
HAL Id: hal-03174589
https://hal.archives-ouvertes.fr/hal-03174589

Preprint submitted on 19 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chance constrained problems: a bilevel convex
optimization perspective

Yassine Laguel, Jérôme Malick, Wim Ackooij

To cite this version:
Yassine Laguel, Jérôme Malick, Wim Ackooij. Chance constrained problems: a bilevel convex opti-
mization perspective. 2021. �hal-03174589�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/395675883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-03174589
https://hal.archives-ouvertes.fr

Chance constrained problems: a bilevel convex optimization
perspective

Yassine Laguel1 Jérôme Malick1 Wim Van Ackooij2
1Univ. Grenoble Alpes, CNRS, LJK, 38000 Grenoble, France

2EDF R&D, Saclay, France

Abstract

Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they
are used to model satisfaction of a constraint with a target probability. However, because of possible
non-convexity and non-smoothness, optimizing over a chance constrained set is challenging. In this paper,
we establish an exact reformulation of chance constrained problems as a bilevel problems with convex
lower-levels. We then derive a tractable penalty approach, where the penalized objective is a difference-of-
convex function that we minimize with a suitable bundle algorithm. We release an easy-to-use open-source
python toolbox implementing the approach, with a special emphasis on fast computational subroutines.

Keywords Stochastic programming · Chance constraints · Bi-level optimization · DC programming

1 Introduction

Chance constraints appear as a versatile way to model the exposure to uncertainty in optimization. Introduced
in [4], they have been used in many applications, such as in energy management [24, 30], in telecommunica-
tions [19] or for reinforcement learning [5], to name of few of them. We refer to the seminal paper [23], the
book chapter [8] for introduction to the theory and to the recent article [29] for a discussion covering recent
developments.
In this paper, we consider a general chance-constrained optimization problem of the following form. For a
fixed safety probability level p ∈ [0, 1), we write:

min
x∈X

f(x)

s.t. P[g(x, ξ) ≤ 0] ≥ p,
(1)

where f : Rd → R and g : Rd×Rm → R are two given functions, ξ is a random vector valued in Rm and
X ⊂ Rd is a (deterministic) closed constraint set.
We consider the case of underlying convexity: We assume that f and g are convex (with respect to x). For
our practical developments, we also assume that we have first-order oracles for f and g and that the X is a
box constraint on the decision variable x. Even with underlying convexity, modeling uncertainty may make
the chance constraint feasible set non-convex (see e.g. [11] for discussion on possible convexity when p is
close to 1). Though solving (non-convex) chance-constrained problems is difficult, several computational
methods have been proposed, regardless of any considerations of convexity and smoothness, and under
various assumptions on uncertainty. Let us mention: sample average approximation [17, 22], scenario
approximation [3], convex approximation [20], or p-efficient points [9]; see e.g. [29] for an overview.

1

In this paper, we propose an original approach for solving chance-constrained optimization problems. First, we
present an exact reformulation of (nonconvex) chance-constrained problems as (convex) bilevel optimization
problems. This reformulation is simple and natural, involving superquantiles (also called conditional vale-
at-risk), a risk measure studied by T. Rockafellar and his co-authors; see e.g., the tutorial [25]. Second,
exploiting this bilevel reformulation, we propose a general algorithm for solving chance-constrained problems,
and we release an open-source python toolbox implementing it. In the case where we make no assumption on
the underlying uncertainty and have only samples of ξ, we propose and analyse a double penalization method,
leading to an unconstrained single level DC (Difference of Convex) programs. Our approach enables to deal
with a fairly large sample of data-points in comparison with state-of-the-art methods based on mixed-integer
reformulations, e.g. [1]. Thus our work mixes a variety of techniques coming from different subdomains
of optimization: penalization, error bounds, DC programming, bundle algorithm, Nesterov’s smoothing;
relevant references are given along the discussion.
This paper is structured as follows. In Section 2, we leverage the known link with (super)quantiles and
chance-constraint to establish a novel bilevel reformulation of general chance constrained problems. In
Section 3, we propose and analyse a penalty approach revealing the underlying DC structure. In Section 4,
we discuss implementation of this approach in our publicly available toolbox. In section 5, we provide
illustrative numerical experiments, as a proof of concept, showing the interest of the method. Technical
details on secondary theoretical points and on implementation issues are postponed to appendices.

2 Chance constrained problems seen as bilevel problems

In this section, we derive the reformulation of a chance constraint as a bilevel program wherein both the
upper and lower level problems, when taken individually, are convex. We first recall in Section 2.1 useful
definitions. Our terminology and notations closely follow those of [25].

2.1 Basics: cumulative distributions functions, quantiles, and superquantiles

In what follows, we consider a probability space and integrable real random variables. Given a random
variable X, its cumulative distribution function, denoted by FX : R→ [0, 1], is defined as:

FX(t) := P[X ≤ t] ∀t ∈ R . (2)

The cumulative distribution function is known to be both non-decreasing and right-continuous. Its jumps
occur exactly at the atoms of X, that is the values t ∈ R at which P[X = t] > 0. These properties enable one
to define the quantile function p 7→ Qp(X) as the following generalized inverse:

Qp(X) = inf{t ∈ R : FX(t) ≥ p}, ∀p ∈ [0, 1). (3)

If X is assumed to belong to L1, we can additionally define for any p ∈ [0, 1) its p-superquantile, Q̄p(X) as
follows:

Q̄p(X) =
1

1− p

∫ 1

p′=p
Qp′(X)dp′. (4)

For a given random variable X, as a consequence of [26, Th. 2], one can recover from the cumulative distri-
bution function FX both the p-quantile and the p-superquantile functions as functions of p and reciprocally,
knowing either the p-quantile or the p-superquantile for all p ∈ [0, 1] suffices to recover FX.

2

From a statistical viewpoint, these three notions are also equally consistent [25, Th. 4] in the sense that
convergence in distribution for a sequence of random variables (Xn)n≥0 is equivalent to the pointwise
convergence of the two sequences of functions p 7→ Qp(Xn), p 7→ Q̄p(Xn). This result is particularly
relevant when the distributions are observed through data sampling. We can use the empirical cumulative
distribution functions, quantiles and super-quantiles all while upholding asymptotic convergence as the
sample size grows.
From an optimization point of view though, these three objects are very different. In contrast with the
others, the superquantile has several good properties (including convexity [2, 10, 28]), useful with respect to
numerical computation and optimization. In our developments, we use the following key result [27, Th. 1]
linking quantiles and superquantile through a one-dimensional problem.

Lemma 1. For an integrable random variable X and a probability level p, the superquantile Q̄p(X)) and
quantile Qp(X) are respectively the optimal value and the optimal solution of the convex one-dimensional
problem

inf
η∈R

η +
1

1− p
E[max(X−η, 0)]. (5)

2.2 Reformulation as a bilevel problems

By definition, the chance constraint in (1) involves the cumulative distribution function: we have for any
fixed x ∈ Rd, P[g(x, ξ) ≤ 0] ≥ p⇔ Fg(x,ξ)(0) ≥ p. Following the discussion of the previous section, we
easily rewrite this constraint using quantiles, as formalized in the next lemma.

Lemma 2. For any x ∈ Rd and p ∈ [0, 1), we have:

P[g(x, ξ) ≤ 0] ≥ p ⇐⇒ Qp(g(x, ξ)) ≤ 0.

Proof. By definition of the quantile and continuity on the right of the cumulative distribution function, we
always have p ≤ P[g(x, ξ) ≤ Qp(g(x, ξ))]. Thus, since cumulative distribution functions are increasing, if
Qp(g(x, ξ)) ≤ 0, then P[g(x, ξ) ≤ Qp(g(x, ξ))] ≤ P[g(x, ξ) ≤ 0] which implies that P[g(x, ξ) ≤ 0] ≥ p.
Conversely, since Qp(g(x, ξ)) is the infimum of {t ∈ R : P[X ≤ t] ≥ p}, if Qp(g(x, ξ)) > 0, then
necessarily we have P[g(x, ξ) ≤ 0] < p.

Together with (5), we obtain from the previous easy lemma a bilevel formulation of the general chance-
constrained problem (7). The idea is simple: introducing an auxiliary variable η ∈ Rd to recast the potentially
non-convex chance constraint of (1) as two constraints, a simple bound constraint and a difficult optimality
constraint, forming a lower subproblem. Introducing the lower objective function G : X ×R→ R

G(x, s) = s+
1

1− p
E[max(g(x, ξ)− s, 0)], (6)

we have the following exact reformulation of chance-constrained problems.

Theorem 3. Problem (1) is equivalent to the bilevel problem:
minx∈X ,η∈R f(x)
s.t. η ≤ 0

η ∈ S(x) = arg mins∈RG(x, s).
(7)

More precisely, if x? is an optimal solution of (1), then (x?, Qp(g(x?, ξ))) is an optimal solution of the above
bilevel problem, and conversely.

3

Proof. It is clear with Lemma 2 that problem (1) is equivalent to
min

x∈X ,η∈R
f(x)

s.t. η ≤ 0
η = Qp(g(x, ξ))

. (8)

By Lemma 1, Qp(g(x, ξ)) ∈ S(x) for any x ∈ Rd. Hence, any solution (x, η) of (8) is feasible for (7). Con-
versely, any solution (x?, η?) of (7) satisfies: Qp(g(x?, ξ)) ≤ η? ≤ 0 which implies that (x?, Qp(g(x?, ξ)) is
a feasible point of (8). Since both problems have the same objective, they are equivalent.

The first constraint η ≤ 0 is an easy one-dimensional bound constraint which does not involve the decision
variable x. The second constraint, which constitutes the lower level problem is more difficult; when this
constraint is satisfied, η is exactly the p-quantile of g(x, ξ). We readily see the joint convexity of the objective
function of the lower level problem in (7) with respect to s and x.
This bilevel reformulation is nice, natural and seemingly new; we believe that it opens the door to new
approaches for solving chance-constrained problems. In the next section, we propose such an approach based
on the reformulation.

3 A double penalization scheme for chance constrained problems

In this section, we explore one possibility offered by the bilevel formulation of chance-constrained problems,
presented in the previous section. We propose a (double) penalization approach for solving the bilevel
optimization problem, with a different treatment of the two constraints: a basic penalization of the easy
constraint together with an exact penalization of the hard constraint formalized as the lower problem. We first
derive in Section 3.1, some growth properties of the lower problem. We show then in Section 3.2 to what
extent these properties help to provide an exact penalization of the “hard” constraint. We finally present the
double penalty scheme in section 3.3.
From the bilevel problem (7), we derive the two following penalized problems, associated with two penaliza-
tion parameters µ, λ > 0 and

(Pµ)

{
min

(x,η)∈X ×R
f(x) + µmax(η, 0)

s.t. η ∈ arg mins∈RG(x, s)
(9)

and
(Pλ,µ) min

(x,η)∈X ×R
f(x) + λ

(
G(x, η)−min

s∈R
G(x, s)

)
+ µmax(η, 0). (10)

We consider a general data-driven situation where the uncertainty ξ is just known through a sample (or, said
alternatively, follows an equiprobable discrete distribution over n ∈ N arbitrary values): we assume that there
exists ξ1, ξ2, . . . , ξn ∈ Rm such that P[ξ = ξi] = 1

n for all i ∈ {1, . . . , n}. The set In defined as

In =

{
i

n
, i ∈ {0, ..., n− 1}

}
(11)

4

plays a special role in our developments. In particular, we use the distance to In, denoted by dIn(p), to define
a key quantity appearing in the variational results of this section: we introduce

δ =

1

n(1− p)
if p ∈ In

dIn(p)

(1− p)
otherwise,

(12)

which depends implicitly on the number of samples n and the fixed safety parameter p.

3.1 Analysis of the Value function

In view of the forthcoming exact penalization, we study here the value function h : X ×R → R defined,
from G in (6), as

h(x, η) = G(x, η)−min
s∈R

G(x, s). (13)

The next result relates h to dS(x)(·), the distance function to S(x), the solution set of the lower level problems
in (7). This is our main technical result, on which next propositions are based.

Theorem 4. Let p ∈ [0, 1) be fixed but arbitrary. The function h defined in (13) satisfies for any (x, η) ∈
X ×R

h(x, η) ≥ δ dS(x)(η) with δ defined by (12).

Proof. Let us fix x ∈ X and denote by qp the p-quantile of g(x, ξ). We first note that by the arguments in the
proof of Lemma 2, we have

p ≤ P[g(x, ξ) ≤ qp],

with equality holding in the left inequality, if and only if p belongs to In.
For any fixed but arbitrary η ∈ R, we have the following identity:

h(x, η) = η +
1

1− p
E[max(g(x, ξ)− η, 0)]−

(
qp +

1

1− p
E[max(g(x, ξ)− qp, 0)]

)
= (η − qp) +

1

1− p
E [max(g(x, ξ), η)− η − (max(g(x, ξ), qp)− qp)]

= (η − qp)(1−
1

1− p
) +

1

1− p
E [max(g(x, ξ), η)−max(g(x, ξ), qp)] .

Now, by employing a case distinction on the location of η with respect to qp, we will derive the desired
inequalities. Let us first consider that η > qp, then we have:

h(x, η) = (η − qp)(1−
1

1− p
) +

1

1− p
E
[
(η − g(x, ξ))1qp<g(x,ξ)≤η +(η − qp)1g(x,ξ)≤qp

]
= (η − qp)(1−

1

1− p
+

1

1− p
P[g(x, ξ) ≤ qp]) +

1

1− p
E[(η − g(x, ξ))1qp<g(x,ξ)≤η]

which finally gives:

h(x, η) =
(η − qp)

1− p

(
P[g(x, ξ) ≤ qp]− p+ E

[
η − g(x, ξ)

η − q
1qp<g(x,ξ)≤η

])
. (14)

5

Now if P[g(x, ξ) ≤ qp] > p, this implying that p /∈ In, then by non-negativity of the expectation term above,
we have:

h(x, η) ≥ (η − qp)
1

1− p
(P[g(x, ξ) ≤ qp]− p) ≥

dIn(p)

1− p
dS(x)(η).

Here we use that clearly |η − qp| ≥ dS(x)(η), since qp ∈ S(x) as already recalled. Furthermore p ≤
P[g(x, ξ) ≤ qp] < p+ 1

n by Lemma 2 and by definition. We also observe that P[g(x, ξ) ≤ qp] ∈ In, so that
altogether we have:

0 ≤ (P[g(x, ξ) ≤ qp]− p)
(P[g(x, ξ) ≤ qp]− p) ≥ dIn(p)

dIn(p) ≤ 1
n .

If to the contrary p ∈ In which implies that P[g(x, ξ) ≤ qp] = p, then h(x, η) = 1
1−p E[(η−g(x, ξ))1qp<g(x,ξ)≤η].

We let q+p be the successor quantile, i.e.,

q+p = inf{t ≥ R : P[g(x, ξ) ≤ t] > p}.

Since p ≤ n−1
n , it follows that q+p <∞ and q+p > qp. Now if η ∈ (qp, q

+
p), we have h(x, η) = 0. If η ≥ q+p ,

then

h(x, η) =
1

1− p
E
[
(η − g(x, ξ))1q+p ≤g(x,ξ)≤η

]
≥ (η − q+p)

P[g(x, ξ) = q+p]

1− p
≥ 1

n(1− p)
dS(x)(η)

≥ dIn(p)

(1− p)
dS(x)(η),

where the last inequality results from our earlier estimates.
The second case to consider involves the situation η < qp. Here, we have:

h(x, η) = (η − qp)(1−
1

1− p
) +

1

1− p
E
[
(g(x, ξ)− qp)1η<g(x,ξ)≤qp +(η − qp)1g(x,ξ)≤η

]
= (η − qp)

(
1− 1

1− p
+

1

1− p
P[g(x, ξ) ≤ η]

)
+

1

1− p
E
[
(g(x, ξ)− qp)1η<g(x,ξ)≤qp

]
which leads us to

h(x, η) =
(qp − η)

1− p

(
p− P[g(x, ξ) ≤ η]− E

[
qp − g(x, ξ)

qp − η
1η<g(x,ξ)≤qp

])
. (15)

Now if P[g(x, ξ) ≤ qp] > p, this implies that p /∈ In, then let us define the antecessor quantile q−p as

q−p = max {sup{t ≥ R : P[g(x, ξ) ≤ t] < p},min{g(x, ξi)}ni=1 − 1} .

We can first observe that since p /∈ In, we can entail p > 0, hence q−p > −∞ is well defined. For any

η ∈ (q−p , qp), it follows that E
[
qp−g(x,ξ)
qp−η 1η<g(x,ξ)≤qp

]
= 0. We may thus consider that η ≤ q−p , in which

6

case we have:

h(x, η) = (qp − η)
1

1− p

(
p− P[g(x, ξ) ≤ η]− E

[
qp − g(x, ξ)

qp − η
1η<g(x,ξ)≤q−p

])
≥ (qp − η)

1

1− p

(
p− P[g(x, ξ) ≤ η]− E

[
1η<g(x,ξ)≤q−p

])
≥ (qp − η)

1

1− p
(
p− P[g(x, ξ) ≤ q−p]

)
≥ 1

n(1− p)
dS(x)(η) ≥ dIn(p)

1− p
dS(x)(η),

where we have used that qp−g(x,ξ)qp−η ≤ 1 on 1η<g(x,ξ)≤qp .

If to the contrary, p ∈ In, which implies P[g(x, ξ) ≤ qp] = p, recalling the identity p − P[g(x, ξ) ≤ η] =
E[1η<g(x,ξ)<qp] + P[g(x, ξ) = qp], we obtain:

h(x, η) = (qp − η)
1

1− p

(
E
[
1− (qp − g(x, ξ))

qp − η
1η<g(x,ξ)<qp

]
+ P[g(x, ξ) = qp]

)
≥ (qp − η)

P[g(x, ξ) = qp]

1− p

≥ 1

n

1

1− p
dS(x)(η) ≥ dIn(p)

1− p
dS(x)(η),

where we have used that P[g(x, ξ) = qp] = 1
n . The last case η = qp, gives by construction η ∈ S(x), i.e.,

dS(x)(η) = 0 and clearly h(x, η) = 0 so that the desired inequality holds.

Following the terminology of [33], this theorem shows that h is a uniform parametric error bound. We note
that the quality of this bound is altered by the number n of data points considered. This drawback actually
passes to the limit in the sense that (x, η) 7→ hx(η) fails to be a uniform parametric error bound when ξ
follows a continuous distribution; this is an interesting but secondary result that we prove in Appendix A.1.

3.2 An exact penalization for the hard constraint

We show here that (Pλ,µ) is an exact penalization of (Pµ), when λ is large enough. The proof of this result
follows usual rationale (see e.g., [6, Prop. 2.4.3]); the main technicality is the sharp growth of h established
in Theorem 4.

Proposition 5. Let µ > 0 be given and assume that there is a solution to (Pµ) defined in (9). Then for any
λ > µ/δ with δ defined in (12), the solution set of (Pµ) coincides with the one of (Pλ,µ) defined in (10).

Proof. Take µ > 0, define λµ = µ/δ, and take λ > λµ arbitrary but fixed. Let us first take a solution
(x?, η?) ∈ X ×R of (Pµ) and show by contradiction that it is also a solution of (Pλ,µ). Indeed, to the
contrary, assume there exists some ε > 0 and (x′, η′) ∈ X ×R such that:

f(x′) + µmax(0, η′) + λhx′(η
′) ≤ f(x?) + µmax(0, η?) + λ hx?(η

?)− ε.

7

Let then η′p ∈ S(x′) be such that : |η′p − η′| ≤ dS(x′)(η
′) + ε

2µ . Then the point (x′, η′p) is a feasible for Pµ
(recall η′p ∈ S(x′)) and since η 7→ µmax(0, η) is µ-Lipschitz, we first have

f(x′) + µmax(0, η′p) ≤ f(x′) + µmax(η′, 0) + µ|η′p − η′|

≤ f(x′) + µmax(η′, 0) + µ

(
dS(x′)(η

′) +
ε

2µ

)
.

Using Theorem 4, we then have

f(x′) + µmax(0, η′p) ≤ f(x′) + µmax(η′, 0) + µ

(
1

δ
h(x′, η′) +

ε

2µ

)
≤ f(x′) + µmax(η′, 0) + λµ h(x′, η′) +

ε

2

≤ f(x?) + µmax(η?, 0)− ε

2

which gives the contradiction. Hence any solution of (Pµ) is also a solution to problem (Pλ,µ).
Let now (x̄, η̄) be a solution of (Pλ,µ) and let us show that it is actually a solution for Pµ. Let again (x?, η?)
be an arbitrary solution of (Pµ). We first note that that a result of optimality of (x̄, η̄) for (Pλ,µ), we have:

f(x̄) + µmax(0, η̄) + λh(x̄, η̄)︸ ︷︷ ︸
≥0

≤ f(x?) + µmax(0, η?) + λh(x?, η?)︸ ︷︷ ︸
=0

,

which by positivity of the function h and feasibility for (Pµ), i.e., h(x?, η?) = 0 of (x?, η?) yields:

f(x̄) + µmax(0, η̄) ≤ f(x?) + µmax(0, η?).

It remains to show that (x̄, η̄) is a feasible point for (Pµ). By the first point, (x?, η?) is both a solution of
(Pλ,µ) and (Pλ+λµ

2
,µ

). Hence, we have:

f(x̄) + µmax(0, η̄) + λh(x̄, η̄) ≤ f(x?) + µmax(0, η?)

= f(x?) + µmax(0, η?) +
λ+ λµ

2
h(x?, η?)

≤ f(x̄) + µmax(0, η̄) +
λ+ λµ

2
h(x̄, η̄)

But since λ > λµ we necessarily have: h(x̄, η̄) = 0 which implies by the properties of the value function that
(x̄, η̄) is a feasible point for (Pµ).

3.3 Double penalization scheme

From the previous results, we get that solving the sequence of penalized problems gives approximations of
the solution of the initial problem. We formalize this in the next proposition suited for our context of double
penalization. The proof of this result follows standard arguments; see e.g. [18, Ch. 13.1].

Proposition 6. Assume that Problem (7) has a non-empty feasible set. Let (µk)k≥0 be an increasing sequence
such that µk � ∞, and (λk)k≥0 be taken such that λk >

µk
δ with δ as defined in (12). If, for all k, there

exists a solution of (Pλk,µk) (denoted by (xk, ηk)), then any cluster point of the sequence (xk, ηk) is an
optimal solution of (1).

8

Proof. The fact that (xk, ηk) is an optimal solution of (Pλk,µk) implies that

f(xk) + µk max(0, ηk) + λkh(xk, ηk) (16)

≤ f(xk+1) + µk max(0, ηk+1) + λkh(xk+1, ηk+1)

Similarly for (xk+1, ηk+1), we get

f(xk+1) + µk+1 max(0, ηk+1) + λk+1h(xk+1, ηk+1)

≤ f(xk) + µk+1 max(0, ηk) + λk+1h(xk, ηk).

By Proposition 5, ηk (resp. ηk+1) is feasible for (Pµk) (resp. (Pµk+1
)); in other words, we have h(xk, ηk) =

h(xk+1, ηk+1) = 0. Hence summing up these two inequalities yields

max(ηk, 0) ≥ max(ηk+1, 0).

Using this last inequality with (16) gives:

f(xk)− f(xk+1) ≤ µk (max(ηk+1, 0)−max(ηk, 0)) ≤ 0,

and as a consequence the sequence {f(xk)}k≥0 increases. Let (x′, η′) be an arbitrary feasible solution for
(P). By definition of the sequence (xk, ηk), for any k ∈ N, we have:

f(xk) ≤ f(xk) + µk max(ηk, 0) ≤ f(x′) + µk max(η′, 0) ≤ f(x′). (17)

Therefore for any cluster point (x̄, η̄) of the sequence {(xk, ηk)}k≥0, we have f(x̄) ≤ f(x′). In order to
show that (x̄, η̄) is a solution of (7), it remains to show its feasibility. With the right hand side inequality
of (17), we obtain

max(ηk, 0) ≤ f(x′)− f(xk)

µk
≤ f(x′)− f(x0)

µk
−−−→
k→∞

0,

so that we may deduce that, η̄ ≤ 0. Moreover, continuity of h ensures that h(x̄, η̄) = 0 which completes the
proof.

In words, cluster points of a sequence of solutions obtained as µ grows to +∞ are feasible solutions of the
initial chance-constrained problem. In practice though, we have observed that taking a fixed µ is enough for
reaching good approximations of the solution with increasing λ’s; see in particular the numerical experiments
of Section 5. In the next section, we discuss further the practical implementation of the conceptual double
penalization scheme.

4 Double penalization in practice

In this section, we propose a practical version of the double penalization scheme for solving chance-
constrained optimization problems. First, we present in Section 4.1 how to tackle the inner penalized problem
(Pλ,µ) by leveraging its difference-of-convex (DC) structure. Then we quickly describe, in Section 4.2, the
python toolbox that we release, implementing this bundle algorithm and efficient oracles within the double
penalization method.

9

4.1 Solving penalized problems by a bundle algorithm

We discuss here an algorithm for solving (Pλ,µ) by revealing the DC structure of the objective function.
Notice indeed that, introducing the two convex functions

ϕ1(x, η) = f(x) + λG(x, η) + µmax(η, 0) and ϕ2(x, η) = λmin
s∈R

G(x, s)

we can write (Pλ,µ) as the DC problem

min
(x,η)∈X ×R

ϕ(x, η) = ϕ1(x, η)− ϕ2(x, η). (18)

We then propose to solve this problem by the bundle algorithm of [7], which showed to be a method of choice
for DC problems. This bundle algorithm interacts with first-order oracles for ϕ1 and ϕ2; in our situation,
there exist computational procedures to compute subgradients of ϕ1 and ϕ2 from output of oracles of f and
g, as formalized in the next proposition. The proof of this proposition is deferred to Appendix B. Note that at
the price of more heavy expressions, we could derive the whole subdifferential.

Proposition 7. Let (x, η) ∈ X ×R be fixed. Let sf be a subgradient of f at x and sg1, . . . , sgn be respective
subgradients of g(·, ξ1), . . . , g(·, ξn) at x. For a given t ∈ R, denote by I>t the set of indices such that
g(x, ξi) > t and by I=t the set of indices such that g(x, ξi) = t. Let finally α =

P[g(x,ξ)≤Qp(g(x,ξ)]−p
#(I=Qp(g(x,ξ)))

. Then,
sϕ1 and sϕ2 defined as:

sϕ1 =

sf +
λ

n(1− p)

n∑
i∈I>η

sgi , 1 + µ1η>0 − λ
#(I>η)

n(1− p)

sϕ2 =

 λ

n(1− p)

 ∑
i∈I>Qp(g(x,ξ))

sgi + α
∑

i∈I=Qp(g(x,ξ))

sgi

 , 0

are respectively subgradients of ϕ1 and ϕ2 at (x, η).

Notice now that the convergence result for the bundle algorithm [7, Th. 1] guarantees convergence towards a
point ū = (x̄, η̄) satisfying

∂ϕ2(ū) ∩ ∂ϕ1(ū) 6= ∅, (19)

which is a weak notion of criticality. Thus, we propose to furthermore replace ϕ2 in (18) by a smooth
approximation of it, denoted by ϕ̃2. The reason is that the bundle method minimizing ϕ̃ = ϕ1 − ϕ̃2

then reaches a Clarke-stationary point: indeed, (19) reads ∇ϕ̃2(ū) ⊂ ∂ϕ1(ū), which gives 0 ∈ ∂ϕ(ū) =
∂ϕ1(ū) + ∇ϕ̃2(ū), i.e., that ū is Clarke-stationary (for the smoothed problem). To smooth ϕ2, we use
the efficient smoothing procedure of [15] for superquantile-based functions (implementing the Nesterov’s
smoothing technique [21]). More precisely, [15, Prop. 2.2] reads as follows.

Proposition 8. Assume that g is differentiable. For a smoothing parameter ρ > 0, the function

ϕ̃2(x, η) = λ sup
0≤qi≤ 1

n(1−p)
q1+···+qn=1

n∑
i=1

{
qi g(x, ξi)−

ρ

2
(qi − 1

n)2
}

(20)

10

is a global approximation of ϕ2, such that ϕ̃2(x, η) ≤ ϕ2(x, η) ≤ ϕ̃2(x, η) + λρ
2 for all (x, η) ∈ Rd+1.

Moreover, the function is differentiable and its gradient writes, with S = (sgi)1≤q≤n the Jacobian of
x 7→ (g(x, ξ1), . . . , g(x, ξn)), as

∇ϕ̃2(x, η) = (λ S q̃ , 0)

where q̃ is the (unique) optimal solution of (20).

Note that the computation of q̃ can be performed with fast computational procedures, as proposed in [15].

4.2 A python toolbox for chance constrained optimization

We release TACO, an open-source python toolbox for solving chance constrained optimization problems (1).
The toolbox implements the penalization approach outlined in section 3 together with the bundle method [7]
for the inner penalized subproblems. TACO routines rely on just-in-time compilation supported by Numba [16].
The routines are optimized to provide fast performances on reasonably large datasets. Documentation is
available at:

https://yassine-laguel.github.io/taco

We provide here basic information on TACO; for further information, we refer to section B in appendix and
the online documentation.
The python class Problem wraps up all information about the problem to be solved. This class possesses an
attribute data which contains the values of ξ and is formatted as a numpy array in 64-bit float precision. The
class also implements two methods giving first-order oracles: objective func and objective grad
for the objective function f , and constraint func and constraint grad for the constraint function
g.
Let us take a simple quadratic problem in R2 to illustrate the instantiation of a problem. We consider

min
x∈R2

‖x− a‖2 a = [1.0, 2.0]>

s.t. P[x>ξ ≤ 0] ≥ 0.9, with 1000 samples of ξ ∼ N (0, 1).

The instance of Problem is in this case:

import numpy as np
class Problem:

def __init__(self, dim=2, sample_size=1000):
self.data = np.random.normal(size=(sample_size, dim),

dtype=np.float64)
self.a = np.array([1.0, 2.0], dtypte=np.float64)

def objective_fun(self,x):
return np.dot(x-self.a,x-self.a)

def objective_grad(self, x):
return x

def contraint_func(self, x, z):
return np.dot(x,z)

def constraint_grad(self, x, z)
return z

problem = Problem()

11

https://yassine-laguel.github.io/taco

TACO handles the optimization process with a python class named Optimizer. Given an instance of
Problem and hyper-parameters provided by the user, the class Optimizer runs an implementation of the
bundle method of [7] on the penalized problem (10). The toolbox gives the option to update the penalization
parameters µ, λ along the running process to escape possible stationary points for the DC objective that are
non-feasible for the chance constraint.

from taco import Optimizer
problem = Problem()
optimizer = Optimizer(problem, p=0.9, starting_point=np.zeros(2,

dtype=np.float64), pen1=1.0, pen2=10.0)
sol = optimizer.run()

Customizable parameters are stored in a python dictionary, called params, and designed as an attribute
of the class Optimizer. The main parameters to tune are: the safety level of probability p, the starting
penalization parameters µ = pen1 and λ = pen2, the starting point of the algorithm and the starting value
for the proximal parameter of the bundle method. Others parameters are filled with default values when
instantiating an Optimizer; for instance:

custom_options = {
’p’: 0.9,
’pen1’: 1.0,
’pen2’: 10.0,
’bund_mu_start’: 50.0,
’bund_max_size_bundle_set’: 30,

}
custom_optimizer = Optimizer(problem, params=custom_options)

Some important parameters (such as the safety probability level, or the starting penalization parameters) may
also be given directly to the constructor of the class Optimizer, when instantiating the object; as in the
first example.

5 Numerical illustrations

We illustrate our double penalisation approach implemented in the toolbox TACO on two problems: a
2-dimensional quadratic problem with a non-convex chance constraint (in Section 5.1), and a family of
problems with explicit solutions (in Section 5.2). These proof-of-concept experiments are not meant to be
extensive but to show that our approach is viable. These experiments are reproducible: the experimental
framework is available on the toolbox’s website.

12

5.1 Visualization of convergence on a 2-d problem
We consider a two-dimensional toy quadratic problem in order to track the convergence of the iterates on the
sublevel sets. We take [31, Ex. 4.1] which considers an instance of problem (1) with

f(x) =
1

2
(x− a)>Q(x− a) with a =

(
2.
2.

)
, Q =

(
5.5 4.5
4.5 5.5

)
g(x, z) = z>W (x)z + w>z with W(x)=

(
x21 + 0.5 0.

0. |x2 − 1|3+1

)
ξ ∼ N (µ,Σ) 104 samplings with µ =

(
1.
1.

)
, Σ =

(
20. 0.
0. 20.

)
.

(21)

For this example, [31] shows that the chance constraint is convex for large enough probability levels, but
here we take a low probability level p = 0.008 to have a non-convex chance-constraint. We can see this on
Figure 1, ploting the level sets of the objective function and the constraint function: the chance-constrained
region for p = 0.008 is delimited by a black dashed line; the optimal value of this problem is located at the
star.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

y

Figure 1: Trajectory of the iterates (in blue) on the plot of the level sets of the chance-constraint and the
objective for the 2d problem with data (21).

We apply our double penalization method to solve this problem, with the setting described in Appendix B.3
and available on the TACO website. We plot on the sublevel sets of Figure 1 the path (in deep blue) taken by
the sequence of iterates starting from the point [0.5, 1.5] moving towards the solution. We observe that the
sequence of iterates, after a exploration of the functions landscape, gets rapidly close to the optimal solution.
At the end of the convergence, we also see a zigzag behaviour around the frontier of the chance constraint.
This can be explained by the penalization term which is activated asymptotically whenever the sequence gets
out of the chance constraint.

13

5.2 Experiments on a family of problems

We consider the family of d-dimensional norm problems of [13, section 5.1]. For a given dimension d, the
problem writes as an instance of (1) with

f(x) = −‖x‖1 and g(x, Z) = max
i∈{1,...,10}

d∑
j=1

Z2
i,jx

2
j − 100 (22)

and ξ is random matrix of dimensions 10×d statisfying for all i, j, ξi,j ∼ N (0, 1). The interest of this family
of problems is that they have explicit solutions: for given d, the optimal value is

f? = − 10 d√
F

(−1)
χ2
d

(p
1
10)

where Fχ2
d

is χ2 cumulative distribution with d degrees of freedom. We consider four instances of this
problems with dimension d from 2 to 200 and the safety probability threshold p set to 0.8. We consider the
case of the rich information on uncertainty: ξ is sampled 10000 times. In this case, a direct approach consisting
in solving the standard mixed-integer quadratic reformulations (see e.g. [1]) with efficient MINLP solvers
(we used Juniper [14]) does not provide reasonable solutions; see basic information in Appendix B.3.

0 500 1000 1500 2000 2500 3000
iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
bo

pt
im

al
ity

d = 2

0 200 400 600 800 1000
iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
bo

pt
im

al
ity

d = 10

0 100 200 300 400 500
iterations

0.0

0.2

0.4

0.6

0.8

Su
bo

pt
im

al
ity

d = 50

0 100 200 300 400 500
iterations

0.0

0.2

0.4

0.6

0.8

Su
bo

pt
im

al
ity

d = 200

Chance constraint satisfied Chance constraint unsatisfied

Figure 2: Convergence of the algorithm on four norm problems (22) with d = 2, 10.50, 200.

We solve these instances with our double penalization approach, parameterized as described in Appendix B.3
(see the TACO website for the material and settings provided in order to reproduce experiments). Figure 2

14

plots the relative suboptimality
(f(xk)− f?)/|f?|

along iterations. The green (resp. red) regions represent iterates that, respectively, satisfy (resp. do not satisfy)
the chance constraint.
In the four instances, we take a first iterate well inside the feasible region. We observe an initial decrease
of the objective function down to optimal value. Then the chance constraint starts to be violated only when
this threshold is reached, and the last part of convergence deals with local improvement of precision and
feasibility.
Table 1 reports the final suboptimality and satisfaction of the probabilistic constraint. The probability
constraint is evaluated for 100 sampled points from of the total N = 10000 points. We give the resulting
probability; the standard deviation is 0.004 for the four instances.

Dimension Suboptimality P[g(x, ξ) ≤ 0]

d = 2 8.9× 10−4 0.799
d = 10 5.0× 10−3 0.787
d = 50 5.6× 10−3 0.769
d = 200 1.8× 10−3 0.781

Table 1: Final suboptimality and feasibility for (22) (where p = 0.8).

We observe that the algorithm reaches an accuracy of order of 10−3. Regarding satisfaction of the constraint
P[g(x, ξ) ≤ 0] ≥ 0.8, it is achieved to a 10−4 precision for d = 2 but it slightly degrades as the dimension
grows.

A Proofs of complementary results

A.1 Uniform bound at the limit

We show here that the uniform error bound derived in Section 3.1 vanishes at the limiting case of continuous
distributions. We assume that, for a fixed x ∈ Rd, the random variable g(x, ξ) has a continuous density
fx,ξ : R→ R denoted by fx,ξ: we have, for all a ≤ b,

P[a ≤ g(x, ξ) ≤ b] =

∫ b

a
fx,ξ(t) d t.

Proposition 9. Fix x ∈ Rd and denote by qp the p-quantile of the distribution followed by the random
variable g(x, ξ). If g(x, ξ) has a continuous density, then the value function η 7→ h(x, η) defined in (13) is
differentiable at η = qp (with h′(x, qp) = 0).

Proof. We first note that the existence of a density ensures the continuity of the cumulative distribution
function of g(x, ξ), which in turns implies P[g(x, ξ) ≤ qp] = p. Let us now come back to expressions

15

established in the proof of Theorem 4. From (14), we have, for η > qp,

h(x, η) = (η − qp)
1

1− p

(
P[g(x, ξ) ≤ qp]− p+ E

[
η − g(x, ξ)

η − qp
1qp<g(x,ξ)≤η

])
=

1

1− p
E
[
(η − g(x, ξ))1qp<g(x,ξ)≤η

]
=

1

1− p

∫ η

qp

(η − t)fx,ξ(t) d t

=
1

1− p

(
η

∫ η

qp

fx,ξ(t) d t−
∫ η

qp

tfx,ξ(t) d t

)
.

By continuity of the above integrands, we can use the fundamental theorem of calculus to get that h(x, ·)
admits a right derivative at η = qp such that

h′+(x, η) = lim
η→qp
η>qp

h(x, η)− h(x, qp)

η − qp

= lim
η→qp
η>qp

1

1− p

(
η

∫ η
qp
fx,ξ(t) d t

η − qp
−

∫ η
qp
tfx,ξ(t) d t

η − qp

)

= lim
η→qp
η>qp

1

1− p
(ηfx,ξ(qp)− qpfx,ξ(qp)) = 0 .

For the case η < qp, we have from (15), together with P[g(x, ξ) = qp] = 0:

h(x, η) = (qp − η)
1

1− p

(
E
[
1− (qp − g(x, ξ))

qp − η
1η<g(x,ξ)<qp

]
+ P[g(x, ξ) = qp]

)
=

1

1− p

(
(η − qp)

∫ qp

η
fx,ξ(t) d t−

∫ qp

η
(qp − t)fx,ξ(t)) d t

)
.

Using again to the fundamental theorem of calculus, we get that h(x, ·) admits a left derivative at η = qp
with:

h′−(x, η) = lim
η→qp
η<qp

h(x, η)− h(x, qp)

η − qp

= lim
η→qp
η<qp

1

1− p

(
(η − qp)

∫ qp
η fx,ξ(t) d t

η − qp
−
∫ qp
η (qp − t)fx,ξ(t) d t

η − qp

)
= 0 .

We can conclude that h(x, ·) is differentiable at qp with zero as derivative.

A.2 Proof of the subgradient explicit expressions

We provide here a direct proof of the subgradient expressions of Proposition 7. Let (x, η) ∈ X ×R be fixed,
and consider first the case of ϕ1. For i ∈ {1, . . . , n}, by successive applications of Theorems 4.1.1 and 4.4.2
from [12, Chap. D] to the functions

ϕ
(i)
1 : (x, η) 7→ 1

n

[
f(x) + µmax(η, 0) + λ

(
η +

1

1− p
max(g(x, ξi)− η, 0)

)]
16

we get for any i ∈ {1, . . . , n}

1

n
sf +

λ

n(1− p)
1g(x,ξi)>ηsg ∈ ∂xϕ

i
1(x, η)

µ

n
1η>0 +

λ

n
− λ

n(1− p)
1g(x,ξi)>η ∈ ∂ηϕ

i
1(x, η).

Since ϕ1 =
∑n

i=1 ϕ
(i)
1 , we thus havesf +

λ

n(1− p)
∑
i∈I>η

sgi , µ1η>0 + λ− λ #(I>η)

n(1− p)

 ∈ ∂ϕ1(x, η)

For ϕ2 we need first the whole subdifferential of the function G, which, using above mentioned properties,
writes

∂G(x, η) =

{(
1

1− p

n∑
i=1

sgi
n

(1g(x,ξi)>η + βi1g(x,ξi)=η),

1− 1

1− p

n∑
i=1

1

n
(1g(x,ξi)>η + βi1g(x,ξi)=η)

)
, βi ∈ [0, 1], ∀i ∈ {1, . . . , n}

}
.

By taking βi = α (for all i ∈ {1, . . . , n}) with the specific α given in the statement, we can zero the
second term in the above expression. Now since ϕ2(x, η) = λmins∈RG(x, s) with arg mins∈RG(x, s) =
Qp(g(x, ξ)), we apply Corollary 4.5.3 of [12, Chap. D] to obtain a subgradient of ϕ2:

sϕ2 =

 λ

n(1− p)

 ∑
i∈I>Qp(g(x,ξ)

sgi + α
∑

i∈I=Qp(g(x,ξ)

sgi

 , 0

which completes the proof.

B Implementation details on TACO

B.1 Further customization

TACO relies on a set of hyperparameters to be provided by the user and specified
in a single dictionnary passed as an argument of the class Optimizer. There are two families of parameters
to be specified. First, the parameters concerning the oracles ϕ1 and ϕ2. These are the starting penalization
parameters λ and µ, the multiplicative factors to increment them along the penalization process, and the
smoothing parameter of ϕ̃2.
The second family of parameters concerns the bundle method. It gathers the proximal parameters of the
bundle method, the precision targeted, the starting point of the algorithm, the maximal size of the bundle
information, and parameters related used when restarting the bundle method (see more in the following
section).
Overall the most important parameters to specify are the starting penalization parameters µ and λ with
respective keys ‘pen1’ and ‘pen2’ and the starting proximal parameter of the bundle algorithm. In the

17

toolbox, we provide the set of parameters used in our numerical experiments. In addition of the final solution,
it is possible to log the iterates, function values and time values, by calling the method with the option
logs=True. The verbose=True option also allows the user to observe in real time the progression of
the algorithm along the iterations.
Finally we underline that TACO subroutines rely on just-in-time compilation supported by Numba, which
consistently improves the running time. Further improvements can be achieved when the instance considered
can be cast as a Numba jitclass. The parameter ’numba’ in the input dictionnary of the associated
Optimizer object should then be set to True.

B.2 On the bundle algorithm

Here are some information on our implementation of the bundle algorithm of [7] to tackle the double
penalized problem (Pλ,µ) written as a DC problem. We discuss the parameters used at various steps of the
procedure. We refer to [7] for more details.

• Overall run: The starting point, the maximum number of iterations as well as the precision tolerance
for termination may be set by the user.

• Subproblems: Each iteration of the bundle algorithm requires solving a quadratic subproblem (see [7,
Eq. (9)]), for which we use the solver cvxopt [32] by simplicity.

• Stabilization center: Whenever the solution of a subproblem satisfies a sufficient decrease in terms a
function value, it is considered as a new stability center. The condition to qualify sufficient decrease is
given in [7, Eq. (12)]. It involves a constant κ which may be tuned by the user.

• Proximal parameters: The initial value of the proximal parameter involved in quadratic subproblems
can be set by the user. The user can also specify upper and lower acceptance bounds for it. After each
iteration, the prox-parameter is updated: it is increased by a constant factor in case of serious step, and
decreased otherwise. Both factors can be tuned by the user.

• Bundle information: The bundle of cutting-planes is augmented after each null step with new lin-
earization, and emptied after each serious step. We fix a maximum size for the bundle: above this
parameter, the bundle is emptied and proximal parameter is restarted to a specified restarting value.
When the bundle is emptied, we have the chance of a specific improvement: if the stability center is
feasible in the chance-constraint, we replace the coordinate playing the role of η by the p-quantile of
g(x, ξ), thus decrease the objective function.

• Termination Criteria: We use a simple stopping criteria: we stop when the euclidean distance between
the current iterate and the current stability center falls below a certain threshold specified by the user.

B.3 Experimental settings
Setting of Section 5.1. For this 2d problem, we use the starting point x = (0.5, 1.5) (and η = 0.01)
well-inside the chance-constraint. The initial penalization parameters µ and λ are respectively initialized
to 400 and 600. The initial proximal parameter is fixed to 38.0 with lower and upper acceptance bounds
set to 10−3 and 103. Increasing and decreasing factors for this parameter are fixed to 1.05 and 0.95. The
classification rule parameter is set to 10−4. The maximal size of the information bundle is set to 20 and the
threshold of the termination criteria is set to 10−7.

18

Setting for Section 5.2. For any fixed dimension d comprised in {2, 10, 50, 200}, the algorithm is run
from the starting point (0.1, . . . , 0.1) ∈ Rd+1. The starting penalization parameter µ, constant for the 4
instances, is set to µ = 10.0. We tuned the second penalization parameter λ along problems: we observed
that λ = {1.75, 1.5, 1.5, 2.0} give good performances for the considered problems.
The starting proximal parameters is fixed to 60.0 with lower and upper acceptance bounds set to 10−4 and
105 respectively. Increasing and decreasing factors for the proximal parameter are fixed to 1.01 and 0.99.
The classification rule parameter is set to 10−4. The maximal size of the information bundle is set to 300.

Limitations of MINLP approach. Mixed-integer reformulation approaches (see e.g. [1]) are often consid-
ered as the state-of-the-art to solve chance constrained optimization problems by sample average approxima-
tion. Applying directly such a reformulation to Problem (22) in Section 5.2 leads to the equivalent mixed
integer quadratic program:

min
x∈Rd, z∈{0,1}N

−
d∑
i=1

xi

s.t.
d∑

k=1

(ξi)
2
j,kx

2
k − 100 ≤M zi, ∀i ∈ J1, NK, ∀jJ1, 10K

N∑
i=1

zi ≤ pN, x ≥ 0.

where M is a large “big-M” constant. In our setting, such formulation involves 10×N = 100000 quadratic
constraint involving binary variables. We were not able to solve the resulting mixed-integer problem in
reasonable times using the MINLP solver Juniper [14] (that is based on Ipopt and JuMP). This shows that
a direct application of reformulation techniques combined with reliable software failed on this problem in
contrast with our approach.

19

References

[1] S. Ahmed and A. Shapiro. Solving chance-constrained stochastic programs via sampling and integer
programming. In State-of-the-art decision-making tools in the information-intensive age, pages 261–269.
Informs, 2008.

[2] A. Ben-Tal and M. Teboulle. An old-new concept of convex risk measures: The optimized certainty
equivalent. Mathematical Finance, 17(3):449–476, 2007.

[3] G. C. Calafiore and M. C. Campi. The scenario approach to robust control design. IEEE Transactions
on Automatic Control, 51(5):742–753, 2006.

[4] A. Charnes and W. W. Cooper. Chance-constrained programming. Management science, 6(1):73–79,
1959.

[5] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone. Risk-constrained reinforcement learning with
percentile risk criteria. The Journal of Machine Learning Research, 18(1):6070–6120, 2017.

[6] F. H. Clarke. Optimization and nonsmooth analysis, volume 5. Siam, 1990.

[7] W. de Oliveira. Proximal bundle methods for nonsmooth dc programming. Journal of Global Optimiza-
tion, 2019.

[8] D. Dentcheva. Optimisation models with probabilistic constraints. In A. Shapiro, D. Dentcheva, and
A. Ruszczyński, editors, Lectures on Stochastic Programming. Modeling and Theory, volume 9 of
MPS-SIAM series on optimization. SIAM, 2009.

[9] D. Dentcheva, A. Prékopa, and A. Ruszczynski. Concavity and efficient points of discrete distributions
in probabilistic programming. Mathematical Programming, 89(1), 2000.

[10] H. Föllmer and A. Schied. Convex measures of risk and trading constraints. Finance and stochastics, 6
(4):429–447, 2002.

[11] R. Henrion and C. Strugarek. Convexity of chance constraints with independent random variables.
Computational Optimization and Applications, 41:263–276, 2008.

[12] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms I: Fundamentals,
volume 305. Springer science & business media, 2013.

[13] L. J. Hong, Y. Yang, and L. Zhang. Sequential convex approximations to joint chance constrained
programs: A monte carlo approach. Operations Research, 59(3), 2011.

[14] O. Kröger, C. Coffrin, H. Hijazi, and H. Nagarajan. Juniper: An open-source nonlinear branch-and-
bound solver in julia. In Integration of Constraint Programming, Artificial Intelligence, and Operations
Research. Springer International Publishing, 2018. ISBN 978-3-319-93031-2.

[15] Y. Laguel, J. Malick, and Z. Harchaoui. First-order optimization for superquantile-based supervised
learning. In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing
(MLSP), pages 1–6. IEEE, 2020.

20

[16] S. K. Lam, A. Pitrou, and S. Seibert. Numba: A llvm-based python jit compiler. In Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15, New York, NY, USA,
2015. Association for Computing Machinery. ISBN 9781450340052.

[17] J. Luedtke and S. Ahmed. A sample approximation approach for optimization with probabilistic
constraints. SIAM Journal on Optimization, 19:674–699, 2008.

[18] D. G. Luenberger and Y. Ye. Linear and nonlinear programming, volume 2. Springer, 1984.

[19] E. Medova. Chance-constrained stochastic programming forintegrated services network management.
Annals of Operations Research, 81:213–230, 1998.

[20] A. Nemirovski and A. Shapiro. Convex approximations of chance constrained programs. SIAM Journal
on Optimization, 17(4):969–996, 2006.

[21] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103(1):
127–152, 2005.

[22] B. K. Pagnoncelli, S. Ahmed, and A. Shapiro. Sample average approximation method for chance
constrained programming: theory and applications. Journal of optimization theory and applications,
142(2):399–416, 2009.

[23] A. Prékopa. Stochastic Programming. Kluwer, Dordrecht, 1995. doi: 10.1007/978-94-017-3087-7.

[24] A. Prékopa and T. Szántai. Flood control reservoir system design using stochastic programming. In
Mathematical programming in use, pages 138–151. Springer, 1978.

[25] R. T. Rockafellar and J. O. Royset. Superquantiles and their applications to risk, random variables, and
regression. In Theory Driven by Influential Applications. INFORMS, 2013.

[26] R. T. Rockafellar and J. O. Royset. Random variables, monotone relations, and convex analysis.
Mathematical Programming, 148(1-2):297–331, 2014.

[27] R. T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of risk, 2:21–42,
2000.

[28] A. Ruszczyński and A. Shapiro. Optimization of convex risk functions. Mathematics of operations
research, 31(3):433–452, 2006.

[29] W. van Ackooij. A discussion of probability functions and constraints from a variational perspective.
Set-Valued and Variational Analysis (online), 28:585–609, 2020.

[30] W. van Ackooij, R. Henrion, A. Möller, and R. Zorgati. Joint chance constrained programming for
hydro reservoir management. Optimization and Engineering, 15, 2014.

[31] W. Van Ackooij, Y. Laguel, J. Malick, and G. Matiussi-Ramalho. On the convexity of level-sets of
probability functions. Submitted, 2020.

[32] L. Vandenberghe. The cvxopt linear and quadratic cone program solvers. Online: http://cvxopt.
org/documentation/coneprog. pdf, 2010.

[33] J. J. Ye, D. Zhu, and Q. J. Zhu. Exact penalization and necessary optimality conditions for generalized
bilevel programming problems. SIAM Journal on optimization, 7(2):481–507, 1997.

21

	Introduction
	Chance constrained problems seen as bilevel problems
	Basics: cumulative distributions functions, quantiles, and superquantiles
	Reformulation as a bilevel problems

	A double penalization scheme for chance constrained problems
	Analysis of the Value function
	An exact penalization for the hard constraint
	Double penalization scheme

	Double penalization in practice
	Solving penalized problems by a bundle algorithm
	A python toolbox for chance constrained optimization

	Numerical illustrations
	Visualization of convergence on a 2-d problem
	Experiments on a family of problems

	Proofs of complementary results
	Uniform bound at the limit
	Proof of the subgradient explicit expressions

	Implementation details on TACO
	Further customization
	On the bundle algorithm
	Experimental settings

