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Figure 1: Examples of word suggestions: a○ Apple Mail on desktop, suggestions are shown both on the touch bar on top of
the keyboard, and underneath the insertion point; b○ iOS Messages on phone; c○ Google Mail on desktop; d○ Google Search
on desktop; e○Windows 10’s SwiftKey keyboard on desktop. Note that on both the touch bar and iOS messages, there is often
only two word suggestions as the left option is used to prevent automatic correction of the word prefix.

ABSTRACT
Suggesting words to complete a given sequence of characters is

a common feature of typing interfaces. Yet, previous studies have

not found a clear benefit, some even finding it detrimental. We

report on the first study to control for two important factors, word

suggestion accuracy and typing efficiency. Our accuracy factor is

enabled by a new methodology that builds on standard metrics of

word suggestions. Typing efficiency is based on device type. Results

show word suggestions are used less often in a desktop condition,

with little difference between tablet and phone conditions. Very

accurate suggestions do not improve entry speed on desktop, but do

on tablet and phone. Based on our findings, we discuss implications

for the design of automation features in typing systems.
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1 INTRODUCTION
Text input is one of the most common tasks on desktops, laptops

1
,

tablets, and phones. Physical and soft keyboards remain the main

input modality for text input even as speech-to-text is an increas-

ingly viable alternative [33]. However soft keyboards, as imple-

mented on most modern phones and tablets, have much lower

entry speeds [27]. As an attempt to improve this, intelligent text en-

try techniques are integrated into typing interfaces; the two most

common are auto correction and word suggestions. This paper

focuses on the latter.

A word suggestion interface has two common forms: an inline

suggestion to complete a partially typed word or a prediction for

the next word; or buttons to enable selection among multiple word

suggestions (e.g. Fig. 1). Inline suggestions are more frequently used

on desktops. Multiple suggestions presented in a “bar” of buttons

just above the keyboard is common on mobile devices, but also

exist on desktops, for example using the Touchbar on some Apple

models. Regardless of interface, suggestions are typically updated

after each keystroke.

Millions of users are daily exposed to word suggestions. Despite

their ubiquity, our understanding of their use, the performance gain

they offer on different devices, and how accurate they need to be

useful, remains incomplete. Understanding how people use these

suggestions, and how their use can be improved, has a tremendous

1
In the rest of this paper, we will often use the term “desktop” to refer both desktop or

laptop computers.

1
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impact not only for industry, but for the text entry research com-

munity. Previous work has shown that current implementations

are infrequently used, with people picking one suggestion every

63 characters [11]. As Palin et al. noted, the efficacy of using word

suggestions is unclear since it has a cognitive and perceptual load:

users have to switch their attention from the keyboard and the

text being typed to attend to the suggestions [27, 31]. They further

argue that the usefulness of word suggestions depends on many

factors, including the efficiency of the text entry method, accuracy

of word suggestions, and user experience. Previous work has mixed

results regarding word suggestion benefits [1, 21], some even found

them detrimental [27, 31, 37]. However, the effect of suggestion

accuracy on usage, performance, and satisfaction remains unclear,

nor has the impact of text entry method efficiency on suggestion

usage been formally investigated in a controlled experiment.

We investigate the relationship between device typing efficiency

and accuracy of word suggestions during text entry in a 36 par-

ticipant mixed-design experiment. Participants performed a text

transcription task. To control for typing efficiency, they used three

different devices, desktop, tablet, and phone. We controlled for accu-

racy between subjects by manipulating how frequently a beneficial

suggestion is presented as the participant types.

Our results show suggestion usage does increase with higher

accuracy, but the resulting text entry speed does not improve much,

and only for the highest accuracy value on mobile devices. Satisfac-

tion, however, was greatly influenced by accuracy. We also found

that natural entry speed without suggestions was a better predictor

of suggestion use than device: fast typists use fewer suggestions

than slow typists, even though fast typists could theoretically save

the same number of keystrokes to further increase their speed.

These results demonstrate that even highly accurate word sugges-

tions will not compensate for inefficient text entry methods, and

are of little benefit for accomplished typists.

2 BACKGROUND AND RELATEDWORK
Before describing our experiment, we summarize related work

about word suggestions and a related topic of acceptable accuracy.

2.1 Word Suggestion Interfaces
Text prediction systems attempt to predict the next word, or the next

few words that a user will type. They may be used for automatic

error correction (“autocorrect”) [7, 13, 15, 40], but our focus is on

their application to word suggestions. Anson et al. differentiate

between two types of suggestions: word completions, which are

suggestions for a partially typed word, and word predictions, which

are suggestions for the next word each time a typist completes a

word [1]. Most word suggestion systems today include both forms,

but most early systems focused on word completion.

Word suggestions were originally designed for Augmentative

and Alternative Communication systems (AAC) to help people

with disabilities to communicate, and most of the early literature

focuses on users with special needs [12, 15, 37]. However, word

suggestions are now ubiquitous on phones [27, 31], and increasingly

implemented in applications for desktop computers too.

On desktop computers, suggestions are generally displayed in-

line with user’s input, after the insertion point (like Google Mail),

or underneath it (like Apple Pages). Fig. 1 shows examples of word

suggestions from commercial systems. If several suggestions are

proposed, they may also be shown in a contextual menu, which

is common in code editors. Most frequently, they are grouped in

a dedicated area, for example a bar displayed at the top of the

keyboard of mobile devices, or on the touch bar of recent Apple

laptops. Typically, three words are suggested, the most likely one

in the middle. However, some systems show more; for example the

Microsoft SwiftKey keyboard
2
on Windows 10 can suggest more

than ten words (see Fig. 1e).

One important aspect of the design of word suggestions is how

frequently they should be updated. Quinn and Zhai investigated

this, and found users prefer suggestions to be updated after each

keystroke even though it slows them down [31]. We implemented

this update strategy because it is how most commercial systems

work today.

Another important aspect of their design is how many sugges-

tions should be shown. Swiffin et al. investigated the effect of the

number of words suggested [35]. They found keystroke saving

started to plateau after 5 suggestions. Later, Venkatagiri found that

while 15 word suggestions reduced the number of keystrokes on an

Augmentative and Alternative Communication program compared

to only 5 suggestions, it had no effect on entry speed [38]. While

it remains unclear how many word suggestions is optimal, most

modern systems propose 3, with the notable exception of Windows

10’s SwiftKey keyboard. In our study, we implemented a 3-word

suggestion bar.

2.2 Word Suggestion Benefits
When correct, a word suggestion provides a shortcut to typing the

whole word, saving keystrokes. However, word suggestions incur

cognitive and perceptual loads that lower these benefits [21, 22,

27, 31]. In fact, analyzing data from 37,370 participants, Palin et al.

found using word suggestions resulted in lower text entry speed

on average [27]. Similar results had been previously observed for

people with physical impairments. For example, in a 1996 study,

Koester and Levine found that even for mouth-stick typing, word

suggestions actually decreased text entry speed for participants

with spinal cord injuries [21]. The authors conclude that the cog-

nitive cost of word suggestions overwhelmed their benefits. One

must note that text prediction algorithms improved since the time

of their study. A more recent study from Wobbrock and Myers

found word suggestions created a significant improvement with

their EdgeWrite trackball text entry technique for special need

users [42].

A different, but interesting effect that word suggestions do have

is that they can change the way users write. For example, Arnold

et al. found the use of word suggestions, or more generally text

prediction, tends to encourage predictable writing [4].

To summarize, previous work indicates that the use of word

suggestions tends to vary across text entry systems, but the effect

of device typing efficiency on suggestion use has not been formally

investigated in a controlled experiment.

2
https://swiftkey.com
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2.3 Acceptable Accuracy
A reasonable question to consider is, “how accurate must word

suggestions be so they are perceived as acceptable and useful?” A

perfectly accurate suggestion system would certainly be very ac-

ceptable. But this implies even the first word would be suggested be-

fore typing anything, and the second word immediately suggested

after that, and so on. Obviously such a perfect system requiring no

user input beyond selecting every first ranked suggestion is impos-

sible. Consequently, users always face a certain level of inaccuracy,

but how much is acceptable before suggestions are ignored com-

pletely and no typing efficiency gained? This question is complex,

since factors other than accuracy can impact word suggestion use,

for example, even a user’s emotions [16].

Word suggestion systems rely on a dictionary of possible words,

and in their simplest form, present words from this dictionary that

are near the word prefix already entered. This basic approach can

be improved further by weighting the likelihood of a word as a

function of its frequency in the target language, and even further

by estimating its likelihood as a function of the previous words

using language modelling [19, 26].

Bi et al. proposed a tool to assess the efficiency of word sugges-

tions and correction algorithms by automatically replaying user

input [10]. However, while it is useful to evaluate accuracy, it can-

not be used to investigate user behaviour when faced with a new

typing system, or more or less accurate suggestions.

The effect of word suggestion accuracy has received little at-

tention in the literature. Notably, Trnka et al. [37] investigated

the effect of two different word prediction algorithms, one “basic”

that relies on frequency of word series, and one “advanced” that

employs natural language modelling. They found the advanced

algorithm significantly improved entry speed with a soft keyboard.

In addition, participants saved 93.6% of the keystrokes that could

be saved with the advanced algorithms, but only 78.2% with the

other. Said another way, the potential of the advanced algorithm

was more utilized than the simpler one. However, Trnka et al.’s

experiment only included word predictions, not word completion.

Also, they did not formally control accuracy, and did not take into

account the effect of the text entry method.

Suggestion algorithms have improved substantially, and more re-

cent works show that better algorithms lead to better performance,

making them worth their cost for people with special needs [37].

Still, these results do not appear to generalize for other populations,

even if many users report they like word suggestions [31]. Banovic

et al. investigated the effect of autocorrect accuracy for spelling

mistakes on phones [7]. They found higher accuracy enables users

to make more typing mistakes, and increase typing speed. They

conclude that improving autocorrect accuracy is worth pursuing.

However, Banovic et al. did not investigate word suggestions, or the

effect of typing efficiency. It remains unclear how accurate word

suggestions need to be to become useful.

From a higher-level perspective, word suggestions are a classic

form of automation. Parasuraman and Riley define automation as

“the execution by amachine agent (usually a computer) of a function

that was previously carried out by a human” [28].When automating

a task, some amount of inaccuracy is practically unavoidable. Low

accuracy unavoidably impacts user trust in the automation, and

as a result, reduces how often users rely on the automation [24,

29, 44]. Kay et al. proposed a survey instrument to measure the

acceptable accuracy of a classifier [20]. They notice that the accuracy
of classifiers is perceived quite differently depending on the function

of their application. For example, the perceptions of a house alarm

texting the owner when a possible intrusion is detected is quite

different than an alarm calling the police. However, they did not

consider the impact of any manual interface control.

Roy, et al. investigated the trade-off between machine automa-

tion and user manual control [32]. They introduced the notion of

controllability of an automated task, which they defined as “how

much a user is ‘in control’ of the process”, and to “what extent

they can control the automation or alter its result”. In other words,

controllability is strongly related to how difficult it is to execute

a task manually. They use a simple synthetic robot placement op-

eration as the automated task, and manipulated the accuracy of

the automation, and the amount of effort required to fix its inac-

curacies using manual controls. Their participants demonstrated a

strong tendency to rely on manual controls to fix the automation

inaccuracies, rather than trying the automation again. We build on

this previous work, but focus on a task where users can choose to

use the automation or not. This is different than Roy et al.’s task

where automation performs the task initially, and users can choose

how to fix its inaccuracies. Our work also explore controllability in

a more ecological automatable task.

3 OPERATIONALIZING THE ACCURACY OF
WORD SUGGESTIONS

In this section, we create a user-centred definition of accuracy for a

word suggestion interface and the method we use to “operational-

ize” word suggestion accuracy as an independent variable in a

transcription task. We adopt the general strategy of Roy et al. who

operationalized the accuracy of their synthetic automation system

by controlling how often it produces a result that achieved the

user’s goal [32]. For example, 50% accuracy means the system could

complete the task for the user half of the time, or could complete

half of the user’s task. In the case of a text transcription task, the

user’s goal is to enter characters. So a word suggestion interface

with 50% accuracy should be able to accurately suggest half of the

characters a user needs to type.

3.1 Accuracy as Keystroke Saving
A common metric to evaluate word suggestion benefits is “key-

stroke saving” (KS) [35–37]. This is the ratio of the number of

keystrokes (excluding edits) that are avoided by using suggestions

(𝑁𝑠𝑘 ), to the number of characters in the phrase (|𝑃 |):

𝐾𝑆 =
𝑁𝑠𝑘

|𝑃 | (1)

3.1.1 Defining word suggestion accuracy. In a transcription task,

we know in advance exactly what will be typed, so we can opera-

tionalize the accuracy of word suggestions around this keystroke

saving definition. We define accuracy 𝐴𝑃 as the maximum key-

stroke savings offered by the suggestions for a phrase 𝑃 with |𝑃 |
characters (including spaces):

𝐴𝑃 = max𝐾𝑆 =
max𝑁𝑠𝑘

|𝑃 | (2)

3
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Table 1: Example of distribution of keystrokes that can be saved for the phrase “the rationale behind the decision ” with
the corresponding computation of phrase accuracy and SD.

the␣ rationale␣ behind␣ the␣ decision␣

maximum saved keystrokes 3 6 2 3 3

accuracy of suggestion (𝐴𝑤 ) 3/4 6/10 2/7 3/4 3/9

Standard deviation of the accuracies for words in the phrase: SD(𝐴𝑤 ) = SD (3/4, 6/10, 2/7, 3/4, 3/9) = 0.22

Accuracy of the phrase: 𝐴𝑃 = 17/34 = 0.5

max𝑁𝑠𝑘 is determined by simulating a user entering text without

errors, and selecting correct suggestions as early as possible (i.e.

as soon as they are available). A word suggestion system with a

high accuracy will show the correct suggestion sooner (ideally after

entering the first letter of a word), compared to a system with a

low accuracy.

In a similar way, the accuracy of a specific suggestion for a

word (𝐴𝑤 ) can be defined as the ratio of the maximum number of

keystrokes that can be saved, to the number of characters in that

word. For convenience, we include a space entered at the end of

the word to be a required character. The main reason is that we

automatically insert a space after each selected suggestion, and this

eases the comparison with words entirely typed using a keyboard

(more details in the results section). Also, in contrast to previous

work [37], keystrokes used to accept suggestions are ignored (for

example tapping on the suggestion bar on mobile devices). This is

because we are interested in measuring the contribution of sugges-

tions independently from the interface technique used to trigger

them. Ignoring suggestion interface keystrokes makes our results

easier to compare with other ways of triggering word suggestions,

for example using a technique that may require several keystrokes,

or the use of a mouse.

3.1.2 Controlling word suggestion accuracy. To control the accu-

racy of word suggestions in an experiment, we have to decide how

many keystrokes should be saved for each word a participant will

have to type. These potentially saved keystrokes determine when

the correct suggestion is first shown as a word is typed. As an ex-

ample, if three keystrokes should be saved from the word “calm␣”,
the correct suggestion would need to appear once the user typed

“ca”, effectively saving keystrokes for “l”, “m”, and the following

whitespace character. If four keystrokes should be saved for the

word “yet␣”, the correct suggestion should be shown as soon as

the previous word is completed. Conversely, if no keystrokes can

be saved, the correct suggestion should never be offered.

How many saved keystrokes should be offered for an entire

phrase (max𝑁𝑠𝑘 ) depends on the expected accuracy for this phrase

(Equation 2). Note that it is often not possible to reach the exact

expected accuracy for a phrase. For example, if there is an odd

number of characters to type, one cannot save exactly half of them.

Distributing the potentially saved keystrokes among the words

of a phrase is not trivial either. Our first approach was to ensure

all words benefit from approximately the same accuracy of word

suggestions: for each word 𝑤 , 𝐴𝑤 ≈ 𝐴𝑃 . Specifically, we made

the standard deviation of the accuracy for words, SD(𝐴𝑤), close
to zero. However, unlike in the real world, the appearance of the

correct suggestion was then highly predictable. Indeed, if for each

word 𝐴𝑤 = .75, the correct suggestion always appeared when

approximately a quarter of the word is typed. Enforcing a higher

standard deviation, SD(𝐴𝑤), makes it uneven, increasing external

validity. Fixing this standard deviation for each phrase, for example

SD(𝐴𝑤) = 0.2, increases internal validity. Table 1 shows an example

of a distribution of potentially saved keystrokes.

To summarize, potentially saved keystrokes need to be dis-

tributed among the words of each phrase so that:

1. The accuracy of the phrase 𝐴𝑃 is as close as possible to the

expected accuracy;

2. The standard deviation of the accuracy for words (SD(𝐴𝑤)) is
as close as possible to a chosen non-zero value, for example 0.2.

A brute force tree traversal algorithm is sufficient to find the distri-

butions optimizing these criteria.

3.2 Suggestion Ranking Evolution
Whenmore than one suggestion is displayed, the position of the cor-

rect suggestion among all the suggestions also needs to be realisti-

cally operationalized. There are two ways to analyze this behaviour

on commercial systems: video recording with image processing,

which is tedious; or directly using a word suggestion API. We ana-

lyzed the behaviour of the Apple macOS Catalina word suggestions

using the NSSpellChecker API [2].

Using the API, we wrote a small utility to log the ranking of

suggested words after each keystroke when a simulated user types

every phrase from Mackenzie and Soukoreff’s set [25] without

errors. To avoid potential adaptation of the suggestion engine, a

default blank macOS user account was used. Analysis of the logs

show that a correct suggestion is often immediately ranked first

the moment it appears, or it very quickly moves up in the ranking.

Also, the length of the suggested word has an effect. the shorter

the length, the fewer the keystrokes required before the suggestion

reaches first rank.

To model the general behaviour of how suggestions transition

through rankings, we compute a matrix of probabilities capturing

the likelihood of a correct suggestion moving from one rank to

another. Given the impact of word length on suggestion rank, we

compute this matrix for each suggestion word length (see examples

in Fig. 2). This created 13 matrices since all words in Mackenzie

and Soukoreff’s phrases are between 1 and 13 characters.

These transition matrices can be used to operationalize the evo-

lution of a correct suggestion’s ranking. For example, if a maximum

of 4 keystrokes may be saved from the word “doctor␣”, “doctor”
will first be suggested after the three letters “doc” have been typed.

4
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Figure 2: Examples of suggestion ranking transition matrices modelling the behaviour of macOS’s suggestion engine. These
matrices were calculated for each possible word length.

According to the second transition matrix of Fig. 2, there is a 39%

probability it is immediately ranked first, 35% second, and 26% third.

If it is ranked third, and the user types “t”, there is a 45% probability

it moves second. Interestingly, at any point in time, there is virtually

no chance the rank of the correct suggestion decreases if the user

types a correct character.

The transition matrices computed from the logs, and source code

for the logger, are available from an associated project page
3
.

4 EXPERIMENT
The goal of our experiment is to investigate the relationship be-

tween typing efficiency, and the accuracy of word suggestions. A

transcription task with word suggestions grouped in a bar interface

is used. Typing efficiency is controlled by varying the device used

for the task: a desktop computer, a landscape-oriented tablet, or a

phone used with one hand. Accuracy is the theoretical maximum

number of saved keystrokes from suggestions using the method just

described, with the placement and evolution of a correct suggestion

in the interface based on transition matrices.

Our analysis focuses on how often suggestions are used as a

function of the two main factors, and also their effect on task per-

formance and user satisfaction. Inspired by Roy et al.’s results [32],

we made the following hypotheses: (H1) Word suggestion usage

increases with suggestion accuracy; (H2) Word suggestion usage

is greater on a phone than a tablet, and greater on a tablet than a

desktop.

Due to emergency measures resulting from the 2020 COVID-19

pandemic, the experiment was facilitated remotely using a web

application and live video-conferencing.

4.1 Participants
We analyze the data of 36 participants recruited using mailing lists

and social networks (ages 18 to 53, average 29.8, sd = 8.3, 13 self-

declared as female, and 23 as male). Participants were required to

have access to a smartphone, a touchscreen tablet, and a laptop

or desktop computer equipped with a physical keyboard using a

QWERTY mapping. They received a $10 gift card for the one hour

study.

Based on a pre-questionnaire, 31 (86.1%) participants reported

spending more than 4 hours typing on a desktop computer in the

past 7 days. Only 2 participants (5.6%) reported similar habits for

tablets, and 12 (33.3%) for phones. Six (16.7%) participants reported

spending more than 1 hour typing with one hand on a phone in the

3
https://ns.inria.fr/loki/WordSuggestions

past 7 days. Regarding their estimated word suggestion usage, 7

(19.4%) participants reported using more than 30 word suggestions

when typing on a desktop over the past 24 hours. On a tablet, no

participants reported having used more than 30 word suggestions

in the past 24 hours, 30 (83%) reported using less than 10. On a

phone, 10 participants (27.8%) reported using more than 30 word

suggestions during the past 24 hours.

At the start of the session, the participant transcribed 10 phrases

without suggestions to measure their natural typing speed. On av-

erage, participants typed 76.5words per minutes (wpm) on desktop

(sd = 0.6), 35.0wpm on tablet (sd = 1.2), and 29.9wpm on phone

(sd = 1.1).

4.2 Apparatus
Participants used their own devices. The average screen diagonal

of their desktop was 424mm (16.7 inches, sd = 6mm), 255mm for

their tablet (10.0 inches, sd = 2mm), and 142mm for their phone

(5.6 inches, sd = 1mm). We were not able to gather statistics about

processing power because of browser security measures.

The experiment software was developed as three parts. A client
web application ran on all devices. This dynamic page guided the

participant through the protocol steps and presented the transcrip-

tion and word suggestion interfaces to complete the measured tasks.

Importantly, the tablet and phone version of the client provided

an embedded keyboard that had to be used. This gave us needed

control over the word suggestions and the bar interface, and con-

trolled the type of keyboard that was used. An administration server
implemented in JavaScript delivered static assets to the client, and

enabled the experimenter to monitor and remotely control the client

to facilitate the experiment and troubleshoot any issues. A sugges-
tion server implemented in Go computed the word suggestions for

the client. All source code is available from the project page
3
.

The embedded client keyboard was designed after iOS and iPa-

dOS’s keyboards (see Fig. 3). On the phone, the Shift technique [39]

was implemented to reduce the effect of occlusion. This shows a pre-

view of the key being pressed on top of the finger, and is consistent

with most implementations of phone keyboards.

4.3 Task
Each trial was a transcription task using phrases from Mackenzie

and Soukoreff’s 500-phrases set [25], which was designed to be

representative of the English language. Participants were instructed

to type as fast and precisely as possible. To insert or modify an

existing character, participants had to delete all characters between

5
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Figure 3: a○ User interface for the experiment, b○ laptop condition, c○ tablet condition, and d○ phone condition. Phrases to
copy appear in the dark grey area in the middle. Participant input appears in the blue box underneath it.

the insertion point and that character using the backspace key (i.e.

they could not use cursor keys or position the cursor by point-

ing). To complete a trial, participants had to transcribe exactly the

stimulus phrase, which required all errors have to be fixed. While

previous study about word suggestions fully prevented errors [31],

recent work showed a user’s aversion for errors has a significant

effect on their typing behaviour [6, 7]. Consequently, we did not

prevent errors in our experiment. Any characters could be entered,

but the phrase set only uses alphabetical characters, mostly lower-

case (99.8%).

Because a whitespace character is appended after each accepted

suggestion, we added a terminal whitespace to key in at the end of

every phrase. This ensures that the suggestion behaviour is equally

beneficial for each word of the phrase, including the last one.

The same basic user interface was used for all devices (Fig. 3).

For tablet and phone, the suggestions bar appeared just above the

keyboard, like commercial interfaces. For desktop, the bar was posi-

tioned at the very bottom of the display, near the physical keyboard

to approximate the position of the Apple Touchbar when used to dis-

play word suggestions. For all devices, the phrase stimulus and text

entry field was positioned near the word suggestion bar. Selecting

a suggestion on phone or tablet used direct touch. On the desktop,

to avoid using the mouse or cursor keys, and to best approximate

the position and action of direct input on a Touchbar, keys 1, 2 and

3 were used to select suggestions. Even if inline suggestions are

more common on desktop, we used a suggestion bar on all three

devices to avoid confounding the experiment.

When typing on the tablet, participants were told to lay it on

a table in landscape orientation. The intention was to enable the

most efficient 10-finger touch typing style for the tablet condition.

When typing on the phone, participants were told to use only their

dominant hand, both to hold the phone, and to type using a thumb.

In addition, they held the phone in the air without supporting their

hand. These constraints were designed to reduce typing efficiency

with phone, in an attempt to explore a larger segment of the typing

efficiency scale. This condition is consistent with real-world habits

of 12.7% of phone users according to a 2018 study [11], and 36%

according to a 2012 study [17].

The accompanying video figure demonstrates the task on all

three devices as well as a task tutorial each participant completed.

4.4 Suggestions
After each keystroke, the current word prefix is sent to a server

that evaluates matching English words. We use Google Android

Jelly Bean’s dictionary [8], and replicate its scoring algorithm [9].

The word with the best score is suggested, with the two following

exceptions:

1. the target word 𝑤 is always suggested as soon as possible, in

accordance to 𝐴𝑤 ,

2. any other suggestions that may save keystrokes are prevented.

As an example to illustrate the second point, assume the next word

the participant has to type is “select” and that this word has

been assigned two potential saved key strokes (𝐴𝑤 = 2/6). At
first, suggesting “selected␣” is prevented as it could save 6 −
3 = 3 keystrokes in total if accepted by the participant: 6 saved

keystrokes because “select” would not need to be typed anymore,

−3 for “e”, “d” and the automatically inserted whitespace that will

need to be deleted. However, once the participant has typed “sel”,
“selected␣” would not save keystrokes anymore as 3 − 3 = 0.

Therefore it would not be prevented if it is ranked high on the

suggestion scoring algorithm.

Our software enforces a minimum 150ms delay before updat-

ing suggestions after each keystroke. In addition, trials for which

this delay exceeded 300ms due to network latency were removed

6
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from the analysis. A 150ms to 300ms delay before suggestions is

lower than the 350ms to 850ms delays we measured with popular

commercial systems
4
, so our study generalizes to more responsive

suggestion systems in the future.

We operationalized the accuracy of these suggestions as dis-

cussed in section 3. However, the ranking evolution slightly devi-

ated from what we modelled due to an implementation inconsis-

tency. This primarily affected the first ranking when the correct

word moved from not being suggested to being suggested and

the ranking of less frequent words with more than 8 characters.

Since our transition modelling captures only one example of many

word suggestion implementations, such a small deviation would

not undermine the ecological validity. In addition, we found sug-

gestions were as likely to be used regardless of their ranking (see

Section 5.1.1). An explanation of the deviation and the exact transi-

tion matrices used in the experiment are available on the project’s

webpage
5
.

We targeted a standard deviation of the accuracy for words

SD(𝐴𝑤) = 0.2 as it is the highest standard deviation value that can

be reached for 𝐴𝑃 = 0.1 or 0.9, according to the König-Huygens

theorem. This is consistent with the Apple macOS NSSpellChecker
API for which we measured SD(𝐴𝑤) = 1.79 on average with 1

suggestion, and SD(𝐴𝑤) = 1.76 with 3 suggestions. We allowed a

margin of error of 0.025 for the accuracy of the phrase (𝐴𝑃 ), and

of 0.1 for SD(𝐴𝑤). Only 6 out of the 1,500 phrase × accuracy

combinations did not allow these conditions to be met and were

removed.

4.5 Procedure
The experiment was divided into two parts. During the first part,

participants measured the size of their three displays, performed a

short 10-trial natural typing speed test without word suggestions,

completed a demographic questionnaire, then went through a short

interactive tutorial demonstrating the task.

The second part of the experiment was divided into three sec-

tions, one for each device condition. Each section had 3 practice

trials, 20 trials recorded for analysis, a subjective questionnaire

(explain in results below), and a NASA-TLX questionnaire [18].

A dedicated interface was used by the experimenter to control

each participant’s progress, and remotely launch the different parts

that composed the experiment.

4.6 Design
We used a mixed design with two independent variables:

• device { desktop, tablet, phone } (within-subject),

• accuracy { 0.1, 0.5, 0.9 } (between-subject).

4
These estimates are by manually inspecting video screen recordings from iOS, iPadOS

and macOS. On macOS, we used the accessibility keyboard to display a copy of the

touch bar on the main screen, allowing it to be recorded. On iOS and iPadOS, we used

the native screen recording feature. Our analysis revealed that 200ms generally elapse

from the moment a character is added to user’s input, to the start of the animation

updating suggestions. On iOS and iPadOS, the update animation lasted from 150ms to

650ms in our recordings; during most of this time, suggestions are not readable. On

macOS, there is no animation. However, the suggestions are not updated after each

keystroke but only when the user pauses for approximately 350ms.

5
https://ns.inria.fr/loki/WordSuggestions

device was within-subject to reduce inter-participant variability.

Its order was counter-balanced using a balanced Latin square. accu-

racy was between-subject to avoid strong carryover order effects if

administered within-subject: a participant first exposed to a low ac-

curacy condition is less likely to use a high accuracy condition after,

with the inverse if exposed to a high accuracy first. accuracy levels

were chosen to explore the full accuracy spectrum. The potential

keystroke saving of state-of-the-art word suggestion algorithms is

less than 46% [14]. We measured 55% (sd = 14%) potential keystroke

saving with Apple’s NSSpellChecker API with one suggestion on

Mackenzie and Soukoreff’s phrase set [25], 65% (sd = 12%) with two

suggestions, and 69% (sd = 11%) with three suggestions.

Participants were assigned to accuracy levels to minimize be-

tween group differences of mean natural entry speeds. The greatest

pairwise difference between accuracy groups was 1.7wpm for

phone, 2.0 for tablet, and 0.5 for desktop. We did not specifically

balance age or gender. In practice, they were relatively well dis-

tributed among accuracy values. The largest average age difference

was 4.4 years between accuracy 0.5 and accuracy 0.1. There were

only 2 fewer females and 2 more males for accuracy 0.1 than across

the two other conditions.

Phrases to copy were randomly sampled without replacement

from the Mackenzie and Soukoreff phrase set [25]. This was specif-

ically designed to contain letter frequencies matching the English

language. Our random sampling has similar letter frequencies to the

entire phrase set, and there is little difference between conditions:

𝑓 (‘e’) = 0.13, 𝑓 (‘t’) = 0.09, 𝑓 (‘o’) = 0.08, and so on. This is also

consistent with letter frequencies in the English language [34].

In summary: we recorded 20 phrase × 3 device × 3 accuracy

× 12 participants per accuracy condition = 2,160 trials.

5 RESULTS
Before analysis, 11 trials out of 2,160 were removed because sug-

gestions took more than 300ms to be updated from the server. Four

additional trials were removed because the webpage lost focus.

All other trials were kept, including trials during which partici-

pants mistyped (errors had to be fixed). We provide the data and

R-markdown analysis notebooks on the project’s webpage
5
.

5.1 Objective Measurements
In the analysis to follow, ANOVA was used. For each measure,

trials were aggregated by participant and factors being analyzed.

Because all measures exhibited non-normality of the residuals, and

non-homogeneity of their variances, we applied an Aligned Rank

Transform beforehand [41]. Tukey HSD post hoc tests were used

for pairwise comparisons of main effects. Interaction Contrasts

were used for cross-factor comparisons in case of interaction.

5.1.1 Suggestion Usage. Suggestion Usage is the mean number of

suggestions used during trials. As illustrated in Fig. 4, suggestions

were used slightly more on phones (1.9 suggestions per trials) than

tablets (1.5), and hardly used at all on desktop computers even

when accuracy was high (0.3). Suggestion Usage increases from less

than 0.5 suggestions per trials at 0.1 accuracy to more than 3.3

at 0.9 accuracy for both tablet and phone. It does not exceed 0.9

suggestions per trials on desktop, even at 0.9 accuracy.

7
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Figure 4: Use and contribution of the suggestions, and entry speed. Effect sizes show .95 confidence interval. The keystroke
saving ratio is the keystroke saving by the accuracy of the phrase.

These observations are supported by statistical test. There is a

significant main effect of device (𝐹2,66 = 80.5, 𝑝 < .0001), with signif-

icant differences between every pairs, all 𝑝 < .0001 except [tablet,

phone] (𝑝 < .05). There is also an effect of accuracy (𝐹2,33 = 32.8,

𝑝 < .0001), with significant differences between all pairs, 𝑝 < .05 for

accuracy [0.1, 0.5], 𝑝 < .001 for accuracy [0.5, 0.9], and 𝑝 < .0001

for accuracy [0.1, 0.9]. Finally, we found a device × accuracy

interaction (𝐹4,66 = 24.4, 𝑝 < .0001). The difference between desk-

top and tablet or desktop and phone is larger for accuracy 0.5

than accuracy 0.1 (𝑝 < .05), for accuracy 0.9 than accuracy 0.5

(𝑝 < .0001), and for accuracy 0.9 than accuracy 0.1 (𝑝 < .0001). No

difference between tablet and phone were found regardless of

accuracy.

We found no effect of a correct suggestion’s first ranking on

Suggestion Usage (𝑝 = 0.59). The correct suggestion was not more

likely to be used regardless whether it was first ranked first, second,

or third in the bar interface.

5.1.2 Keystroke Saving. Each used suggestion does not contribute

equally to the task as they may have been used to save a different

amount of keystrokes. Keystroke Saving is the ratio of number of

saved keystrokes using suggestions excluding editing (𝑁𝑠𝑘 ), by the

number of characters to type (|𝑃 |) [36]:

𝐾𝑆 =
𝑁𝑠𝑘

|𝑃 | (3)

Note that the keystroke saving is at most equal to the accuracy

of word suggestions for the phrase: max𝐾𝑆 = 𝐴𝑃 . Compared to

Suggestions Usage, Keystroke Saving is a more accurate measure of

the added value of word suggestions.

As illustrated in Fig. 4, Keystroke Saving followed a pattern sim-

ilar to Suggestions Usage, but tighter, blurring the differences be-

tween phone (26%) and tablet (22%). Only 5% of the keystrokes were

saved on desktop. Keystroke Saving raises from 2% at 0.1 accuracy

to an average 44% at 0.9. However, it barely reaches 15% on desktop

for 0.9 accuracy, while it exceeds 55% for tablet, and 62% for phone.

These observations are supported by a significant main effect

of device (𝐹2,66 = 66.6, 𝑝 < .0001), with significant differences for

[desktop, tablet], and [desktop, phone] (𝑝 < .0001). There is

an effect of accuracy too (𝐹2,33 = 49.8, 𝑝 < .0001), with significant

differences between every pairs, 𝑝 < .0001 for accuracy [0.1, 0.9]

and accuracy [0.5, 0.9], and 𝑝 < .01 for accuracy [0.1, 0.5]. Finally,

there is a device × accuracy interaction (𝐹4,66 = 28.9, 𝑝 < .0001).

The difference between desktop and phone is larger for accuracy

0.5 than 0.1 (𝑝 < .05), for accuracy 0.9 than accuracy 0.5 (𝑝 <

.0001), and for accuracy 0.9 than 0.1 (𝑝 < .0001). The difference

between desktop and tablet is larger for accuracy 0.9 than for

accuracy 0.5 (𝑝 < .0001), and for accuracy 0.9 than for accuracy

0.1 (𝑝 < .0001). No difference between tablet and phone were

found regardless of accuracy.

5.1.3 Entry Speed. We measured Entry Speed in words-per-minute

(wpm), where “word” means 5 characters [3, 43], calculated as

follows:

𝑆 =
|𝑃 | − 1

𝑇
× 60

5

(4)

|𝑃 | is the number of characters in the phrase to transcribe, and 𝑇

the interval of time in seconds from the moment the first input

character is entered to the moment the transcribed text matches the

target phrase. One character is subtracted from |𝑃 | in the calculation
of Entry Speed because 𝑇 is only measured from the first input

character.

As illustrated in Fig. 4, participants were more than twice as

fast with their desktop (68.2wpm) than with their tablet (32.6wpm)

or phone (30.8wpm). Higher accuracy did slightly increase entry

speed, in particular for the phone and tablet, but its effect was small,

even at its highest. Entry Speed increased from (38.2wpm) at 0.1

accuracy to (50.4wpm) at 0.9.

Statistical support is from a significant effect of device on Entry
Speed (𝐹2,66 = 118.0, 𝑝 < .0001). Pairwise comparisons detected sig-

nificant differences for [desktop, tablet], and [desktop, phone]

(𝑝 < .0001). There is also an effect of accuracy (𝐹2,33 = 8.6, 𝑝 < .0001),

with a single pairwise difference for accuracy [0.1, 0.9] (𝑝 < .001).

5.1.4 Keystroke Saving and Natural Entry Speed. We explored the

correlation between Natural Entry Speed (without suggestions)

measured at the beginning of the experiment, and Keystroke Saving.
Results are shown at the top of Fig. 5. Keystroke Saving decreases

with Natural Entry Speed, regardless of device: Kendall’s taus are
𝑟𝜏 = −.33, 𝑝 < .01 for accuracy 0.1, 𝑟𝜏 = −.62, 𝑝 < .0001 for accuracy

0.5, and 𝑟𝜏 = −.56, 𝑝 < .0001 for accuracy 0.9.

5.1.5 Entry Speed Improvement. Finally, we investigated the effect

of word suggestions on entry speed compared to natural entry

speed. Entry Speed Improvement is the difference in Entry Speed with
suggestions, as measured during the experiment; and Natural Entry

8
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Figure 5: Keystroke Saving (top) and Entry Speed Improvement (bottom) as a function of Natural Entry Speed. Participant S25,
the fastest typist, lost 79wpmwith 10% accurate word suggestions. Unlike other fast typists, they saved 4% of their keystrokes,
i.e. 36% of the keystrokes that could be saved, even as accuracy was very low.

Table 2: Subjective Questionnaire

Dependent Variable Assertion

Perceived Accuracy The word suggestions are accurate

Perceived Keyboard

Efficiency

The use of the keyboard is efficient in this

task

Satisfaction

The controls (keyboard and word sugges-

tions) are satisfactory for the completion of

the task

Suggestion Disruptivity The word suggestions are distracting

Speed, as measured at the beginning of the experiment. Results are

shown at the bottom of Fig. 5. Most of the time, word suggestions

negatively impacted Entry Speed. They were only beneficial for

slow typists and when very accurate. Except for accuracy 0.5, the

faster the typist while typing without suggestions, the more their

entry speed will be reduced with word suggestions: Kendall’s taus

are 𝑟𝜏 = −.36, 𝑝 < .01 for accuracy 0.1, and 𝑟𝜏 = −.50, 𝑝 < .0001 for

accuracy 0.9.

5.2 Subjective Questionnaire
Table 2 provides the questionnaire’s assertions with associated de-

pendent variables. Answers were collected on a seven-point Likert

scale, “Strongly Agree” to “Strongly Disagree”. In the analysis be-

low, “≪” indicates significant difference with 𝑝 < .05 or lower. The

results of our questionnaire scale are shown in Fig. 6.

We also applied an Aligned Rank Transform on our subjective

measurements, which are all ordinal, in order to investigate interac-

tions. TukeyHSD post hoc tests were used for pairwise comparisons

of main effects. Interaction Contrasts were used for cross-factor

comparisons in case of interaction. The results of ANOVA signifi-

cance tests are provided in Table 3.

5.2.1 Perceived Accuracy. Our results demonstrate that the oper-

ationalization of accuracy matches the perception of users. We

found significant Perceived Accuracy differences for the following

accuracy values: 0.1 ≪ 0.5 ≪ 0.9.

5.2.2 Perceived Keyboard Efficiency. This partially supports our

operationalization of typing efficiency. Participants perceive a desk-

top computer as more usable for a typing task than both phone and

tablet. Surprisingly, there is little difference between one-handed

typing on a phone and typing with two hands on a tablet. We found

{ tablet, phone } ≪ desktop.

5.2.3 Satisfaction. Our results show Satisfaction increases with

accuracy, and participants were more satisfied on desktop than

tablet or phone. We found accuracy { 0.1, 0.5 } ≪ 0.9 and { tablet,

phone } ≪ desktop.

5.2.4 Suggestion Disruptivity. Participants found accurate sugges-

tions less disruptive than inaccurate suggestions: accuracy { 0.1,

0.5 } ≪ 0.9.

5.3 NASA-TLX
Few significant results were detected from our NASA-TLX data (see

Fig. 6). The results of ANOVA tests after Aligned Rank Transform

are provided in Table 3. Frustration Level and Physical Demand were

9
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Table 3: Statistical significance of the questionnaire and NASA-TLX of Experiment 3

device accuracy device×accuracy

𝐹2,99 𝑝 𝐹2,99 𝑝 𝐹4,99 𝑝

Questionnaire

Perceived Accuracy 0.32 .73 74.36 <.0001 2.09 .09

Perceived Usability 22.09 <.0001 0.16 .85 0.23 .92

Satisfaction 5.38 <.01 7.61 <.001 1.79 .14

Suggestions’ Disruptivity 2.66 .08 8.73 <.001 1.25 .29

NASA-TLX

Effort 3.56 <.05* 0.40 .67 0.47 .76

Frustration Level 8.01 <.001 0.95 .39 0.75 .56

Overall Performance 1.88 .16 3.05 .05 3.49 <.05

Mental Demand 2.80 .07 1.56 .22 0.31 .87

Physical Demand 8.64 <.001 3.04 .05 1.26 .29

Temporal Demand 2.16 .12 2.76 .07 0.55 .70

*No significant pairwise differences

Perceived Accuracy Perceived Keyboard Efficiency Satisfaction Suggestions' Disruptivity

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

strongly disagree

strongly agree

Accuracy

Device

desktop

tablet

phone

Effort Frustration Level Overall Performance Mental Demand Physical Demand Temporal Demand

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

low

high

Accuracy

Figure 6: Subjective questionnaire (top) and NASA-TLX (bottom) of Experiment 1

both lower with desktop than with phone and tablet: desktop ≪
{ tablet, phone } for both measures.

6 DISCUSSION
Our results demonstrate how reliance on word suggestions not only

depends on their accuracy, but also on typing efficiency. We have

shown that the use of word suggestions, and their contribution to

the completion of a typing task, increases with suggestion accuracy

but decreases relative to how fast it is to type on a device. This

confirms H1 (word suggestion usage increases with their accuracy)

and H2 (word suggestion usage is greater on the phone than tablet,

and greater on tablet than phone). However, we expected partic-

ipants to be able to type much faster with two hands on a tablet

than with one hand on a phone, so we also expected suggestion

usage on a phone to be well below the tablet. We did measure a

significant difference, but we were surprised how small it is. Likely

because of this, we found no significant differences in terms of key-

stroke saving. We believe this is explained because natural entry

speed without suggestions was unexpectedly similar in the two

conditions: 30wpm for phone and 35wpm for tablet. As shown

in Fig. 5, we observed a strong correlation between natural entry

speed and keystroke saving. The slower typing speed with two

hands on tablet compared to one hand on phone is most likely due

to experience and training: our demographic data revealed partic-

ipants were much more used to typing on a phone than a tablet.
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This is also supported by how participants perceived phone and

tablet typing efficiency similarly.

An important take away from H2 is that acceptable accuracy

results may not translate from one typing system to another.

For example, while many studies on word suggestions were per-

formed with Augmentative and Alternative Communication sys-

tems (AAC) [12, 15, 22, 37], their results are not applicable to phones

or desktops. Greater generalizability may only be achieved by con-

sidering typing efficiency.

Our results also show that the effect of accuracy on the contribu-

tion of word suggestions to the completion of a phrase is non-linear:

the lower the accuracy is, the less the potential of suggestions is

put into use (Fig. 4). In the highest accuracy condition of our ex-

periment (accuracy 0.9) suggestions were used at 50% of their

full potential across devices, up to 70% on the phone. However, for

levels accuracy 0.1 and 0.5, only 15% of the keystrokes that could

potentially be saved with suggestions were actually saved. And this

was a very low 5% on desktop.

This hints that most users get a sense of how much suggestions

can help them. They tend to disregard them if accuracy is low or if

they can type quickly, but they use them more if accuracy is higher

or if they type slowly. In a more systematic way, this confirms

previous work. Buschek et al. observed that suggestion use was

highly individual [11]. Later, Palin et al. note that slower typists

use more suggestions [27].

Beyond usage, even if keystroke saving steadily increases with

word suggestion accuracy, the effect is smaller than that observed

by Banovic et al. with automatic error corrections [7]. In fact, our re-

sults indicate that word suggestions are almost always detrimental

to entry speed except for a slow typist when accuracy is very high

(see Fig. 5). It is worth noting that the potential keystroke saving of

state-of-the-art word suggestion algorithms from the literature is

less than 46% [14]. However, we measured 55% potential keystroke

saving with Apple’s NSSpellChecker API when one suggestion

was provided for phrases in the Mackenzie and Soukoreff set, and

69% with three suggestions. However, subjective ratings expose

a slightly different pattern: satisfaction increases with accuracy,

even in the lower accuracy range where it does not improve per-

formance. This trend confirms previous observations from Quinn

et al., who noticed that users value assistance, even when it im-

pedes their performance [30]. A higher-quality dictionary will

increase accuracy, for example one that becomes tailored to phrases

commonly used by the typists. Our results suggest that this may

increase user satisfaction, but it may not create a real benefit in text

entry performance.

From a higher level perspective, as discussed in section 2.3, au-

tomating, or partially automating a user’s task is often done with

the intention to improve usability. Word suggestion interfaces are

an instance of such automation. The success of an automation de-

pends on its purpose, but also its accuracy. The question is, how

accurate does it need to be? Roy et al. showed that both automation

accuracy and the “controllability” of a manual interface impact how

users choose to fix automation inaccuracies [32]. Our results can be

integrated in this framework, and tend to confirm their results: the

more usable a manual interface is, the less an automation system

will be used even if it is highly accurate. In our case, the manual

interface is the keyboard, and the automation is the word sugges-

tions. We suspect this pattern likely generalizes to other common

interfaces and tasks beyond word suggestions and text entry.

Overall, our results further show that dedicating resources to

improving usability is always a winning bet for user performance.

While improving accuracy will result in higher satisfaction, it may

not ultimately increase performance, and more critically, it is un-

likely to compensate for poor usability like poor typing interfaces or

devices. In the context of word suggestions, academic and industry

resources may be best allocated for optimizing input efficiency—

for example with the help of faster text entry techniques such as

ShapeWriter gesture typing [23]—rather than improving word sug-

gestions. This has important implications for the design of related

text entry techniques used on millions of devices.

7 LIMITATIONS
While the deviceswe used have strong ecological validity, it does not

provide a formal control for levels of typing efficiency. Considering

natural entry speed helps, but we could not control it either. A more

controlled and synthetic experiment that tightly controls typing

efficiency would further contribute to our understanding of the

impact of typing efficiency on suggestion usage and entry speed.

Some participants reported being less efficient than usual with

the keyboard integrated in our mobile application because it differs

from the one they are used to use with their device. While this does

not put into question our pattern of results, and we did measure

natural entry speed using our keyboard, it indicates the entry speed

measured in our experiment under-represents the population of

trained typists on phone and tablet.

Operationalizing accuracy may sometimes feel surprising to par-

ticipants. In the 0.9 condition, some noted the word suggestions

were “unnaturally accurate”. On the contrary, in the 0.1 condition,

some indicated they felt like the system was avoiding the correct

word on purpose (it was). A few participants also noted the system

would occasionally not suggest common words, like “the”; and
surprisingly, it would correctly suggest much less common words,

like “racketball”. This reveals an unavoidable bias in our partic-

ipants regarding their prior experience and expectations of word

suggestion systems.

Finally, this experiment investigated a suggestion bar, but word

suggestions may be presented in different ways. For example, on

a desktop, suggestions are often inline with the document input,

after or under the insertion point (see Fig. 1). It remains unclear if

the use of inline suggestions follows the same pattern as our results.

In addition, suggesting more than three words increases the chance

of suggesting the right one, and as a result increases accuracy.

However, a previous study showed it also increases cognitive load,

quickly offsetting the benefits [35, 38].We investigated a three-word

suggestion bar in our experiment, though in practice, commercial

systems often show only two suggestions. The first position on

the bar is often used to validate the word prefix as it currently

is, preventing automatic correction that would otherwise trigger

if the user pressed space (see Fig. 1a and 1b). It remains unclear

how varying the number of suggestions would impact the trend

we observed.
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8 CONCLUSION
On desktop computers, we found word suggestions never improve

entry speed, even when extremely accurate. They do on phones

and tablets, but typically only when accuracy is very high. How-

ever, accuracy improves user satisfaction. These results have direct

implications for the design of typing systems, and could justify

prioritizing decisions and resources for industry and research.

An important take away from our work is that a useful accuracy

for word suggestions strongly depends on the device used to type.

This is implies that results for the acceptable accuracy of word

suggestions does not generalize from one typing system to another,

unless typing efficiency is considered.

Our results also open directions for future work. For example,

the effect of standard deviation of the accuracy for words remains

unclear. Smaller values may help users better estimate when an

appropriate suggestion will become available. Likewise, some mod-

ern suggestion algorithms propose not only a single word, but an

entire sentence [5]. This is powerful but difficult to do accurately.

The effect of this strategy, and its accuracy on suggestion use, have

yet to be formally investigated.
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