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Abstract: Waves propagate in a free-surface ocean due to compressibility and gravity (and surface
tension at much smaller scale). Analytical solutions have long been derived independently for acoustic
and gravity waves, i.e., acoustic waves or internal-gravity rays in an unbounded ocean, surface-gravity
waves in a free-surface-ocean, and acoustic or internal modes in a bounded ocean. In the present
study, surface tension and earth-rotation are neglected and a simple, unified model based on inner
and boundary dispersion relations is derived for waves propagating in a compressible, stratified, free-
surface ocean. Branches of acoustic gravity wave solutions are identified and visually analysed in phase-
space. Taylor developments are then carried out with respect to small parameters describing stratification
and compressibility and are compared with numerical approximations of the intersection of inner and
boundary dispersion surfaces. Finally, the model recovers the known approximations for swell, long-
surface waves, internal-gravity rays, internal modes, acoustic waves or acoustic modes, and also provides
modification of these solutions due to stratification and compressibility. Two peculiar regions of the
acoustic-gravity wave phase-space are more specifically highlighted and studied in details: one for long
waves shedding new light on the distinction between surface waves and low-order internal modes, the
other for marginally stable surface waves of intermediate length-scale.

*Corresponding author: francis.auclair@aero.obs-mip.fr
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1 Introduction

Many types of waves are known to propagate in the ocean, and textbooks (LeBlond and Mysak, 1981;
Gill, 1982; Pedlosky, 2013) have detailed the derivation of their analytical solutions for decades. These
waves can be classified in several categories depending on the type of mechanisms directly involved
in their propagation. Neglecting Earth’s rotation and associated planetary waves, two fundamental
categories are of particular interest in the present study: acoustic (sound) waves, which are a consequence
of ocean compressibility, and gravity waves, which are sustained by the gravity force. Table 1 gives
a short (and necessarily incomplete) list of such waves. A particular type of waves is most often
characterized by a space-time dispersion relation, linking its time frequency (or period) with its space
wave-number (or wavelength). The phase and group velocities and wave dispersion capacity can be
derived from the dispersion relations.

Waves Assumptions Angular frequency
(Ω)

Vertical
wave-number

(kz)

Acoustic waves Compressible,
unbounded

Ω2
aw = c2

s(k2
x + k2

z ) independent

Internal gravity rays Stratified, unbounded Ω2
igr =

N2k2
x

k2
x + k2

z
independent

Acoustic gravity modes Compressible, bounded Ω2
am = c2

s(k2
x + k2

z ) kz,am =
π

2H
+

mπ
H

Swell Free-surface Ω2
sw = gkx tanh(kxH) kz,sw = kx

Swell (long) Free-surface Ω2
lsw = gH k2

x kz,lsw = kx

Shallow water waves Free-surface, shallow Ω2
shw = gH k2

x kz,shw = 0

Internal gravity modes Stratified, bounded Ω2
im =

N2k2
x

k2
x + k2

z
kz,im =

nπ
H

Table 1: simplified models of ocean waves and modes and their dispersion relations in a vertical section,
for an unbounded ocean (top) and for a bounded ocean (bottom). Ω is the angular frequency of the wave,
kx and kz are the horizontal and vertical wave-numbers, g is the acceleration of gravity, H a reference
depth, N a reference Brunt-Väisälä angular frequency and cs the speed of sound. n and m are two strictly
positive integer numbers.

If ocean waves are short enough and generated far enough from the surface and bottom boundaries,
they can propagate in the ocean as in any unbounded medium. However, when their wavelengths
are large compared to the ocean depth, ocean waves are known to take specific forms, and the ocean
basin is a wave-guide propagating wave modes. For example, the ocean stratification introduces internal
gravity modes with "long" horizontal wavelengths. Another example is given by the acoustic modes
which are associated with compressibility effects (Jensen et al., 2011) and which have been recently
revisited (Smith, 2015). Such internal and acoustic waves are qualified as "modes" because their vertical
wavelength is constrained by the vertical extend of the domain. The ocean free-surface is permanently
shaken by a myriad of horizontally propagating waves and it is not always clear whether these waves
are modes or just vertically-evanescent edge-waves. Capillary waves, swells, tidal waves, tsunamis are
well-known examples of such free surface waves.
Deriving a dispersion relation for acoustic waves or for internal wave rays in an unbounded ocean is
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rather straightforward. The method generally includes two steps: small amplitude is assumed; only
specific wave-restoring mechanisms and medium characteristics are retained in the simplest possible
wave dispersion model (compressibility and pressure force for acoustic waves, gravity and vertical
advection of isopycnal surfaces for internal waves). The linear nature of the resulting model has two
main advantages: analytical solutions can be derived more easily and waves can be superimposed without
interactions (Lighthill, 1967).
The introduction of a free-surface brings more complexity. Small-amplitude is usually postulated in
this case also and both gravity and free-surface motions are retained in the dispersion model. However,
surface waves are "edge waves" propagating at the interface between the atmosphere and the ocean, and
the surface kinematic relation (the free-surface general boundary condition) leads to a transcendental
dispersion relation with trigonometric terms. As a result, deriving analytical solutions requires further
simplifications. Specific analytical solutions can then be found in the literature depending, for example,
on relative depth, i.e., the product of horizontal wave-number kx and ocean depth H (Table 1). Long
gravity waves are particular solutions of small aspect ratio kxH, well-known to propagate horizontally
with

√
gH phase and group velocities (where g is the acceleration of gravity and H a reference depth).

Such waves occur in at least two contexts. Shallow-water waves (SHW) are propagating solutions
of shallow-water models, their vertical wave-length is then viewed as infinite (much larger than their
horizontal wave-length). Long swells (LSW) are also propagating with the same phase and group
velocities but, in this case, they retain some of the properties of swells and their horizontal and vertical
wave-lengths have in particular similar magnitudes.
SHW and LSW are often considered as similar since their wave velocity (Ω/kx) are equal. However
due to the underlying assumptions made in the models leading to these solutions, LSW have equal
horizontal and vertical wave-numbers (kz,lsw = kx) whereas SHW have a vanishing vertical wave-number
(kz,shw = 0).
The derivation of mixed acoustic-gravity waves in an ocean bounded by a free surface is even more
challenging and is the central subject of this paper. The main objective is to specify the effect of
compressibility and stratification on the preceding particular cases of wave solutions. Another target
is to found analytical solutions to validate recent developments of the CROCO ocean model, resolving
nonhydrostatic equations based on a pseudo-compressible approach (Auclair et al., 2018).
Dukowicz (2013) tackled this problem and proposed a review of "Various approximations in atmosphere
and ocean models based on an exact treatment of gravity wave dispersion". In that paper, acoustic-
gravity waves were shown to satisfy a system of two dispersion relations and the impact of several usual
assumptions of ocean models was evaluated. The present study builds on Eckart (1960) and Dukowicz
(2013)’s results and more specifically focuses on the impact of both stratification and compressibility
on acoustic-gravity wave solutions in the ocean: Taylor expansions of dispersion relations and resulting
expressions for wavelength and angular frequency are derived in terms of compressibility and stratification.
In addition, we show that free-surface can be dealt in an Eulerian framework with the same order of
precision as in Dukowicz (2013). A systematic graphic analysis of wave solutions is proposed in 3D
angular frequency/wave-number phase-space, unfolding their dependency to the vertical wave-number.
The graphic presentation allows to synthesize all possible connections between usual acoustic, internal
and surface wave solutions. Surface waves are systematically studied together with internal and acoustic
modes. Long-wave solutions are investigated in details and approximate parametric relations are derived
for each type of wave. Acoustic modes are discussed in the frame of classical ocean acoustics (Jensen
et al., 2011) and additional "poles" (singularities) of the dispersion relations induced by stratification
and gravity are found. A peculiar region of phase-space is also identified where surface acoustic-gravity
surface wave are "marginally stable" and gravity and compressibility are both important.
In the section 2, a linear model of ocean wave propagation is proposed with bottom and surface boundary
conditions, and a corresponding system of two dispersion relations (which will be called inner and
boundary dispersion relations) is derived. The inner dispersion relation, which does not take into account
the bottom and surface boundary conditions, is studied in details in Section 3, and the wave solutions
propagating in an unbounded ocean are investigated. Waves propagating in a bounded ocean, which also
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have to satisfy the boundary relation dispersion, are then studied in Section 4. Conclusions are drawn in
Section 5.
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2 Linear model for surface and internal acoustic-gravity waves

2.1 General model for a compressible, viscous ocean

Ocean dynamics can be described with a small number of macroscopic variables: velocity (v), pressure
and density (p and ρ), temperature and salinity (T and S ). In a Cartesian framework, the general
equations governing the motion of a compressible, viscous ocean are then:

∂ρ

∂t
= −∇ · (ρv) (1a)

∂ρv
∂t

= −∇ · (ρv ⊗ v) − 2ρ Ω x v − ∇p + ∇ ·
(
µ(∇v + ∇v T ) + µ2(∇ · v) I

)
+ ρg (1b)

∂ρT
∂t

= −∇ · (ρTv) + ∇ · κT∇T (1c)

∂ρS
∂t

= −∇ · (ρS v) + ∇ · κS∇S (1d)

ρ = ρ(T, S , p) (1e)

where I is the identity matrix, superscript T indicates transposition, µ and µ2 are the kinetic and bulk
(or second) viscosities, Ω is earth angular velocity , κT and κS are the heat and salt diffusivities. These
equations are written in a conservative form. They specify basic conservation principles: conservation of
mass for Equation (1a), conservation of momentum for Equation (1b) and conservation of heat and salt
for equations (1c) and (1d). Equation (1e) is a functional relation describing the thermodynamic equation
of state (EOS).
At the bottom (z = −H) and surface (z = ζ) of the ocean, boundary conditions must be specified for each
variable (or for its derivatives). A simple condition of no penetration and no-slip at the ocean flat-bottom
can be written:

v(xH, z = −H, t) = 0 (2)

Neglecting surface-tension pressure drop, surface pressure is given by:

p(xH, z = ζ, t) = patm (3)

with patm the atmospheric pressure imposed at the surface of the ocean. Surface capillarity waves are
consequently filtered out and will be neglected in the remaining of this work.
Relation (2) corresponds to Jensen et al.’s "hard-bottom condition" with no propagation nor penetration
of acoustic waves in sediment and geologic layers beneath the ocean floor (Jensen et al., 2011). The
authors additionaly recover Relation (3) by assuming that the atmosphere behaves as a vacuum medium
for acoustic waves. This means that acoustic waves propagating from the ocean toward the ocean floor
or toward the atmosphere are integrally reflected back to the ocean.
The surface kinematic condition expresses the motion of the free-surface and relates the free-surface
anomaly ζ to the surface vertical velocity w:

dζ(xH, t)
dt

= w(xH, z = ζ, t) (4)

This kinematic boundary condition allows the propagation of surface gravity waves.

2.2 EOS based on pressure and density decomposition

Waves are defined as small disturbances to a motionless thermodynamic equilibrium state, and both
pressure and density can be decomposed into an equilibrium component and a small increment. In
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addition, as a first approximation, the impact of atmospheric pressure patm can be neglected — it can
take an active part in wave generation, but only plays a minor role during propagation.
The usual decomposition is now formalized for pressure (5a) and density (5b):

p(x, t) = patm(xH, t)︸      ︷︷      ︸
≈0

+g
∫ ζ

z
ρh(xH, z′, t) dz′

︸                                     ︷︷                                     ︸
ph(x,t)

+δp(x, t)

= g
∫ ζ

z
ρ̂h(z′) dz′︸             ︷︷             ︸
p̂h(z)

+ g
∫ ζ

z

(
ρh(xH, z′, t) − ρ̂h(z′)

)
dz′︸                                  ︷︷                                  ︸

p′h(x,t)︸                                                           ︷︷                                                           ︸
ph(x,t)

+ δp(x, t) (5a)

ρ(x, t) = ρ̂TS (z) + ρ′TS (x, t)︸                ︷︷                ︸
ρTS (x,t)=ρ(T,S ,p=0)

+
1
c2

s

(
p̂h(z) + p′h(x, t) + δp(x, t)

)
︸                                 ︷︷                                 ︸

∂ρ/∂p|T,S p(x,t)

+ O(p2)

≈ ρ̂TS (z) +
p̂h(z)

c2
s︸            ︷︷            ︸

ρ̂h(z)

+ ρ′TS (x, t) +
p′h(x, t)

c2
s︸                  ︷︷                  ︸

ρ′h(x,t)︸                                          ︷︷                                          ︸
ρh(x,t)

+
δp(x, t)

c2
s

(5b)

with ∂ρ/∂p|T,S = c2
s at constant temperature and salinity , ∂ p̂h/∂z = −ρ̂h(z)g, ∂p′h/∂z = −ρ′h(z)g.

The first decomposition p = ph + δp is defined by an hydrostatic component ph and a nonhydrostatic
pressure increment δp. It is based on a division of the pressure field into a slow varying component in
hydrostatic equilibrium and a fast varying nonhydrostatic component. Density can then be obtained from
the EOS (1e) and a first-order Taylor development is carried out for small total pressure. Its Lagrangian
evolution can be directly related to the Lagrangian evolution of pressure under the assumption of heat
and salt conservation (dρTS /dt = 0):

dρ
dt

=
dρTS

dt
+

1
c2

s

dp
dt

=
1
c2

s

dp
dt

(6)

The Brunt-Väisälä angular frequency for a compressible ocean (Gill (1982), p169) is defined by:

N2 = −g/ρ̂h(z)∂ρ̂h/∂z − g2/c2
s (7)

Note that ρ̂h(z) includes compressibility effects but not N2.

2.3 Linear inviscid, non-rotating wave model

In the following, Coriolis pseudo-force is neglected whereas viscosities and diffusivities µ, µ2, κT and κS

are supposed to vanish. Combining mass conservation (1a) and equation of state (8):

−ρ∇ · v =
1
c2

s

dp
dt

(8)

Without loss of generality, the present study can now be restricted to the (O, x, z) vertical plan to simplify
notations. Equation (8) can then be expanded to:

−ρ

(
∂u
∂x

+
∂w
∂z

)
=

1
c2

s

(
∂p
∂t

+ u
∂p
∂x

+ w
∂p
∂z

)
(9)
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A Taylor expansion of model equations can now be carried out in the vicinity of the reference profiles
( p̂h(z), ρ̂h(z)) and of a resting fluid (u = w = 0). Small amplitude wave-induced increments are given by
δV = (p′h + δp, ρ′h + δp/c2

s , u, w). At first order in δV , conservation of mass and vertical advection of
pressure and density can be rewritten. The left-hand side of (9) becomes:

−ρ

(
∂u
∂x

+
∂w
∂z

)
= −

(
∂ρ̂hu
∂x

+
∂ρ̂hw
∂z
− w

∂ρ̂h

∂z

)
+ O(δV2)

while the right-hand side of (9) becomes:

1
c2

s

(
∂p
∂t

+ u
∂p
∂x

+ w
∂p
∂z

)
=

1
c2

s

(
∂p
∂t

+ w
∂p̂h

∂z

)
+ O(δV2) =

1
c2

s

(
∂p
∂t
− ρ̂hgw

)
+ O(δV2)

leading to:

∂p
∂t

= −c2
s

(
∂ρ̂hu
∂x

+
∂ρ̂hw
∂z

)
+

(
g +

c2
s∂ρ̂h(z)/∂z
ρ̂h(z)

)
︸                 ︷︷                 ︸

−c2
s N2/g

ρ̂hw + O(δV2) (10)

At first order in δV , pressure at z = 0 can be related to the free-surface anomaly through the hydrostatic
relation:

p(z = 0) = ρ̂h(0)gζ + O(δV2) (11)

and the kinematic boundary condition can be rewritten for pressure:

∂p
∂t

(z = 0) = gρ̂h(0)w(z = 0) + O(δV2) (12)

Based on the pressure and density decomposition proposed in §2.2, a simpler, inviscid, linear, rotation-
free p−ρmodel can be used to model acoustic, internal and surface waves. At first order in wave-induced
increment δV , the conservation of momentum and mass and the EOS read:

∂ρ̂hu
∂t

= −
∂p
∂x

(13a)

∂ρ̂hw
∂t

= −
∂p
∂z
− ρg (13b)

∂ρ

∂t
= −

(
∂ρ̂hu
∂x

+
∂ρ̂hw
∂z

)
(13c)

∂p
∂t

= −c2
s

(
∂ρ̂hu
∂x

+
∂ρ̂hw
∂z

)
−

c2
s N2/g︷       ︸︸       ︷(

c2
s

D(z)
− g

)
ρ̂hw (13d)

with the (flat) bottom and surface conditions:

w(z = −H) = 0 (14a)

∂p
∂t

(z = 0) = ρ̂h g w(z = 0) (14b)

Following Dukowicz (2013), a vertical length scale (written D(z)) associated with stratification is defined

by D(z) = −
ρ̂h(z)

∂ρ̂h(z)/∂z
= 1/

(
N2(z)

g
+

g
c2

s

)
.
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2.4 General propagation equation and polarization

Form of wave solutions. Dispersion relations can be derived by postulating and specifying the wave
form. Horizontally-propagating surface waves, wave modes propagating in the ocean wave guide, internal
wave rays and acoustic waves all satisfy the following "polarization" relations:

ρ̂hu
ρ̂hw
ρ

p

 =


Ũ(z)
W̃(z)
ρ̃(z)
p̃(z)

 ei(kx x−Ωt) (15)

where kx and Ω are respectively the horizontal wave-number and wave angular frequency.

Inner propagation equation & polarization. Relations (15) can be introduced in the propagation
model (13a)-(13d). After some lengthy developments, an ordinary differential equation can be obtained
for W̃(z):

W̃′′(z) +
1

D(z)
W̃′(z) +

(
k2

x
N2 − Ω2

Ω2 +
Ω2

c2
s
−

D′(z)
D2(z)

)
W̃(z) = 0 (16)

Assuming for now that Ω2 , c2
sk2

x (this particular case is studied in §(2.6) ), the following polarization
relations must be satisfied:

Ũ(z) = −ikx
(c2

s − gD(z)) W̃(z) + c2
s D(z) W̃′(z)

D(z) (Ω2 − c2
sk2

x)
(17a)

ρ̃(z) = −i
k2

x (c2
s − gD(z)) W̃(z) + Ω2D(z)W̃′(z)

D(z)Ω (Ω2 − c2
sk2

x)
(17b)

p̃(z) = −iΩ
(c2

s − gD(z)) W̃(z) + c2
s D(z) W̃′(z)

D(z) (Ω2 − c2
sk2

x)
(17c)

Boundary dispersion relations. The polarization relations must also be substituted in the surface
boundary condition (14b), leading to:

−iΩ p̃(0) = gW̃(0) (18)

or, using (17),

W̃′(0) +

(
1

D(0)
−

gk2
x

Ω2

)
W̃(0) = 0 (19)

Note that this differs from the surface boundary condition usualy found in textbook (e.g. (Gill, 1982)) is
given by

W̃′(0) −
(
gk2

x

Ω2

)
W̃(0) = 0. (20)

Equation (19) is identical to Eq. 71 of Dukowicz (2013) who suggests that the term 1/D(0) can only
result from governing equations formulated in a Lagrangian vertical coordinate to properly account for
the surface boundary condition. Our result contradicts this statement since the term also appears in the
Eulerian coordinate system when no incompressibility nor Boussinesq approximation is made.

The boundary condition at the ocean floor is given by:

W̃(−H) = 0. (21)
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Change of variables. First-order terms can be removed in the ordinary differential equation (16) and
further developments can be simplified by making the following change of variable :

W̃(z) = W̃(0) F(z) e
∫ 0

z
dz′

2D(z′) (22)

with F(0) = 1. Substituting this relation in (16) leads to a second-order ordinary differential equation for
the unknown function F(z):

F′′(z) +

(
k2

x
N2 − Ω2

Ω2 +
Ω2

c2
s
−

1 + 2D′(z)
4D(z)2

)
F(z) = 0 (23)

F(z) differs from the vertical momentum W̃(z) by the attenuation factor exp
(∫ 0

z
dz′

2D(z′)

)
. This factor

reduces the vertical extent of wave anomalies based on the length scale D(z). The weaker the stratification,
the larger D(z) and the closer to each other the vertical velocities W̃(z) and F(z).

Boundary dispersion relation. In terms of the unknown function F(z), the surface and bottom boundary
conditions (19 and 21) reads:

F′(0) +

(
1

2D(0)
−

gk2
x

Ω2

)
F(0) = 0 (24a)

F(−H) = 0 (24b)

Constant Brunt-Väisälä angular frequency. In the remaining of the paper, the Brunt-Väisälä angular
frequency is assumed to be constant: N2(z) = N2

0 , or equivalently D(z) = D0 . Equation (22) can then be
rewritten:

W̃(z) = W̃(0) e−z/2D0 F(z) (25)

and ρ̂h(z) is given by ρ̂h(z) = ρ̂h(0) e−z/D0 . The general expression of the vertical velocity perturbation
profile for a constant scale height D0 is thus:

w(x, z, t) =
1

ρ̂h(z)
W̃(z) ei(kx x−Ωt) =

W̃(0)
ρ̂h(0)

e−z/2D0 F(z) ei(kx x−Ωt) (26)

Leaving aside for now the surface boundary condition, the vertical profile F(z) has to satisfy the following
system of equations:

F′′(z) +

≡ k2
z︷                             ︸︸                             ︷k2

x
N2

0 − Ω
2

Ω2 +
Ω2

c2
s
−

1
4D2

0

 F(z) = 0 (27a)

F(−H) = 0 (27b)

The general solution of (27a)- (27b) with the normalization F(0) = 1 is

F(z) =
sin (kz(H + z))

sin(kzH)
(28)

where the vertical wave-number kz is defined in (27a) and is a function of kx and Ω. Note that F(z) is
defined and linear for kz = 0, this particular case will be considered separately in §(2.6).
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2.5 Inner and boundary dispersion relations

The relation introduced in (27a) between the vertical wave-number kz, horizontal wave-number kx and
wave angular frequency Ω constitutes the first dispersion relation. It is rewritten as:

k2
z + k2

x

1 − N2
0

Ω2

 − Ω2

c2
s

+
1

4D2
0

= 0 (29)

This relation does not account for surface or bottom boundary conditions and thus only deals with the
propagation of waves in the inner ocean. It will now be referred to as the inner dispersion relation.
The bottom boundary condition is accounted for in the general solution profile given by (28). Injecting
this vertical profile F(z) into the surface boundary condition (27a) then leads to the boundary dispersion
relation:

Ω2 =
gk2

x tan(Hkz)

kz +
tan(Hkz)

2D0

=
gk2

x
1

2D0
+ kz cotan(Hkz)

(30)

A wave propagating in a "bounded ocean" must satisfy both the inner and boundary (dimensional)
dispersion relations (29) and (30). Note that the traditional inner and boundary dispersion relations for
a Boussinesq, incompressible fluid (Gill (1982), table 1) can be recovered from (29) and (30) by setting
cs → +∞ (incompressibility) and then D0 → +∞ (incompressibility and Boussinesq approximations),
leading to:

kz = kz,im =
nπ
H

and Ω2 = Ω2
im = N2 k2

x

k2
x + k2

z
= gk2

x
tan(Hkz)

kz
f or n ∈ N∗ (31)

Dimensionless dispersion relations. As in Dukowicz (2013), several parameters are now defined to
obtain dimensionless dispersion relations:

ε2
i =

N2H
g

, ε2
a =

gH
c2

s
and ε2 =

ε2
i + ε2

a

2
= −

H
ρ̂h(z)

∂ρ̂h

∂z
(32)

εi is thus a small parameter related to gravity, defined as the ratio of the order of magnitude of the first
internal mode NH to the velocity of long surface waves

√
gH. εa is a small parameter related to acoustics,

defined as the ratio of the speed of long surface waves
√

gH to that of sound waves cs. Note that εi is
defined based on the (real, compressible) Brunt-Väisälä angular frequency N (7) to which compressibility
effects (g2/c2

s) have been subtracted whereas ε refers to an equivalent stratification where the effects of
compressibility are included. In a homogeneous ocean εi vanishes. The depth scale can then be rewritten
as: D0 = 2H/ε2. This scale-depth does not include any compressibility-induced correction and, as a
consequence, it is a function of both small parameters εi and εa. As a consequence the ratio H/D0 = 2ε2

give an idea of the relative strength of the ocean stratification.
Three dimensionless variables are also further defined:

ω = Ω

√
H
g
, δx = kxH, δz = kzH (33)

The inner (29) and boundary (30) dispersion relations can be written in terms of the dimensionless
parameters and variables as:

δ2
x + δ2

z = ε2
i
δ2

x

ω2 + ε2
aω

2 − ε4 (34a)

ω2 =
δ2

x tan(δz)
δz + ε2 tan(δz)

(34b)
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In a free-surface ocean, wave solutions must satisfy simultaneously relations (34a) and (34b). This
means that only one parameter among the angular frequency ω and horizontal or vertical wave-numbers
(δx and δz) can be imposed. The other two parameters must adjust for the wave to satisfy the two
dispersion relations. For short vertical wave numbers and far from the bottom and surface boundaries,
wave solutions only need to satisfy the inner dispersion relation to be dynamically consistent. Pure
acoustic waves or pure internal-gravity wave rays are known to propagate in the inner ocean as in an
unbounded ocean.
The resulting set of two equations (34a)-(34b) for the three variables (δx, δz, ω) and the two parameters
εa, εi is nonlinear, and simple general solutions cannot be found analytically.

2.6 Acoustic Lamb waves & depth-independent surface gravity waves

Acoustic Lamb waves. The polarization relations (17) have been derived after excluding the particular
dispersion relation:

ε2
aω

2 = δ2
x (35)

which is the dispersion relation for acoustic Lamb waves (for atmospheric Lamb waves see for instance
Apel (1987)). To be a solution of the linear inviscid, non-rotating wave model (13a)-(13d) with bottom
boundary condition (14a), these waves must be of the form:(

W̃(z), p̃(z), Ũ(z), ρ̃(z)
)

= p0
(
0, 1, 1/cs, 1/c2

s

)
e−g z/cs2

(36)

Surface pressure must then vanish to satisfy the surface boundary condition (14b) which can only be
obtained for the trivial null solution (p0 = 0).
This does not mean that Lamb waves cannot propagate in the real ocean but just that they are not solution
of the present ocean model (§2.3). To have non-zero amplitude, the pressure (or alternatively the vertical
velocity) must indeed vanish simultaneously at the surface and at the ocean floor. A vanishing pressure
both at the surface and at the ocean floor can for instance be found in Jensen’s formulation of Pekeris
wave guide (Jensen et al., 2011) whereas a vanishing vertical velocity can alternatively be specified by
assuming that the present linear inviscid, non-rotating wave model is also rigid lid: (14b) is then replaced
by w(z = 0) = 0. In this case, wave polarization is given by (36) with p0 the atmospheric pressure at the
surface of the ocean.

Depth-independent surface gravity wave. A second interesting wave solution has been identified in
§(2.4) for δz = δz,0 = 0. Indeed F(z) is then a linear function of z which simplifies to F(z) = (z + H)/H
to satisfy the bottom boundary condition (27b). The surface boundary condition (34b) and the inner
dispersion relation (34a) impose that:

ω2 = ω2
0 =

δ2
x,0

1 + ε2 , δ2
x = δ2

x,0 =
(1 + ε2)(ε2

i + ε2(ε2
i − ε

2
a )/2)

1 + (ε2
i − ε

2
a )/2

= ε2
i + O(ε4

i , ε
4
a ) (37)

This wave can only propagate at a well-defined long horizontal wave-length δx = δx,0 which vanishes in
a homogeneous ocean (εi = 0). It is also depth-independent since if vertical wave-number vanishes.
This depth-independent surface gravity wave presents similarities with Lamb waves (35). Both solutions
are found as particular cases while deriving the polarization relations for acoustic-gravity waves and
they are associated to an horizontally-propagating convergent-divergent motion of the water column (a
depth-independent breathing). This motion is due to the gravity-induced displacement of the ocean for
depth-independent surface gravity waves and to compressibility for Lamb waves.

2.7 Angular frequency is real & vertical wave-number is either real or pure imaginary

Based on (23) together with the boundary conditions (24a) and (24b), the vertical wave-number δz can
be shown to be either real or pure imaginary and the angular frequency ω can be shown to be real and
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positive under the restrictive assumptions that εa = 0 or max(εi, εa) ≤
√

2. The proof of these properties
is detailed in Appendix A.1. It is important to note that ω is forced to be real by the boundary dispersion
relation, and that other solutions are possible when considering the inner dispersion relation only. These
solutions will not be discussed in the following, even in Section 3 on waves in an unbounded ocean.
This means that in physically realistic conditions (i.e. max(εi, εa) ≤

√
2) waves are either propagating

or evanescent (but not both) along the vertical axis and that they are stable in time: real-δz waves are
propagating vertically while imaginary-δz waves are evanescent vertically. Pure imaginary vertical
wave-numbers will be written:

δz = iδz,i with δz,i ∈ R (38)

The inner and boundary dispersion relations (34a) and (34b) write in this case:

δ2
x − δ

2
z,i = ε2

i
δ2

x

ω2 + ε2
aω

2 − ε4 (39a)

ω2 =
δ2

x tanh(δz,i)
δz,i + ε2 tanh(δz,i)

(39b)

When not explicitly mentioned, the standard values of the parameters used in the rest of the paper are
listed in Table 2. The rest of the paper is organized as follows: the inner dispersion relation corresponding
to waves in an unbounded ocean is studied in Section 3. Additional constraints related to the boundary
dispersion relation, i.e., in a bounded ocean, are added in Section 4.

Gravity g 9.8 m.s−2

Sound speed cs 1500 m.s−1

Depth H 4000 m
Brunt-Väisälä angular frequency N = S qrt− g

ρ̂h(z)
∂ρ̂h
∂z −

g2

c2
s

10−3 s−1

Acoustic small parameter εa =

√
gH
cs

≈ 0.132

Internal small parameter εi =

√
N2H

g
≈ 0.02020

Equivalent-stratification small parameter ε =

√
ε2

i + ε2
a

2
≈ 9.44 10−2

Depth scale D0 =
H

2ε2 ≈ 224 km

Table 2: Main parameters used to plot dispersion relations.
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3 Inner dispersion relation & waves in an unbounded ocean

The inner dispersion relation (34a) must be satisfied by any type of ocean waves whether or not the ocean
is considered as a locally unbounded medium (far from surface and bottom and for wavelengths small
compared to ocean depth). We will show in the present section that (i) in (δx, δz, ω) phase-space, the
inner dispersion relation leads to a dispersion surface that can be decomposed in three distinct regions,
(ii) two acoustic and stratification reference functions ωa(δx, δz) and ωi(δx, δz) are good approximations
of the acoustic and internal regions which in turn correspond to acoustic and internal waves propagating
in an unbounded ocean, (iii) the upper and lower regions of the inner dispersion surface (for respectively
high and low frequencies) correspond to acoustic waves and internal rays propagating in an unbounded
ocean and (iv) the bounded central region of the inner dispersion surface corresponds to vertically
vanishing waves, which are referred to as surface waves in §(4).

3.1 Acoustic and stratification reference frequencies

Reference acoustic & stratification functions. Following Tolstoy (1963), the inner dispersion relation
(34a) can be reformulated in the simpler form:

ω2

ω2
a

+
ω2

i

ω2 = 1 (40)

where ωi and ωa are functions of horizontal and vertical wave-numbers, defined by:

ω2
a(δx, δz) =

1
ε2

a

(
δ2

x + δ2
z + ε4

)
(41a)

ω2
i (δx, δz) =

δ2
x ε

2
i

δ2
x + δ2

z + ε4
(41b)

These two reference functions are not roots of the inner dispersion equation (40) but they are useful in
their approximation and, more specifically, in their physical interpretation:

• If ε2
aω

2 �
ε2

i δ
2
x

ω2 (high angular frequency) then (40) simplifies toω2 ≈ ω2
a, relevant to a compressible,

homogeneous (unstratified) ocean.

• If ε2
aω

2 �
ε2

i δ
2
x

ω2 (low angular frequency) then (40) simplifies toω2 ≈ ω2
i , relevant to an incompressible,

stratified ocean.

Therefore ωa can be interpreted as a reference acoustic function accounting for the compressibility
content of the inner dispersion relation, and is a solution of the inner dispersion relation for an homogeneous
ocean. ωi plays an equivalent role for ocean stratification: it can be interpreted as a reference stratification
function and is solution of the inner dispersion relation for an incompressible ocean.
Recall that for εa = 0 or max(εi, εa) ≤

√
2 the angular frequency ω is real and δz is either real or purely

imaginary (Appendix A.1). In addition, ω2
a and ω2

i have the same sign, since their product is equal to

δ2
x
ε2

i
ε2

a
> 0. Therefore (40) implies that ω2

a ≥ 0, ω2
i ≥ 0, and that:

0 ≤ ω2
i (δx, δz) ≤ ω2(δx, δz) ≤ ω2

a(δx, δz) ∀(δx, δz)

As a consequence, the angular frequency ω is always bounded by the reference functions ωi and ωa.

12



3.2 Roots of the inner dispersion relation (ω±)

Let us now define R(δx, δz) the ratio of stratification to acoustic reference functions:

R2(δx, δz) =
ω2

i

ω2
a

=
ε2

aε
2
i δ

2
x(

δ2
x + δ2

z + ε4
)2 (42)

R(δx, δz) is an important parameter for locating the roots of the inner dispersion relation. As shown in

Appendix A.1, ω, the roots of Equation (40), can only be real, a consequence is that R2 ≤
1
4

. These roots
can then be formulated for the squared angular frequency:

ω2
± =

ω2
a

2

1 ±
√

1 − 4
ω2

i

ω2
a

 =
ω2

a

2

(
1 ±

√
1 − 4R2

)
(43)

When R2 is small, the two roots are close to the acoustic and stratification reference functions: ω+ ≈

ωa, ω− ≈ ωi. Since their product ω2
−ω

2
+ is always equal to ω2

aω
2
i =

ε2
i

ε2
a
δ2

x, we further have:

0 ≤ ω2
i (δx, δz) ≤ ω2

−(δx, δz) ≤
εi

εa
δx ≤ ω

2
+(δx, δz) ≤ ω2

a(δx, δz). (44)

Note also that for a weakly compressible ocean (εa � 1):

ω2
− − ω

2
i = −

256 ε4
aε

6
i δ

2
x

(δ2
x + δ2

z + ε4
i )5

+ O(ε6
i ), (45)

and for a weakly stratified ocean (εi � 1 and ε � 1):

ω2
+ − ω

2
a =

ε2
aε

4
i

(δ2
x + δ2

z + ε4
a/4)3

+ O(ε6
a ) (46)

3.3 Three regions in (δx, δz, ω) phase-space

Figure 1 shows variations of the squared vertical wave-number δ2
z as a function of (δx, ω) for the values

of εi, εa given in table (2). Negative values are encountered for medium-range frequencies (10−1.7 < ω <

100.7) and large enough horizontal wave-numbers (δx ≥ 0.1 − 0.2). This region is surrounded by high
and low angular frequency regions of positive δ2

z . The transition lines between these regions are given
by δz = 0:

• If ω � 1 and εa , 0 then ω2 ≈ ω2
a and the acoustic transition line is given by ε2

aω
2 ≈ δ2

x + ε4. This
line is a parabola and the angular frequency is not bounded when δx increases.

• If ω � 1 and εi , 0 then ω2 ≈ ω2
i , the equation of the gravity transition line is ω2 ≈ δ2

xε
2
i /(δ

2
x + ε4).

This line has an upper bound ωc,i = εi. This parabola crosses the δx = 0-axis for the acoustic
cut-off angular frequency ωc,a = ε2/εa. In dimensional form, this bound can be rewritten Ω ≤ N
and is related to the well-known cut-off angular frequency for internal gravity waves.

For a real angular frequency ω, Figure (1) confirms that the vertical wave-number can only be real or
pure imaginary and that the inner dispersion relation (34a) authorizes three types of wave solutions: two
with real vertical wave-numbers (δ2

z ≥ 0) and one with purely imaginary wave-numbers (δ2
z < 0). In this

latest region, the corresponding wave solution is evanescent.
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Figure 1: contours of δ2
z (δx, ω). Plain lines represent positive values (δz ∈ R), and dashed lines negative

values (δz ∈ iR). Background color: (light red) Modified Acoustic Waves -MAW-, (light blue) Modified
Surface Waves -MSW-, light (green) Modified Internal Wave rays -MIW-. Black point: barotropic wave
solution §(2.6). Red Point: marginally stable MSW §(4.5). Red and green curves: acoustic and gravity
transition lines §(3.3). See text below for the definition of the different types of waves.

Separation of solutions. We prove in Appendix (A.2) that, for a non-trivial (non-vanishing) wave
solution in a stratified ocean, R2(δx, δz) can be equal to 1/4 only if δz is pure imaginary. In this case,
R2(δx, δz) = 1/4 leads to (A.19) and (A.20):

δ2
z = −δ2

z,i,∗ = −δ2
x − ε

4 + 2εaεiδx (47a)

ω2 = ω2
− = ω2

+ =
εi

εa
δx =

ω2
a

2
(47b)

A consequence is that wave solutions are well-separated when δz is real (and does not vanish) or when δz

is pure imaginary and δz,i < δz,i,∗. Even if (39a) has two roots in this case, the two corresponding branches
are always connected for (δ2

z , ω
2) satisfying (47a)-(47b), and thus form a single family of ocean waves.

3.4 Wave solutions in an unbounded ocean

For a real vertical wave-number (δz ∈ R)1, the two roots are thus always well-separated and given by:

ω−(δx, δz) ≈ ωi(δx, δz), ω+(δx, δz) ≈ ωa(δx, δz) (48)

Modified internal waves (MIW). The traditional dispersion relation for dispersive internal gravity
wave rays in the context of a Boussinesq incompressible fluid (Gill 1982; see also Table 1 above) is:

ω2 = ω2
igr = ε2

i
δ2

x

δ2
x + δ2

z
(49)

1Pure imaginary vertical wave-numbers (δz ∈ iR) are treated in §(4.4) for a bounded ocean.

14



A Taylor expansion of the gravity-wave root ω2
− given by (43) with respect to the small parameters εa

and εi leads to:

ω2
−

ω2
igr

= 1 −
 ε4

δ2
x + δ2

z
−

ε2
i ε

2
aδ

2
x

(δ2
x + δ2

z )2

 + O(ε8) (50)

= 1 −
ε4δ2

z + 4(ε2
a − ε

2
i )2δ2

x

(δ2
x + δ2

z )2︸                    ︷︷                    ︸
O(ε4)

+O(ε8), (51)

while the development of ω2
i leads to

ω2
i

ω2
igr

= 1 −
ε4

δ2
x + δ2

z︸  ︷︷  ︸
O(ε4)

+O(ε8).

Compared with ω2
i , ω2

− includes corrective terms confirming that the two roots of the inner dispersion

relation are not fully separated. The corrective term
ε2

i ε
2
aδ

2
x

4(δ2
x + δ2

z )2
is naturally close to R2. Formulation

(51) shows that the combined effect of compressibility and stratification is always a reduction of the
angular frequency, compared with the approximated value ωigr: ω2

− ≤ ω
2
igr.

Ocean waves satisfying (50) will now be referred to as Modified Internal Waves (MIW).

Modified acoustic waves (MAW). The well-known dispersion relation for acoustic waves in an homogeneous
fluid is (Table 1):

ω2
aw =

1
ε2

a

(
δ2

x + δ2
z

)
(52)

A Taylor development of the acoustic root (ω+) with respect to εa and εi leads this time to:

ω2
+

ω2
aw

= 1 +

 ε4

2(δ2
x + δ2

z )
−

ε2
i ε

2
aδ

2
x

(δ2
x + δ2

z )2

 + O(ε8) (53)

= 1 +
ε4δ2

z + (ε2
a − ε

2
i )2δ2

x

2(δ2
x + δ2

z )2︸                   ︷︷                   ︸
O(ε4)

+O(ε8), (54)

while the development of ω2
a leads to

ω2
a

ω2
aw

= 1 +
ε4

δ2
x + δ2

z︸  ︷︷  ︸
O(ε4)

+O(ε8).

Compared with ω2
a, ω2

+ includes corrective terms due to the two roots of the inner dispersion relation
not being fully separated. Again, the corrective term is small and close to R2. The combined effect
of compressibility and stratification is always an increase of the angular frequency, compared with the
approximated value ωaw: ω2

+ ≥ ω
2
aw.

Ocean waves satisfying (53) will be called Modified Acoustic Waves (MAW) in the following. The
modifications to usual internal and acoustic wave dispersion relations by compressibility and stratification
effects are expressed by:

ω2
+ω

2
− =

ε2
i

ε2
a
δ2

x = ω2
awω

2
igr,

which can explain the symmetry in the above developments for modified internal and acoustic waves.
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3.5 Homogeneous and/or incompressible unbounded ocean

(a) (b)

(c) (d)

Figure 2: inner dispersion surfaces in (δx, δz, ω) space.
(a) homogeneous, incompressible ocean (εi = εa = 0),
(b) homogeneous, compressible ocean (εi = 0),
(c) stratified, incompressible ocean (εi = 0),
(d) stratified, compressible ocean (εa = 0).

Colors: (light red) acoustic wave region (δ2
z ≥ 0 & ω large), (light blue) surface wave region (δ2

z ≥ 0 &

ω small), (light green) internal wave region (δ2
z < 0). Gray curve: triplets (δx, δz, ω) satisfying (47b) and

(47a). Negative values of the δz axis correspond to −δz,i, i.e. minus the imaginary part of pure imaginary
vertical wave-numbers.

Much insight can be gained on acoustic-gravity waves by a geometrical investigation of surfaces (in phase
space) that correspond to the inner and boundary dispersion relations. These surfaces will respectively
be named inner and boundary dispersion surfaces.
Figure (2) shows the inner dispersion surfaces in the (δx, δz, ω) space. Each dispersion surface corresponds
to a region of the wave solutions. These surfaces are plotted for a homogeneous and incompressible
(2.a), a homogeneous and compressible (2.b), an incompressible and stratified (2.c) and a compressible
and stratified unbounded ocean. The y-axis is constructed such that the (δz > 0) positive half-space
corresponds to the real vertical wave-numbers whereas the (δz < 0) negative half-space corresponds to
the (imaginary part of) pure-imaginary vertical wave-numbers (δz,i).
Careful inspection of the (δz > 0) half space in figures (2.b), (2.c) and (2.d) confirms the presence of
two regions of solutions with real positive vertical wave-numbers. For large angular frequencies (red
branch), the upper region corresponds to acoustic wave solutions (MAW) (figures 2.b and 2.d). This
region disappears under the assumption of incompressibility (figues 2.a and 2.c). The lower region
(light-green branch) corresponds to internal wave solutions (MIW) (figures 2.c and 2.d) and disappears
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under the assumption of homogeneous ocean (figures 2.a and 2.b).
The third region of wave-solution (light-blue surfaces in figure 2) corresponds to pure-imaginary vertical
wave-numbers. In a stratified, compressible, unbounded ocean (figure 2.d), this region corresponds to
intermediate values of the .
In a homogeneous, incompressible and unbounded ocean, figure (2.a) shows that the unique dispersion
surface is the (δ2

x = −δ2
z ) plane.

3.6 Summary: waves solutions in an unbounded ocean

In the preceding analysis, three types of waves were identified. A synthesis is given by figure 2.d showing
the inner dispersion surfaces for a stratified, compressible ocean and figure 2.a-c showing the limit cases
for respectively a homogeneous and incompressible, a homogeneous and compressible and a stratified
but incompressible ocean. Approximate frequency values for modified internal and acoustic waves are
summarized in Table (3) and Table (4) in dimensional form, for comparison with introductory Table
(1). Since the practical existence and characterization of modified surface waves is totally dependent on
boundary conditions, they are not summarized here but will be detailed in the next section.

Internal Waves Acoustic Waves
a) (εi = εa = 0) - -

b) (εi = 0, εa , 0) -
ω2

+

ω2
aw
≈ 1 +

ε4
a

4(δ2
x + δ2

z )

c) (εi , 0, εa = 0)
ω2
−

ω2
iwr

≈ 1 −
ε4

i

4(δ2
x + δ2

z )
-

d) (εi , 0, εa , 0)
ω2
−

ω2
iwr

≈ 1 −
(ε2

i + ε2
a )2δ2

z + (ε2
a − ε

2
i )2δ2

x

4(δ2
x + δ2

z )2

ω2
+

ω2
aw
≈ 1 +

(ε2
i + ε2

a )2δ2
z + (ε2

a − ε
2
i )2δ2

x

4(δ2
x + δ2

z )2

Table 3: Modified Internal and Acoustic waves in an unbounded ocean.

Waves Frequency (Ω)

Modified Acoustic Waves (MAW) Ω2
maw = c2

s(k2
x+k2

z )

1 +
1

4(k2
x + k2

z )2

 k2
z

D2
0

+

(
g
c2

s
−

N2

g

)2

k2
x


Modified Internal Waves (MIW) Ω2

miw =
N2k2

x

k2
x + k2

z

1 − 1
4(k2

x + k2
z )2

 k2
z

D2
0

+

(
g
c2

s
−

N2

g

)2

k2
x


Table 4: Compressibility and stratification induced modifications to the usual dispersion relations given
in Table (1). Ω is wave angular frequency, kx and kz are the wavenumbers, g is the acceleration of gravity,
N a reference Brunt-Väisälä frequency and cs the speed of sound. D0 is the background density vertical
scale, given by 1/D0 = N2/g + g/c2

s

In a more realistic bounded ocean, their existence is guaranteed only if their vertical scale is (much)
smaller than the ocean depth (|δz| � 1) and if they do not interfere with the bottom or the surface of the
ocean. The next section will investigate the impact of adding the boundary dispersion relation (34b).
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4 Waves in a bounded ocean

Acoustic-gravity waves propagating in a bounded ocean (i.e. considering both the free-surface and the
bottom boundary of the ocean) are studied in the present section. These wave solutions are first shown to
be organised in branches (i.e. in 1D curves parameterized by (δ2

x(δz), ω2(δz)). Each branch is located at
the intersection of the inner and boundary dispersion surfaces and is confined to a region of phase space
located between two poles of the dispersion relations.
Modified internal and acoustic modes and then modified surface waves are studied before acoustic-
gravity waves in the long wave approximation are investigated.

4.1 Graphical investigation of Modified Surface Waves (MSW), Modified Acoustic Modes (MAM)
and Modified Internal Modes (MIM)

The compressible and stratified ocean is now assumed to be bounded. Wave solutions must thus satisfy
both the inner (34a) and boundary (34b) dispersion relations. In phase space, they must lie at the
intersections of the inner and boundary dispersion surfaces, which are now plotted simultaneously on
figure 3. For real vertical wave-numbers (kz ∈ R, Figure 3a), the boundary dispersion surface is a

(a) (b)

Figure 3: inner and boundary dispersion surfaces in (δx, δz, ω) space and wave solutions for short and
intermediate wavelengths (a) and for long waves (b). Colors: (light red) acoustic wave region (δ2

z ≥ 0 &

ω large), (light blue) surface wave region (δ2
z ≥ 0 & ω small), (light green) internal wave region (δ2

z < 0),
(white) boundary dispersion surface for δz ∈ R, (light gray) boundary dispersion surface for δz ∈ R. Blue
curve: Modified Surface Waves (MSW). Red curves: Modified Acoustic Modes (MAM). Green curve:
Modified Internal Modes (MIM). Black point: depth-independent surface gravity wave§(2.6).

piecewise surface. Several regions that are nearly vertical in (δx, δz, log10(ω)) space at δz ≈ nπ (small
ω) and at δz ≈ π/2 + (m − 1)π (large ω) with n ∈ N∗ and m ∈ N∗. The intersection of these surfaces with
inner dispersion relation surfaces result in a number of constrained vertical wave-numbers (according
to n and m). We will show in the following sections that the resulting wave solutions are "modes" and
the two intersections correspond more specifically to Modified Internal Modes (MIM), n ∈ N∗ and to
Modified Acoustic Modes (MAM), m ∈ N∗.
For purely imaginary wave-numbers, the (light blue) inner dispersion surface looks like an horizontal
hyperbolic surface which intersects the (light gray) boundary dispersion surface. The resulting wave
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solutions correspond to Modified Surface Waves (MSW). Far from the origin (δx, δz) = (0, 0), at the
intersection points, |δz| is close to δx.
For long waves (δx � 1 & |δz| � 1), the boundary dispersion surfaces for real and purely imaginary δz

are in the same plane. Indeed, the development of the boundary relation is well approximated by ω2 ≈ δ2
x

in both cases (a better approximation is given in Eq. 65). Figure 3b shows the different solutions close
to the origin (δx, δz, ω) = (0, 0, 0). The acoustic-wave surface does not intersect the boundary dispersion
surface near the origin (as proven in §4.5) and is not present close to the origin.
In the context of a bounded ocean, three types of wave solutions are thus graphically identified, spreading
on the three regions of the inner dispersion surface, while satisfying the boundary dispersion relation:
internal gravity (in a stratified ocean), acoustic (in a compressible ocean) and surface waves (in a free-
surface ocean). They are investigated in the following using Taylor expansions of the general roots ω±,
with respect to small parameters (εi, εa), leading to simple approximations of wave dispersion relations.
When needed, asymptotic relations are derived with respect to δx, δz or ω. Taylor expansions will give
indications of how usual wave solutions can be modified by gravity and stratification (εi), and/or by
compressibility (εa).

4.2 Poles of the dispersion relations

The dispersion relations for acoustic-gravity waves in a bounded ocean exhibit several discrete poles or
singularities (for the vertical wave-number) that lead to the existence of normal modes. To show this, we
can combine the dispersion relations (34a) and (34b) to express the square of the horizontal wave-number
and the angular frequency as functions of the vertical wave number:

δ2
x(δz) =

(
ε2sin(δz) + δzcos(δz)

) (
(δ2

z + (ε4
i − ε

4
i )/4)sin(δz) − δzε

2
i cos(δz)

)(
(ε2

a − ε
2
i )sin(δz)/2 − δzcos(δz)

)
sin(δz)

(55a)

ω2
x(δz) =

(δ2
z + (ε4

a − ε
4
i )/4)sin(δz) − δzε

2
i cos(δz)

(ε2
a − ε

2
i )sin(δz)/2 − δzcos(δz)

(55b)

The first relation (55a) has two poles (or singularities): δz = δz,n = nπ with n ∈ N is indeed an
approximate root of sin(δz) = 0 and thus a pole of δ2

x(δz) and δz = δz,m ≈ rm = π/2 + mπ is a root
of δz/tan(δz) = ε2

a − ε
2
i � 1 and thus a pole of δ2

x(δz). The second dispersion relation (55b) only has one
pole: δz = δz,m ≈ rm = π/2+mπ. A more accurate expression of δz,m can be obtained as an infinite series:

δz,m = rm−
ε2

a − ε
2
i

rm
−

(ε2
a − ε

2
i )2(3 + ε2

i − ε
2
a )

3r3
m

−
(ε2

a − ε
2
i )3

(
3(ε2

a − ε
2
i )2 − 20(ε2

a − ε
2
i ) + 30

)
15r5

m
+O(

1
r7

m
) (56)

Note that ω2(δz) is continuous in δz = δz,n. This set of poles confirms and extends the poles found by
Jensen et al. (2011) for a compressible, homogeneous, rigid lid, "ideal ocean waveguide". Indeed, the
authors further show that the normal mode expansion of the general integral solution can be written as an
infinite sum of the complex residues associated to these poles. (δz,m, δz,n) is the extended set of poles of
acoustic gravity wave dispersion in a bounded ocean and two types of modes now need to be investigated.
We further show in (A.3) that the first type (δz,m) corresponds to the Modified Acoustic Modes (MAM)
identified graphically in §(4.1) and plotted with a red curve in figure (3). The second type (δz,n) is also
shown to correspond to the Modified Internal Modes (MIM) also identified graphically in §(4.1) but
plotted in green.

Figure (4) shows that wave solutions are organized in branches confined to the intervals δ2
z ∈]−∞, δ

2
z,m=1[,

δz ∈]δz,m=n, δz,n[ and δz ∈]δz,n, δz,m=n+1[ for n ∈ N∗.The δ2
x + δ2

z = 0 vertical plane, coloured in light gray,
is the region where the induced effects of compressibility and stratification exactly compensate. Indeed,
(34a) implies in this case that ε2

aω
2 + ε2

i δ
2
x/ω

2 − ε = 0.
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(a)

(b)

(c)

(d)

Figure 4: (a, c) show the inner and boundary dispersion surfaces in (δx, δz, ω) space and wave solutions
for long waves, (b, d) show δ2

x(δz) and ω2(δz). Coloured surfaces: (light red) acoustic wave region, (light
blue) surface wave region, (light green) internal wave region, (light yellow) inner dispersion surface in
half space δ2

x < 0, (light gray) δ2
x + δ2

z = 0 vertical plane. Acoustic gravity wave branches: MIM0
(green curve), LMSW (blue curve) branch, MIM (green curves), MAM (red curves prolonged in gray
when δ2

x < 0), MIM (green curves prolonged in black when δ2
x < 0). Note that wave solutions with

pure imaginary horizontal wave-numbers (δx,i ∈ iR) or pure imaginary angular frequencies (ω ∈ iR) are
plotted to clearly identify wave branches. These solutions correspond to waves decaying restively in the
horizontal direction and in time and are not further discussed in the present study.

A study of the variations of δ2
x(δz) and ω2(δz) shows that these functions are monotonically decreasing at

respectively the third and first order in (εa, εi) (see appendix §A.7). When δz → δ±z,m, δ2
x(δz) → ±∞ and

ω2(δz) → ±∞. When δz → δ±z,n, δ2
x(δz) → ±∞ but ω2(δz) = ±ε2

i since δz,n is not a pole of ω(δz). In the
interval ]−∞, δz,m=0], the long-wave branch extends to negative values of δ2

z (for a pure imaginary vertical
wave-number, blue curve in figure 4. Each branch of the acoustic gravity wave solutions consequently
extends both in the δ2

x ≥ 0 half space of propagating waves (green, red and blue curves in figure 4) and
in the δ2

x < 0 half space of vanishing waves (gray and black curves).
This study of the variations of δ2

x(δz) further shows that for waves propagating both horizontally and
vertically (δ2

x, δ
2
z ≥ 0), δz remains close to either δz,m or δz,n in each interval of solutions except for the

very-long-wave branch (figure 4.c and 0 < δ2
z < δz,m=0 ≈ π/2). Indeed, in the case of "not-too-long"

propagating waves, δ2
x + δ2

z is positive and at least larger than δ2
z,m=0 meaning that, whatever δx, either
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ε2
aω

2 = ε2
aδ

2
x/

(
ε2 + δzcot(δz)

)
or ε2

i δ
2
x/ω

2 = ε2
i

(
ε2 + δzcot(δz)

)
are significantly large. This is possible

only if respectively δz ≈ δz,m (§4.3.2) or δz ≈ δz,n (§4.3.1). Graphically, figures 4.a, b and d confirm
that δz varies sharply only in regions where δ2

x + δ2
z ≈ 0 i.e. in regions where the acoustic gravity wave

solutions are close to the (gray) vertical surface (δ2
x + δ2

z = 0).
The study of the poles finally confirms the separation of the branches of the acoustic gravity wave
solutions in agreement with the results proved in appendix (A.2). Firstly, a clear separation has now
been brought to light in terms of their vertical wave-numbers since the branches are confined to the
interval regions locates between the poles: δz ∈]δz,m=n, δz,n[ and δz ∈]δz,n, δz,m=m+1[ for n ∈ N∗. Secondly,
in so far as the not-too-long wave solutions satisfy either δz ≈ δz,m or δz ≈ δz,n, the relation (55b) further
confirms that the solutions are also well-separated in terms of their angular frequency. Indeed, we have
shown that δ2

x > 0 imposes in this case that δz is close to either δz,m or δz,n. Since (i) δz,m is a pole of ω2

and thus ω2(δz ≈ δz,m and δz,m < δz) is large and (ii) ω2(δz) monotonic decreasing and ω2(δz,n) = ε2
i , we

can conclude and confirm that ω2(δz ≈ δz,m) >> ε2
i ≥ ω

2(δz ≈ δz,n and δz,n < δz).

4.3 Real δz: modified internal and acoustic waves

As shown in §(3.3) and §(4.2), upper (acoustic) and lower (gravity) regions of the inner dispersion surface
for real δz are well-separated: Modified Acoustic Modes (MAM) and Modified Internal Modes (MIM)
solutions can thus be studied independently. We additionally showed that as long as δz is not close to
zero, the acoustic gravity wave solutions remain close to one of the poles. The case of long waves with
δz ≈ 0 is discussed in Subsection §(4.5).

4.3.1 Development of internal-gravity modes modified by compressibility (MIM)

Waves can propagate horizontally between the bottom and surface of the ocean as in a wave guide.
Internal gravity modes are well-known such examples (Gill, 1982). In §(4.1), graphical inspections of
wave solutions confirmed that gravity waves with constrained vertical wave-numbers could be found at
the intersection of inner and boundary dispersion surfaces.
We have also shown in §3.3 that the root of the inner dispersion relation corresponding to internal gravity
waves is well-approximated by ω2

i (45) and in §(4.2) and §(A.3) that δz remains close to δz,n.
In order to refine the approximation and to parameterize this relation in terms of the horizontal wave-
number , we equate the squared angular frequency given by the surface dispersion relation (34b) to
ω2
−, given by the inner dispersion relation (43). This forms a non-linear equation for δz whose solution

can be approximated using two passes of a Newton algorithm starting from δz = δz,n. Finally a Taylor
development in εi, εa leads to:

δz(δx) = δz,mim(δx) = δz,n

1 +
ε2

i

δ2
x + δ2

z,n
+

(δ2
x − δ

2
z,n)

(δ2
x + δ2

z,n)3
ε4

i

 + O(ε6) (57)

A development for the angular frequency ω2 can be obtained by injecting expression (57) of δz in the
general expression (50) in the unbounded domain case. The usual dispersion relation given in Table 1
writes in dimensional form:

ω2(δx) = ω2
igr

∣∣∣
δz=δz,n

(δx) = ε2
i

δ2
x

δ2
x + δ2

z,n

Considering only the first order correction to this relation, we can omit all terms of order 3 in ε2 in (50)
to get:

ω2(δx) = ω2
mim(δx) = ε2

i
δ2

x

δ2
x + δ2

z,n︸       ︷︷       ︸
ω2

im

1 − 2ε2
i δ

2
z,n

(δ2
x + δ2

z,n)2

 + O(ε6) (58)

Therefore, the main correction to the usual dispersion relation comes from the fact that δz is not exactly
equal to (but remains close to) δz,n = nπ. MIM correspond to the green curve in (figure 3.a).
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4.3.2 Development of acoustic modes modified by gravity (MAM)

To study modified acoustic modes at higher angular frequencies, we now use the fact that the root of the
inner dispersion relation corresponding to acoustic waves is well-approximated by ω2

a (46) and that δz

remains close to δz,m §(4.2) and (A.3).
Again, in order to get a more accurate expression of δz parameterize by the horizontal wave-number δx,
we equate the (inversed) squared angular frequency given by the surface dispersion relation (34b) to the
(inversed) ω2

+ , given by the inner dispersion relation (43), and perform the nonlinear equation’s solution
approximation followed by a Taylor development in εi, εa to obtain:

δz(δx) = δz,mam(δx) = δz,m −
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2
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i )2δ2

z,m − 2δ2
x(5ε2
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4(δ2
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z,m)3δ3
z,m︸                                                                                    ︷︷                                                                                    ︸

O(ε4)

+O(ε6)
(59)

An expansion for the angular frequency ω2 can be obtained by injecting the expression (59) of δz in the
general expression (53) in the unbounded domain case. The main departure from to the usual acoustic
wave angular frequency, given in Table 1 in dimensional form, is given by the second-order development:

ω2(δx) = ω2
mam(δx) =

1
ε2

a

δ2
x + δ2

z,m −
(δ2

x − δ
2
z,m)

(δ2
x + δ2

z,m)
ε2

a + ε2
i

 + O(ε2) (60)

Here, stratification has a first-order (in ε2
i ) contribution to the modification of the homogeneous case

angular frequency. This first-order modification comes from the first-order modification on the vertical
wave-number itself (59). However, it is clear that the associated impact is small since ε2

i is negligible
compared with δ2

z,m in (59) and (60), because δz,m ≥ π/2. A similar conclusion was drawn in (Smith,
2015). MAM correspond to the red curves in (3.a).

4.4 Purely imaginary δz: modified surface acoustic-gravity waves (MSW)

"Surface waves" generally refer to wave propagating horizontally as anomalies of the ocean free-surface
(Gill, 1982). In the vertical direction, these surface wave anomalies are "evanescent", meaning that, with
the notation chosen in the present study, the vertical wave-number δz is a purely imaginary complex
number. A Modified Surface Wave (MSW) defined by its triplet (δx, δz, ω) must satisfy both the inner
(39a) and boundary (39b) dispersion relations for δz = i δz,i.

Homogeneous & incompressible ocean. In an homogeneous and incompressible ocean (εi = εa = 0,
figure 2), the inner dispersion relation (39a) implies δz,i = δx. This equality is often postulated in
textbooks to reduce the number of variables. Vertical polarization relations are then functions of δx

only (Gill, 1982) and, as a consequence, the only remaining dispersion relation is the boundary dispersion
relation (39b) for purely imaginary vertical wave-number (δz = iδx), or its approximationω2 = δx tanh δx.
In this case, δz,i is reduced to a vertical length-scale of energy decay with increasing distance from the
surface; for very long waves (δx � 1), the surface wave (LSW) is approximately depth-independent
(table 1).

Dispersion relation. In the more general case (non homogeneous and compressible ocean), we prove
in Appendix (A.4) the existence of solutions to (39a, 39b). When the parameters εi and εa are small,
we additionally prove in Appendix (A.5) that surface acoustic-gravity waves have approximately similar
horizontal and vertical wave-numbers (δx ≈ δz,i).
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This crude assumption δx ≈ δz,i is sufficiently accurate to recover usual swell-like approximations (Table
1), i.e., for sufficiently large δx (or δz). However a more accurate expression is given by:

δ2
z,i(δx) = δ2

x − δx

 ε2
i

tanh(δx)
+ ε2

a tanh(δx)
 + O(ε4). (61)

In order to obtain (61), we introduce the angular frequency given by the boundary dispersion relation
in the inner dispersion relation (39a) and solve the resulting nonlinear equation by performing one pass
of a Newton algorithm. Note that the problem is formulated in terms of δ2

z,i(δx) since it can be shown
(by looking at the error estimate of the Newton algorithm) that a formulation in terms of δz,i(δx) is not
accurate when δx is relatively small. Note also that (61) requires δx ≥ εi for δ2

z,i to be positive. This
is consistent with the fact that δx must be greater than δx,0(≈ εi) defined in (37), as shown in Appendix
(A.4). However (61) does not allow us to recover the exact value δx,0 of δx that cancels δz,i, due to the
first-order only approximation in terms of ε2). The case of long surface waves with δz,i close to zero will
be treated separately in §4.5.
The angular frequency ω2(δx) associated to the vertical wave-number δ2

z,i(δx) given by (61) is well
approximated by:

ω2(δx) = δx tanh(δx)
1 − 1

2
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ε2
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 + O(ε4) (62)

For very short waves (δx � 1), these relations simplify to:

δz,i ≈ δx − ε
2, ω2 ≈ δx

and we recover the angular frequency of short non hydrostatic waves ω2 = δx (or Ω =
√

gkx in
dimensional form) with a slightly modified vertical wave-number. MSW correspond to the blue curve in
(3.a).

Marginally stable surface gravity waves. We proved in §(3.3) that the ratio R2(δx, δz) is maximum
and equal to 1/4 only when δz is pure imaginary. The relations (47a) and (47b) are simultaneously
satisfied (gray curve in figure 2.d). Any triplet (δx, δz, ω) satisfying these two relations is an acceptable
wave solution only if it also satisfies the boundary dispersion relation (39b). As a consequence, δx(ω)
and δz,i(ω) can be obtained combining (47b) and (39b) (both relations are recalled below), then (47a)
leads to the non-linear equation for ω given by (63a):

δx =
εa

εi
ω2 (47b)

ω2 =
δ2

x tanh(δz,i)
δz,i + ε2 tanh(δz,i)

(39b)

δ2
x(ω) − δ2

z,i(ω) − ε2
i
δ2

x(ω)
ω2 − ε2

aω
2 + ε4 = 0 (63a)

For the stratification and acoustic parameters εi and εa given in Table (2), Equation (63a) has a unique
solution for ω∗ ≈ 0.154. This wave solution (red point in figure 5) is marginally stable (ω+ = ω− and
R2(δx, δz) = 1/4). Further investigations of this peculiar region of surface-wave phase-space must in
particular take into account the consequences of earth rotation and wave non-linearity.

4.5 Long waves

We now prove the existence of two sub-branches of long wave solutions: mode-0 Modified Internal
Modes (MIM-0) with horizontal wave-numbers in the range δx ∈ [0, δx,0] and Long Modified Surface
Waves (LMSW) in the range δx ∈ [δx,0,+∞[.
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Figure 5: inner and boundary dispersion surfaces in (δx, δz, ω) space and wave solutions for long waves.
Colors: (light red) acoustic wave region (δ2

z ≥ 0 & ω large), (light blue) surface wave region (δ2
z ≥ 0 &

ω small), (light green) internal wave region (δ2
z < 0), (white) boundary dispersion surface for δz ∈ R,

(light gray) boundary dispersion surface for δz ∈ R. Blue curve: Modified Surface Waves (MSW). Gray
curve: triplets (δx, δz, ω) satisfying (47b) and (47a). Red Point: marginally stable MSW §(4.5).

Dispersion relations for long waves. Here, we perform specific developments for long waves where
the vertical profile is almost depth-independent |δz| ≈ 0, δz being either real or purely imaginary (figure
3b). This corresponds to the long-wave part of the acoustic-gravity branch located in the region δ2

z ∈

] −∞, δ2
z,m=1] of figure 4a.

Inserting the boundary dispersion relation (34b) into the inner dispersion relation (34a) and making a
second-order Taylor expansion in δz leads to:

δ2
z (δx) = δ2

z,long(δx) =
(
δ2

x,0 − δ
2
x

) 1 + ε2
i /3 − ε

2
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(1 + ε2
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xε

2
a/3

+ O(δ4
z ) (64)

δx,0 is the value of δx for which δz = 0 is a solution of the inner and boundary dispersion relations (§2.6).
At first order in ε2, δx,0 is equal to εi. The corresponding angular frequency can be obtained by inserting
the approximation of the vertical wave-number given by (64) into the boundary relation dispersion (34b).
An approximation at second order in δ2

x and ε2 is:

ω2(δx) = ω2
long(δx) = δ2
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1
3
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We also define:

δ2
z,0(δx = 0) =

δ2
x,0(1 + ε2

i /3 − ε
2
a )

(1 + ε2
i /3)(1 + ε2

i /3) − δ2
xε

2
a/3

+ O(δ4
z ) (66)

Figure (6) shows the evolution of δ2
z , |δz| and ω as functions of δx for long waves (6a, b and d) and for

short and intermediate waves (6c).

δx ≤ δx,0. For δx ≤ δx,0 ≈ εi, the vertical wave-number δz given by (64) is real. This implies that
ω2 ≈ δ2

x ≤ εi δx ≤
εi
εa
δx (since εa < 1) and, thus, using the bounds on ω2

−, ω
2
+ given by (44), that these

waves are always issued from the internal-wave region of the inner dispersion surface (ω2
−), not from

the acoustic-wave region (ω2
+). In other words, there is no intersection between the boundary dispersion
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(a) (b)

(c) (d)

Figure 6: dispersion curves for (intermediate) and long wave-lengths δz. Black point: depth-independent
surface gravity wave. §(2.6).

(a) square modulus of the vertical wave-number δ2
z as a function of the horizontal wave-number δx.

The exact solution can be numerically computed (not shown) and is visually not distinguishable
from the blue curve (accurate approximation). The vertical wave-number of an incompressible
and homogeneous ocean would follow the straight line δz = δx.
(b) modulus of the vertical wave-number |δz| as a function of the horizontal wave-number δx. The
exact solution can be numerically computed (not shown) and is visually not distinguishable from
the blue curve (accurate approximation). The vertical wave-number of an incompressible and
homogeneous ocean would follow the straight line δz = δx.
(c) Angular frequency ω as a function of δx the horizontal wave-number for different
approximations (short, intermediate and long waves).
(d) Angular frequency ω as a function of δx but in the vicinity of the origin.

relation and the (real) acoustic-wave region for δz ∈ R close to zero for the chosen boundary conditions .
This is consistent with the fact that (acoustic) Lamb waves can only be solutions for different surface or
bottom boundary conditions in §(2.6).
Dukowicz (2013) notes that this wave solution, like any higher internal modes, has its angular frequency
ω2 approximately bounded by ε2

i (i.e. Ω ≤ N), since ω2 ≈ δ2
x ≤ ε2

i . We however avoid to refer to
this n=0 internal mode (MIM0) as a barotropic wave. Indeed if εi = εa = 0, i.e. if stratification and
compressibility vanish in this sub-branch disappears. Since δz ∈ R, MIM0 propagates in the vertical
direction but its vertical wave-number remains small even in strongly-stratified regions (large values of
εi, see table (6)).

δx ≥ δx,0. For δx ≥ δx,0 (but still small), δz given by (64) is purely imaginary. These long waves
originate from the surface-wave branch MSW and will here be named LMSW. When δx increases, δz,long

(64) converges to δz,lmsw (61), which is a better approximation for medium and short surface waves.
Figure (6.a) shows δ2

z as a function of δx (for δx ≤ 2εi). The two approximations given by (64), accurate
for long waves, and (61), accurate for medium/short waves, are plotted. On Figure (6.b) , the modulus of
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the vertical wave-number is shown on the same interval for δx (for δx ≤ 2εi).
Figure (6.c and d) present the angular frequency ω as a function of the horizontal wave-number δx

according to different approximations for small, intermediate and long horizontal wave-numbers. ωlong

andωmsw are computed by inserting the corresponding approximations (64) and (61) of δz in the boundary
dispersion relation (34b). ω = δx (resp. ω =

√
δx) represents the classical long shallow-water waves

(resp. short non-hydrostatic surface waves) approximation. ω = ωsw =
√
δx tanh(δx) is the angular

frequency of an homogeneous and incompressible (non hydrostatic) ocean. Unsurprisingly, this last
approximation is accurate over the full range of horizontal wave-numbers, even for the set of compressible
stratified equations. Indeed, even if for long waves, δz is not directly linked to δx (in particular δz does
not vanish for δx ≈ 0), δz remains small (less than εi) and thus δz/ tan(δz) is close to 1.

Interestingly, and contrary to conclusions in (Dukowicz, 2013), the MIM-0 angular frequency cannot
saturate at the buoyancy angular frequency for increasing horizontal wave-number δx but transforms
into a vertically evanescent surface wave, whereas its vertical wave-number switches from real to purely
imaginary.

Hydrostaticity and asymptotic behaviour. Surface edge waves are consequently either MIM0 Modes
(δz ∈ R and δx < δx,0) or Modified Surface Waves (MSW, δz ∈ iR and δx > δx,0). For δx = δx,0, a depth-
independent gravity surface wave studied in §(2.6) separates these two sub-branches. In the long wave
approximation, the "long wave solution" (61) is an accurate approximation of both MIM0 and LMSW.
We now further prove that in the long-wave, low-angular frequency limit:

• for δx < δx,0, the MIM0 is (quasi-) hydrostatic and converges towards the
√

gH-phase-velocity
shallow-waver solution (SHW) when stratification loosens (i.e. when εi → 0)

• for δx > δx,0, the LMSW solution remains non-hydrostatic and converges towards the other
√

gH-
phase-velocity long-swell solution (LSW) when stratification loosens (i.e. when εi → 0).

The SHW and LSW asymptotic solutions are recalled in Table 1 and discussed in §(2.6).
Using the approximate solution for long waves (64) and for LMSW (61), we can compute their respective
aspect-ratio:

r2
long(δx) =

δ2
x

δ2
z,long

= δ2
x

1 + ε2
i /3 − ε

2
a

(1 + ε2
i /3)(1 + ε2

i /3) − δ2
xε

2
a/3

+ O(δ4
z ) (67a)

r2
msw(δx) =

δ2
x

δ2
z,msw

=
δx

ε2
a tanh2(δx) − δxtanh(δx) + ε2

i

(67b)

Figure (7) shows the evolutions of these aspect ratios as functions of the horizontal wave-number. A
study of the variations of rlong shows that this ratio increases monotonically from 0 to infinity when δx

varies from 0 to δx,0 and decreases monotonically from infinity to 1 when δx varies from δx,0 to infinity.
In this latter range, rmsw remains close to rlong. Except in the vicinity of δx,0, the aspect ratio rlong remains
lower than 1 and it decreases monotonically to 0 when δx approaches 0. In this (very) long-wave range,
the MIM-0 solution is thus hydrostatic and the dispersion relations (64) and (62) are approximately given
by:

δ2
z = δ2

z,0 ≈ ε
2
i & ω2 ≈ δ2

x (68)

This solution is also the long-wave approximation of the hydrostatic wave solution (Appendix B).
The second branch is a monotonous function for δx ∈ [δx,0,+∞[ and it decreases to 1 when δx → +∞. As
a consequence, it remains superior to 1 in this range of wave-numbers, the corresponding wave solution
is non-hydrostatic and the dispersion relations (64) and (62) are approximately given by:

δ2
z,i ≈ δ

2
x − ε

2
i & ω2 ≈ δ2

x (69)

This solution is also the long-wave approximation of the non-hydrostatic wave solution (Appendix B).
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Figure 7: modulus of the wave aspect ratios rmim0 (black-solid curve) and rlmsw (black, dashed curve).
Colors: (light-green) internal wave region (δz ∈ R),(light-blue) surface wave (δz ∈ iR)

4.6 Summary: waves solutions in a bounded ocean

Unlike in an unbounded ocean, acoustic-gravity wave solutions in a bounded, free-surface ocean must
satisfy both the inner and boundary dispersion relations. This induces the appearance of poles in these
dispersion relations for δz = π

2 + (m − 1)π (MAM) and for δz = nπ (MIM) with (m, n) ∈ N∗xN+. For
δz ∈ iR, the boundary dispersion relation does not exhibit any pole.
A stratified ocean can propagate two types of surface edge waves:

• for medium and short wave-lengths (δx > δx,0), MSW are non-hydrostatic (rlmsw > 1), evanescent
(δz,sw ∈ iR) and converge towards the

√
gH-phase-velocity, depth-dependent (δx = δz,i) wave

solution (LSW) when both εi → 0 and δx → δx,0. Vertical variations of pressure are non-
hydrostatic and in a homogeneous ocean, LMSW solutions remain depth-dependent (δx = δz,i , 0).

• for longer waves (δx < δx,0), MIM0 are quasi-hydrostatic (rmim0 < 1 if δx is not in the neighbourhood
of δx,0), vertically propagating (δz ∈ R) and converges towards the shallow-water

√
gH-phase-

velocity solution (SHW) when both εi → 0 and δx → 0. In this case, vertical variations of pressure
are hydrostatic and LMIW solutions are depth-independent (δz = 0). When the stratification
loosens (εi → 0), the range of validity of MIM0 solution (0 < δx < δx,0 ≈ εi) shrinks to zero.

The angular frequency of acoustic wave solutions (modified by gravity) remains larger than ωc,a = ε2/εa

whereas the angular frequency of gravity waves (modified by compressibility) remains smaller than
ωc,i = εi (§3.3).

Table 5 summarizes the main approximations for the different type of waves (acoustic, gravity and
surface waves/modes) given in this paper. These approximations are indicated in their dimensional
form. For sake of readability, some of the relations given in Table 5 are lower order versions of our
derivations. They generally stem from first-order correction terms, compared with usual dispersion
relations introduced in Table 1. In that case, a red link to the higher approximation is given.

Table (6) gives orders of magnitude of various characteristics of these acoustic gravity waves for the
reference set of (εa, εi) parameters (table 2) and for a shallow or a strongly stratified ocean.
For the 4000m-deep reference ocean, the horizontal length scale associated with the transformation of
the MSW into the long MIM (λx,lmsw = 2π/(δx,lmsw/4000)) reaches 1367 km against 62 km for the same
10m-deep ocean. When δx decreases below δx,lmsw, δz increases monotonically to a maximum value
δz,lmsw(δx = 0). This vertical length scale reaches 1379 km for the 4000m-deep reference ocean and 62
km for the same 10m-deep ocean. A rule can be formulated as: the longer the horizontal length scale
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Table 5: Compressibility and stratification induced modifications to the usual dispersion relations given
in table 1. Ω is wave angular frequency, kx and kz are the horizontal and vertical wave-numbers, g is the
acceleration of gravity, N a reference Brunt-Väisälä angular frequency and cs the speed of sound. D0 is
the (incompressible) background density vertical scale and is given by 1/D0 = N2/g + g/c2

s

of the oscillation, the shorter its vertical length scale; and the weaker the stratification (vanishing εi) the
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Notation Reference 10-m-deep N = 5 10−3 s−1

Parameters εa 0.13 6.6 10−3 0.13
εi 2.0 10−2 1.0 10−3 0.1

Acoustic cut-off 2π
√

H/g/ωc,a 31.3 mn 31.3mn 20 mn

Internal cut-off 2π
√

H/g/ωc,i 1.7 h 1.7 h 21 mn
Depth-independent surface 2πH/δx,0 1367 km 62 km 247 km
gravity wave 2π

√
H/g/ω0 1.9 h 1.7 h 21 mn

MIW, δz(0) 2πH/δz,0 1380 km 62 km 250 km
2π

√
H/g/ωz,0 ∞ ∞ ∞

MSW, marginally-stable 2πH/δx,∗ 162 km 408 m 25 km
wave 2πH/δz,∗ 164 km 408 m 25 km

2π
√

H/g/ω∗ 13.7 mn 41.6 s 2.4 mn

Table 6: orders of magnitude of various scales. Notations refer to non-dimensional variables whereas
orders of magnitude are given for dimensional quantities. Parameters for the "Reference" ocean are given
in Table (2). "10-m-deep" ocean is a 10-m-deep Reference ocean whereas a "N = 5 10−3s" ocean is a
reference ocean with N = 5 10−3s.

longer its horizontal length-scale λx,lmsw. This long MIM solution is a low-angular frequency oscillation
of the ocean due to gravity and associated with ocean stratification. It disappears when stratification
vanishes and the ocean becomes an homogeneous layer of water. It does persist in an incompressible
ocean but is slightly modified by compressibility.

5 Discussion, conclusion

An Eulerian, analytical model for acoustic gravity waves propagating in a compressible, stratified,
free-surface, non-rotating ocean has been derived and investigated with several objectives: recover
acoustic waves and modes in a unified dispersion model, describe analytically the modifications of the
characteristics of these waves and modes for small changes in compressibility or stratification and, finally,
anticipate the impact of compressibility in the new generation of non-hydrostatic, compressible, ocean
models (Auclair et al., 2018).
An original investigation (at least to the authors’ knowledge) based on 3D graphics in (δx, δz, ω) phase-
space has been carried out to support and illustrate the analytical developments. Well-known acoustic
and internal modes (MAM and MIM) have in particular been recovered and have been associated to the
infinite number of discrete poles of the inner and boundary dispersion relations. A least two peculiar
regions of the phase space have been investigated in more details. Firstly, the long acoustic gravity
wave branch has indeed been decomposed in two sub-branches: one associated to a modified mode-0
internal mode (MIM0) with a real vertical wave-number, the other to a modified long surface gravity
wave (LMSW) with pure imaginary vertical wave-number. Secondly, modified surface gravity waves
(MSW) have been shown to be marginally stable for intermediate wave-numbers in a region of phase
space where compressibility and stratification induced effects approximately compensate.
Analytical solutions are given in dimensional form in Appendix (C), such solutions can conveniently be
used to validate non-hydrostatic, compressible, free-surface ocean models (Auclair et al., 2018).
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Appendices
A Mathematical demonstrations

A.1 δz real or purely imaginary

In this section, we prove that under the condition of smallness of parameters εi and εa, δz is either real
or pure imaginary and thus that the angular frequency ω is real.

Polarization function in s-coordinates. The eigenvalue problem (27) and the surface boundary condition
(27b) are rewritten in non-dimensional form as:

G′′(s) + δ2
zG(s) = 0 (A.1)

G(1) = 1 (A.2)

G(0) = 0 (A.3)

G′(1) +

ε2
i + ε2

a

2
−
δ2

x

ω2

G(1) = 0 (A.4)

where s =
z + H

H
, G(s(z)) = F(z) and ε2

i =
N2H

g
, ε2

a =
gH
c2

s
, δx = kxH, δz = kzH, ω = Ω

√
H
g

.

Energy equation. δz is linked to δx and ω by the inner dispersion relation

δ2
z =

δ2
x
ε2

i − ω
2

ω2 + ε2
aω

2 −
(ε2

i + ε2
a )2

4

 (A.5)

Multiplying (A.1) by G(s) and integrating over [0, 1] we get:∫ 1

0
G′′(s)G(s)ds + δ2

z

∫ 1

0
|G(s)|2ds = 0

Integration by parts leads to:

−

∫ 1

0
|G′(s)|2ds + δ2

z

∫ 1

0
|G(s)|2ds + G′(1)G(1) −G′(0)G(0) = 0

and using (A.2), (A.3), (A.4)

δ2
z

∫ 1

0
|G(s)|2ds +

 δ2
x

ω2 −
ε2

i + ε2
a

2

 =

∫ 1

0
|G′(s)|2ds

Using the Poincaré inequality
∫ 1

0
|G(s)|2ds ≤

∫ 1

0
|G′(s)|2ds and 1 = |G(1)|2 ≤

∫ 1

0
|G′(s)|2ds, we obtain:

δ2
zµ +

 δ2
x

ω2 −
ε2

i + ε2
a

2

 ν = 1 (A.6)

with 0 ≤ µ ≤ 1 and 0 ≤ ν ≤ 1.
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Imaginary part of the energy equation. Taking the imaginary part of (A.6) and using (A.5)

µ
(
ε2

a=[ω2] + δ2
xε

2
i =[1/ω2]

)
+ νδ2

x=[1/ω2] = 0

or, using =[1/ω2] = −=[ω2]/|ω|4,

=[ω2]
(
µ

(
ε2

a − ε
2
i
δ2

x

|ω|4

)
− ν

δ2
x

|ω|4

)
= 0 (A.7)

Let us assume that ω is neither real or pure imaginary. This implies =[ω2] , 0 and (A.7) leads to:

µ

(
ε2

a
|ω|4

δ2
x
− ε2

i

)
− ν = 0 (A.8)

We will show below that, in this case, solutions can exist only for non physical values of εi, εa satisfying
max(εi, εa) >

√
2.

Real part of the energy equation. Taking the real part of (A.6)

µ

−δ2
x + δ2

xε
2
i<[1/ω2] −

(ε2
i + ε2

a )2

4
+ ε2

a<[ω2]
 + ν

δ2
x<[

1
ω2 ] −

ε2
i + ε2

a

2

 = 1 (A.9)

or, using<[1/ω2] = <[ω2]/|ω|4,

µ

−δ2
x −

(ε2
i + ε2

a )2

4
+ (

δ2
xε

2
i

|ω|4
+ ε2

a )<[ω2]
 + ν

 δ2
x

|ω|4
<[ω2] −

ε2
i + ε2

a

2

 = 1. (A.10)

(A.8) allows to simplify in:

µ

−δ2
x −

(ε2
i + ε2

a )2

4
+ 2ε2

a<[ω2]
 − ν ε2

i + ε2
a

2

 = 1 (A.11)

Energy-based system of equations. Eqs (A.8) and (A.11) can be summarized in

αµ − βν = 1
γµ − ν = 0

(A.12)

with

α = −δ2
x −

(ε2
i + ε2

a )2

4
+ 2ε2

a<[ω2], β =
ε2

i + ε2
a

2
, γ = ε2

a
|ω|4

δ2
x
− ε2

i

Using β > 0, it is easy to check that (A.12) has solutions (µ, ν) positive and with magnitude less than one
only if

γ > 1 and α > (1 + β)γ

or

0 ≤ γ ≤ 1 and α ≥ 1 + βγ

The conditions above immediately exclude the cases εa = 0 (which leads to γ < 0 ) and <[ω2] ≤ 0
(which leads to α < 0 ). They will not be considered below.
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First case: 0 ≤ γ ≤ 1. This implies:

|ω|4 ≤
δ2

x

ε2
a

(1 + ε2
i ) (A.13)

α ≥ 1 + βγ writes:

<[ω2] ≥
1

2ε2
a

1 + δ2
x +

(ε2
a + ε2

i )2

4
+
ε2

i + ε2
a

2

(
ε2

a
|ω|4

δ2
x
− ε2

i

)
Now using the inequalities |<[ω2]|2 ≤ |ω|4 and (A.13), we get

δ2
x

ε2
a

(1 + ε2
i ) ≥ |ω|4 ≥

 1
2ε2

a

1 + δ2
x +

(ε2
a + ε2

i )2

4
+
ε2

i + ε2
a

2

(
ε2

a
|ω|4

δ2
x
− ε2

i

)2

(A.14)

Using a computing algebra software to simplify the technical exercice, we can prove that (A.14) has
solutions if and only if

ε2
i >

√
4 + ε4

a

which requires εi >
√

2.

Second case: γ > 1. This implies:

|ω|4 >
δ2

x

ε2
a

(1 + ε2
i ) (A.15)

α > (1 + β)γ can be written as:

γ <
α

1 + β

or

|ω|4 <
δ2

x

ε2
a

ε2
i +

1

1 +
ε2

a +ε2
i

2

−δ2
x −

(ε2
i + ε2

a )2

4
+ 2ε2

a<[ω2]



Now using 0 ≤ <[ω2] ≤ |ω|2 and adding (A.15), we get:

δ2
x

ε2
a

(1 + ε2
i ) < |ω|4 <

δ2
x

ε2
a

ε2
i +

1

1 +
ε2

a +ε2
i

2

−δ2
x −

(ε2
i + ε2

a )2

4
+ 2ε2

a |ω|
2



which has non trivial solutions if and only if

ε2
a > 2 + ε2

i

which requires εa >
√

2.

Conclusion. This concludes the proof. If εa = 0 or max(εi, εa) ≤
√

2, then =[ω2] is zero. This also
leads to =[δ2

z ] = 0 and we conclude that, under these conditions, δz is either real or purely imaginary.
Equation (A.10) with µ and ν positive further show that Re[ω2] ≥ 0] implying that ω can only be real
and the amplitude of the wave solution does not diverge in time.
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A.2 Vanishing ratio R2(δx, δz).

We now show that the two roots ω± are well-separated except when

(i) δz is pure imaginary and close to δz = iδz,i,∗ = i
(
ε2

a − ε
2
i

)
/2,

(ii) δz is real and εi = εa & δz = 0

δz real. The ratio of reference functions R2(δx, δz), defined by (42), depends indeed on two variables
(δx, δz) and two parameters (εi, εa). A study of its variations for δx ∈ R shows that, for non-vanishing
(εi, εa), it has an upper bound:

R2
max(δz) = max

δx
R2(δx, δz) =

1
4

ε2
aε

2
i

δ2
z + ε4

(A.16)

and this maximum value is attained for

δ2
x = δ2

z + ε4. (A.17)

Since for max(εi, εa) ≤
√

2 or εa = 0 the roots (43) are real (Appendix A.1), Rmax(δz) must remain bellow
1/4 but approaches 1/4 for both a near depth-independent vertical profile (i.e. δz ≈ 02) and εa ≈ εi (or
in dimensional form N = g/cs). This last equality is true when the stratification and the compressibility
effects have an identical contribution to the vertical variation of background stratification ρ̂h(z). In all
other cases, the vast majority, the two roots are well separated and given by:

ω−(δx, δz) ≈ ωi(δx, δz), ω+(δx, δz) ≈ ωa(δx, δz) (A.18)

δz pure imaginary. When horizontal and vertical wavenumbers are close together, the left-hand side
and right-hand side of (39a) both vanish, i.e., the influence of stratification (ε2

i δ
2
x/ω

2) and compressibility
(ε2

aω
2
a) cancel out. In other words, differences between horizontal and vertical wavenumbers are indication

of the influence of ocean stratification and/or compressibility. In an incompressible, homogeneous
(unstratified) ocean, εi = εa = 0 and vertical and horizontal wave-numbers are equal. The developments
of ω2

−, ω
2
+ for small εi, εa are identical to those for real vertical wavenumbers (50), (53) just replacing δ2

z
by −δ2

z,i. The remaining question is that of root separation when δz ∈ i R. Unlike when δz ∈ R (previous
sub-section), the ratio R2(δx, i δz,i) can be equal to 1/4 even when δz is not small. Relation (39a) imposes

0 ≤ δ2
z,i ≤ δ2

x +
(ε2

a +ε2
i )2

4 and in this range of values, R2 is an increasing function of δ2
z,i. The value of

R2 = 1/4 is attained for δ2
z,i = δ2

z,i,? given by

δ2
z,i,? = δ2

x +
(ε2

a + ε2
i )2

4
− 2εaεiδx, (A.19)

for which the inner dispersion relation has a double root

ω2
+ = ω2

− =
εi

εa
δx (A.20)

When δz,i is less than δz,i,?, the two roots become separated. Again, since we have proved in appendix that
only solutions with real angular frequency can exist (when the domain is bounded), the case δ2

z,i > δ
2
z,i,?,

which would lead to R2 > 1/4 can be excluded. Note that ω−, ω+ as functions of δz,i are not differentiable
at the neutral point δz,i = δz,i,?.

2We use the term depth-independent even if F(z) is a linear function of z when δz is close to 0 (see (28)), so that the vertical
profile of W(z) is approximately linear while the vertical profile of U(z) is approximately constant.
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A.3 Internal and acoustic modes (MIM & MAM).

MIM solutions: we have shown in §(3.4) that the root of the inner dispersion relation corresponding
to internal gravity waves is well-approximated by ω2

i . Making ω2(δx) ≈ ω2
i in the boundary dispersion

relation (34b) leads to

1

δz/ tan(δz) +
ε2

i +ε2
a

2

≈
ε2

i

δ2
x + δ2

z + 1
4

(
ε2

i + ε2
a

)2 (A.21)

If we assume here that δz is not close to 0, the right-hand side of (A.21) is always small and thus
δz/ tan(δz) has to be large, i.e., the vertical wavenumber δz is close to δz,n ≈ nπ with n a non-zero
integer. This agrees with the internal gravity wave solution found graphically in subsection (4.2).

MAM solutions: we can now use the fact that the root of the inner dispersion relation corresponding to
acoustic waves is well-approximated by ω2

a. Making ω2(δx) ≈ ω2
a in the boundary dispersion relation

(34b) leads to:

δz/ tan(δz) +
ε2

i + ε2
a

2
≈

ε2
a

1 +

(
δ2

z + 1
4

(
ε2

i + ε2
a

)2
)
/δ2

x

(A.22)

Since the right-hand side of (A.22) is small (bounded by ε2
a ), δz/ tan(δz) has to be small and thus the

vertical wavenumber δz is close to δz,m ≈ π/2 + mπ, with m ∈ N.

A.4 Surface waves existence.

In the more general case of a stratified and compressible ocean, we now show the existence of
solutions to (39a) and (39b) the dispersion relations for δz ∈ iR.

Let us define f (δx, δz,i) by:

f (δx, δz,i) = δ2
x − δ

2
z,i −

ε2
i
δ2

x

ω2 + ε2
aω

2 −
(ε2

a + ε2
i )2

4

 , with ω2 =
δ2

x

δz,i
tanh(δz,i)

+
ε2

a +ε2
i

2

The inner boundary relation translates into f (δx, δz,i) = 0. We can check that, for a given δz,i, f (δx, δz,i)
is an increasing function of δx

3. Let δx,0 be the value of δx defined by f (δx,0, δz = 0) = 0 (δx,0 will be
given in (64), and is close to εi). In particular, we have f (δx, 0) ≤ f (δx,0, 0) = 0 for δx ≤ δx,0. We can
also verify that for a given δx such that δx ≤ δx,0, the maximum of f (δx, δz) is attained in δz,i = 0. This
proves that if δx < δx,0, f (δx, δz,i) < 0 ∀δz,i. Therefore, modified surface waves can only exist under the
condition δx ≥ δx,0.

A.5 Surface waves: δz,i ≈ δx.

For small parameters εa and εi, we show in the present section that δ2
z,i is close to δ2

x for any MSW
solution.

We can show that 1 ≤
δz,i

tanh(δz,i)
≤ δ2

z,i + 1, ∀δz,i ∈ R. Injecting these two inequalities in the surface

3This simple demonstration requires the assumption ε2
a ≤ 2 + ε2

i , i.e., the same used in appendix to prove that the imaginary
part of δ2

z is zero.
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dispersion relation leads to:

δ2
x

ω2 ≤ δ
2
z,i + 1 +

ε2
a + ε2

i

2
, and ω2 ≤ δ2

x

Since the inner dispersion relation implies −
(ε2

a + ε2
i )2

4
≤ δ2

x − δ
2
z,i ≤ ε

2
i
δ2

x

ω2 + ε2
aω

2, we finally get:

−
(ε2

a + ε2
i )2

4
≤ δ2

x − δ
2
z,i ≤ ε

2
i δ

2
z,i + ε2

aδ
2
x + ε2

i

1 +
ε2

a + ε2
i

2


Using the smallness of the parameters εa and εi, we can then conclude that δ2

z,i is indeed close to δ2
x.

A.6 MIM0 long-wave sub-branch

In the present section of the appendix, we show that the horizontal wave-number of the MIM0
solution (δx,mim0(δz), ωmim0(δz)) is a decreasing function of δz. It satisfies δx,mim0(0) = δx,0 ≥ 0
and δx,mim0(δz,0) = 0 for δz,0 ∈ [0, δz,m=0 ≈ π/2[.

Wave solutions of MIM0 type must satisfy both the inner and boundary dispersion relation (34a and
34b) with δz ∈ R. We have also shown that MIM0 is part of the internal branch and as a consequence
approximately satisfies (41b). Substituting then (34b) into (41b) leads to a relation between the horizontal
and vertical wave-numbers:

δ2
x = δ2

x,mim0(δz) = −δ2
z − ε

4 + ε2
i

(
ε2 + δzcotan(δz)

)
(A.23)

with δ2
x,mim0(0) = δ2

x,0 = −ε4 + ε2
i

(
ε2 + 1

)
. When δ2

x,0 < 0, this depth-independent solution does not

propagate horizontally and we will assume in the following that δ2
x,0 = −ε4 + ε2

i

(
ε2 + 1

)
≥ 0. In §(4.2),

δz,m=0 has been defined as a root of ε2 + δzcotan(δz) and when δz → δ(−)
z,m=0, δ2

x(δz) → −∞. This means
that there must exist δz,0 ∈ [0, δz,m=0[ such that δx,mim0(δz,0) = 0 and δz,0 satisfies:

−δ2
z − ε

4 + ε2
i

(
ε2 + δzcotan(δz)

)
= 0 (A.24)

We can additionally show that δx,mim0(δz) is monotonic (decreasing) for δz ∈ [0, δz,0]. Indeed, its
derivative

dδx,mim0

dδz
(δz) = 2δ2

z + ε2
i (δz − cotan(δz)) (A.25)

is positive for δz ∈ [0, δz,0] since it satisfies dδx,mim0
dδz

(0) = 0 and is an increasing function of δz over this
interval. The monotonicity of the derivative can be proven by computing the second order derivative

d2δx,mim0

dδ2
z

(δz) = 2 + 2ε2
i

1 − δzcotan(δz)
sin2(δz)

(A.26)

and using the Taylor series of cotan(z), we can further show that (1 − δzcotan(δz)) ≥ 0 and thus
d2δx,mim0

dδ2
z

(δz) ≥ 0.
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A.7 Monotonicity of the branches of wave solutions ?

In the present section of the appendix, we show that the branches of acoustic wave solutions are
monotonic and decreasing if εa and εi remain small.

To do so, the derivatives of δ2
x and ω2 with respect to δz given respectively by (55a) and (55b) are

computed:(
ε2 − J(δz)

)2 dδ2
x

dδz
(δz) = − 2δzJ2(δz)

+ 2ε2δ2
z J′(δz) + ε2

i J2(δz)J′(δz)

+ 2ε4δz − (ε4
i + ε2

i ε
2
a )J(δz)J′(δz)

+
1
4

(ε6
a − 2ε6

i − 3ε4
i ε

2
a )J′(δz) (A.27a)(

ε2 − J(δz)
)2 dω2

dδz
(δz) = δ2

z J′(δz) − 2δzJ(δz) (A.27b)

+ (ε2
a − ε

2
i )δ2

z

+
1
4

(ε4
a − 3ε4

i − 2ε2
aε

2
i )J′(δz)

where

J(δz) = δz cotan(δz) (A.28a)

J′(δz) =
sin(2δz) − 2δz

2sin2(δz)
≤ 0 (A.28b)

Note that the relations above are not Taylor expansions of the derivatives with respect to εa and εi, they
are exact relations. The derivative of δ2

x given by (A.27a) is negative at third order in (εa, εi) whereas the
derivative of ω2 (A.27b) is negative only at first order in (εa, εi). At higher order, (A.27a) and (A.27b)
additionally show the values of δz for which δ2

x and ω2 are monotonic depending of the values of this two
parameters.
δ2

x(δz) and ω2(δz) are thus monotonously decreasing functions of δz if εa and εi remains small.

B Incompressible hydrostatic model & non-hydrostatic models

Hydrostatic & incompressible model. Under the hydrostatic assumption, the propagation relation
(16) in a uniformly stratified, incompressible ocean turns to:

W̃′′(z) +
g

D0 ω
W̃(z) = 0 (B.1)

associated to the surface and bottom boundary conditions:

W̃′(0) −
gk2

x

ω2 W̃(0) = 0, W̃(−H) = 0 (B.2)

The inner and boundary dispersion relations are then:

δ2
z −

ε2
i δ

2
x

ω2 = 0 (B.3a)

ω2 =
δ2

x tan(δz)
δz

(B.3b)

In the long wave-approximation (δz → 0), (B.3a) and (B.3b) are approximately given by (δz = εi, ω = δx)
and tends to the shallow-water solution (δz = 0, ω = δx) (SHW, table 1) for a homogeneous ocean
(εi → 0).
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Non-hydrostatic & incompressible model. In an incompressible (non-hydrostatic) ocean, the propagation
relation (16) in a uniformly stratified, incompressible ocean turns to:

W̃′′(z) + kx2
(

g
D0 ω

− 1
)

W̃(z) = 0 (B.4)

associated to the surface and bottom boundary conditions:

W̃′(0) −
gk2

x

ω2 W̃(0) = 0, W̃(−H) = 0 (B.5)

The inner and boundary dispersion relations are then:

δ2
x + δ2

z −
ε2

i δ
2
x

ω2 = 0 (B.6a)

ω2 =
δ2

x tan(δz)
δz

(B.6b)

In the long wave-approximation (δz → 0), (B.6a) and (B.6b) are approximately given by (δz = δx +

ε2
i , ω = δx) and tends to the long-swell solution (δz = δx, ω = δx) (LSW, table 1) in a homogeneous

ocean (εi → 0).

Dispersion surfaces. Figure (B.1) shows the inner and boundary dispersion surfaces for an incompressible
ocean under the assumptions of hydrotaticity (a) and non-hydrostaticity (b).

• Under the hydrostatic assumption, all wave solution have real, positive vertical number δz. Figure
(B.1.a) shows two types of solutions, MIM for δz ≈ π and barotropic-like mode for small δz which
converge to barotropic mode when εi → 0.

• Under the non-hydrostatic assumption, Figure (B.1.b) shows also two types of solutions, MIM for
δz ≈ π and MSW for δz ∈ iR.

(a)
(b)

Figure B.1: inner and boundary dispersion surfaces in (δx, δz, ω) space and wave solutions for an
incompressible ocean:
(a) hydrostatic assumption,
(b) non-hydrostatic assumption.
Colors: (light red) δ2

z ≥ 0 & ω ≥ 1, (light green) δ2
z ≥ 0 & ω < 1, (light blue) δ2

z < 0, (white) boundary
dispersion surface for δz ∈ R, (light gray) boundary dispersion surface for δz ∈ iR, (light yellow) ω2 = δ2

x
barotropic wave.
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C Analytical solutions and vertical profiles of vertical velocity under constant Brunt-
Väisälä angular frequency

Analytical solutions. We define in §(2) the vertical velocity profile W̃(z) for a constant and uniform
Brunt-Väsälä angular frequency by

W̃(z) = e−z/(2D0)F(z) = e−z/2D0
sin(kz(H + z))

sin(kzH)
(C.1)

and a vertical pressure profile p̃(z)

p̃(z) =
Ω2

g2k2
x(1 − (Ω/(cskx))2)

(
N2

0W̃(z) + gW̃′(z)
)
.

with
1

D0
=

N2
0

g
+

g
c2

s
, and where, for a given horizontal wave-number kx, kz and Ω are solutions of the

inner and boundary dispersion relations. Highly accurate approximations of them can be found in table
(5).
Note that by construction (and using the boundary dispersion relation), we have W̃(0) = p̃(0) = 1.

The real analytical solutions of Eqs. (13a, 13b, 13c, 13d) which satisfy the bottom and surface conditions
(14a, 14b) are given by:

η(x, t) = η0 cos(kxx) cos(Ωt) (C.2)

u(x, z, t) = η0
gkx

Ω
sin(kxx) sin(Ωt)

ρ̂h(0)
ρ̂h(z)

p̃(z) (C.3)

w(x, z, t) = −η0Ω cos(kxx) sin(Ωt)
ρ̂h(0)
ρ̂h(z)

W̃(z) (C.4)

p(x, z, t) = η0gρ̂h(0) cos(kxx) cos(Ωt) p̃(z) (C.5)

ρ(x, z, t) = η0ρ̂h(0) cos(kxx) cos(Ωt)

N2
0

g
W̃(z) +

g
c2

s
p̃(z)

 (C.6)

with ρ̂h(z) = ρ̂h(0) e−z/D0 and η0 a constant.
For an homogeneous N2

0 → 0 and incompressible (cs → ∞, and thus D0 → ∞) non hydrostatic ocean,
the Airy’s solutions are recovered (see e.g. (Gill 1982, section 5.3)). Indeed kz = ikx, Ω

2 = gkx tanh(Hkx)
and

W̃Airy(z) = FAiry(z) =
sinh(kx(H + z))

sinh(kxH)
, p̃Airy(z) =

Ω2

gk2
x

W̃′Airy(z) =
Ω2

gkx

cosh(kx(H + z))
sinh(kxH)

,

leading to

ηAiry(x, t) = η0 cos(kxx) cos(Ωt) (C.7)

uAiry(x, z, t) = η0Ω sin(kxx) sin(Ωt)
cosh(kx(H + z))

sinh(kxH)
(C.8)

wAiry(x, z, t) = −η0Ω cos(kxx) sin(Ωt)
sinh(kx(H + z))

sinh(kxH)
(C.9)

pAiry(x, z, t) = ρ̂h(0)gη0 cos(kxx) cos(Ωt)
cosh(kx(H + z))

cosh(kxH)
(C.10)

ρAiry(x, z, t) = 0 (C.11)

Vertical profiles. Figure (C.1) shows the several vertical profiles of the vertical velocity for several
propagating MSW, MIM0 and MIM1 solutions and vanishing MIM0 solutions (ω2 < 0 and δ2

x < 0).
For short-length MSW (δx > δx,0), the vertical profile of the vertical (blue curves) is concave, it is linear
for δx = δx,0 and convex for long-waves (δx < δx,0). the vertical profiles of MIM1 and MAM1 (MIM2
and MAM2) show one (respectively two) extrema in the water column.
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Figure C.1: vertical profiles of vertical velocity W̃(z). Green curves: MIM solutions. Red curves: MAM
solutions. Blue curves: MSW solutions.
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