systems
where the average and the squared deviation can be measured
without measuring the states of the nodes. Here we briefly
mention four examples:

Urban traffic networks. Consider a network of roads in a
city, where the state of each node is the number of cars on
the corresponding road section. The total number of cars in
the city can be estimated either directly or indirectly. A direct
estimation of the number of cars can be performed by vision-
based methods, by processing images taken from satellites, as
in [19], [20]. Although every car is counted independently,
the estimation error is defined as a discrepancy in the overall
number of cars, therefore these methods effectively reconstruct
the total number of cars. An indirect estimation can be based
on the vehicle emissions: combustion engines produce CO2,
which then goes into the atmosphere. The polluted atmosphere
changes its reflection properties based on the amount of CO2,
thus this amount can be measured using infrared sensors
mounted on satellites [21]. Therefore, the number of cars can
be reconstructed from the satellite measurements. The total
number of cars divided by the number of road sections equals
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Figure 1. Scale-Free network with hubs (shaded in yellow) controlled from
the boundary nodes (double circles)

to the average state of the network.
Biological neural networks. A widely known method of

monitoring the brain activity is the electroencephalography,
with electrodes placed usually along the sculp of the person
being monitored. Each electrode measures voltage fluctuations
of group of neurons under the surface, therefore it is directly
related to the average of individual states of neurons, which
obviously cannot be measured independently [22].

Dynamics of gas. Every gas consists of a huge number
of particles colliding with each other, therefore it can be
seen as a dynamical network with neighbouring particles
whose interaction depends on their velocities. Thus, we can
define the states being the velocities of each individual par-
ticle. The gas temperature can be easily measured, but at
the same time it corresponds to the internal kinetic energy:
Ek =

3
2 kBT = 1

2 mv2
rms. Here kB is the Boltzmann constant, T is

the temperature and m is the mass of one particle. The variable
v2

rms represents the mean squared deviation of the velocities of
particles with respect to the flow velocity. The flow velocity
itself is a ”wind speed”, which represents the average state of
the system and can be also directly measured.

Density of a fluid. Fluids also consist of a huge number
of particles, and one way to write the dynamical model of a
fluid is to consider a space partitioned into individual cells
with states being defined as the densities of the fluid inside
each cell. In this case, the average state would be the average
density in the system: this density can indeed be measured
for cryogenic fluids by measuring permittivity by a technique
called electrical capacitance tomography [23].

Another relevant setup is the scale-free control approach to
large-scale networks [24] illustrated in Fig. 1: in this approach,
the goal is to control the average state and the deviation of
the “hub” regions and the control is applied to the boundaries
of the hubs. Output controllability of a scale-free network
is studied in [25], the dual problem of reconstruction of an
averaged state is solved in [26], [27], and methods to reduce
a large network to a scale-free one, through the suitable
aggregation of hub regions, are presented in [28], [29].

The first part of our work is devoted to the problem of
controlling the average state of the linear network, where three
stability results are presented. Theorem 1 provides conditions

on the integral controller gains for the stability of the closed-
loop system, and Theorem 2 simplifies the conditions under
the assumption that the system is positive. Then, Theorem 3
is our main contribution which gives a simple sufficient sign
condition on the system matrices which guarantees stability
of any positive integral controller for controlling the system
output to a constant reference point without knowledge of the
system matrices.

Most of our results regarding the output regulation problem
of a large linear network system are presented under the
assumption that the system is stable and positive (that is,
the system matrix has positive elements outside the main
diagonal). Network systems with stable dynamics and positive
edge weights belong to this class. More generally, positive
systems are an important class of systems for which the
synthesis of large-scale control algorithms can be greatly
simplified. Their impulse response is bounded by their static
gain [30], optimal [31] and robust [32] feedback control laws
can be easily designed using linear programming, and the state
feedback output regulation problem can be explicitly solved
[33]. From the passivity analysis in the classical control theory
it is known that the feedback interconnection between a linear
operator with an integral controller is stable irrespective of
the gain (has an infinite gain margin) if the linear operator
is strictly positive real (SPR) [34], [35]. From this point of
view our analysis provides a new simple sufficient condition
for the positive system to be SPR, which is summarized in
Theorem 4.

The second part of the work focuses on the deviation
minimization problem, when the system should be driven to
the particular average state while the control inputs should be
balanced in such a way that the squared deviation of the states
takes the smallest possible value. To solve this problem we use
an extremum seeking scheme [36], [37] which is an adaptive
model-free algorithm for the minimization/maximization of a
nonlinear steady-state output characteristic. We augment this
algorithm with an additional subsystem such that both tasks
are accomplished simultaneously: the average is driven to the
particular value while the squared deviation is minimized.
Theorem 5 proves that the system approaches any small
neighbourhood of the optimum state provided the gains of
the controller are small enough.

An incomplete account of this research appeared as [38]:
the latter short version is much narrower than the present
version as it focuses on the statement of Theorem 3 and on
the interpretation of the sufficient condition therein (without
providing Theorems 1, 2, 4 or 5, nor the detailed proof of
Theorem 3).

Notation: Along this work several types of vector in-
equalities are used. If x ∈ Rn, then x > 0 means xi > 0 ∀i ∈
{1..n}, x > 0 means xi > 0 ∀i ∈ {1..n} and there exists
j ∈ {1..n} : x j > 0, and x � 0 means xi > 0 ∀i ∈ {1..n}.
Matrix I denotes the identity matrix of an appropriate size,
while column vector of ones is denoted as 1. The set of
complex numbers with non-negative real parts is C+. We use
the standard vector norm ‖x‖ =

√
xT x for x ∈ Rn throughout

the paper.



3

II. PROBLEM FORMULATION

x1 : boundary nodes

x2 : inner nodes

Figure 2. Network with boundary and inner nodes separation

We start the problem formulation with an example: assume
the system we need to control is the network given by the
graph G = (V ,E ), where V is the set of vertices and E is the
set of edges. The number of vertices |V | is denoted by n.

On each node vi ∈ V the state xi is defined. Each edge
e ∈ E , where e = {vi,v j}, corresponds to the flow between
nodes vi and v j. Matrix A ∈ Rn×n represents flow ratio. The
set of nodes V is split into two parts V1 and V2 with state
vectors x1 and x2 respectively (see Fig. 2). The set V1 consists
of the nodes which are directly controlled by the control action
u. We call these nodes ”boundary”. The set V2 is a set of
uncontrolled nodes, which we call ”inner nodes”. The average
state y= 1T x/n and the squared deviation V = ‖x‖2 /n−y2 are
measured. Thus the network depicted on Fig. 2 can be viewed
as one particular hub from the scale-free network on Fig. 1.

The evolution of the states x, the average state y and the
squared deviation V is given by the following linear time-
invariant system 

ẋ1 = A11x1 +A12x2 +u,

ẋ2 = A21x1 +A22x2,

y =
1
n

1T x,

V = ‖x‖2 /n− y2.

(1)

Most of real-world networks are internally stable, so we
further assume A being stable. Also in Theorems 2 and 3
we assume A is a Metzler matrix (which means its off-
diagonal elements are non-negative), which means all edges
have positive weights. Such choice of system matrix together
with the fact that B > 0 and C > 0 means that the system (1)
belongs to the class of positive systems.

It is useful to analyse more general case than (1), with
general stable matrix A ∈ Rn×n, C ∈ R1×n, B ∈ Rn×k, and
symmetric positive semi-definite matrix P∈Rn×n defining the
quadratic output: 

ẋ = Ax+Bu,

y =Cx,

V = xT Px.

(2)

System (1) can be written in form of (2) using

A =

(
A11 A12
A21 A22

)
, B =

(
I
0

)
,

C =
1
n

1T , P =
1
n

I− 1
n2 11T

In general, the control goal is to stabilize average state
y over the whole network to some desired constant state
yd without the explicit knowledge of system matrices. It
is assumed that the number of states is too large that it
is impossible to use full-state feedback or to use matrix A
explicitly.

In the following sections two problems will be solved:
1) Control of average: find the control law u = u(y) for

the system (2) such that

lim
t→∞

y(t) = yd .

2) Control of average and deviation: Find the control law
u = u(y,V ) for the system (2) such that

lim
t→∞

y(t) = yd , and V is minimized.1

Section III is devoted to the first problem of average control,
while Section IV shows the solution for the second problem
of simultaneous control of average and deviation.

III. AVERAGE STATE REGULATION ONLY

In this section, we solve Problem 1 of controlling the
average. We first describe a general controller structure and
then prove stability conditions for low and high gains. Further
we discuss these conditions and present examples of the
controller performance.

A. Controller Structure

Define transfer function of the system (2)

Ws(s) =C(sI−A)−1B, (3)

thus y(s) = Ws(s)u(s). Denote error between desired output
and system output: e = yd− y. Then we can define controller
transfer function Wc(s) such that u(s) = Wc(s)e(s). System
control loop is depicted on Fig. 3. Thus input-output

Wc Ws
uyd e y

−

Figure 3. Control loop given by closed-loop transfer function (6)

equation is
y(s) =Ws(s)Wc(s)e(s), (4)

or, solving for y,

y(s) =
Ws(s)Wc(s)

1+Ws(s)Wc(s)
yd . (5)

Define closed-loop transfer function

W (s) =
Ws(s)Wc(s)

1+Ws(s)Wc(s)
. (6)

In the following we investigate what properties do Ws and
Wc have and what properties should W have in order to be

1Note that the problems are formulated in the steady-state, therefore we
will not pursue any optimization of the transient process.
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stable. Both Ws and Wc are vector-valued, because controller
input e and system output y are scalars, while u which is
controller output and system input is a vector, u ∈ Rk. Let us
look at the i-th component of Ws and Wc, where i ∈ {1..k},
and define polynomials α(s),βi(s),δ (s),γi(s) such that

Ws(s)i =
βi(s)
α(s)

and Wc(s)i =
γi(s)
δ (s)

. (7)

It is obvious that α(s) is a polynomial of degree n. Moreover,
our system is strictly stable, non-casual and matrix D (which
directly connects y and u) is zero, thus

degβi(s)< degα(s) = n and α(s) 6= 0 ∀s ∈ C+. (8)

We can choose α(s) and βi(s) such that α(s) ∈ R for s ∈ R
and α(s)> 0 for s > 0.

Then, the controller Wc should also be stable and non-casual,
which means

degγi(s)6 degδ (s) and δ (s) 6= 0 ∀s ∈ C+. (9)

Again, it is possible to choose δ (s) and γi(s) such that δ (s)∈R
for s ∈ R and δ (s)> 0 for s > 0.

Now we can rewrite W (s) in terms of polynomials:

W (s) =
∑
i

βi(s)γi(s)

α(s)δ (s)+∑
i

βi(s)γi(s)
. (10)

The closed-loop transfer function W (s) should have the
following property: for the constant input yd it should give the
same output y, thus W (0) = 1. This means that α(0)δ (0) = 0,
which is possible only if δ (0) = 0, so δ (s) cannot contain
free term. The simplest possible controller that satisfies this
necessary condition is the integral controller given by

Wc(s)i = κ
γi

s
, (11)

where γ ∈ Rk is the vector of gains, defining relative control
force applied to different actuated nodes, and κ is the overall
gain. The following sections will be devoted to the integral
controller and its properties.

B. Stability of the integral controller

Assume we apply the integral controller (11) to the system
(2). The closed-loop system may be unstable, and in general in
order to prevent this one needs to carefully choose controller
gains κ and γ in (11).

Theorem 1. The system (2) with applied integral controller
(11) is asymptotically stable if −CA−1Bγ > 0 and κ ∈ (0,κ∗)
for some small κ∗ ∈ R.

Proof of Theorem 1. Applying the integral controller, the
transfer function of the closed-loop system is given by

W (s) =
κ ∑

i
βi(s)γi

α(s)s+κ ∑
i

βi(s)γi
. (12)

For the stability of the closed-loop system W (s) should have
no poles on the right-hand side of the complex plane C+.
Decompose the denominator:

α(s)s

1+κ

∑
i

βi(s)γi

α(s)s

 6= 0.

Denote Q(s) =
(

∑
i

βi(s)γi

)
/(α(s)s). Any point such that

α(s) = 0 or s = 0 leads to W (s) = 1, thus the poles of the
transfer function can arise only in the roots of 1+κQ(s). We
will prove that there exists κ∗ such that

∀κ ∈ (0,κ∗) : ∀s ∈ C+ \{0} Re{1+κQ(s)}> 0. (13)

Choose ε,R ∈ R such that ε < |λi(A)| and R > |λi(A)| for all
i ∈ {1..n}. Thus all the roots of α(s) lie in a ring between ε

and R in a left half-plane. We split complex right half-plane
C+ into three parts:

H+
0,ε = {s : Res > 0, |s|< ε}

H+
ε,R = {s : Res > 0, |s|> ε, |s|6 R}

H+
R,∞ = {s : Res > 0, |s|> R}

First we analyse H+
0,ε . Function Q(s) has a pole at zero, thus

it can be written using Laurent series with coefficients Qn:

Q(s) =
Q−1

s
+

∞

∑
n=0

Qnsn =
Q−1

s
+P(s),

where P(s) is an analytic function. The residual Q−1 =(
∑
i

βi(0)γi

)
/α(0) =−CA−1Bγ > 0, thus

Re
Q−1

s
> 0 ∀s ∈ H+

0,ε \{0},

while P(s) is analytic in C and thus has a minimum in H+
0,ε .

Next we analyse H+
R,∞. This set is contained into a set

HR,∞ = {s : |s| > R}. If R is big enough, Q(s) is analytic
in HR,∞, but it vanishes at infinity, therefore by a maximum
modulus principle Q(s) is bounded from below in HR,∞ by
values on its boundary, and consequently it is bounded in H+

R,∞.
Finally, set H+

ε,R is compact and does not contain zeros
or roots of α(s). Therefore Q(s) is analytic in it and thus
bounded. We obtained that ReQ(s) is bounded from below in
C+ \{0}. Denoting this bound as Qin f , we see that choosing
κ∗=−1/Qin f in case Qin f < 0 or κ∗=+∞ in case Qin f > 0 as-
sures satisfaction of (13) and therefore proves the theorem.

Theorem 2. The system (2) with applied integral controller
(11) is asymptotically stable if the system (2) is positive, γ > 0,
−CA−1Bγ 6= 0 and κ ∈ (0,κ∗) for some small κ∗ ∈ R.

Proof of Theorem 2. Positivity of the system (2) means that
all elements of matrices B and C are greater or equal than
zero, and matrix A is a Metzler matrix. Now we introduce the
notion of M-matrix:

Definition 1 (M-matrix, [39]). An n×n matrix M that can be
expressed in the form M =αI−L, where L= (li j) with li j > 0,
1 6 i, j 6 n, and α > λ (L) where λ (L) is the maximum of the
moduli of the eigenvalues of L, is called an M-matrix.
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From this definition it follows immediately that a negative
of a Metzler stable matrix is an M-Matrix. The main property
of any M-matrix M is that its inverse M−1 is a positive matrix,
thus (M−1)i j > 0 for all i, j. [40]

Matrix −A is an M-Matrix which means that −A−1 has its
all elements nonnegative, therefore −CA−1B is a positive vec-
tor. By the theorem statement γ > 0, and having −CA−1Bγ 6= 0
means −CA−1Bγ > 0 and, applying Theorem 1, this leads to
the asymptotic stability of the closed-loop system for small
enough κ .

By Theorem 2, if the system is positive it is enough to
choose γ = 1 (or any γ � 0, just to satisfy −CA−1Bγ 6= 0),
and then pick up small enough overall gain κ .

C. Controller with arbitrary large gains
It appears although that there exists simple criteria on the

system matrices which says whether the closed-loop system
will converge irrespectively of controller gain values, provided
that they are positive. This result is one of the main contribu-
tions of this paper, and it is formulated as follows:

Theorem 3. The system (2) with applied integral controller
(11) is asymptotically stable for arbitrary large positive con-
troller gains κ and γ if the system (2) is positive, CA2 > 0 and
CA2Bγ > 0.

This result means that, irrespective of the gains, the integral
controller will preserve stability for a very large class of
systems. One of the important types of large-scale networks for
which Theorem 3 is satisfied is a general consensus network
(e.g. for social interactions), see the example below.

Example (Damped consensus). Assume the system (2) is
given by matrices A = −L− αI, where L is a Laplacian
matrix of some network with n nodes, α > 0 means additional
damping to the system to preserve stability, and C = 1T/n
represents average state of the network. Then A is a Metzler
stable matrix, and C is the eigenvector of A with corresponding
eigenvalue −α , thus CA2 =α2C > 0. Then any controller with
positive gains κ and γ will lead to the convergence, provided
Bγ > 0.

One should notice that the condition CA2Bγ > 0 on the
control matrix B is very non-restrictive, because by choosing
appropriate vector gain γ it is always possible to make Bγ > 0,
and hence, provided CA2 > 0 and CA2B 6= 0, we will have
CA2Bγ > 0. The reason for this is the fact that the regulation
variable is a single scalar output.

Proposition 1. Condition CA2Bγ > 0 is a sufficient condition
for the output controllability of the system (2).

Proof. Indeed, Kalman rank test for the output controllability
of (2) can be written as

rank{C
(
B AB A2B ... An−1B

)
}= 1,

and by CA2Bγ > 0 we have CA2B 6= 0, which means that the
rank test is satisfied.

Note that the analogue of this Proposition can be proven for
Theorems 1 and 2.

Corollary 1. The positive system (2) with CA2� 0 is asymp-
totically stable for any integral controller (11) with positive
gains applied to any single boundary node. Therefore, it is
enough to control only one node.

Before proving the third theorem we need to state three
technical lemmas.

Lemma 1. Suppose we have a matrix M = M + ibI, which
is a complex matrix with real part M and imaginary part bI,
with b∈R and I an identity matrix. Assume M being invertible
and having no eigenvalues on the imaginary axis. Denote L =
M−1 = L+ iL̄. Then the real part of L is given by

ReL = L = (M+b2M−1)−1. (14)

Proof. See Appendix A.

Lemma 2. Let M be an M-matrix. Let C be a row-vector such
that CM2 > 0. Then

C(M+ tM−1)−1 > 0 (15)

for any t > 0.

Proof. See Appendix B.

Lemma 3. Let M be an M-matrix. Let C be a row-vector such
that CM2 > 0 and CM2Bγ > 0. Then

C(M+ tM−1)−1Bγ > 0 (16)

for any t > 0.

Proof. See Appendix C.

Proof of Theorem 3. Applying the integral controller and
multiplying nominator and denominator by s, the transfer
function of the closed-loop system is given by

W (s) =
κC(sI−A)−1Bγ

s+κC(sI−A)−1Bγ
. (17)

It is sufficient to show that the real part of denominator
is strictly greater than zero in the right half-plane. Since
Res > 0 in the right half-plane, it is enough to show that
Re
{

κC(sI−A)−1Bγ
}
> 0.

Denote Res = α and Ims = β , so matrix (sI − A)−1 =
((αI−A)+ iβ I)−1. Denote M = αI−A. Matrix A is a Metzler
stable matrix, thus (−A) is an M-matrix and matrix M is an
M-matrix too. Moreover, condition CA2 > 0 implies CM2 > 0
and CA2Bγ > 0 implies CM2Bγ > 0. Applying Lemma 1 we
conclude that

ReκC(M+ iβ I)−1Bγ = κC(M+β
2M−1)−1Bγ. (18)

By Lemma 3 C(M + tM−1)−1Bγ > 0 for any t > 0, and
assuming κ > 0 we trivially obtain a sufficient condition on
positivity of the real part of the denominator.
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κ
1
s

C(sI−A)−1B γ

αyd e

y

−

u

Figure 4. Feedback interconnection of passive systems

Lemmas 1-3 allow us to formulate a more general theorem,
applicable to a general SISO linear system:

Theorem 4. Any positive stable SISO system with control
matrix B ∈ Rn×1 and observation matrix C ∈ R1×n such that
CA2 > 0 and CA2B > 0 has a Strictly Positive Real (SPR)
transfer function, thus it is strictly-input passive.

Proof. The SPR transfer function should by definition satisfy
Re{C(sI−A)−1B}> 0 for ReS > 0, see [34], [35]. Therefore
the proof of this theorem follows the same steps as the second
part of the proof of Theorem 3.

From the point of view of linear systems theory, Theorem 4
is the main result of our paper. Indeed, such a simple condition
for passivity for positive systems appears in literature for the
first time.

Moreover, it appears that Theorem 3 is a direct consequence
of Theorem 4, as the following reasoning shows. Assume
we fix an input gain vector γ and define a new controller
output α such that u = γα . Then the system (2) becomes
SISO with respect to input variable α . Define H1(s) = κ/s
and H2(s) =C(sI−A)−1Bγ . It is possible to construct control
loop with feedback interconnection as depicted on Fig. 4.
The closed-loop system input is defined as yd and the system
output is α . It is known that for L2 stability of the system
with feedback interconnection it is sufficient that the transfer
function of one of the blocks is positive real (PR, which is
equivalent to passivity) and another is strictly positive real
(SPR) [34]. Passivity of an integral controller H1(s) is obvious,
and Theorem 4 is used to prove that H2(s) is SPR. Therefore
the closed-loop system is L2 stable. Now, it remains to prove
that y→ yd , which is obvious if one recalls that an output of
a stable system with constant input converges to a constant
value, thus for any constant yd there exists α∗ such that
α→α∗. But convergence of an output of an integral controller
means that its input converges to zero, which reads as e→ 0,
which is exactly y→ yd .

D. Practical use of the theorems

Theorems 1-3 presented in the previous sections provide
the same result, the stability of the closed-loop system (2)
with controller (11). However, they differ in their assumptions.
During the derivation of the controller (11) we assumed that
the system matrices are not known. However, usually one has a
knowledge about some general properties of the system, such
as positivity. These properties can sometimes be induced from
the nature of the problem itself and do not rely on the particular
topology. Therefore the results presented in our work can be
used to analyse the stability based on these properties.

Theorem 1 requires −CA−1Bγ > 0 for the integral controller
to be stable for κ ∈ (0,κ∗). This scalar condition essentially
means that the direction of adaptation of integral controller
forms an acute angle with the zero frequency gain of the
system. In practice one usually knows the direction of the
zero frequency gain. At worst, it is enough to change the sign
of γ once.

Theorem 2 exploits positivity of the system: the zero fre-
quency gain of the positive system is positive. Therefore it is
enough to use positive gains for the integral controller, and the
condition −CA−1Bγ > 0 can be loosened just to −CA−1B 6= 0.
However the gain κ still should satisfy κ ∈ (0,κ∗).

In Theorem 3 the small-gain condition κ ∈ (0,κ∗) is re-
moved at the cost of adding the vector inequality CA2 > 0. This
inequality can be used to determine stability without knowing
the particular matrices for some classes of systems, such as
damped consensus, see the example after Theorem 3. For other
systems, this condition should be interpreted as a constraint
on the system parameters.

In the remainder of this section we will analyse the con-
dition CA2 > 0 more closely. Namely, first of all we will
prove that this condition cannot be relaxed, since weaker
conditions would not assure the stability for all gains. Then,
we will provide some graph-theoretical intuition and rewrite
the condition in terms of quadratic constraint on the node self-
dampings.

If A is a Metzler stable matrix, all elements of A−1 are
nonpositive. Multiplication of a positive vector by a matrix
with nonpositive elements renders negative vector, therefore
right multiplying the condition CA2 > 0 by A−1 one obtains
CA < 0, and the same argument provides C > 0. The condition
CA2 > 0 is new and it is used in the Lemmas 2 and 3
(substituting M =αI−A as in the proof of the theorem). When
one looks at the statement of the Lemma 2, one might think
that it would be enough to require the less restrictive condition
CA < 0 (This condition is obtained from the statement of the
Lemma 2 by letting t → +∞) and has been proposed for the
full state static feedback output control of positive systems by
[33]).

However, let us show that condition CA2 > 0 is significant
and CA< 0 is not sufficient. An example of the positive system
with CA < 0 but CA2 6> 0 would be

A =

−1 0 0
1 −1 0
0 1 −1

 , B =

1
0
0

 , C = 1T . (19)

For this system CA = (0,0,−1), but CA2 = (0,−1,1). We
can then show that this system is not SPR. To check this,
by definition we take a pole in the complex right half-plane
s = 0.01+2i, which results in

ReC(sI−A)−1B =−0.0047. (20)

Since the transfer function value is negative, the system is not
positive real and thus it is not passive. Moreover, there exists
an integral controller which makes this system unstable, for
example one with the control vector γ = 1 (since only one node
can be controlled) and the gain κ = 3 (although with κ = 2
the system is still stable). This confirms our understanding that
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the novel CA2 > 0 condition is meant to ensure stability using
any arbitrary boundary node and arbitrary positive gain κ .

Going deeper to understand topological properties of the
condition CA2 > 0, we first start with more intuitive one, CA<
0, which is implied by CA2 > 0.

Define matrices D and E such that A = E−D, with D being
diagonal and E having all diagonal elements zero. Thus both
D and E have all their entries positive. Matrix E can be viewed
as adjacency matrix of the network, with element Ei j meaning
influence of node v j on node vi. Matrix D consists of the self-
damping powers on the diagonal. Therefore condition CA < 0
reads as CD>CE. This condition states some kind of diagonal
dominance in the network.

Assume some Ci = 0. Then (CD)i = 0 because D is diagonal.
Thus (CE)i should be also zero, which means that for every
index j either C j = 0 or E ji = 0.

Corollary 2. If node vi is not included in the aggregated
output (Ci = 0), then its reachable set should not be included
either.
• For a strongly connected graph this means that all nodes

should be included in the aggregated output.
• If the network is divided into ”boundary” nodes and

”inner” nodes, and the goal is to control the average of
the inner nodes, then at least one of the boundary nodes
should also be included into the average.

In the same manner it is possible to see this condition as a
lower bound on the damping of each node: Dii > ∑ j C jE ji/Ci.
Thus the bigger is the influence of the node’s neighbours in
the output, the bigger should be the node’s damping.

We can use the same decomposition A = E−D in order to
understand the condition CA2 > 0 and conclude that

CE2 +CD2 >C(ED+DE). (21)

Being a quadratic inequality, this condition bounds damping
of each node from above and below with respect to dampings
of other nodes. We will see examples in the following section.

E. Examples for average control

Here we present three examples of networks, namely a star,
a line and an Erdős-Rényi graph, and analyse the condition
CA2 > 0 for them.

1) Network with star topology: To begin with we choose
network with star topology with one central node and n leafs,
average state of which we want to control. Let nodes 1...n be
the leafs and node n+1 be the center. Assume the center and
the first leaf belong to the boundary node set and thus can
be controlled (see Fig. 5). Dynamics of this network can be
written as system (2) with matrices

A =


−1−β 0 · · · 1

0 −1−β · · · 1
...

...
. . .

...
1 1 · · · −n−α

 , B =


0 1
0 0
...

...
1 0

 , (22)

C = 1T/(n+1). (23)

Such choice of system matrices corresponds to the undirected
network with star topology and damping α > 0 for central

xn+1

x1

x2

xn

u1

u2

1

1

1

−α

−β

−β

−β

Figure 5. Network with star topology with n leafs. Boundary nodes in green.

node and β > 0 for all other nodes. The choice of B explores
both cases of controlling leaf and center. It allows for maxi-
mum generality, moreover the controllability is guaranteed by
Corollary 1. Integral controller (11) with γ = (1,0)T would
correspond to the control applied only to the center, and
controller with γ = (0,1)T would correspond to the control
of the first leaf.

Calculating CA and CA2 gives

CA =
(
−β −β · · · −α

)
/(n+1)< 0,

(CA2)1...n =
(
β

2 +(β −α)
)
/(n+1),

(CA2)n+1 =
(
α

2 +n(α−β )
)
/(n+1).

(24)

CA2 > 0 means then α2+n(α−β )> 0 and β 2+(β−α)> 0
with at least one of these inequalities being strict. Solving this
for damping of leaf nodes we obtain√

α +
1
4
− 1

2
6 β 6 α +

α2

n
, (25)

thus β is bounded from both sides with respect to α . Moreover,
as n→∞, we obtain limit inequality β 6 α , which means that
damping for leafs should be lower than damping for the center.

Simulation results for both cases, γ = (1,0)T and γ =
(0,1)T , and for n= 20 leafs are given on Fig. 6, with dampings
α = 2, β = 1.1, desired output value yd = 5 and integral
controller gain κ = 12. On Fig. 6a it is clearly seen that
controlling the central node and controlling the leaf has almost
the same effect on the output y.

2) Line network: Now we explore an example of a directed
line network with n nodes. This network is depicted on Fig. 7.
As usual, we are interested in controlling average state of the
network, and it is assumed that we can control only the input
node x1 of the system. System matrices for n nodes are given
as follows:

A =


−1−β 0 · · · 0

1 −1−β · · · 0
...

...
. . .

...
0 0 · · · −α

 , B =


1
0
...
0

 , (26)

C = 1T/n, γ = 1. (27)
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(a) (b)

Figure 6. Output control of the star network with n= 20 leafs. α = 2, β = 1.1,
κ = 12, yd = 5. (a). Output y for different γ vectors. (b). Spread of states x
for γ = (1,0)T corresponding to the control of the central node. All the leaf
states x1..x20 have the same asymptotic value 4.751 (which is obvious from
the symmetry), while the central state converges to 9.978.

x1 x2 x3 xnu 1 1

−β −β −β −α

Figure 7. Directed line network with n nodes. Boundary node in green

This choice of system matrices corresponds to the directed
line network with damping α > 0 for the last node and β > 0
for all other nodes.

Calculating CA and CA2 gives

CA =
(
−β −β · · · −α

)
/n < 0,

(CA2)1..n−2 = β
2/n > 0,

(CA2)n−1 = (β 2 +β −α)/n,

(CA2)n = (α2 +α−β )/n,

(28)

CA2 > 0 means then α2+(α−β )> 0 and β 2+(β−α)> 0.
Solving this for damping of leaf nodes we obtain√

α +
1
4
− 1

2
6 β 6 α +α

2, (29)

thus β is bounded from both sides with respect to α .
In order to validate the conclusions about this example, we

take directed line networks with 4 and 100 nodes and check
whether they are stable or unstable for different κ .

Fix α = 0.2, therefore for condition CA2 > 0 to hold one
needs

√
0.45− 0.5 6 β 6 0.24. On Fig. 8 simulation results

are shown for κ = 12, yd = 5 and for two values of β , the first,
β = 0.2, satisfies the condition, and the second β = 0.002 does
not. In the case β = 0.2 and n = 100 it is very interesting to
see what are limit values of the state variables x. It appears that
they decrease exponentially starting from the controlled node
x1, while preserving their average equal to yd . This is due to
the fact that in the steady state all node states except the first
one and the last one should satisfy relation xi−1−(1+β )xi = 0.

3) Random Erdős-Rényi graph: Here we present a simula-
tion results for an integral controller for random Erdős-Rényi
graph with n= 4000 nodes and probability of creating an edge
p = 0.01. Vector C = 1T/n represents the average, and the

(a) (b)

(c) (d)

Figure 8. Output control of the directed line network, α = 0.2, κ = 12, yd = 5.
Inset (b). n= 4, β = 0.002. Output y of the network is unstable, CA2 6> 0. Insets
(a), (c), (d). n = 100, β = 0.2. Network is stable. (a). Output y. (c). Spread of
states x. (d). Values of lim

t→∞
xi depending on the number i ∈ {1..100}, which

is the distance from the controlled node.

system matrix A is the negative of a Laplacian of this ER graph
with an additional random damping on every node taken from
the uniform distribution U(6,7) such that CA2 > 0. Matrix
B is chosen to be a random vector of zeros and ones with
equal probability. With such setup for any κ > 0 the system
converges to the desired output reference yd = 5, see Fig. 9.

(a) (b)

Figure 9. Output control of Erdős-Rényi graph for n = 4000 nodes, κ = 250.
(a). Dynamics of output y. (b). Dynamics of states x.

IV. DEVIATION MINIMIZATION

A. Problem motivation

The previous sections showed that the control of average
can be performed rather easily and without any knowledge of
the system. But in some cases controlling the average with
arbitrary control direction γ can lead to a poor performance:
although the average state y→ yd , states themselves can be
very far from yd . As an example one can look at Fig. 8c-d,
where the spread of states x is shown. Although the average
value is 5, most of the states in the steady state are almost
zero, while some states are much larger, around 80.



9

This dispersion between states is captured by the squared
deviation V . The smaller it is, the closer are the states to the
average value.

Therefore, it makes sense to find the control law u = u(y,V )
for the system (2), which solves simultaneously two problems:
assures limt→∞ y(t) = yd and minimizes the squared deviation
V .

Preliminary, let us make the following observation. Con-
trolling the average to the desired value in the steady state
means that the system should satisfy one-dimensional con-
straint −CA−1Bu∗ = yd , thus if the dimension of the steady-
state control vector u∗ is k, there are still k− 1 degrees of
freedom left for optimizing the control direction in sense of
minimization of the squared deviation.

B. Explicit solution

Let us assume that the desired steady state is reached, and
try to find it. Denote x∗ and u∗ as the state vector and the
control vector respectively in the steady state. Also denote
the steady-state squared deviation as V ∗. Then the equations
for the steady state, obtained from the system (2), assuming
y→ yd , are 

0 = Ax∗+Bu∗,

yd =Cx∗,

V ∗ = x∗T Px∗.

(30)

Our problem can be seen as a linear constrained quadratic
minimization problem:

minimize V ∗ = x∗T Px∗,

subject to Ax∗+Bu∗ = 0,
Cx∗ = yd .

(31)

In comparison to the standard linear-quadratic regulator, note
that problem (31) is formulated for the steady state, thus there
is no more dynamics in it, as well as no optimization of the
transient process.

Assume for a moment that all the system matrices are
known. Using the fact that the matrix A is stable, we can
take the inverse and thus obtain the steady state vector x∗ =
−A−1Bu∗. Denoting S = BT A−T PA−1B and η =−BT A−TCT ,
we can write the minimization problem (31) in terms of u∗:

minimize V ∗ = u∗T Su∗,

subject to η
T u∗ = yd .

(32)

Solution for the constrained problem is found using the
Lagrangian:

L(u) = uT Su+λ (ηT u− yd). (33)

Minimizing it over the control variable and solving for the
Lagrange multiplier, we find that the explicit solution to the
minimization problem is given by

λ
∗ =− 2yd

ηT S−1η
,

u∗ =
yd

ηT S−1η
S−1

η ,

x∗ =− yd

ηT S−1η
A−1BS−1

η .

(34)

Without loss of generality we will assume that S is positive
definite for the future analysis.

The solution (34) cannot be used explicitly due to the fact
that the system matrices are assumed to be unknown. But
the next section introduces an algorithm which is able to
stabilize the system in the arbitrary small neighbourhood of
this solution.

C. Extremum seeking for squared deviation minimization

Extremum seeking is a form of adaptive control where the
steady-state input-output characteristic is optimized, without
requiring any explicit knowledge about this input-output char-
acteristic other than that it exists and that it has an extremum
[36], [37]. This algorithm, developed in the first part of XX
century, explores the control space with small oscillations and
provides an approximation of the gradient, which then can be
integrated in order to find the optimum.

In standard realisations of extremum seeking, one adds to
a current control input an oscillating signal, which should
be small and slow in comparison with the system dynamics.
Further, multiplying the output by the same oscillating signal,
it is possible to recover an estimate of the gradient of the
output with respect to the input.

This standard algorithm is unfortunately not usable for us,
since we want to perform a constrained optimization (32) with
a constraint that the average steady state should be equal to
the desired one. However, if we modify the algorithm so to
minimize the Lagrangian (33) instead of the squared deviation
itself, we will optimize the original squared deviation while
preserving the average state constraint. This modification leads
to the introduction of Lagrange multiplier λ , which can be
reconstructed by an additional integrator.

System

1
s

a −κω

r(ωt)

1
s

κaωκλ

u

ū

V

y
−yd

λ

Figure 10. Extremum seeking scheme for constrained minimization

Assume the control law for the system (2) is given by
˙̄u =−κωr(ωt)(V +λ (y− yd)),

λ̇ = κaωκλ (y− yd),

u = ū+ar(ωt),

(35)

where a and κ are small gains, ω is a small frequency,
κλ is a relative Lagrange multiplier adaptation gain, and the
oscillating signal r(ωt) is defined as

r(ωt) =
√

2 ·
(
sin(2πωt) cos(2πωt) sin(4πωt) · · ·

)T
.
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Inputs to this control scheme (Fig. 10) are the output average
y and output squared deviation V . Therefore, the control law
does not use any state feedback or the system matrices. This
is a multi-variable [41] extremum seeking control scheme,
augmented with an additional integrator for the adaptation of
the Lagrange multiplier as in primal-dual method [42], [43]
with κλ being the relative speed of adaptation.

To begin with the proof of the stability of the control scheme
(35), we first present a preliminary analysis, treating ω , κ and
a as ”small” parameters. Assuming ω is small, we define a
new time-scale τ := ωt, which should be slow enough such
that the dynamics of the system (2) is much faster than the
dynamics of the adaptation. Under this time-scale the closed-
loop system equations are

ω
dx
dτ

= Ax+B(ū+ar(τ)),

dū
dτ

=−κr(τ)
(
xT Px+λ (Cx− yd)

)
,

dλ

dτ
= κaκλ (Cx− yd).

(36)

With small ω the singular perturbation analysis [44] can be
performed, thus system dynamics is substituted with its steady-
state input-state mapping, i.e. x∗ = x∗(u) = −A−1Bu. The
reduced dynamics is then approximated by

dū
dτ

=−κr(τ)
[
(ū+ar(τ))T S(ū+ar(τ))+

+λ
(
η

T (ū+ar(τ))− yd
)]
,

dλ

dτ
= κaκλ (η

T (ū+ar(τ))− yd).

(37)

As a next step we introduce an additional time-scale θ := κτ ,
using which the system becomes

dū
dθ

=−r(τ)
[
(ū+ar(τ))T S(ū+ar(τ))+

+λη
T ((ū+ar(τ))− yd)

]
,

dλ

dθ
= aκλ (η

T (ū+ar(τ))− yd).

(38)

This system is periodic in τ with unit period. When κ is
small, the reduced dynamics can be approximated well by the
dynamics averaged over the unit period:

dūav

dθ
=−

1∫
0

{
r(σ)

[
(ūav +ar(σ))T S(ūav +ar(σ))+

+λav
(
η

T (ūav +ar(σ))− yd
)]}

dσ ,

dλav

dθ
=

1∫
0

{
aκλ (η

T (ūav +ar(σ))− yd)
}

dσ .

(39)

Recall that by the definition of r(·) the oscillating sig-
nal has the following properties:

∫ 1
0 r(σ)dσ = 0 and∫ 1

0 r(σ)r(σ)T dσ = I. Then we can rewrite the system:
dūav

dθ
=−2aSūav−aηλav−a2R,

dλav

dθ
= aκλ η

T ūav−aκλ yd ,

(40)

where R =
1∫
0

r(σ)r(σ)T Sr(σ)dσ . It can be seen that 2Su+ηλ

is the gradient of the Lagrangian, thus
dūav

dτ
=−a∇ūavL+O(a2),

dλav

dτ
= aκλ ∇λavL,

(41)

which converges to O(a) of the explicit solution (u∗,λ ∗).
Concretely, analysing steady state we obtain

y∗av = η
T ū∗av ≡ yd ,

λ
∗
av = λ

∗−a
ηT S−1R
ηT S−1η

,

ū∗av = u∗+
a
2

[
ηT S−1R
ηT S−1η

S−1
η−S−1R

]
.

(42)

The rigorous stability proof is based on the notion of semi-
global practical asymptotic stability:

Definition 2 (SPA stability, [45]). Consider the parametrized
family of systems:

ẋ = f (t,x,ε1,ε2, ...,εl), (43)

where x ∈ Rn and parameters of the system εi > 0 ∀i =
1,2, ..., l. The system (43) is said to be semi-globally prac-
tically asymptotically (SPA) stable in [ε1,ε2, ...,εl ] at x∗, if
there exists β ∈K L [46] such that the following holds: for
each pair of strictly positive numbers (∆,ν), there exists ε∗1 > 0
and for any ε1 ∈ (0,ε∗1 ) there exists ε∗2 = ε∗2 (ε1) > 0 and for
any ε2 ∈ (0,ε∗2 ) there exists ε∗3 = ε∗3 (ε1,ε2)> 0, ..., there exists
ε∗l = ε∗l (ε1,ε2, ...,εl−1) > 0 such that for any εl ∈ (0,ε∗l ) the
solutions of (43) with the parameters [ε1,ε2, ...,εl ] satisfy:

|x−x∗|6 β (|x0−x∗|,(ε1 · ε2 · · ·εl)(t− t0))+ν (44)

for all t > t0 > 0, x(t0) = x0 with |x0−x∗|6 ∆.

Remark 1. Note that the order of the parameters [ε1,ε2, ...,εl ]
is very important, because the bound for every parameter
depends on the choice of all previous parameters, i.e. ε∗3
depends on the chosen ε1 and ε2.

Theorem 5. System (2) with applied control law (35) is SPA
stable in [a,κ,ω] at (x∗,u∗,λ ∗).

Proof. First we see that the system (40) is a linear system

with the system matrix M =

(
−S −η

κλ ηT 0

)
, multiplied by a.

The matrix M is stable, which can be shown by analysing its
eigenvalues. Assuming µ > 0 being eigenvalue of M, we show
that the characteristic polynomial can have no roots. By the
Schur complement:

det(M−µI) =
(
−κλ η

T (S+µI)−1
η−µ

)
det(−S−µI).

(45)
Matrix S is positive definite, thus S + µI is also positive
definite. Therefore det(−S−µI) 6= 0, ηT (S+µI)−1η > 0 and
µ > 0, which means that (45) cannot equal zero.

We see that the matrix M have no non-negative eigenvalues,
which means that the system (40) is SPA stable in a.

Then, using Lemma 1 from [45], we see that the system
(37) is SPA stable in [a,κ], and finally using Lemma 2 from
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[45], we conclude that the original closed-loop system is SPA
stable in [a,κ,ω], which concludes the proof.

Note that the stability of the closed-loop system (2)-(35)
heavily depends on the chosen parameters. We proved SPA
stability in [a,κ,ω], which by definition means that the bound
for κ depends on the chosen α , and the bound for ω depends
on the chosen α and κ . Therefore, it is difficult to find any
rigorous bounds for how small these parameters should be. We
can make only heuristic assumptions, such as requiring that all
these parameters should be an order of magnitude smaller than
the system impulse response.
Remark 2 (Additional integral controller). The extremum
seeking scheme (35) can be enhanced by an array of possible
modifications. For instance, an additional integral controller
can be added:

˙̄u =−κaωγ(yd− y)−κωr(ωt)(V +λ (y− yd)),

λ̇ = κaωκλ (y− yd),

u = ū+ar(ωt),

(46)

where the vector γ such that ηT γ > 0 plays the same role as in
the first sections of this paper regarding average control. I.e.
for positive system it is enough to take γ > 0, as in Theorem 2.

Stability proof for the controller (46) follows exactly the
same steps as in Theorem 5, replacing S > 0 by S+ γηT > 0.

This scheme can provide much faster convergence of the
average (see the examples), which means that the bigger
adaptation gains can be used without the possibility for λ to
diverge. The equilibrium point for the averaged reduced model
of the closed-loop system with this scheme is (42), exactly the
same as in the previous case.

There are a lot of other possible modifications of the
extremum seeking scheme that can be usefully included, for
example the high- and low-pass filters that are added to pick
up the adaptation signal [37].

D. Examples for squared deviation minimization

All the algorithms presented before were tested on a graph
constructed as a random Erdős-Rényi graph with n = 40,
probability of creating an edge (with weight 1) p = 0.1 and
self-loops with weight −5. The dimension of the control vector
was chosen k = 3, with matrix B∈Rn×k being filled randomly:
each element was set either to 0 or 1 with equal probability.
Matrices C and P were chosen such that y corresponds to the
average and V to the squared deviation of the states of the
system. Desired value for the average was set yd = 5.

In order to compare the speed of different algorithms we
calculated characteristic times for the dynamics of average
and squared deviation, defined as a negative inverse of the
largest eigenvalue of the closed-loop system. Results of the
simulations of different algorithms are presented in Figures
11-15.

To begin with, we apply the integral controller (11) to
the system, and the dynamics of the average state y and the
squared deviation V are shown on Fig. 11. The gain values
are κ = 1 and γ = [0,0,3]T . It is clearly seen that the squared
deviation V does not reach its minimal value V ∗, although this

controller is the fastest one: its characteristic time is T = 3.84.

(a) (b)

Figure 11. Integral controller (11) for average control, T = 3.84. (a). Average
state y, with black dashed line denoting yd . (b). Squared deviation V , with
black dashed line denoting V ∗.

Now we aim to minimize the deviation of the system states
together with controlling the average. If the extremum seeking
scheme (35) is used, the goal is achieved, and the performance
is shown in Fig. 12. The gain values are ω = 0.1, κ = 2, a = 1
and κλ = 0.01. This scheme is rather difficult to tune and also
very slow, the characteristic time is T = 2350, three orders of
magnitude higher than in Fig. 11. Also, significant oscillations
in y, V and u can be seen even after the convergence of the
system.

(a) (b)

(c) (d)

Figure 12. Extremum seeking control (35), T = 2350. (a). Average state
y, with black dashed line denoting yd . (b). Squared deviation V , with black
dashed line denoting V ∗. (c). Lagrange multiplier λ , with black dashed line
denoting λ ∗. (d). Control vector u, with dashed lines denoting u∗.

To minimize the oscillations in the extremum seeking,
one needs to minimize the gains, but this would lead to
an increased convergence time. Therefore we may try to
improve the extremum seeking controller by adding the time-
dependence to the gains, making them large at the beginning
and decreasing them over time. In adaptation algorithms the
gains should decrease slower than 1/t [47], otherwise the
algorithm does not converge. In the extremum seeking (35)
the gains a and κ are multiplied together, therefore their
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product should decrease slower than 1/t. In this example we
set a = κ = 12

(t/10+1)0.4 together with ω = 0.1 and κλ = 0.01.
Performance of this scheme is shown in Fig. 13. It works much
faster than the original one (the characteristic time is T = 434),
and the oscillations are smaller, although the overshoot is
larger.

(a) (b)

(c) (d)

(e) (f)

Figure 13. Extremum seeking control (35) with the gains decreasing over
time, T = 434. (a). Average state y, with black dashed line denoting yd . (b).
Squared deviation V , with black dashed line denoting V ∗. (c) and (d): Short-
term plots for y and V . (e). Lagrange multiplier λ , with black dashed line
denoting λ ∗. (f). Control vector u, with dashed lines denoting u∗.

Performance of the extremum seeking scheme (46) is shown
on Fig. 14. The gain values are ω = 0.15, κ = 2, a = 1
and κλ = 0.1. With respect to the scheme (35), the gain κλ

can be chosen larger. This leads to the faster adaptation of
the Lagrange multiplier, thus this scheme works faster than
(35). The dynamics for average and deviation now behave
differently due to the additional controller for the average,
therefore it makes sense to find separate characteristic times
for them. The characteristic time for average is just Ty = 3.9,
while for squared deviation it is TV = 732. The parameter of
the integral controller is the same as in the case of the integral
controller for average, κaωγ = [0,0,3]T .

Finally, the implementation of the scheme (46) with time-
decreasing gains is presented in Fig. 15. The parameters are
ω = 0.15, κλ = 0.1, κaωγ = [0,0,3]T , and the dependent gains
are a = 3

(t/100+1)0.4 and κ = 7
(t/100+1)0.4 . It is clearly seen that

this scheme is much faster than all previous ones, with the

(a) (b)

(c) (d)

(e) (f)

Figure 14. Extremum seeking control (46), TV = 732 for squared deviation
and Ty = 3.9 for average. (a). Average state y, with black dashed line denoting
yd . (b). Squared deviation V , with black dashed line denoting V ∗. (c) and (d):
Short-term plots for y and V . (e). Lagrange multiplier λ , with black dashed
line denoting λ ∗. (f). Control vector u, with dashed lines denoting u∗.

characteristic time for squared deviation being TV = 41 and
for average Ty = 18.

We see that the scheme (46) in general works faster that the
scheme (35), but both of them are too slow to compare with
the simple average controller (11). Their performance can be
significantly increased using time-varying gains, although this
leads to a large overshoot at the beginning.

V. CONCLUSION

In this paper, we considered the problem of the control
of aggregates of a large-scale network system (namely, its
average and variance). First we studied a linear output control
problem and examined the general properties of the transfer
functions of the system and the controller. We then studied
the integral controller for the linear output regulation and
formulated sufficient condition CA2 > 0 for the convergence of
any positive integral controller, giving in addition an example
showing the conservatism of this condition. If the system
satisfies this condition, the parameters of the controller can
be chosen arbitrarily, and there is no need to have knowledge
of the state vector or of the values of the elements of the A
matrix. Control of the average state does not mean that the
individual system states will be close to the average state.
Therefore, in addition to controlling the average it is worth
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(a) (b)

(c) (d)

(e) (f)

Figure 15. Extremum seeking control (46) with the gains decreasing over
time, TV = 41 and Ty = 18. (a). Average state y, with black dashed line
denoting yd . (b). Squared deviation V , with black dashed line denoting V ∗. (c)
and (d): Short-term plots for y and V . (e). Lagrange multiplier λ , with black
dashed line denoting λ ∗. (f). Control vector u, with dashed lines denoting u∗.

to minimize the deviation of the system states. To solve this
problem we used the extremum seeking algorithm augmented
with the primal-dual method for the constrained minimization.
The stability of this scheme was proven and its performance,
as well as that of several modified versions, was tested in the
numerical simulations.

To conclude, we would like to further discuss the scope
of application of this work. In the introduction, we argued
that average and deviation can be directly measured in several
practical examples. In an even broader range of cases, how-
ever, average and deviation can be estimated through sampling
some nodes and constructing suitable observers, as recently
illustrated in [27], [48]: the inclusion of such observers in our
control scheme should be a topic of future work.

APPENDIX A
PROOF OF THE LEMMA 1

By the definition of inverse ML = (M+ ibI)(L+ iL̄) = I,
which decomposes into real and imaginary parts:

ML−bL̄ = I,

ML̄+bL = 0.
(47)

From the second equation L̄ = −bM−1L, and substitution of
L̄ into the first equation gives

ML+b2M−1L = I, (48)

which means L =
(
M+b2M−1

)−1.

APPENDIX B
PROOF OF THE LEMMA 2

Denote L(t) = (M + tM−1)−1. We need to prove that
CL(t) > 0 for all t > 0. The idea of the proof is to provide
series expansion for CL(t) such that each term in the expansion
is positive. First the coefficients of Taylor series will be
computed and then summation by parts will be used twice
to obtain series with positive terms. The proof of the Lemma
is separated into subsections A-F.

A. Series expansion

Matrix M is an M-matrix, which by definition means that
there exists some matrix P with Pi, j > 0, ρ(P) < 1 and
scalar s > 0 such that M = s(I−P). Now make the following
transformations:

L(t) = (M+ tM−1)−1 = M(M2 + tI)−1

= s(I−P)
(
s2(I−P)2 + tI

)−1

= s(I−P)
(
(s2 + t)I−2s2P+ s2P2)−1

=
s

s2 + t
(I−P)

(
I− 2s2

s2 + t
P+

s2

s2 + t
P2
)−1

.

(49)

Multiplier s
s2+t is always positive, thus it doesn’t affect the sign

of the result, so in future we will omit it. Now denote α = s2

s2+t .
By definition of t and s this variable satisfies 0 < α 6 1. Case
α = 1 is trivial (it corresponds to the case t = 0), thus often
in the following we will use 0 < α < 1. Then

L = (I−P)
(
I−2αP+αP2)−1

. (50)

We aim to find a coefficients in formal series expansion of L
in the powers of P:

L =
+∞

∑
k=0

LkPk. (51)

B. Coefficients of the series expansion

We can introduce scalar function F(x) which has the same
expansion as (51) and for which recursive computation of
series coefficients is possible. Concretely, define

f (x) =
1− x

1−2αx+αx2 , (52)

where x ∈ [0,1). Writing the same expansion as L:

f (x) = (1− x)
+∞

∑
k=0

(2αx−αx2)k. (53)

At the same time, f (x) can be expanded as Taylor series
centered at 0:

f (x) =
+∞

∑
k=0

f (k)(0)
k!

xk. (54)
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Power series expansion is unique, thus coefficients Lk =
f (k)(0)

k! .
The next step is to determine derivatives of f (x) evaluated

at x = 0. Let us introduce function

g(x) = 1−2αx+αx2. (55)

It is obvious that f (x)g(x) = 1− x. Now take n-th derivative
of this multiplication:

dn

dxn (1− x) =
dn

dxn ( f (x)g(x)) =
n

∑
k=0

(
n
k

)
f (n−k)(x)g(k)(x).

(56)
Function g(x) is a polynomial of the degree 2, thus its
derivatives can be explicitly written:

g(0)(0) = 1, g(1)(0) =−2α, g(2)(0) = 2α, (57)

and all higher derivatives are zero. Moreover, (1−x)(0)(0) = 1
and (1− x)(1)(0) = −1 with all higher derivatives also zero.
Recall that Ln = f (n)(0)

n! . Using (56) we have the following
recurrent relation for Ln:

Ln−2αLn−1 +αLn−2 = 0, ∀n > 2, (58)

with initial conditions L0 = 1 and L1 = 2α−1.

C. Solving the linear recurrent equation

Equation (58) is a linear recurrent equation, which solution
is found by solving the characteristic polynomial

λ
2−2αλ +α = 0. (59)

For 0 < α < 1 roots are complex conjugate pair (λ ,λ ∗) with

λ = α + i
√

α(1−α), |λ |=
√

α. (60)

The general solution to the equation (58) is given by Ln =
Re [zλ n] , where z is a complex value that should be determined
from the initial conditions. From L0 = 1 we simply recover
Rez = 1, and from L1 = 2α−1 it is found that Imz =

√
1−α

α
.

Thus the solution to the equation (58) is given by

Ln = Re

[(
1+ i

√
1−α

α

)(
α + i

√
α(1−α)

)n
]
. (61)

D. Back to the matrix equation

It is established that matrix L can be expressed by the series

L =
+∞

∑
k=0

LkPk, (62)

where Lk are given by (61). Now it is evident that (62) is a
convergent series due to ρ(P)< 1 and |λ |=

√
α < 1.

Coefficients Lk can be both positive and negative, thus in
general matrix L should not be positive. But we want to prove
positivity of the vector CL:

CL =
+∞

∑
k=0

LkCPk > 0. (63)

E. Properties of {CPk} sequence

Now it is time to use the condition CM2 > 0. First of all, M
is an M-matrix, thus for any vector x inequality xM > 0 implies
x > 0. Therefore CM > 0 (and actually C > 0 automatically).

From CM > 0 we obtain C(I−P)> 0, which means C >CP.
Moreover, matrix P is positive, thus multiplying both sides of
this inequality on P preserves it. Thus the order relation holds:

C >CP >CP2 >CP3 > ... > 0. (64)

Therefore sequence {CPk} is monotonically decreasing with
a limit zero (because ρ(P)< 1).

Now let us use the next condition, CM2 > 0. Essentially it
means C(I−P)(I−P)> 0, or (C−CP)> (CP−CP2). Again,
multiplication by P preserves order, so we have

C−CP >CP−CP2 >CP2−CP3 > ... > 0, (65)

or
CPk−2CPk+1 +CPk+2 > 0. (66)

This implies that sequence {CPk−CPk+1} is also monoton-
ically decreasing to zero. In some sense this is equivalent to
the ”convexity” of {CPk} sequence.

F. Summations by parts

For any series

N

∑
k=0

xkyk = xNYN−
N−1

∑
k=0

(xk+1− xk)Yk, (67)

where Yn =
n
∑

k=0
yk. This transformation is called Abel transfor-

mation or summation by parts. We will apply this procedure
twice to obtain series with each term positive.

Denote Hn =
n
∑

k=0
Lk. Then Hn is bounded because Lk consists

of powers of λ with |λ | =
√

α < 1. By ρ(P) < 1 follows
limk→+∞ CPk = 0. Thus limk→+∞ HkCPk = 0 and we can write

CL =
+∞

∑
k=0

LkCPk =−
+∞

∑
k=0

Hk(CPk+1−CPk) =

=
+∞

∑
k=0

Hk(CPk−CPk+1).

(68)

Applying Abel transformation for the second time with

Gn =
n
∑

k=0
Hk, we get

CL =
+∞

∑
k=0

Gk(CPk−2CPk+1 +CPk+2). (69)

Let us calculate Hn:

Hn =
n

∑
k=0

Lk = Re

[
z

n

∑
k=0

λ
k

]
= Re

[
z

1−λ n+1

1−λ

]
, (70)

where λ = α + i
√

α(1−α) and z = 1 + i
√

1−α

α
. Multiply

nominator and denominator by (1−λ ∗):

Hn =
1

1−α
Re
[
z(1−λ

∗)(1−λ
n+1)

]
. (71)
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Product z(1−λ ∗) = i
√

1−α

α
, which is purely imaginary, so

Hn =−Re

[
i

λ√
α(1−α)

λ
n

]
. (72)

Denote w =−i λ√
α(1−α)

and calculate Gn:

Gn =
n

∑
k=0

Hk = Re

[
w

n

∑
k=0

λ
k

]
= Re

[
w

1−λ n+1

1−λ

]
. (73)

Multiply nominator and denominator by (1−λ ∗):

Gn =
1

1−α
Re
[
w(1−λ

∗)(1−λ
n+1)

]
. (74)

Product w(1−λ ∗) = 1, thus this function reads as

Gn =
1

1−α

(
1−Re

[
λ

n+1]) . (75)

By definition |λ | =
√

α < 1, thus Re [λ n] < 1 for any n > 0.
This means that Gn > 0 for any n > 0. Furthermore, by
convexity of the sequence {CPk} for any k > 0 : CPk −
2CPk+1 +CPk+2 > 0.

Thus every term in (69) is greater than zero, which con-
cludes the proof.

APPENDIX C
PROOF OF THE LEMMA 3

As in previous proof, define L = (M + tM−1)−1 and M =
s(I−P). By Lemma 2 CL > 0. Using the series expansion
(69), we can write

CL =
+∞

∑
k=0

Gk(C−2CP+CP2)Pk > 0, (76)

where all Gk > 0. Condition CM2Bγ > 0 reads as

(C−2CP+CP2)Bγ > 0. (77)

Then

CLBγ =
+∞

∑
k=0

Gk(C−2CP+CP2)PkBγ =

= G0(C−2CP+CP2)Bγ+

+
+∞

∑
k=1

Gk(C−2CP+CP2)PkBγ,

(78)

where the first term is strictly greater than zero and all others
a greater or equal than zero. Thus CLBγ > 0, which concludes
the proof.
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