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Preface

This is a preliminary version of the lecture notes of a course given at the University
Paris-Saclay in 2015-2021, pompously entitled Advanced Continuous Optimization,
in Master classes simply and adequately named Optimization. Despite the use of
the qualifier “advanced” in the title of the lectures, their ambition is rather modest,
when one looks at the amount of subjects taken up and the level of the research
articles, so that we did not keep this qualifier in the title of this document. Naming
the course Intermediate Continuous Optimization would have been closer to the re-
ality of its contents, but would have attracted less students and less readers! To be
more specific, the goal of these lectures is to present and analyze concepts and algo-
rithms in optimization and related domains that are too advanced for being taught
in an introductory course, but that should be known by future engineers spending
a substantial proportion of their activity in continuous optimization or by students
wishing to get involved in the preparation of a PhD thesis in neighboring fields. In
a way, these lectures and the present notes can be viewed as an access road to more
advanced monographs such as [126, 21, 83, 50, 44, 76], to mention a few of our bookish
sources, and a way of filling the gap between basic concepts and research papers in
optimization and nonsmooth systems. Rather than being a collection of results, this
contribution is meant to be didactic by dedicating a substantial part of its contents to
the motivation of concepts and to the presentation of examples and counter-examples.
If these lecture notes have awakened the curiosity of the reader or, better still, have
deepened his/her knowledge, they will have reached their objective.

This compilation presents both theoretical and numerical subjects, in a finite
dimensional setting. Whilst many stated results have they counterpart in infinite di-
mension, we believe that the analysis and algorithmics in finite dimension deserves
some interest. First, it is much easier to address than in infinite dimensional spaces,
often simpler, and can therefore be taught and learned more rapidly. Furthermore,
the knowledge of what is true in finite dimension should allow the reader to make the
differences with the infinite dimension corpus and the access to this one should be
easier, like linear functional analysis presupposes knowledge in linear algebra. Also,
the algorithms, at least those that we shall present in this monograph, find their full
usefulness when they are implemented on a computer, which presupposes finite di-
mension. Readers interested in infinite dimension optimization can pursue the lecture
with [21, 23].

The first chapter, entitled Background, recalls what should be known to read these
lecture notes without difficulty: basic concepts in convex analysis, some less known
results in nonsmooth analysis, which is the reason why we devote a little more space on
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iv Preface

the generalized differentiability, in theoretical differentiable optimization (optimality
conditions and linear optimization duality), and in algorithmics.

Chapter 2, entitled Optimality Conditions, starts with more advanced topics and
covers the optimality conditions of an optimization problem with constraints expressed
by the function inclusion cpxq P G, for some function c : E Ñ F defined between two
Euclidean spaces and a closed convex set G Ď F. First order optimality conditions
are considered in the first place (section 2.1). There, a large part of the analysis is
devoted to Robinson’s constraint qualification, which generalizes to the present setting
the Mangasarian-Fromovitz constraint qualification for sets defined by equality and
inequality constraints. Next, the second order optimality conditions of an optimization
problem with equality and inequality constraints is considered (section 2.2). This
less often taught matter is important for designing, analyzing, and understanding
the behavior of algorithms in nonlinear optimization. They can also be viewed as
a preliminary step in the presentation of second order optimality conditions for the
more general problem described above, which comes next (section ??).

. . .
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1 Background

In these notes, vector spaces are always assumed to have finite dimension; they are
usually denoted by the letters E, F, G, . . .

1.1 Notation

The set of nonnegative integers is denoted by N and an interval of integers is de-
noted by

rn1 :n2s :“ tn1, . . . , n2u,
where we have assumed that the integers n1 and n2 verify n1 ď n2.

The set of real numbers is denoted by R and we note

R :“ R Y t´8,`8u, R` :“ tt P R : t ě 0u, R`` :“ tt P R : t ą 0u,

R´ :“ ´R`, and R´´ :“ ´R``. For a ď b in R, one defines the intervals

ra, bs :“ tt P R : a ď t ď bu,
ra, bq :“ tt P R : a ď t ă bu,
pa, bs :“ tt P R : a ă t ď bu,
pa, bq :“ tt P R : a ă t ă bu.

Hence, the last three intervals are empty if a “ b.
The set of real vectors of integer dimension n ě 0 is denoted by Rn. Inequalities

in Rn must be understood componentwise; hence, for a and b P Rn, a ď b (resp. a ă b)
means ai ď bi (resp. ai ă bi) for all i P r1 :ns. We note

R
n
` :“ tx P R

n : x ě 0u, R
n
`` :“ tx P R

n : x ą 0u,

Rn
´ :“ ´Rn

`, and Rn
´´ :“ ´Rn

``.
The Minkowski sum of two subsets P and Q of a vector space E is denoted and

defined by
P `Q :“ tx` y : x P P, y P Qu.

When P is the singleton txu, we simply write x ` Q for txu ` Q. For Λ Ď R and
P Ď E, we note

ΛP :“ tλx : λ P Λ, x P P u.
When Λ is the singleton tλu, we simply note λP for tλuP . Note that P ´P contains 0
but is usually not reduced to t0u, unless P is a singleton. Similarly, P`P contains 2P ,

9



10 1. Background

but the two sets are usually different, unless P is convex (definition in section 1.2.1
below).

If E and F are two vector spaces, the adjoint of a linear map A : E Ñ F is the
linear map A˚ : F Ñ E uniquely defined by:

@ px, yq P E ˆ F : xA˚y, xy “ xy,Axy.

Because of their finite dimension, there is no restriction in assuming that vector
spaces are equipped with a norm, denoted by } ¨ }, or even with a scalar product,
denoted by x¨, ¨y. It is the topology associated with this norm or scalar product that
is assumed to equip the vector space. The open and closed unit balls centered at the
origin are then denoted by

B :“ tx P E : }x} ă 1u and B̄ :“ tx P E : }x} ď 1u.

For x P E and r ą 0, we also use the notation Bpx, rq :“ x`rB and B̄px, rq :“ x`rB̄

for the open and closed balls of radius r, centered at x. The interior of a set S Ď E

is denoted by intpSq, intS, or S˝, and its closure by clpSq, clS, or S. The set of
neighborhoods of a point x P E is denoted by N pxq.

In a normed space pE, }¨}q, the distance to a set , say S Ď E, is denoted and defined
at x P E by

distpx, Sq :“ inf
x1PS

}x1 ´ x}. (1.1)

By definition of the infimum, this distance is infinite when S “ ∅.
When E is a Euclidean vector space, the gradient of a function f : E Ñ R at x,

denoted ∇fpxq, is the unique vector of E defined from the derivative f 1pxq by

x∇fpxq, dy “ f 1pxq ¨ d, @ d P E.

Note that the gradient depends on the chosen scalar product of E, which is not the
case for the derivative.

1.2 Convex Analysis

1.2.1 Convex Set

Let E be a finite dimensional vector space. With two points x0 and x1 of E, one can
form the following segments of E:

rx0, x1s :“ tp1 ´ tqx0 ` tx1 : t P r0, 1su,
rx0, x1q :“ tp1 ´ tqx0 ` tx1 : t P r0, 1qu,
px0, x1s :“ tp1 ´ tqx0 ` tx1 : t P p0, 1su,
px0, x1q :“ tp1 ´ tqx0 ` tx1 : t P p0, 1qu.

Hence, when x0 “ x1, these four segments are reduced to the single point tx0u.
A set C Ď E is convex if

@ px0, x1q P C2 : rx0, x1s Ď C.
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Convex Sets Calculus

Here are some other convex sets encountered in these notes.

The Minkowski sum C1 ` C2 of two convex sets C1 and C2 is a convex set.
The product αC :“ tαx : x P Cu of a scalar α P R by a convex set C is a convex
set.
If tCiuiPI is an arbitrary family of convex sets of a vector space E, then their
intersection XiPICi is a convex set (but not their union!).
If A : E Ñ F is a linear map between two vector spaces E and F, the direct
image ApCq :“ tAx : x P Cu (resp. the inverse image A´1pCq :“ tx P E : Ax P Cu)
of a convex set C of E (resp. of F) by A is a convex set.
Let C1 Ď E1 and C2 Ď E2. Then, C1 ˆ C2 is convex in E1 ˆ E2 if and only if C1

and C2 are convex.

Examples of Convex Sets

Here are some other convex sets encountered in these notes.

The unit simplex of Rn is the set

∆n :“
 

x P R
n : eTx “ 1, x ě 0

(

,

where e “ p1, . . . , 1q P Rn.
The cone (see below) of positive semidefinite symmetric matrices of order n is
convex and denoted by Sn

`. The notation M ě 0 means that M P Sn
`.

The cone of positive definite symmetric matrices of order n is convex and denoted
by Sn

``. The notation M ą 0 means that M P Sn
``.

1.2.2 Hulls

Affine and Vector Hulls

The affine hull of an arbitrary set P Ď E is the smallest affine space containing P :

aff P :“
č

tA : A is an affine space containing P u.

This definition makes sense since the intersection of an arbitrary collection of affine
spaces of E is an affine space of E. It can be shown that

aff P “
#

m
ÿ

i“1

αixi : m P N, all xi P P , α P R
m, eTα “ 1

+

,

where we have denoted by e the vector of all ones.
The vector hull of an arbitrary set P Ď E is the smallest subspace of E contain-

ing P :
vectP :“

č

tE : E is a subspace containing P u.
This definition makes sense since the intersection of an arbitrary collection of sub-
spaces of E is a subspace of E. It is not difficult to see that

vectP “ affpP Y t0uq “
#

m
ÿ

i“1

αixi : m P N, all xi P P, α P R
m

+

.
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Convex Hull

The convex hull of an arbitrary set P Ď E is the smallest convex set containing P :

coP :“
č

tC : C is a convex set containing P u.

This definition makes sense since the intersection of an arbitrary collection of convex
sets of E is a convex set of E. It can be shown that

coP “
#

m
ÿ

i“1

αixi : m P N, all xi P P , α P R
m
` , e

Tα “ 1

+

.

In finite dimension, one can limitm in the previous sum to dimE`1 (Carathéodory
[29; 1907]) and this observation yields the following important implication:

P is compact ùñ coP is compact. (1.2)

But, even if P is closed, coP may not be closed, which motivates the introduction of
the following concept.

Closed Convex Hull

The closed convex hull of an arbitrary set P Ď E is the smallest closed convex set
containing P :

coP :“
č

tC : C is a closed convex set containing P u.

This definition makes sense since the intersection of an arbitrary collection of closed
convex sets of E is a closed convex set of E. It can be shown that

coP “ coP .

Conic Hull

Recall that a part K of a vector space E is a cone if R``K Ď K, which means that
there must hold tx P K each time t ą 0 and x P K. Hence a cone may or may not
contain zero (this is the reason why t is taken in R`` above and not in R`), which
allows us to talk about the cone of positive definite symmetric matrices. The conical
hull of an arbitrary set P Ď E is the smallest convex cone containing P 1:

coneP :“
č

tK : K is a convex cone containing P u.

This definition makes sense since the intersection of an arbitrary collection of convex
cones of E is a convex cone of E. It can be shown that

coneP “
#

m
ÿ

i“1

αixi : m P N, all xi P P , α P R
m
`

+

.

1 Rockafellar [125; p. 14] finds it convenient to add the origin to coneP , which makes no
difference with our definition when 0 P P .
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1.2.3 Convex Polyhedron

A convex polyhedron of a vector space E is a set of the form

P “ tx P E : Ax ď bu, (1.3)

where A : E Ñ Rm is a linear map and b P Rm. A convex set that can be written as the
set P above is said to be polyhedral. A convex polyhedron is therefore an intersection
of a finite number of half spaces, namely tx P E : pAx´ bqi ď 0u for i P r1 :ms, hence
it is closed and convex. For P of the form (1.3) and for x P P , one defines

Ipxq :“ ti P r1 :ms : pAx´ bqi “ 0u. (1.4)

It is clear that
ptxku Ñ xq ùñ Ipxkq Ď Ipxq for k large. (1.5)

The representation of a polyhedron by (1.3) is qualified as dual , since it involves
linear operators (hence elements of the dual space of E). Such a set has also a primal
representation, which makes use of convex and conic hulls. Indeed, the set P in (1.3)
can also be written in the following form

P “ cotx1, . . . , xpu ` conety1, . . . , yqu, (1.6)

where txiuiPr1 : ps are points of E and tyjujPr1 : qs are “directions” of E (another name
for a point of E, to quote that it is used here to generate a cone). The converse is
also true: any set of the form (1.6) can be written in the form (1.3). This equivalence
between these representations of a convex polyhedron has been shown by Minkowski.

Proposition 1.1 (polyhedrality properties)
1q Linear transformation if P Ď E is a convex polyhedron and T : E Ñ F is

linear, then T pP q Ď F is a convex polyhedron.
2q Addition: if P1 and P2 are polyhedra, then P1 ` P2 is a polyhedron.
3q Upper semi-continuity of I: for x P P , D δ ą 0 such that x1 P Bpx, δq X P

implies that Ipx1q Ď Ipxq.

1.2.4 Relative Interior

The relative interior of P Ď E is its interior in aff P equipped with the relative
topology, the one induced from that of E:

riP :“ tx P P : D r ą 0 such that rBpx, rq X aff P s Ď Pu.

Note that P1 Ď P2 does not necessarily imply that riP1 Ď riP2, but one has

P1 Ď P1 and aff P1 “ aff P2 ùñ riP1 Ď riP2. (1.7)

In finite dimension, the following holds
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C convex and nonempty ùñ
"

riC ‰ ∅,

affpriCq “ aff C.
(1.8)

Lemma 1.2 Let C be a nonempty convex set and x P E. Then,

x P riC and y P C ùñ rx, yq Ď riC.

Proposition 1.3 (relative interior criterion) Let C be a nonempty convex
set and x P E. Then,

x P riC ðñ @x0 P C, D t ą 1 : p1´tqx0 ` tx P C, (1.9a)

ðñ @x0 P aff C, D t ą 1 : p1´tqx0 ` tx P C. (1.9b)

Let C be a nonempty convex set. Then,

riC and C are convex,

aff C “ aff C,

riC “ C and riC “ riC. (1.10)

In short, the last identities tell us that, when the two operators “ri” and “cl” act in
sequence on C, it is always the last one acting that prevails.

Proposition 1.4 (relative interior calculus) Let E, E1, E2, and F be vector
spaces and A : E Ñ F be a linear map.

1q (Cartesian product) If C1 Ď E1 and C2 Ď E2 are convex sets, then

ripC1 ˆ C2q “ priC1q ˆ priC2q.

2q (Intersection) If pCiqiPI is a family of convex sets in E such that XiPI riCi

is nonempty, then
ri pXiPICiq Ď XiPI riCi. (1.11)

with equality if I is finite.
3q (Linear map) If C Ď E is a convex set, then
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ripApCqq “ ApriCq. (1.12)

4q (Linear preimage) If C Ď F is a convex set and if the preimage A´1priCq ‰ ∅,
then

ripA´1pCqq “ A´1priCq.
5q (Multiplication) If C Ď E is a convex set and α P R, then

ripαCq “ α priCq.

6q (Sum) If C1 Ď E and C2 Ď E are convex sets, then

ripC1 ` C2q “ priC1q ` priC2q. (1.13)

A point x in a subset P Ď E is said to be absorbing2 for P if @ d P E, D t ą 0

such that x` td P P . In finite dimension and for a convex set C, one can certify the
interiority of a point by looking along all the directions, since the following holds

x P intC ðñ x is absorbing for C. (1.14)

1.2.5 Dual Cone and Farkas Lemma

Let P be a subset of a Euclidean vector space E. The (positive) dual cone of P is
defined and denoted by

P` :“ td P E : xd, xy ě 0, @x P P u.

It is a nonempty close convex cone. When P ” E0 is a subspace of E, E
`
0 is the

subspace orthogonal to E0, denoted by EK
0 :“ td P E : xd, xy “ 0, @x P E0u. A cone is

said to be self-dual if K` “ K. The negative dual cone of a set P is

P´ :“ ´P`.

The bidual cone of P , denoted P``, is the dual cone of the dual cone of P :

P`` :“ pP`q`.

Points in the interior (if any) and relative interior of P` are characterized in
exercise 1.2.10.

The next lemma is of paramount importance for chapter 2. It gives a description
of the closure of the linear image of a convex cone, using dual cones. We have denoted
by A˚ the adjoint of the linear map A.

2 The terms absorbent point are also used instead of absorbing point.
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Lemma 1.5 (Farkas, generalized) Let E and F be two Euclidean spaces, A :

E Ñ F be a linear map, and K be a nonempty convex cone of E. Then,

ApKq “ ty P F : A˚y P K`u`. (1.15)

Remarks 1.6 1q In general, one cannot get rid of the closure on ApKq in the left-
hand side of (1.15), since the dual cone in the right-hand side is closed, while the
linear map of a nonempty (even closed) convex cone is not necessary closed. Here
is a counter-example, using the circular cone K “ R3

▽
(see also section 6.2): the

image of

R
3
▽

“ tx P R
3 : x3 ě }px1, x2q}2u by A : R3 Ñ R

2 : x ÞÑ px1, x2 ` x3q

is the non closed cone ApR3
▽

q “ tx P R2 : x2 ą 0u Y tp0, 0qu.
2q If K is polyhedral, then ApKq is polyhedral (a property recalled in section 1.2.3),

hence closed, so that the closure in the left-hand side of (1.15) can be discarded
(see exercise 1.2.8).

3q For K “ E, one recovers the linear algebra identity RpAq “ N pA˚qK.

4q The importance of the Farkas lemma lies also on the fact that it is an existence
result. This is more easily described when ApKq is closed. Then, the identity (1.15)
tells us that, when a vector d has a certain property (i.e., it has a nonnegative scalar
product with any vector y such that A˚y P K`), there exists a vector x P K such
that d “ Ax. In optimization, one uses this lemma to prove the existence of optimal
multipliers (see the proof of theorems 1.40 and 2.6).

5q Assume that K is a nonempty convex cone. Applying the Farkas identity (1.15)
with A “ I, the identity in E “ F, yields

K`` “ K. (1.16)

6q The proof of the Farkas identity (1.15) can be obtained by a separation argument
(if the inclusion Ě does not hold, one separates ApKq and a point not belonging to
it by a proper hyperplane). Now, it is not difficult to obtain (1.15) as a consequence
of (1.16), which has been viewed as a consequence of (1.15)! Actually, (1.16) could
also be proved by a separation argument. To deduce (1.15) from (1.16), first observe
that

ApKq` “ ty P F : A˚y P K`u, (1.17)

which is easy to prove. Then, take the dual of both sides of this identity and
observe that, since ApKq is a convex cone, its bidual is its closure by (1.16). The
identity (1.15) follows. l
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Proposition 1.7 (dual cone calculus) Let E be a Euclidean vector space.

1q If P1 and P2 are two nonempty subsets of E, then

P1 Ď P2 ùñ P`
1 Ě P`

2 .

2q If P is a nonempty subset of E, then

P` “ pR`P q` “ pcoP q` “ pclP q`. (1.18)

3q If P is a nonempty subset of E, then

P`` “ copR`P q. (1.19)

In particular,
P Ď P``,

with equality if and only if P is a nonempty closed convex cone.
4q For nonempty subsets P1 and P2 of E, one has

pP1 ` P2q` Ě P`
1 X P`

2 ,

with equality if 0 P P1 X P2. In particular, if K1 and K2 are two nonempty
cones, one has

pK1 `K2q` “ K`
1 XK`

2 . (1.20)

5q If K1 and K2 are two nonempty closed convex cones, then

pK1 XK2q` “ K`
1 `K`

2 . (1.21)

6q If pPiqiPI is an arbitrary family of nonempty subsets Pi of E, then

˜

ď

iPI

Pi

¸`

“
č

iPI

P`
i .

7q If pE1, x¨, ¨y1q and pE2, x¨, ¨y2q are two Euclidean spaces, if E1 ˆE2 is equipped
with the scalar product xpx1, x2q, py1, y2qy “ xx1, y1y1 ` xx2, y2y2, and if ∅ ‰
Q1 Ď E1 and ∅ ‰ Q2 Ď E2, then

pQ1 ˆQ2q` Ě Q`
1 ˆQ`

2 ,

with equality when 0 P clpQ1q X clpQ2q.

1.2.6 Tangent and Normal Cones

Let C be a closed convex set of a vector space E. The cone of feasible directions to C
at x P C is defined and denoted by

Tf
x C ” T

f
Cpxq :“ R`pC ´ xq.
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An element of that cone is called a feasible direction; such a direction d P E is therefore
characterized by the fact that there is a t ą 0 such that x ` td P C (or, by the
convexity of C, x ` td P C for all sufficiently small t ą 0). Note that, by convexity

of C, tpC ´ xq Ď C ´ x when t P r0, 1s, so that one also have T
f
Cpxq :“ r1,8qpC ´ xq.

The cone of feasible directions is usually not a closed set. For example, when C is
the unit closed ball of R2, Tp0,´1q C “ tx P R2 : x2 ą 0uYtp0, 0qu, which is not closed.
The tangent cone to C at x P C is the closure of the cone of feasible directions. It is
denoted by

Tx C ” TCpxq “ R`pC ´ xq. (1.22)

When x R C, one sets T
f
Cpxq “ ∅ and TCpxq “ ∅. The cone of feasible directions

is not necessary the relative interior of the tangent cone. For example, as indicated
below, when C is a convex polyhedron, Tf

xC is identical to the tangent cone Tx C,
which is also a convex polyhedron, hence (relatively) closed.

Now, let C be a closed convex set of a Euclidean vector space E. The normal cone
to C at x P C is defined and denoted by

Nx C ” NCpxq “ td P E : xx1 ´ x, dy ď 0, @x1 P Cu. (1.23)

We also set NCpxq “ ∅ when x R C. The following hold

Nx C “ pTx Cq´ and Tx C “ pNx Cq´.

Proposition 1.8 (tangent and normal cone calculus)

1q (Intersection) If C1 and C2 are closed convex sets of a vector space E and
x P C1 X C2, then

TxpC1 X C2q Ď Tx C1 X TxC2, (1.24a)

NxpC1 X C2q Ě Nx C1 ` Nx C2, (1.24b)

with equalities if 0 P ripC1 ´ C2q or priC1q X priC2q ‰ ∅.

2q (Product) Let pE1, x¨, ¨y1q and pE2, x¨, ¨y2q be two Euclidean spaces and equip
E1 ˆE2 with the scalar product xpx1, x2q, py1, y2qy “ xx1, y1y1 `xx2, y2y2. If C1

presp. C2q is a closed convex set of E1 presp. E2q, then C1 ˆ C2 :“ tpx1, x2q :
x1 P C1, x2 P C2u is a closed convex set of E1 ˆ E2 and at px1, x2q P C1 ˆC2,
one has

Tpx1,x2qpC1 ˆ C2q “ pTx1
C1q ˆ pTx2

C2q, (1.25a)

Npx1,x2qpC1 ˆ C2q “ pNx1
C1q ˆ pNx2

C2q. (1.25b)

The tangent and normal cones to the convex polyhedron P “ tx P E : Ax ď bu
has the following expressions and properties. Recall the notation (1.4): Ipxq :“ ti P
r1 :ms : pAx´ bqi “ 0u.
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Tangent cones :

TP pxq “ T
f
P pxq “ td P E : pAdqIpxq ď 0u, (1.26a)

Ipx1q Ď Ipx2q ùñ TP px1q Ě TP px2q. (1.26b)

Normal cone:

NP pxq “ conetA˚ei : i P Ipxqu, (1.27a)

Ipx1q Ď Ipx2q ùñ NP px1q Ď NP px2q. (1.27b)

We see from (1.26a) and (1.27a) that the tangent and normal cones to a convex
polyhedron are polyhedral.

1.2.7 Projection

Let E be a Euclidean space, with a scalar product denoted by x¨, ¨y and its associated
norm denoted by } ¨ }. For a nonempty, closed, convex set C in E, the problem

PCpxq

x

C

y

inf
yPC

}y ´ x} (1.28)

has a unique solution, called the (orthogonal) projection of x on C. This projection
is denoted by PCpxq. The function PC : E Ñ C is called the (orthogonal) projector
on C.

Proposition 1.9 (characterizations of the projection) For x P E and x̄ P
C, one has

x̄ “ PCpxq ðñ xy ´ x̄, x̄´ xy ě 0, @ y P C (1.29a)

ðñ xy ´ x̄, y ´ xy ě 0, @ y P C (1.29b)

ðñ xy ´ x, x̄´ xy ě }x̄´ x}2, @ y P C. (1.29c)

Remarks 1.10 1q The scalar products in the right-hand sides of the equivalences
(1.29) use each time two vectors among the possible three x̄´ x, y´ x̄, and y´ x.
To have a characterization of the projection, it suffices to have a nonnegative scalar
product of y ´ x̄ with one of the two other vectors, like in (1.29a) and (1.29b).
When y ´ x̄ is not present, the inequality must be strengthened, like in (1.29c) to
have a characterization, as shown by the counter-example where C “ r0, 1s Ď R,
x R C, while y and x̄ are chosen arbitrarily in C (hence x̄ is not necessarily the
projection of x).

2q The most often used characterization is (1.29a). Maybe that this is because it
also expresses the optimality condition “f 1px̄; y ´ x̄q ě 0, for all y P C” of the
optimization problem in (1.28), defining the projection, rewritten inftfpyq :“ 1

2
}y´

x}2 : y P Cu. l
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Proposition 1.11 (properties of the projection) The projection on a
nonempty closed convex set C has the following properties:

1q @ px1, x2q P E2, xPCpx2q´PCpx1q, x2´x1y ě }PCpx2q´PCpx1q}2,
2q monotonicity : @ px1, x2q P E2, xPCpx2q´PCpx1q, x2´x1y ě 0,
3q contraction : @ px1, x2q P E2, }PCpx1q´PCpx2q} ď }x1´x2}.

Remark 1.12 The projector PC is a nonsmooth operator. It is even not guaranteed
to be directionally differentiable when the convex set C is arbitrary (see Kruskal [86]
for a counter-example in R

3 and Shapiro [128] for a counter-example in R
2). However,

whatever the convex set C is, PC has directional derivatives at a point x belonging
to C [137]:

@x P C, @ d P E : P1
Cpx; dq “ PTCpxq d. (1.30)

It is also worth noting that the projector PC is smoother when the boundary of the
convex set C is smooth in a sense that is described in [69]. l

1.2.8 Asymptotic Cone

Let E be a vector space of finite dimension and C be a nonempty closed convex set
of E. The asymptotic cone of C is defined and denoted by

C8 :“ td P E : C ` R`d Ď Cu.

This cone has also the following expressions, whatever x P C is:

C8 “ td P E : C ` d Ď Cu

“ td P E : x` R`d Ď Cu “
č

tą0

C ´ x

t
(1.31)

“
"

d P E : D txku Ď C, D ttku Ñ 8 such that
xk

tk
Ñ d

*

.

The formula (1.31) shows that C8 is closed.
The asymptotic cone is a nice tool to determine, by calculation, whether a closed

convex set is bounded.

Proposition 1.13 (boundedness by calculation) Let C be a nonempty
closed convex set. Then,

C is bounded ðñ C8 “ t0u.
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Proposition 1.14 (asymptotic cone calculus)
1q If K ‰ ∅, then K is a closed convex cone if and only if K8 “ K.
2q For an arbitrary collection tCiuiPI of closed convex sets Ci with nonempty

intersection:
pXiPICiq8 “ XiPIC

8
i .

3q Let A : E Ñ F and B : E Ñ G be linear maps, a P F, b P G, K be a nonempty
closed convex cone of G, and

P :“ tx P E : Ax “ a, Bx P b`Ku ‰ ∅.

Then,
P8 “ td P E : Ad “ 0, Bd P Ku.

Let E be a Euclidean space. The sets S1 and S2 Ď E are said to be strictly separable
if there exists a vector ξ P E (necessarily nonzero) such that

sup
x1PS1

xξ, x1y ă inf
x2PS2

xξ, x2y.

Proposition 1.15 (strict separation of convex sets) One can strictly sepa-
rate two disjoint nonempty closed convex sets C1 and C2 of a Euclidean space E

in any of the following situations

1q C1 ´ C2 is closed,
2q C8

1 X C8
2 “ t0u,

3q C1 or C2 is compact,
4q C1 and C2 are polyhedral.

1.2.9 Convex Function

Let E be a vector space. The domain and the epigraph of an arbitrary (not necessarily
convex) function f : E Ñ R are the sets defined and denoted by

dom f :“ tx P E : fpxq ă `8u,
epi f :“ tpx, αq P E ˆ R : fpxq ď αu.

The indicator function of an arbitrary (not necessarily convex) set S Ď E is the
function IS : E Ñ R Y t`8u defined at x P E by

ISpyq “
"

0 if y P S,
`8 otherwise.

By definition, a function f : E Ñ R is convex if its epigraph is convex; it is closed
if its epigraph is closed in E ˆ R; it is proper if it does not take the value ´8 and is
not identical to `8. The set of proper convex functions f : E Ñ R is denoted by
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ConvpEq

and the set of closed proper convex functions f : E Ñ R is denoted by

ConvpEq.

A function f : E Ñ R is said to be directionally differentiable in the direction
d P E at a point x P E at which it is finite if the following limit exists in R:

f 1px; dq “ lim
tÓ0

fpx` tdq ´ fpxq
t

.

The value f 1px; dq P R is then called the directional derivative of f at x in the di-
rection d. A convex function always has directional derivatives, but these can take
infinite values.

Proposition 1.16 (directional differentiability) Let f : E Ñ R be a convex
function, x P E be a point at which fpxq is finite, and d P E. Then,

1q the function

t P R`` ÞÑ fpx` tdq ´ fpxq
t

P R

est nondecreasing,
2q f 1px; dq exists in R (it can take the values ´8 or `8),
3q f 1px; dq “ `8 if and only if x` td R dom f for all t ą 0,
4q there holds

f 1px; dq ě ´f 1px;´dq, (1.32)

in particular, if one of the two directional derivatives f 1px; dq or f 1px;´dq is
´8 the other is `8.

Remarks 1.17 1q According to point 3, one has f 1px; dq “ `8 if and only if fpx`
tdq “ `8 for all t ą 0. but, one can very well have f 1px; dq “ ´8, while fpx`tdq ą
´8 for all t ą 0. This is the case at x “ 0 for the convex function f : R Ñ R

defined at x P R by

fpxq “
"

´?
x if x ě 0

`8 otherwise

0

´?
x (1.33)

and the direction d “ 1.

2q Point 4 shows that one can compare f 1px; dq and f 1px;´dq when the function f

is convex. If f is not differentiable at x, in general f 1px; dq ‰ ´f 1px;´dq. For
example, if fpxq “ |x|, x P R, one has f 1p0; 1q “ f 1p0;´1q “ 1.

Function (1.33) allows us to see what formula (1.32) yields with infinite directional
derivatives: f 1p0; 1q “ ´8 implies that f 1p0;´1q “ `8 must hold.
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1.2.10 Asymptotic Function

The epigraph of a function f P ConvpEq is a nonempty closed convex set. One can
therefore consider its asymptotic cone pepi fq8. This one has interesting properties.

Proposition 1.18 (asymptotic function f8) If f P ConvpEq, then

1q pepi fq8 is the epigraph of a function f8 : E Ñ R Y t`8u,
2q for all x P dom f and all d P E

f8pdq “ lim
tÑ8

fpx` tdq ´ fpxq
t

“ lim
tÑ8

fpx` tdq
t

, (1.34)

3q dom f8 Ď pdom fq8,
4q f8 P ConvpEq.

Proof. 0) Let us start by giving a characterization of the membership to pepi fq8. For
this, take an arbitrary point px, fpxqq in epi f , which is nonempty when f P ConvpEq.
Then,

pd, δq P pepi fq8 ðñ px, fpxqq ` tpd, δq P epi f, @ t ą 0

ðñ fpx` tdq ď fpxq ` tδ, @ t ą 0. (1.35)

1) To be an epigraph, pepi fq8 must have two properties.

The first property is that, when pd, δq P pepi fq8 and δ1 ě δ, it must follow that
pd, δ1q P pepi fq8. This is actually clear by (1.35).
The second property is that for any d P E such that tdu ˆ R intersects pepi fq8,
one must have pd, δ0q P pepi fq8 for

δ0 :“ inftδ : pd, δq P pepi fq8u. (1.36a)

From (1.35), we get

δ0 “ sup
tą0

fpx` tdq ´ fpxq
t

. (1.36b)

By definition of the supremum, one has then fpx` tdq ď fpxq ` tδ0, for all t ą 0.
This and (1.35) now yield that pd, δ0q P pepi fq8.

Denote by f8 the function whose epigraph is pepi fq8.
2) Let x P dom f and d P E. It is clear that px, fpxqq P epi f .
Let us show that f8pdq is the value δ0 given by (1.36a), hence by (1.36a), which

will prove the first equality in (1.34). By the reasoning of the previous point, f8pdq is
clearly δ0 when tduˆR intersects pepi fq8. When tduˆR does not intersect pepi fq8 “
epi f8, both f8pdq and δ0 take the value “ `8 (the first one by definition of the
epigraph of f8, the second one by definition of the infimum in (1.36a) and the fact
that there is no pd, δq P pepi fq8) hence f8pdq “ δ0 in that case also.

For the second equality in (1.34), just observe that fpxq P R because x P dom f

and f P ConvpEq.
3) If d P dom f8, then pd, f8pdqq P pepi fq8 and
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fpx` tdq ď fpxq ` tf8pdq, @ t ą 0,

by (1.35). Since the right-hand side of this inequality is finite for all positive t, it
results that d P pdom fq8.

4) First, f8 is a closed convex function, since its epigraph is the closed convex
set pepi fq8. Secondly, f8 ı `8, since its epigraph pepi fq8 is nonempty when
f P ConvpEq. Thirdly, f ą ´8 since, by (1.34), for d P dom f8, fpdq is obtained as
a limit of an increasing sequence made of finite values. l

Remarks 1.19 1q The differential quotient rfpx ` tdq ´ fpxqs{t is nondecreasing
with t. It converges to f 1px; dq when t Ó 0 and, according to (1.34), it converges to
f8pdq when t Ñ 8.

2q the last identity in (1.34) often provides the easiest way of computing f8pdq. Note
however that, unlike the differential quotient, fpx` tdq{t is not monotonic with t.

3q The inclusion in point 3 may be strict. For the exponential function exp P
ConvpRq : x ÞÑ exppxq “ ex, there holds exp8p1q “ `8, so that 1 R dompexp8q.
But 1 P pdomexpq8, since domexp “ R.

4q The inclusion in point 3 expresses in a compact manner the fact that if fpx` tdq “
`8 for some t ą 0, then f8pdq “ `8. l

The sublevel set of an arbitrary function f : E Ñ R Y t`8u of level α P R is the
set

Lαpfq :“ tx P E : fpxq ď αu.
Whilst the asymptotic cone is a useful concept to verify the boundedness of a
nonempty closed convex set, the asymptotic function is useful to verify the bounded-
ness of the sublevel sets of the corresponding function, in particular the nonemptiness
and boundedness of the set of its minimizers.

Proposition 1.20 (existence of a bounded set of minimizers) If f P
ConvpEq, then

1q @α P R such that Lαpfq ‰ ∅, the following holds

“

Lαpfq
‰8 “ td P E : f8pdq ď 0u, (1.37)

2q the following properties are equivalent:

piq Dα P R: Lαpfq is nonempty and bounded,
piiq @α P R: Lαpfq is bounded,

piiiq Argmin f is nonempty and bounded,
pivq @ d P Ezt0u: f8pdq ą 0.

Proof. 1) Let α P R and x P Lαpfq, which is assumed to be nonempty. Then,

d P pLαpfqq8 ðñ fpx` tdq ď α, @ t ě 0.



1.2. Convex Analysis 25

Hence, if d P pLαpfqq8, f8pdq ď 0 by using the last identity in (1.34). Conversely,
if f8pdq ď 0, then fpx ` tdq ď fpxq, for all t ą 0, by the monotonicity of the
differential quotient and (1.34). Since fpxq ď α, x P Lαpfq, this last inequality yields
fpx ` tdq ď α, for all t ą 0, which shows that x ` td P Lαpfq, for all t ą 0; hence,
d P pLαpfqq8.

2) Let us now consider the equivalences.
[piq ñ piiq] By piq and proposition 1.13, it results that rLαpfqs8 “ t0u and

therefore td P E : f8pdq ď 0u “ t0u by (1.37). Since td P E : f8pdq ď 0u is
independent of α, it results that pLα1 pfqq8 “ t0u for all α1 such that Lα1pfq ‰ ∅.
Hence, piiq holds.

[piiq ñ piiiq] Since f is proper, one can find an α such that Lαpfq ‰ ∅. Then
Lαpfq is nonempty and closed (since f P ConvpEq); it is also compact by piiq. As a
result, the function f reaches its minimum at some point x̄ P Lαpfq; this point x̄ is
also a minimum of f on E. Since Argmin f “ Lαpfq with α “ min f , Argmin f is
compact by piiq.

[piiiq ñ piq] Clear with α “ min f .
[piq ñ pivq] By piq, it results that pLαpfqq8 “ t0u and therefore that td P E :

f8pdq ď 0u “ t0u by (1.37). This implies pivq.
[pivq ñ piiq] By pivq, td P E : f8pdq ď 0u “ t0u and therefore pLαpfqq8 “ t0u

each time Lαpfq ‰ ∅ (by using (1.37)). One deduces piiq. l

The implication pivq ñ piiiq of proposition 1.20 is often a convenient approach to
show that a function f P ConvpEq has a nonempty and bounded set of minimizers (it
is ineffective if the set of minimizers is unbounded). The technique consists, therefore,
in calculating the asymptotic function f8 and in highlighting its property pivq. Hence,
showing the existence a nonempty compact set of minimizers is a task that can be
realized by calculation.

1.2.11 Subdifferentiability

The notion of subdifferentiability of a function f P ConvpEq is based on the following
proposition.

Proposition 1.21 (subdifferentiability) Suppose that f P ConvpEq, x P
dom f and x˚ P E. Then, the following properties are equivalent:

piq @ d P E : f 1px; dq ě xx˚, dy,
piiq @ y P E : fpyq ě fpxq ` xx˚, y ´ xy,

piiiq x P ArgminyPE

`

fpyq ´ xx˚, yy
˘

“ ArgmaxyPE

`

xx˚, yy ´ fpyq
˘

.

Definitions 1.22 A function f P ConvpEq is said to be subdifferentiable at a point
x P dom f if their exists x˚ P E verifying the equivalent properties piq-piiiq of proposi-
tion 1.21. Such an element x˚ is called a subgradient of f at x. The set of subgradients
of f at x is called the subdifferential of f at x and is denoted by Bfpxq. By convention,
Bfpxq “ ∅ if x R dom f . l
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A subgradient is actually an element of the dual of E, which is identified to E

itself in finite dimension (the distinction between E and its dual is important in
infinite dimension but not in our finite dimension framework). Hence, it is better to
see a subgradient as a slope of the function, like for a gradient of a smooth function.

Each of the three equivalent conditions piq-piiiq of proposition 1.21 reflects a par-
ticular aspect of the subgradients, offering also a means to calculate them.

1q Condition piq tells us that a subgradient is the slope of linear function minorizing
f 1px; ¨q. This point of view leads to the following way of computing Bfpxq. First,
one computes the directional derivatives of f at x and one determines all the linear
function minorizing if; their slopes are the elements of Bfpxq.

2q According to condition piiq, a subgradient is the slope of an affine function mi-
norizing f , which has the same value as f at x. This definition is often used to
verify that a particular x˚ P E is a subgradient.

3q Condition piiiq tells us that x˚ is a subgradient of f at x if fp¨q ´ xx˚, ¨y reaches
its minimum at x. This point of view leads to the following method to compute
Bfpxq. One starts with a slope x˚ P E; then, one computes the minimizers of
x ÞÑ fpxq ´ xx˚, xy; such a minimizer x is such that x˚ P Bfpxq.
A function f P ConvpEq is not necessarily subdifferentialbe at all the points in

dom f . For example, the function (1.33) is not subdifferentiable at 0.

Notes

Most results given in this section can be found with their proofs in [125, 66, 22, 67]. The
notions of asymptotic cone and function have been extended to nonconvex sets and
functions, in particular with the goal of providing existence theorems for nonconvex
optimization problems and variational inequalities; see the monograph [7].

Exercises

1.2.1. Constant subsequence of a sequence of subsets of r1 :ns. Let tIkukPN be a sequence
of subsets Ik of r1 :ns. Show that this sequence contains a subsequence tIkukPK

(hence K is an infinite part of N) such that Ik is independent of k P K.

1.2.2. Affine hull. Let A be an affine subspace of a vector space E and O Ď A be relatively
open in A (i.e., open for the relative topology of A). Then, aff O “ A.

1.2.3. Scaled sum of convex sets. If C1 and C2 are convex sets of a vector space E, such
that 0 P C1 X C2, then R`pC1 ` C2q “ R`C1 ` R`C2. Give an example, in which
the identity does not hold when 0 R C1 X C1.

1.2.4. Dense convex set. Let C be a convex set in a finite dimensional vector space E. Show
that if the closure of C is E, then C “ E.

1.2.5. Relative interior . Let C be a nonempty convex set of a finite dimensional vector
space. Then,

2 priCq “ C ` riC “ C ` riC.

1.2.6. Affine hull and relative interior of a convex polyhedron. Let E be a vector space.
Consider the convex polyhedron of E defined by
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P :“ tx P E : Ax “ a, Bx ď bu,

where A : E Ñ R
m and B : E Ñ R

p are linear maps, a P R
m and b P R

p. Define the
index set I Ď r1 : ps by

i P I ðñ tx P P : Bix ă biu ‰ ∅.

and denote its complementary set by Ic :“ r1 : pszI . Show that

aff P “ tx P E : Ax “ a, BIcx “ bIcu, (1.38)

riP “ tx P P : BIx ă bIu. (1.39)

1.2.7. Decomposition of a vector space in the sum of a subspace and a convex cone [129].
Let E0 be a subspace of a vector space E and K be a convex cone of E. Then,

E0 ` K “ E ðñ
"

E0 ` vectK “ E

E0 X priKq ‰ ∅.

1.2.8. Farkas lemma for a polyhedral cone. Let E be a Euclidean space, and AE : E Ñ R
mE

and AJ : E Ñ R
mJ be two linear maps. Then,

td : AEd “ 0, AJd ď 0u` “ ´tA˚
EλE ` A

˚
JλJ : λE P R

mE , λJ P R
mJ
` u. (1.40)

1.2.9. Bidual of a convex cone. Using Farkas lemma, show that if K is a nonempty convex
cone, then K`` “ K.

1.2.10. Interior and relative interior of a dual cone. Let E be a Euclidean (scalar product
and associated norm respectively denoted by x¨, ¨y and } ¨ }), P Ď E, P` be the dual
cone of P , and PaffpP`q be the orthogonal projector on affpP`q. Show that

d P intpP`q ðñ D ε ą 0, @x P P : xd, xy ě ε}x}, (1.41a)

d P ripP`q ðñ D ε ą 0, @x P P : xd, xy ě ε}PaffpP`q x}. (1.41b)

1.2.11. Cone of feasible directions to a convex cone [129]. Show that if K is a convex cone
and x P K, then Tf

x K “ K ` Rtxu.
1.2.12. Tangent cones to S

n
`. Show that the tangent cone to S

n
` at X P S

n
` can be written

TX S
n
` “ tD P S

n
: v

T
Dv ě 0, @ v P N pXqu.

1.2.13. Asymptotic cone. Let E, F, and G be finite dimension vector spaces. Let A : E Ñ F

and B : E Ñ G be linear maps, a P F, b P G, K Ď G be a closed convex cone, and

P “ tx P E : Ax “ a, Bx P b ` Ku.

Then, the asymptotic cone of P is given by

P
8 “ td P E : Ad “ 0, Bd P Ku.

1.3 Nonsmooth Analysis

1.3.1 Lower semi-continuity

Let E be a finite dimensional vector space and f : E Ñ R be a function. The function f
is said to be lower semi-continuous (l.s.c. for short) on E if for all x P E there holds
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fpxq ď lim inf
x1Ñx

fpx1q.

The function f is said to be closed if its epigraph is closed. These two notions are
actually equivalent.

Proposition 1.23 (l.s.c. function) Let E be a finite dimensional vector space
and f : E Ñ R be a function. Then, the following properties are equivalent.

piq f is l.s.c. on E,
piiq f is closed,

piiiq for all α P R, the sublevel set Lαpfq is closed.

1.3.2 Lipschitz Continuity

Let E and F be two finite dimensional normed spaces and F : E Ñ F be a function.
We adopt the following definitions.

F is Lipschitz (continuous) on a set V Ď E if

DL ě 0, @ px, x1q P V 2 : }F pxq ´ F px1q} ď L}x´ x1}.

In this case, we also say that F is L-Lipschitz on V .
F is radially Lipschitz (continuous) at x P E if

DV P N pxq, DL ě 0, @x1 P V : }F pxq ´ F px1q} ď L}x´ x1},

where N pxq denotes the family of neighborhoods of x.
F is Lipschitz (continuous) near x P E if F is Lipschitz on some neighborhood
of x.
F is locally Lipschitz (continuous) on an open set Ω Ď E if F is Lipschitz near any
point of Ω.

1.3.3 Differentiability

Let E and F be two normed spaces and Ω be an open set of E. A function F : Ω Ñ F is
said to be Fréchet-differentiable [57; 1911] at x P Ω if there exists a linear continuous
operator L : E Ñ F such that

lim
}h}Ó0

1

}h}
´

F px ` hq ´ F pxq ´ Lh
¯

“ 0. (1.42)

Instead of saying Fréchet-differentiable, one also say F-differentiable or simply differ-
entiable. The limit in (1.42) is in F. We have taken care of having the limit for h ­“ 0

to give a sense to the quotient in (1.42). The operator L is then uniquely determined,
is denoted F 1pxq, and is called the derivative of F at x. Condition (1.42) can then
also be written

F px` hq “ F pxq ` F 1pxqh ` ophq, (1.43)
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where the small o of h, ophq, denotes a function of h vanishing at zero and verifying
the property

lim
}h}EÓ0

ophq
}h} “ 0,

where the limit is taken in a normed space depending on the context (here F).
The function F : Ω Ñ F is said to be F-differentiable on Ω if F is F-differentiable

at each point of Ω.

Theorem 1.24 (mean value theorem) Let Ω be an open set of E, x P Ω, and
h P Ezt0u be such that the closed segment rx, x`hs Ď Ω. Suppose that F : Ω Ñ F

is continuous on Ω and differentiable on the open segment px, x ` hq. Then

}F px` hq ´ F pxq} ď
˜

sup
zPpx,x`hq

}F 1pzq}
¸

}h}.

Corollary 1.25 Under the assumptions of theorem 1.24, if L : E Ñ F is linear
continuous, it follows that

}F px` hq ´ F pxq ´ Lh} ď
˜

sup
zPpx,x`hq

}F 1pzq ´ L}
¸

}h}.

Suppose that F : Ω Ñ F is defined on the part Ω Ď E. We denote by DF the set
of points of Ω at which F is Fréchet-differentiable:

DF :“ tx P Ω : F is Fréchet-differentiable at xu.

Theorem 1.26 (Rademacher, 1919) If Ω is an open set and F : Ω Ñ F is
locally Lipschitz on Ω, then, F is Fréchet-differentiable almost everywhere on Ω,
in the sense of Lebesgue. In other words, the Lebesgue measure of ΩzDF vanishes.

Proof. See [49; 2015, chap. 3] for instance. l

1.3.4 Multifunction

A multifunction3 T between two sets E and F is a usual function from E to PpFq,
where PpFq is the power set of F, that is the set of all subsets of F. The adopted
notation for a multifunction is

3 A multifunction may have many other names, like set-valued mapping or multi-valued
function.
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T : E ⊸ F : x P E ÞÑ T pxq Ď F.

Several concepts are associated with a multifunction T : E ⊸ F.

The graph GpT q, the domain DpT q, and the range RpT q of T are defined by

GpT q :“ tpx, yq P E ˆ F : y P T pxqu,
DpT q :“ tx P E : px, yq P GpT q for some y P Fu “ πEGpT q,
RpT q :“ ty P F : px, yq P GpT q for some x P Eu “ πFGpT q,

where we have denoted by πE : px, yq P E ˆ F ÞÑ x P E and πF : px, yq P E ˆ F ÞÑ
y P F, the Cartesian projectors on E and F respectively (these are linear maps).
Notice that GpT q is a part of E ˆ F, not of E ˆ PpFq.
The concept of multifunction is the same as the one of binary relation, which is
defined by the specification of a part G of E ˆ F (the relation, sometimes denoted
xR y, is said to be “true” if px, yq P G and “false” otherwise). Indeed, one can
associate with a part G of EˆF the multifunction TG : E ⊸ F, defined at x P E by

TGpxq “ ty P F : px, yq P Gu.

Then, we have the property that GpTGq “ G.

The image of a part P Ď E by T is

T pP q :“
ď

xPP

T pxq “ πF
“

GpT q X pP ˆ Fq
‰

. (1.44)

The inverse of T is the multifunction T´1 : F ⊸ E defined at y P F by

T´1pyq :“ tx P E : y P T pxqu.

The inverse always exists, but it is not true that T´1 ˝ T is the identity on E or
that T ˝ T´1 is the identity on F! Note that

y P T pxq ðñ x P T´1pyq ðñ px, yq P GpT q ðñ py, xq P GpT´1q.

Here are some commonly encountered properties that a multifunction T : E ⊸ F may
have.

When E, F are vector spaces, T is said to be convex if GpT q is convex in E ˆ F.
This is equivalent to saying that @ px0, x1q P E2 and @ t P r0, 1s:

T pp1 ´ tqx0 ` tx1q Ě p1 ´ tqT px0q ` tT px1q.

Note that

T : E ⊸ F convex
C convex in E

*

ùñ T pCq convex in F. (1.45)

This is because by (1.44) there holds T pCq “ πFrGpT q X pC ˆ Fqs and GpT q is
convex when T is convex.
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When E, F are topological spaces, T is said to be

– closed at x P E if y P T pxq when pxk, ykq P GpT q converges to px, yq;
– closed if GpT q is closed in E ˆ F, which amounts to saying that T is closed at

any x P E.

When E, F are metric spaces, T is said to be upper semi-continuous at x P E if

@ ε ą 0, D δ ą 0, @x1 P x` δB :

T px1q Ď T pxq ` εB.

x ` δB

T px1q

T pxqx

x1

T pxq ` εB

In this definition, B may be the open or closed unit ball at any place.

Notes

A study of Lipschitz continuous functions can be found in [49; 2015, chap. 3], for func-
tions between finite dimensional vector spaces, including a proof of the Rademacher
theorem [115; 1919], and in [4; 2004, chap. 3], between metric spaces. The results on
the generalized differentiability are taken from [32, 33].

Exercises

1.3.1. Upper semi-continuity of some multifunctions. Let E be a Euclidean vector space.
Show the upper semi-continuity of the following multifunctions.

1)
2) The subdifferential of a convex function f : E Ñ R at x P E is the set Bfpxq :“

ts P E : fpyq ě fpxq ` xs, y ´xy, @ y P Eu. Show that the multifunction Bf : E ⊸

E : x ÞÑ Bfpxq is upper semi-continuous at any x P E.

1.4 Optimization

1.4.1 Generic Problem

In a rather general setting, an optimization problem consists in minimizing a function
f : E Ñ R (E is a Euclidean vector space, which is the only restriction) on a (possibly
nonconvex) subset X Ď E. In other words, one looks for a point x˚ P E such that

"

x˚ P X,
fpx˚q ď fpxq, @x P X. (1.46)

Such a point x˚ is called a solution to the optimization problem. This problem,
denoted pPXq is written in one of the following manners

"

min fpxq
x P X or inf

xPX
fpxq or inftfpxq : x P Xu. (1.47)
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The function f is often called the objective of the optimization problem, while the
set X is called its feasible set . A point belonging to X is said to be feasible. The
“smallest value” of f on X , more precisely

valpPXq :“ inf
xPX

fpxq

is called the optimal value of the optimization problem, while the set of solutions is
denoted by

SolpPXq or Argmin
xPX

fpxq.

One says that the problem pPXq is bounded if valpPXq ą ´8; otherwise, the problem
is said to be unbounded , which occurs when there is a sequence txku Ď X such that
fpxkq Ñ ´8. We adopt the following convention

inf
xP∅

fpxq “ `8. (1.48)

A minimizing sequence for problem pPXq is a sequence txkukě1 Ď X such that
fpxkq Ñ valpPXq when k Ñ 8. By definition of the infimum, such a sequence al-
ways exists when X is nonempty.

Maximizing f is “identical” to minimizing ´f (i.e., same solutions, opposite opti-
mal value), so that only the minimization problem will be considered. Furthermore,
one prefers minimization to maximization, because the notion of “convex set” is mean-
ingful (unlike the one of “concave set”), hence the notion of “convex function” (it is
a function whose epigraph is convex), and finally it is more natural to minimize a
convex function than to maximize it. From (1.48), one gets

sup
xP∅

fpxq “ ´8.

A point x˚ satisfying (1.46) is sometimes called a global minimum, to stress the
distinction with a local minimum of f on X , which is a point x˚ for which there is a
neighborhood V of x˚, such that

"

x˚ P X,
fpx˚q ď fpxq, @x P X X V.

(1.49)

One also uses the notion of strict local/global minimum, which is a point x˚ verifying
(1.46)/(1.49) with a strict inequality fpx˚q ă fpxq when x ‰ x˚.

1.4.2 Peano-Kantorovich Optimality Condition

Let E be a Euclidean space. When x˚ minimizes a function f on X “ E and when f
is differentiable at x˚, it is known that

f 1px˚q “ 0.

Such a property of the minimizer x˚ is called a necessary condition of optimality
(“necessary” since it is implied by the optimality of x˚) of the first order (since it
only involves the first derivative of f); this property is abbreviated in NC1. Use the
gradient of f , this can also be written
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∇fpx˚q “ 0,

which is sometimes called the Fermat optimality condition.
WhenX ‰ E, some kind of first order approximation ofX near x˚ is also necessary

to get a necessary condition of optimality of the first order. The linearization of X
at x˚ yields a cone that is called the tangent cone. Note that here X is not necessarily
convex like in section 1.2.6.

Tangent Cone to a Nonconvex Set

Let X be a closed set of E. A direction d P E is said to be tangent to X at x P X (in
the sense of Bouligand) if

D txku Ď X, D ttku Ó 0 :
xk ´ x

tk
Ñ d.

The tangent cone to X at x (in the sense of Bouligand) is the set of tangent directions.
It is denoted by

TxX or TXpxq,
with the convention that TxX “ ∅ when x R X .

For x P X , one has

TxX is a closed cone,

X is convex ùñ TxX is convex and TxX “ R`pX ´ xq.

Therefore, when X is convex, the notions of tangent cones introduced in section 1.2.6
and here coincide, which justifies the similar notation. When X is not convex, one
still have TxX Ď R`pX ´ xq.

The normal cone to X at x is then defined by

NxX :“ pTxXq´, (1.50)

with the convention that NxX “ ∅ when x R X .

Peano-Kantorovich NC1

The following necessary condition of optimality of the first order (NC1) for the generic
problem pPXq is so important for chapter 2 that we present its simple proof. The result
just expresses compactly and at the first order (i.e., using the first derivative) the fact
that f is not decreasing along the tangent directions to X at x˚ when it is locally
minimized on X at x˚ P X .
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Theorem 1.27 (Peano-Kantorovich NC1) If x˚ is a local minimizer of pPXq
and f is differentiable at x˚, then

∇fpx˚q P pTx˚
Xq`. (1.51)

Proof. We have to show that x∇fpx˚q, dy ě 0, for all d P Tx˚
X . Let d P Tx˚

Xzt0u
(the previous inequality is trivially satisfied for d “ 0). Then, there exist sequences
txku Ď X and ttku Ó 0 such that dk :“ pxk ´ x˚q{tk Ñ d. For large k, xk “ x˚ ` tkdk
is close to x˚, so that, by the local optimality of x˚:

fpx˚ ` tkdkq ě fpx˚q, for large k.

Since f is differentiable at x˚, fpx˚ ` tkdkq “ fpx˚q ` f 1px˚q ¨ ptkdkq ` op}tkdk}q.
Using the previous inequalities yields

0 ď f 1px˚q ¨ dk ` op}tkdk}q
tk

“ f 1px˚q ¨ dk ` op}tkdk}q
}tkdk} }dk}, for large k.

Taking the limit when k Ñ 8 now provides f 1px˚q ¨ dk “ x∇fpx˚q, dy ě 0. l

NSC1 for Convex Problems

For a convex problem pPXq, one has a necessary and sufficient condition of global op-
timality of the first order (NSC1). Recall from proposition 1.16 that a convex function
f : E Ñ RYt`8u has directional derivatives f 1px; dq :“ limtÓ0rfpx`tdq´fpxqs{t P R

for all x P dom f and all d P E.

Proposition 1.28 (NSC1 for a convex problem) Suppose that X is convex,
that f is convex on X, and that x˚ P X. Then, x˚ is a global solution to pPXq if
and only if

f 1px˚;x´ x˚q ě 0, @x P X.

The proof is straightforward. It uses the convexity inequality

fpxq ě fpx˚q ` f 1px˚;x´ x˚q, @x P X.

1.4.3 Equality Constrained Problem pPEq

Let E and F be Euclidean vector spaces. The equality constrained problem consists in
minimizing a function f : E Ñ R on the set

XE :“ tx P E : cpxq “ 0u
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defined by equality constraints thanks to a function c : E Ñ F. The set XE is said to
be the feasible set of pPEq. The problem is written

pPEq
"

infx fpxq
cpxq “ 0.

Usually the functions f and c are smooth, possibly nonconvex.

Definition 1.29 The problem pPEq is said to be convex if f is convex and XE is a
convex set.

Lagrange Optimality Conditions

The following NC1 is often attributed to Lagrange (XVIIIth century). It uses the
Lagrangian of pPEq, which is the function

ℓ : px, λq P E ˆ F ÞÑ ℓpx, λq “ fpxq ` xλ, cpxqy P R.

We denote by ∇xℓpx, λq the gradient of ∇xℓp¨, λq at x. It is a particular case of
theorem 1.40, whose proof is given explicitly.

Theorem 1.30 (NC1 for pPEq) If x˚ is a local minimum of pPEq, if f and c
are differentiable at x˚, and if c is qualified for representing XE at x˚ in the
sense (1.53) below, then there exists a multiplier λ˚ P F such that

∇xℓpx˚, λ˚q “ 0, (1.52a)

cpx˚q “ 0. (1.52b)

Definitions 1.31 1q The set XE can be described by several functions c. Some are
better than others. The constraint c is said to be qualified for representing XE at
x P XE if

TxXE “ T1
xXE :“ N pc1pxqq. (1.53)

There always holds TxXE Ď T1
xXE , but equality is not necessarily guaranteed.

Qualification holds if c1pxq is surjective (hence, this is a sufficient condition of
constraint qualification).

2q A vector λ˚ in (1.52a) is called a Lagrange multiplier or optimal multiplier asso-
ciated with x˚. The term “multiplier” comes from the fact that it multiplies the
constraint in the Lagrangian.

3q A point x˚ satisfying (1.52) for some λ˚ P F is said to be a stationary point .
Sometimes, one says that the pair px˚, λ˚q satisfying (1.52) is stationary. l

By definition, the set of optimal multipliers λ˚ associated with a stationary
point x˚ of pPEq is the set defined and denoted by

Λ˚ :“ tλ˚ P F : ∇fpx˚q ` c1px˚q˚λ˚ “ 0u.
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It is therefore an affine subspace of F, which is nonempty by definition of the station-
arity of x˚. Clearly, this set Λ˚ is reduced to a singleton (uniqueness of the optimal
multiplier associated with x˚) if and only if c1px˚q is surjective.

Proposition 1.32 (SC1 for a convex pPEq) Suppose that problem pPEq is
convex in the sense of the definition 1.29 and that f and c are differentiable at a
point x˚ P E that satisfies (1.52) for some λ˚ P F. Then, x˚ is a global minimum
of pPEq.

Second Order Optimality Conditions

First order necessary conditions allows us to select a set of points that are candidates
for being solutions to pPEq, but these conditions do not even discard a local maximum!
With second order necessary conditions (NC2), the selection is more precise and many
point that are not local minimums are removed from the list of stationary points.

Theorem 1.33 (NC2 for pPEq) If x˚ is a local minimum of pPEq, if f and c
are twice differentiable at x˚, and if (1.52a) holds for some λ˚ P F, then

@ d P Tx˚
XE : x∇2

xxℓpx˚, λ˚qd, dy ě 0. (1.54)

Remarks 1.34 1q With respect to the second order optimality conditions for the
unconstrained problem “ inf fpxq”, which read

∇ fpx˚q “ 0 and ∇2 fpx˚q ě 0,

the NC2 for pPEq have two major differences:

it is the Lagrangian ℓ that intervenes in the conditions, not f ,
the Hessian of the Lagrangian is not positive semidefinite in the whole space E

but only in the tangent cone Tx˚
XE , which is the subspace N pc1px˚qq if the

constraint qualification (1.53) holds at x˚.

2q The result does not require any constraint qualification, but claims the inequality
in (1.54) only for the tangent directions d P Tx˚

XE .

3q The inequality in (1.54) is not necessarily true for d P N pc1px˚qqzTx˚
XE (but it

holds in the presence of qualification, by the definition (1.53) of the latter). For
example, if one minimizes ´x2 on tx P R : x2 “ 0u, the unique solution is the
origin, T0XE “ t0u, N pc1p0qq “ R, and ∇xℓp0, 0q “ 0, but ∇2

xxℓp0, 0q “ ´2 is
positive negative on R (while it is positive semidefinite on t0u).
Of course, if the constraint c is qualified at x˚, one has Tx˚

XE “ N pc1px˚qq and
the inequality in (1.54) is valid for all d P N pc1px˚qq.

4q As usual, these second order necessary conditions can be used to detect stationnary
points that are not local minimizers. l
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Sufficient optimality conditions of the second order (SC2) for the nonconvex prob-
lem pPEq are essentially local; they do not guarantee global optimality (compare with
proposition 1.32).

Theorem 1.35 (SC2 for pPEq) If f and c are twice differentiable at x˚, if
(1.52) holds for some λ˚ P F, and if

@ d P Tx˚
XEzt0u : dT∇2

xxℓpx˚, λ˚qd ą 0, (1.55)

then x˚ is a strict local minimum of pPEq.

Of course, (1.55) is stronger (hence the conclusion holds) if the inequalities hold for
all d P N pc1px˚qqzt0u.

1.4.4 Equality and Inequality Constrained Problem pPEIq
Nonlinear optimization deals with the study of the nonlinear optimization problem,
which consists in minimizing a function subject to equality and inequality constraints.
A generic form of this problem is the following

pPEIq

$

&

%

infx fpxq
cEpxq “ 0

cIpxq ď 0,

where f : E Ñ R, cE : E Ñ RmE , and cI : E Ñ RmI are (generally) smooth (possibly
nonconvex) functions. Below it is considered that cE and cI are the components of a
function c : E Ñ Rm; hence, E and I form a partition of r1 :ms, mE “ |E|, mI “ |I|,
and mE ` mI “ m. As usual, the inequality “cIpxq ď 0” has to be understood
componentwise, meaning that it is equivalent to “cipxq ď 0 for all i P I”. The feasible
set of pPEIq is denoted by

XEI :“ tx P E : cEpxq “ 0, cIpxq ď 0u.

Definition 1.36 The problem pPEIq is said to be convex if f is convex and XEI is
a convex set. l

Requiring the convexity of XEI is less demanding than requiring the affinity of cE
and the componentwise convexity of cI .

Proposition 1.37 (sufficient conditions for XEI convex) If cE is affine
and cI is componentwise convex, then XEI is convex.

We say that the inequality constraint cipxq ď 0, for some i P I, is active at a point
x P XEI if cipxq “ 0. The sets of indices of active and inactive inequality constraints
are respectively denoted by

I0pxq :“ ti P I : cipxq “ 0u and I„pxq :“ ti P I : cipxq ă 0u.
We alleviate notation by setting I0˚ :“ I0px˚q and I„

˚ :“ I„px˚q for a given point
x˚ P XEI .
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Constraint Qualification

The necessary condition of optimality of Peano-Kantorovich (1.51) makes use of the
tangent cone to the feasible set. Our goal is to see how this condition reads in the
case of the problem pPEIq, so that an analytic expression of TxXEI is desirable. As
expected, this description of TxXEI uses the derivatives of the function c defining
the feasible set XEI .

The tangent cone TxXEI is always contained in the linearizing cone

T1
xXEI :“ td P E : c1

Epxq ¨ d “ 0, c1
I0pxqpxq ¨ d ď 0u, (1.56)

that is

TxXEI Ď T1
xXEI .

One would like to have equality, since then an explicit expression of the tangent cone
is at hand, which makes possible an analytic expression of the optimality (our goal
in this section). This is not unusual, but not always true, since T1

xXEI is a convex
polyhedron, while the tangent cone TxXEI may not be convex.

Definition 1.38 (qualification of c to represent XEI) One says that the con-
straint c is qualified for representing XEI at x if

TxXEI “ T1
xXEI . (1.57)

l

It is usually difficult to verify directly whether (1.57) holds. To make this frequent
task easier, one has identify a number of sufficient conditions guaranteeing (1.57).
Here are the four mostly used (there are many others).

(CQ-A) [A for Affinity] cEYI0pxq is affine near x,

(CQ-S) [S for Slater [130]] cE is affine, cI0pxq is componentwise convex, D x̌ P XEI

such that cI0pxqpx̌q ă 0,

(CQ-LI) [LI for Linear Independence]
ř

iPEYI0pxq αi∇cipxq “ 0 ùñ α “ 0,

(CQ-MF) [MF for Mangasarian-Fromovitz [97]]
ř

iPEYI0pxq αi∇cipxq “ 0 and
αI0pxq ě 0 ùñ α “ 0.

It is clear that (CQ-LI) implies (CQ-MF), so that the latter is more often satisfied
than the former.

Proposition 1.39 (other forms of (CQ-MF)) Suppose that cEYI0pxq is dif-
ferentiable at x P XEI . Then, the following properties are equivalent:

piq (CQ-MF) holds at x,
piiq @ v P R

m, D d P E: c1
Epxq ¨ d “ vE and c1

I0pxqpxq ¨ d ď vI0pxq,

piiiq c1
Epxq is surjective and D d P E: c1

Epxq ¨ d “ 0 and c1
I0pxqpxq ¨ d ă 0.
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KKT Conditions

The following NC1 is often attributed to Karush, Kuhn, and Tucker [82, 87] (XXth
century). It uses the Lagrangian of pPEIq, which is the function

ℓ : px, λq P E ˆ F ÞÑ ℓpx, λq “ fpxq ` λTcpxq P R.

Because of its importance and because we shall follow the same track for determining
NC1 for the general problem pPGq in section 2.1.2, we provide a proof of the following
result, which is very important in nonlinear optimization.

Theorem 1.40 (Karush-Kuhn-Tucker (KKT)) If x˚ is a local minimum of
pPEIq, if f and c are differentiable at x˚, and if c is qualified for representing
XEI at x˚ in the sense (1.57), then, there exists a λ˚ P R

m such that

∇xℓpx˚, λ˚q “ 0, (1.58a)

cEpx˚q “ 0, (1.58b)

0 ď pλ˚qI K cIpx˚q ď 0. (1.58c)

Proof. Let us alleviate notation by setting J :“ I0px˚q. We have successively

∇fpx˚q P pTx˚
XEIq` r(1.51)s

“ pT1
x˚
XEIq` [constraint qualification (1.57) at x˚]

“ ´tc1
Epx˚q˚y ` c1

J px˚q˚z : y P R
mE , z P R

|J|
` u r(1.2.8)s.

Hence, there exist vectors y P RmE and z P R
|J|
` such that

∇fpx˚q “ ´c1
Epx˚q˚y ´ c1

Jpx˚q˚z.

The conditions in (1.58) are then obtained by introducing

pλ˚qi :“

$

&

%

yi if i P E
zi if i P J
0 if i P IzJ . l

Definitions 1.41 1q A vector λ˚ appearing in (1.58) is called a KKT or optimal
multiplier associated with x˚, since it multiplies the constraint in the Lagrangian.
The term “multiplier” comes from the fact that it multiplies the constraint in the
Lagrangian.

2q A point x˚ satisfying (1.58) is said to be a stationary point . Sometimes, one says
that the pair px˚, λ˚q satisfying (1.58) is stationary.

3q The condition (1.58c) is special and is known as the complementarity conditions
of the problem pPEIq. With their three operators, they mean the three conditions
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pλ˚qI ě 0, pλ˚qTI cIpx˚q “ 0, and cIpx˚q ď 0.

Hence “K” expresses the orthogonality with respect to the Euclidean product
in RmI . Because of the sign of λ˚ and cIpx˚q, the second condition above has
the following equivalent expressions

pλ˚qTI cIpx˚q “ 0 ðñ @ i P I : pλ˚qicipx˚q “ 0

ðñ @ i P I :
´

cipx˚q ă 0 ùñ pλ˚qi “ 0
¯

.

In other words, a multiplier associated with an inactive constraint vanishes.

4q One says that strict complementarity holds for a stationary pair px˚, λ˚q if

@ i P I :
´

cipx˚q ă 0 ðñ pλ˚qi “ 0
¯

. (1.59)

This is a property of px˚, λ˚q, which is not necessary guaranteed by the fact that x˚

is a local solution to pPEIq. l

By definition, the set of optimal multipliers λ˚ associated with a stationary
point x˚ of pPEIq is the set defined and denoted by

Λ˚ :“ tλ˚ P R
m : ∇fpx˚q ` c1px˚q˚λ˚ “ 0, pλ˚qI0

˚
ě 0, pλ˚qI„

˚
“ 0u.

It is therefore a convex polyhedron of Rm, which is nonempty by definition of the
stationarity of x˚. The next proposition provides two properties of this set: a charac-
terization of its boundedness [59] and of its uniqueness [89]. For a given multiplier λ˚,
the following notation is adopted:

I0`
˚ :“ ti P I0˚ : pλ˚qi ą 0u and I00˚ :“ ti P I0˚ : pλ˚qi “ 0u.

Proposition 1.42 (set of optimal multipliers) Suppose that f and c are dif-
ferentiable at a stationary point x˚ of problem pPEIq and that the set of associated
multipliers Λ˚ is nonempty. Then,

1q Λ˚ is bounded if and only if (CQ-MF) holds,
2q for a given λ˚ P Rm, the following properties are equivalent:

piq Λ˚ “ tλ˚u,
piiq any vector α P R

|E|`|I0
˚| verifying

ÿ

iPEYI0
˚

αi∇cipx˚q “ 0 and αI00
˚

ě 0

vanishes,
piiiq c1

EYI
0`

˚

px˚q is surjective and there exists a vector d P E such that

c1
EYI

0`

˚

px˚qd “ 0 and c1
I00

˚

px˚qd ă 0.

The boundedness characterization is surprizing, since Λ˚ is linked to the optimization
problem pPEIq, while (CQ-MF) only depends on the feasible set.
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SC1 for a Convex Problem

Roughly speaking, the KKT conditions at a pair px˚, λ˚q are sufficient to guarantee
that x˚ is a global minimum of pPEIq, provided the problem is convex in the sense of
the definition 1.36. Note that this CS1 does not require a constraint qualification.

Proposition 1.43 (SC1 for a convex pPEIq) Suppose that problem pPEIq is
convex in the sense of the definition 1.36 and that f and c are differentiable at a
point x˚ P E that satisfies (1.58) for some λ˚ P F. Then, x˚ is a global minimum
of pPEIq.

1.4.5 Abstract Duality

This section describes various approaches allowing us to make links between two opti-
mization problems, which may seem to have no connection to each other. Sometimes,
the optimal multipliers of one problem are the solutions to the other one, and vice
versa. The most often used scheme to connect two problems is the min-max duality.

Min-max duality

Consider the general optimization problem

pP q inf
xPX

fpxq,

where X is an arbitrary set and f : X Ñ R is an arbitrary function. Denote its
optimal value and its solution set respectively by

valpP q and SolpP q.

In the duality context, pP q is called the primal problem, that is the problem that is
first present.

Min-max duality comes into play when fpxq can be written as a supremum:

fpxq “ sup
yPY

ϕpx, yq,

where Y is some arbitrary set and ϕ : X ˆ Y Ñ R is some arbitrary function. The
function ϕ is called the pairing function. Then problem pP q reads

pP q inf
xPX

sup
yPY

ϕpx, yq.

The dual problem is then obtained by inverting the order in which the infimum and
the supremum are taken:

pDq sup
yPY

inf
xPX

ϕpx, yq.

Denote its optimal value and its solution set respectively by
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valpDq and SolpDq.

Aside from this audacious construction, which allowed us to derive the dual prob-
lem from the primal problem, the two problems may have no interesting links with
each other. Nevertheless, the following so-called weak duality inequality always holds:

valpDq ď valpP q. (1.60)

Proof. Clearly
@x1 P X, @ y1 P Y : ϕpx1, y1q ď ϕpx1, y1q

and therefore certainly

@x1 P X, @ y1 P Y : inf
xPX

ϕpx, y1q ď ϕpx1, y1q.

Fixing x1 P X and taking the supremum in y1 P Y in the two sides, yields

@x1 P X : sup
yPY

inf
xPX

ϕpx, yq ď sup
yPY

ϕpx1, yq.

Since the left-hand side is independent of x1, one can take the infimum in x1 P X in
the right-hand side and keep the inequality. This yields (1.60). l

Given the very general context, this inequality is remarkable. When equality occurs
in (1.60), one says that there is no dually gap between the primal and dual problems.
This fact is not guaranteed. When the inequality (1.60) is strict, the positive value
valpP q ´ valpDq is called the duality gap; it may be infinite.

A stronger link occurs between the primal and dual problems when the pairing
function ϕ has a saddle-point , which is a point px̄, ȳq P X ˆ Y such that

@ px, yq P X ˆ Y : ϕpx̄, yq ď ϕpx̄, ȳq ď ϕpx, ȳq.

In other words, ϕpx̄, ¨q must have a maximum at ȳ and ϕp¨, ȳq must have a minimum
at x̄; nothing is required outside the vertical cross ptx̄uˆY qYpXˆtȳuq. A saddle-point
may be characterized in terms of valpP q, SolpP q, valpDq, and SolpDq:

px̄, ȳq is a saddle-point of ϕ ðñ

$

&

%

x̄ P SolpP q
ȳ P SolpDq
valpDq “ valpP q.

(1.61)

The set of saddle-points of the function ϕ is a Cartesian product, that is a set of the
form X̄ ˆ Ȳ , where X̄ Ď X and Ȳ Ď Y . This means that if px̄1, ȳ1q and px̄2, ȳ2q are
saddle-points of ϕ, then px̄1, ȳ2q and px̄2, ȳ1q are also saddle-points of ϕ.

The primal and dual problems do not have the same solutions, since these live in
different sets, in X for the former and in Y for the latter. Sometimes, the interest
of the dual problem is that it may be easier to solve than the primal. Then, the
question arises to know how to get a primal solution (what interests the designer of
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that problem), when a solution to the dual problem is known. The next propositon
explains how to get such a primal solution in the present very general context.

Proposition 1.44 Suppose that ϕ has a saddle-point px̄, ȳq. Then,

∅ ‰ SolpP q Ď Argmin
xPX

ϕpx, ȳq and ∅ ‰ SolpDq Ď Argmax
yPY

ϕpx̄, yq.

The first claim of the proposition tells us that, if ϕ has a saddle-point and if ȳ is
a solution to the dual problem, the solutions to the primal problem are also the
solutions to the problem inftϕpx, ȳq : x P Xu. Therefore, there are some chance
to recover a solution to the primal problem by solving the optimization problem
inftϕpx, ȳq : x P Xu. Now, this last problem may also have solutions that are not
solution to pP q; we call them improper solutions. Analog comments can be made for
the second claim of the proposition.

1.4.6 Linear Optimization Problem pPLq

Let E be Euclidean vector space, c P E, A : E Ñ Rm and B : E Ñ Rp be linear maps,
a P Rm, and b P Rp. A linear optimization problem pPLq and its Lagrangian dual pDLq
read

pPLq

$

&

%

infxPE xc, xy
Ax “ a

Bx ď b

and pDLq

$

&

%

suppy,sqPRmˆRp aTy ´ bTs

A˚y ´B˚s “ c

s ě 0.

(1.62)

See below to learn how the dual problem is derived from the primal problem using
min-max duality. The optimal value and the solution set of the primal problem are
denoted by valpPLq and SolpPLq respectivement. Similarly, the optimal value and the
solution set of the dual problem are denoted by valpDLq and SolpDLq, respectively.

The existence of a solution to the primal problem pPLq is characterized by the
following equivalence, in which valpPLq P R means that the problem pPLq is feasible
(i.e., its feasible set is nonempty, or, equivalently valpPLq ă 8) and bounded (i.e.,
valpPLq ą ´8).

pPLq has a solution ðñ val pPLq P R. (1.63)

Proof. Since the left-to-right implication is clear, we only have to prove the reciprocal.
Assume that valpPLq P R. Then one can find a minimizing sequence (since the feasible
set is nonempty), i.e., a sequence txku such that

Axk “ a, Bxk ď b, and xc, xky Ñ valpPLq.

Furthermore, the set txc, xy : Ax “ a, Bx ď bu is a closed interval in R (since it is
the image by the linear map x ÞÑ xc, xy of the convex polyhedron tx P E : Ax “ a,
Bx ď 0u, hence a convex polyhedron of R; see property 1 of proposition 1.1). Since
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xc, xky is in that interval and converges to valpPLq, this finite limit belongs to this
interval, meaning that there exists a point x̄ P E such that valpPLq “ xc, x̄y, Ax̄ “ a,
and Bx̄ ď b. This point x̄ is therefore a solution to pPLq. l

The dual problem pDLq is obtained from the primal problem pPLq using the min-
max duality, with the Lagrangian ℓ as pairing function (denoted ϕ in section 1.4.5).
One can process that way since the primal problem can be written as the following
infsup problem:

inf
xPE

sup
yPRm

sPRp

`

xc, xy ´ yTpAx ´ aq ` sTpBx´ bq. (1.64)

This is because

sup
yPRm

sPRp
`

xc, xy ´ yTpAx´ aq ` sTpBx´ bq “
"

xc, xy if Ax “ a and Bx ď b

`8 otherwise.

Indeed, first, if Ax “ a and Bx ď b, yTpAx ´ aq “ 0 and sTpBx ´ bq ď 0 (since
s ě 0) and the supremum value xc, xy can be reached by taking any y and s “ 0;
next, if Ax ‰ a, the infinite supremum is obtained by taking y “ tpAx ´ aq, s “ 0,
and t Ñ 8; and finally, if Bx ę b, the infinite supremum is obtained by taking y “ 0,
s “ tpBx ´ bq` “ tmaxp0, Bx ´ bq, and t Ñ 8. Problem pDLq is then obtained by
inverting the infimum and the supremum in (1.64), to get

sup
yPRm

sPRp

`

inf
xPE

xc, xy ´ yTpAx´ aq ` sTpBx´ bq

“ sup
yPRm

sPRp

`

inf
xPE

xc´A˚y ` B˚s, xy ` aTy ´ bTs

“ sup
yPRm

sPRp
`

"

aTy ´ bTs if A˚y ´B˚s “ c

´8 otherwise

“ sup
yPRm

sPRp
`

A˚y´B˚s“c

aTy ´ bTs,

which is indeed pDLq.
A consequence of the above dualization process is the weak duality inequality (see

(1.60)):

val pDLq ď val pPLq. (1.65)

The strong duality result refers to the following equivalences:

pPLq and pDLq are feasible ðñ Sol pPLq ‰ ∅ ðñ Sol pDLq ‰ ∅.

(1.66)
When the conditions in (1.66) hold, the primal and dual optimal values are identical
(there is no duality gap): val pDLq “ val pPLq. The implication “pPLq and pDLq are
feasible ñ Sol pPLq ‰ ∅” is often used to show that the primal problem has a solution.
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1.5 Algorithmics

1.5.1 Speeds of Convergence

Definitions 1.45 (speeds of convergence) Let E be a normed space and txku Ď E

be a sequence converging to x˚ P E, different from x˚. Then txku is said to converge

linearly, if there exist a constant r P r0, 1q and an index k0 P N such that

@ k ě k0 : }xk`1 ´ x˚} ď r}xk ´ x˚},

superlinearly, if
xk`1 ´ x˚ “ op}xk ´ x˚}q,

quadratically, if
xk`1 ´ x˚ “ Op}xk ´ x˚}2q.

Remarks 1.46 1q The speeds of convergence above are sometimes named quotient-
speeds since they are based on an estimation of the quotient }xk`1 ´x˚}{}xk ´x˚}.
Such an estimation is usually obtained by taking the development around x˚ of
the functions involved in the definition of the problem to solve and by using the
algorithm definition and properties. Sometimes one uses the terms q-linear, q-
superlinear, and q-quadratic convergence, to distinguish them from the r-linear,
r-superlinear, and r-quadratic convergence, which are less demanding notions called
root-speeds of convergence [106].

2q The property of linear convergence depends on the norm chosen on E (linear
convergence may occur for one norm and not for another one), but not those of
superlinear and quadratic convergences.

3q Obviously, the superlinear convergence is faster than the linear convergence and
the quadratic convergence is faster than the superlinear convergence.

4q Superlinear convergence is typically obtained by the quasi-Newton methods (when
everything is going well), while quadratic convergence is typical of Newton’s
method.

To conclude this section, let us mention a property of superlinear convergence
that will be useful in section 4.1.4. We say that two sequences tukukě0 and tvkukě0

in a normed space E converge to zero equivalently, a concept that we denote by
tuku „ tvku, if

DC ą 0, @ k ě 0 : C´1}uk} ď }vk} ď C }uk}.

Lemma 1.47 (equivalent vanishing sequences) If the sequence txku con-
verges to x˚ superlinearly, then, txk`1 ´ xku „ txk ´ x˚u.

Proof. Just write xk ´ xk`1 “ pxk ´ x˚q ´ pxk`1 ´ x˚q “ pxk ´ x˚q ` op}xk ´ x˚}q
and conclude. l



46 1. Background

1.5.2 Newton and Quasi-Newton Algorithms N

Nonlinear Equation

Consider first the problem of finding a zero of a nonlinear system of equations. A
function F : E Ñ F between two vector spaces E and F of the same finite dimension
is given and the problem consists in finding a zero of F , that is a point x P E such
that

F pxq “ 0. (1.67)

Newton’s algorithm computes such a zero approximately (but with high precision)
by generating a sequence txku Ď E, which is expected to converge to a zero of F . The
procedure is as follows. Given the current iterate xk P E, F is first linearized at xk
yielding the affine model of F :

x P E ÞÑ F pxkq ` F 1pxkq ¨ px´ xkq,

which is a good approximation of F near xk. Then, it makes sense to take as next
iterate xk`1, a zero of this affine map. Hence xk`1 solves (if possible)

F pxkq ` F 1pxkq ¨ pxk`1 ´ xkq “ 0. (1.68a)

This is a linear system, which is much easier to solve than the original nonlinear
system (1.67). If F is C1 and x˚ is a regular zero, that is a zero with a nonsingular
Jacobian F 1px˚q, then when the current iterate xk is near x˚, F 1pxkq is nonsingular
and the next iterate xk`1 is obtained by

xk`1 “ xk ´ F 1pxkq´1F pxkq. (1.68b)

These claims are clarified by the local convergence result to theorem 1.48.
Conditions ensuring the local convergence of Newton’s method are given in the

next result.

Theorem 1.48 (convergence of the Newton algorithm) Suppose that F
has a zero x˚, that F is continuously differentiable around x˚, and that F 1px˚q
is nonsingular. Then

1q there exists ε ą 0 such that, if the first iterate x1 P B̄px˚, εq, the Newton
algorithm (1.68), starting at x1, is well defined and generates a sequence
txku converging superlinearly to x˚,

2q if, furthermore, F is C1,1 in a neighborhood of x˚, the convergence is
quadratic.

A quasi-Newton algorithm operates like the Newton method, except that the Ja-
cobians F 1pxkq are approached by a linear operator Mk : E Ñ F, by a very specific
technique. This avoids the need of computing the derivatives. Hence, the next iter-
ate xk`1 is computed by solving the linear system

F pxkq `Mkpxk`1 ´ xkq “ 0. (1.69)
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Despite the derivatives are not computed, superlinear convergence of the iterates is
usually possible. To prove such speed of convergence, the following Dennis and Moré
criterion for superlinear convergence is valuable. This criterion involves the quality
of Mk only along the displacement direction xk`1 ´ xk.

Proposition 1.49 (Dennis & Moré criterion for superlinear convergen-
ce) Suppose F is differentiable at one of its zero x˚, that F 1px˚q is nonsingular,
and that txku generated by (1.69) converges to x˚. Then, the following properties
are equivalent

piq the convergence of txku to x˚ is superlinear,
piiq rMk ´ F 1px˚qspxk`1 ´ xkq “ op}xk`1 ´ xk}q.

Proof. Let us start by giving an expression of rMk ´ F 1px˚qspxk`1 ´ xkq that takes
into account the form of the algorithm displacement pxk`1 ´ xkq, given by (1.69).
There hold

rMk ´ F 1px˚qspxk`1 ´ xkq
“ ´F pxkq ´ F 1px˚qpxk`1 ´ xkq r(1.69)s
“ ´F 1px˚qpxk ´ x˚q ` op}xk ´ x˚}q ´ F 1px˚qpxk`1 ´ xkq

[F px˚q “ 0 and differentiability of F at x˚]

“ ´F 1px˚qpxk`1 ´ x˚q ` op}xk ´ x˚}q. (1.70)

[piq ñ piiq] By piq and (1.70), we get

rMk ´ F 1px˚qspxk`1 ´ xkq “ op}xk ´ x˚}q.

Then piiq follows by piq and lemma 1.47.
[piiq ñ piq] If piiq holds, (1.70) yield

F 1px˚qpxk`1 ´ x˚q “ op}xk ´ x˚}q.

The nonsingularity of F 1px˚q then implies that xk`1 ´ x˚ “ op}xk ´ x˚}q, which is
the superlinear convergence txku, yielding piq. l

Unconstrained Optimization N

Consider now the unconstrained optimization problem . . .

1.5.3 Global Convergence in Unconstrained Optimization N

Consider the problem of minimizing a function f : E Ñ R on a Euclidean vector
space E (no constraint):

min
xPE

fpxq.

The global convergence of an algorithm generating a sequence of iterates txkukě1

means that some kind of convergence result for this sequence txkukě1 or most often
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for some associated quantities (like the gradients ∇fpxkq) can be obtained, whatever
the initial iterate x1 is. This concept has to be compare with that of a local convergence
result, which assumes that the initial iterate is close enough to a solution.

The most classical results “only” prove that the sequence of the gradients ∇fpxkq
converges to zero or, even less, that lim infkÑ8 }∇fpxkq} “ 0 (meaning that a subse-
quence of t∇fpxkqu converges to zero). It is usually not the case that the sequence of
iterates txkukě1 itself converges to a solution to the problem, unless strong assumption
are taken on the function f , like its strong convexity. Nevertheless, if ∇fpxkq Ñ 0,
any adherent point of txkukě1 is a solution to the problem.

Once a method is able to define a direction of move dk P E at the current iter-
ate xk, a globalization strategy can be introduced, which is a technique able to force
convergence from any starting point. The most famous globalization strategies are
the use of line-searches and trust-regions.

Line-search

A line-search algorithm generates a sequence txku as follows:

choice of a descent direction at xk, i.e., dk P E such that f 1pxkq ¨ dk ă 0 (stan-
dard examples are gradient, conjugate gradient, Newton, quasi-Newton, and Gauss-
Newton directions; each of these directions has specific properties and are more or
less adapted to a given problem);
determination of a step-size αk ą 0 by a line-search rule to force a sufficient
decrease of f along dk (standard examples are Cauchy, Armijo, Goldstein, and
Wolfe rules; each of these rules is adapted to particular situations, directions, and
specificities of the problem at hand);
the next iterate is then obtained by xk`1 :“ xk ` αkdk.

This is a very simple algorithm, but with powerful properties. Its simplicity makes it
more easily adaptable to problems that are more complex than unconstrained mini-
mization.

In the next result, we simplify the notation by abbreviating gk :“ ∇fpxkq.

Proposition 1.50 (global convergence with line-search) Let txku be a se-
quence generated by the line-search algorithm described above. If tfpxkqu is
bounded below, then

ÿ

kě1

}gk}2 cos2 θk ă `8, (1.71)

where θk :“ arccosx´gk, dky{p}gk} }dk}q is the angle between dk and ´gk.

The property claiming that the series in (1.71) is convergent is called the Zoutendijk
condition [138; 1970]. It provides the contribution of the line-search to the global
convergence. The contribution of the directions dk is also important and one cannot
conclude any interesting properties without specifying it. Sometimes the analysis is
long and tortuous [61; 1992]. The simplest situation is for the gradient or steepest
descent algorithm, in which dk “ ´gk; in that case, cos θk “ 1 and we obtain that the
series

ř

k }gk}2 is convergent, implying in turn that gk Ñ 0. This is the kind of results
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that is highly desirable. Without assumption like the strong convexity of f , one cannot
guarantee that the sequence of iterates txku converges to a point minimizing f (see [62;
2000] and the references therein). Hence, one can say that the gradient algorithm with
line-search is convergent.

Trust-Region N

A trust-region algorithm generates a sequence txku as follows :

choice of a model ϕk of f around xk, usually quadratic: ϕkpsq :“ xgk, sy` 1
2

xMks, sy
(standard models are the gradient, Newton, quasi-Newton, and Gauss-Newton
models);
determination of a trust-radius ∆k ą 0 such that fpxk ` skq is sufficiently smaller
than fpxkq, where sk P Argmintϕkpsq : }s} ď ∆ku;
the next iterate is then obtained by xk`1 :“ xk ` sk.

Proposition 1.51 (global convergence with trust-region) If f is C1 in a
neighborhood of V1 :“ tx P E : fpxq ď fpx1qu, if tfpxkqu is bounded below, and
if tMku is bounded, then lim infkÑ8 }gk} “ 0. If, furthermore, f is C1,1, then
gk Ñ 0.

1.5.4 Global Convergence for Nonlinear Equations N

Let F : E Ñ E and consider the problem of finding x such that

F pxq “ 0.

No algorithm with global convergence (a few exceptions however; e.g., when F is
polynomial, but the methods are expensive and restricted to problems with a rather
small dimension).

min
xPE

ˆ

ϕpxq :“ 1

2
}F pxq}22

˙

.

An amazing but misleading fact is the following. If ∇ϕpxkq ‰ 0, the Gauss-Newton
direction

dgn

k P Argmin
dPE

}F pxkq ` F 1pxkqd}22

is a descent direction of ϕ at xk. May yield false convergence. It is better to use the
trust-region approach: xk`1 “ xk ` sk, where

sk P Argmin
}s}2ď∆k

}F pxkq ` F 1pxkqs}22,

with well adapted trust-radius ∆k ą 0.





2 Optimality Conditions

There is no more general optimization problem than pPXq in (1.47), in which an
arbitrary function f is minimized on an arbitrary set X (well, there, the set was
supposed to belong to a Euclidean space, which is already a major restriction). In this
chapter, we consider a problem with a little more structure than pPXq, but not much:
an additional function c is used to represent the feasible set, which is now defined by
“cpxq P G”, where c is an arbitrary function and G is a nonempty closed convex set.
The goal of the analysis of this chapter is to clarify where and how this function c and
the set G intervene in the optimality conditions. A remarkable outcome is that the
theory presented in section 1.4.4 for the equality and inequality constrained problem
pPEIq can be nicely extended to this much more general problem. The abstraction
brought by the considered model will allow us to better figure out the meaning of
the optimality conditions, by highlighting their geometrical structure, and has the
technical advantage of not forcing us to work with indices, which makes the proofs
easier and more elegant. Furthermore, this generalization is also a means to make a
few steps on the way towards the analysis of infinite dimensional problems, which are
perfectly well defined with this abstract setting.

2.1 First Order Optimality Conditions for pPGq

The first order optimality conditions of an optimization problem are frequently used.
Since they express optimality by a mathematical system made of equalities, inequal-
ities, inclusions, etc, which can be solved, they can be used to compute a solution
analytically, i.e., on a piece of paper, to design algorithms to compute them, to con-
ceive a stopping criterion for the latter, to have properties on the solutions of the
considered problems. For these reasons, their setting is a very important step in the
understanding of an optimization problem.

2.1.1 Definition of the General Problem

Let E and F be two Euclidean vector spaces. We consider the problem

pPGq
"

min fpxq
cpxq P G, (2.1)

where f : E Ñ R and c : E Ñ F are smooth functions, and G is nonempty closed
convex set in F (not necessarily a cone). The letter c is used to recall that the func-
tion intervenes into the constraint and the letter G is introduced to avoid the more

51
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appropriate but too frequent C and refers to the rather generality of this set. The
feasible set of the problem is denoted by

XG :“ tx P E : cpxq P Gu “ c´1pGq.

Definition 2.1 (convex pPGq) The optimization problem pPGq is said to be convex
if its objective f is convex and its feasible set XG is convex.

The following implication holds for the multifunction T : E ⊸ F : x ÞÑ cpxq ´G.

T is convex ùñ XG “ T´1p0q is convex. (2.2)

Proof. Note the equivalences

x P XG ðñ cpxq P G ðñ 0 P T pxq ðñ x P T´1p0q.

Therefore XG “ T´1p0q and, according to (1.45), XG is convex by the convexity
of T´1 (implied by the one of T ) and the convexity of the singleton t0u. l

Examples 2.2 A number of optimization problems can be written in the form pPGq.
Let us mention a few.

1q The nonlinear optimization problem pPEIq, presented in section 1.4.4, can be writ-
ten in the form pPGq, by taking F “ Rm and G “ t0RmE u ˆ R

mI

´ . Therefore,
problem pPGq generalizes problem pPEIq.
As a problem a little more general than pPGq, we have

pPErl,usq

$

&

%

infx fpxq
cEpxq “ 0

cIpxq P rl, us,

where, for some vectors l and u P R
mI

, rl, us :“ tv P R
mI : l ď v ď uu. This

problem reads like problem pPGq, with F “ Rm and G “ t0RmE u ˆ rl, us.
2q The linear semidefinite optimization problem reads

pPSDOq

$

&

%

infXPSn xC,Xy
ApXq “ b

X ě 0,

where C P Sn, A : Sn Ñ Rm is linear, b P Rm and X ě 0 requires that X P Sn
`.

This problem can be written in the form pPGq by taking E “ Sn, F “ Rm ˆ Sn,
c : X P Sn Ñ pApXq ´ b,Xq P Rm ˆ Sn and G “ t0Rmu ˆ Sn

`.

The semidefinite optimization problem is analyzed in chapter 6.

3q Let E and F be two Euclidean vector spaces. A composite optimization problem is
an optimization problem of the form

min
xPE

pg ˝ F qpxq, (2.3)
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where F : E Ñ F is a differentiable function, g : F Ñ R is a function that may be
nonsmooth and pg ˝ F q denotes the composition of g and F ; hence pg ˝ F qpxq “
gpF pxqq.
This problem can also be written [110] infpx,αqPEˆRtα P R : gpF pxqq ď αu or

"

infpx,αqPEˆR α

pF pxq, αq P epipgq, (2.4)

so that it is of the form pPGq in (2.1) with E ñ Ẽ :“ E ˆ R, F ñ F̃ :“ F ˆ R,
c : px, αq P Ẽ ÞÑ pF pxq, αq P F̃ and G “ epipgq Ď F̃. Note that the reformulation
(2.4) of (2.3) in terms of pPGq is valid without the need to have g smooth, since this
function appears in (2.4) only through its epigraph. The set G will be nonempty
closed convex set if g P ConvpFq.
Conversely, the problem pPGq can also be written as a composite optimization
problem [71, 110], since it reads

inf
xPE

fpxq ` IGpcpxqq,

where IG is the indicator function of the set G. This last optimization problem
is of the form (2.3), with a function F : x P E ÞÑ pfpxq, cpxqq P R ˆ F and
g : pz, yq P R ˆ F ÞÑ z ` IGpyq P R.

Therefore, problems pPGq and (2.3) are equivalent.

See the subsection Composite optimization in section 2.1.6 for a short analyzis of
the composite optimiztion problem. l

2.1.2 First Order Optimality Conditions

Necessary conditions of optimality of the first order (NC1) for problem pPGq can be
obtained by using the same approach as for problems with equality and inequality
constraints, which starts with the Peano-Kantorovich condition (1.51) and culminates
in the proof of theorem 1.40. There are some additional technical difficulties, however,
but these can be overcome. This approach requires the computation of the tangent
cone TxXG to the feasible set XG at x. The first step consists in establishing a link
between this tangent cone and the linearizing cone to XG at x, which is the cone
defined and denoted by

T1
xXG :“ td P E : c1pxqd P TcpxqGu.

Since it can also be written c1pxq´1rTcpxqGs, the linearizing cone is a nonempty closed
convex cone, when G is a nonempty closed convex set.

Proposition 2.3 (tangent and linearizing cones) If c is differentiable at
x P XG, then

TxXG Ď T1
xXG. (2.5)
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Proof. Let d P TxXG. One may assume that d ‰ 0, since 0 P T1
xXG, trivially.

Then, there exist a sequence txku Ď XG converging to x and a sequence ttku Ó 0

such that pxk ´ xq{tk Ñ d. Furthermore, c being differentiable at x, one can write
cpxkq “ cpxq ` c1pxqpxk ´ xq ` op}xk ´ x}q, so that

cpxkq ´ cpxq
tk

Ñ c1pxqd.

Since cpxq P G and cpxkq P G, we deduce from this limit that c1pxqd P TcpxqG. l

Equality does not necessarily hold in (2.5), since T1
xXG is a convex set (see the

remark before the proposition), while TxXG is not necessarily convex (we have not
required the affinity of the function c defining XG). This is annoying, since it is the
tangent cone TxXG that intervenes in the generic first order necessary condition of
Peano-Kantorovich (1.51), while one would like to take advantage of the analytic ex-
pression of the linearizing cone T1

xXG. Like for the problem pPEIq (see the subsection
Constraint Qualification in section 1.4.4), the notion of qualification of the function c
to represent XG is linked to the fact that equality holds in (2.5), but it is not limited
to that property. Recall indeed the technique of proof of proposition 1.40 yielding the
first order optimality conditions of Karush, Kuhn, and Tucker, a technique that will
be also used to prove proposition 2.6 below. The goal is to show that the gradient
∇fpx˚q belongs to a cone that we want to be explicit. Two ingredients intervene in
this approach:

the equality between the tangent and linearizing cones, which allows us to make
good use of the expression of the tangent cone given by the linearizing cone,
the polyhedrality of the linearizing cone, which allows us to discard the closure
operator acting on the set resulting from the use of the Farkas identity (1.15).

In the present case, T1
xXG is not necessary polyhedral, because we do not want to

impose this restrictive polyhedrality property to G. In order to select the nonconvex
feasible sets for which the proposed approach to establish the first order optimality
conditions can be used, we introduce a so-called constraint qualification assumption,
which precisely ensures the equality between the tangent and linearizing cones (it
is (2.6a) below, nothing new there with respect to the definition 1.38), but also the
closed character of the image by c1pxq˚ of the dual of the tangent cone TcpxqG (it is
(2.6b) below).

Definition 2.4 (qualification of c to represent XG) The constraint c is said to
be qualifed for representing XG at x P XG if c is differentiable at x and if the following
two conditions are satisfied:

TxXG “ T1
xXG, (2.6a)

c1pxq˚rpTcpxqGq`s is closed, (2.6b)

where c1pxq˚ : F Ñ E denotes the adjoint linear operator of c1pxq : E Ñ F. l

The verification of this constraint qualification (2.6) is a difficult task. In order to
simplify it, a sufficient condition of qualification is introduced and studied in sec-
tions 2.1.3 and 2.1.4.
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Constraint qualifications make possible, like for problem pPEq and pPEIq, the
obtention of first order optimality conditions, those of theorem 2.6 below. When G “
K is un cone, we shall use the complementarity notation

K` Q v K u P K

to mean, in a compact manner, that the vectors u and v of F verify the three properties
u P K, v P K` and xu, vy “ 0. We shall use the following equivalence.

Lemma 2.5 Let K be a closed convex cone in a Euclidean space E. Then

v ` NuK Q 0 ðñ K` Q v K u P K. (2.7)

Proof. Since NuK “ ∅ if u R K, the condition v ` NuK Q 0 is equivalenet to

u P K and
´

x´v, u1 ´ uy ď 0, @u1 P K
¯

.

Since K is a cone and u P K, one can take u1 “ 2u and u1 “ 1
2
u (or u1 “ 0, since 0

belongs to the closed cone K) in the last condition, which therefore implies that
xu, vy “ 0. As a result, the previous conditions are equivalent to

u P K, xu, vy “ 0, and
´

xv, u1y ě 0, @u1 P K
¯

.

It remains to observe that the last condition also reads v P K`. l

Theorem 2.6 (NC1 for problem pPGq) Let x˚ be a local solution to prob-
lem pPGq. Suppose that f and c are differentiable at x˚ and that c is qualified to
represent XG at x˚, in the sense of definition 2.4. Then, there exist λ˚ P F such
that

∇fpx˚q ` c1px˚q˚λ˚ “ 0, (2.8a)

λ˚ P Ncpx˚q G. (2.8b)

If G ” K is also a cone, (2.8b) becomes

K´ Q λ˚ K cpx˚q P K. (2.8c)

Proof. Structurally, the proof is similar to the one of theorem 1.40, in a more abstract
setting, however. We have sucessively

∇fpx˚q P pTx˚
XGq` [Peano-Kantorovich (1.51)]

“ pT1
x˚
XGq` [constraint qualification (2.6a) at x˚]

“ td P E : c1px˚qd P Tcpx˚q Gu` [formula (2.5) of T1
x˚
XG].
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We now apply the Farkas identity (1.15) with A˚ “ c1px˚q and K` “ Tcpx˚qG. Since
the latter is a closed convex cone, the following holds K “ K`` (see (1.16)). We get

∇fpx˚q P c1px˚q˚rpTcpx˚q Gq`s “ c1px˚q˚rpTcpx˚q Gq`s,

where we have used the constraint qualification (2.6b) at x “ x˚. We have shown the
existence of a λ˚ P ´pTcpx˚q Gq` “ Ncpx˚q G (it is (2.8b)) such that (2.8a) holds.

The complementarity condition (2.8c) results from (2.8b) and the equivalence
(2.7), which can be applied since G “ K is a convex cone. l

Definitions 2.7 (stationary point) A point x˚ satisfying (2.8a)-(2.8b) for some
λ˚ P F is said to be a stationary point of problem pPGq. Sometimes, one says that the
pair px˚, λ˚q satisfying (2.8a)-(2.8b) is stationary for problem pPGq. The vectors λ˚

in (2.8a)-(2.8b) are called the optimal multipliers associated with x˚. l

Remarks 2.8 1q If c : E Ñ E is the identity, (2.8a)-(2.8b) reads ∇fpx˚q P
´Nx˚

G “ pTx˚
Gq` and one recovers the first order necessary condition of op-

timality of Peano-Kantorovich (1.51). In other words, the conditions (2.8a)-(2.8b)
offer a way of taking into account non simple constraints, in which a function c

intervenes.

2q One recognizes in (2.8a) the gradient with respect to x of the Lagrangian of prob-
lem pPGq, which is the function ℓ : E ˆ F Ñ R defined at px, λq P E ˆ F by

ℓpx, λq “ fpxq ` xλ, cpxqy. (2.9)

This Lagrangian makes use of the functional part of the constraint cpxq P G. The
set G is taken into account by the second condition (2.8b).

3q The condition (2.8c) is called the complementarity condition of problem pPGq,
which therefore holds when G ” K is a nonempty closed convex cone.

4q Problem pPEIq can be written like problem pPGq with the polyhedral cone G ” K “
t0RmE u ˆ R

mI

´ . Then, the optimality conditions have the form (2.8a) and (2.8c).
Since K´ “ RmE ˆ R

mI

` , the complementarity condition (2.8c) only intervenes on
the inequality constraints and reads 0 ď pλ˚qI K cIpx˚q ď 0. One recovers the
complementarity conditions of the KKT system (1.58). l

A sibling of the sufficient optimality condition of the first order (SC1) of proposi-
tion 1.43 is given below. Like before, this SC1 does not require a constraint qualifica-
tion. Recall also that the required convexity of XG is ensured by the convexity of the
multifunction x ÞÑ cpxq ´G, see (2.2).

Proposition 2.9 (SC1 for a convex pPGq) Suppose that problem pPGq is con-
vex in the sense of the definition 2.1, that f and c are differentiable at x˚ P XG,
and that there exists a multiplier λ˚ P F such that px˚, λ˚q verifies the first order
optimality conditions (2.8a)-(2.8b). Then, x˚ is a global solution to pPGq.
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Proof. By proposition 1.28, since f is a convex function and XG is a convex set, it
suffices to show that

@x P XG : x∇fpx˚q, x´ x˚y ě 0.

By the first optimality condition (2.8a), this amounts to show that

@x P XG : xλ˚, c
1px˚qpx ´ x˚qy ď 0.

By the second optimality condition (2.8b), λ˚ P Ncpx˚q G “ pTcpx˚qGq´, so that it
suffices to show that

@x P XG : c1px˚qpx´ x˚q P Tcpx˚q G.

Now, by definition of the derivative

c1px˚qpx ´ x˚q “ lim
tÓ0

1

t

“

cpx˚ ` tpx´ x˚qq ´ cpx˚q
‰

.

For t P r0, 1s, cpx˚ ` tpx ´ x˚qq “ cpp1 ´ tqx˚ ` txq P G (since x˚ and x are in the
convex set XG), so that the right-hand side is in the closure of R`pG´ cpx˚qq, which
is Tcpx˚qG. l

2.1.3 Robinson’s Condition

It is not easy to verify that a given function c is qualified to representXG at x P XG, in
the sense of definition 2.4. Like for the classical problems pPEq and pPEIq, one knows
sufficient conditions ensuring that qualification. The most famous of them (there are
reasons for that) is the Robinson condition [119], which at x0 P XG reads

(CQ-R) 0 P int
`

cpx0q ` c1px0qE ´G
˘

. (2.10)

The goal of this section is to analyze and clarify this very rich condition. To arouse
the curiosity of the reader, let us mention that (2.10) reduces to the Mangasarian-
Fromovitz condition (CQ-MF) when the problem pPEIq is viewed as a particular
instance of problem pPGq; see exercise 2.1.4.

The condition (CQ-R) may look abstruse at first glance, but it is worth the effort
to get familiar with it, since it is useful on several accounts. Its clarification and its
application to the constraint qualification lie on the following important equivalence,
which makes a link between (CQ-R) and the notion of metric regularity of the mul-
tifunction x P E ÞÑ cpxq ´ G Ď F, associated with the constraint of pPGq. Recall the
definition and notation (1.1) of the distance from a point to a set.
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Theorem 2.10 (Robinson qualification and metric regularity) If c is
continuously differentiable in a neighborhood of x0 P XG, then the following prop-
erties are equivalent:

piq the Robinson condition (CQ-R) holds at x0,
piiq there exists a constant µ ě 0, such that @ px, yq P E ˆ F near px0, 0q, the

following inequality holds

distpx, c´1pG ` yqq ď µ distpcpxq, G ` yq. (2.11)

The meaning of the metric regularity property, given in the condition piiq of the pre-
ceding theorem, is illustrated in figure 2.1: G` y is a small perturbation (translation)

c´1pG ` yq

y
G ` yc : E Ñ F

x0

cpx0q

cpxq
distpcpxq, G ` yq

distpx, c´1pG ` yqq

G

x

c´1pGq

Fig. 2.1. Illustration of the notion of metric regularity for the set XG.

of the closed convex set G, c´1pG ` yq is then a small perturbation of the possibly
nonconvex feasible set c´1pGq, and the distance from x to the latter is estimated
by means of the distance from cpxq to the former. Practically, this estimate may be
interesting, since distpcpxq, G ` yq (a distance to a convex set) is usually more easily
computed than distpx, c´1pG ` yqq (a distance to a possibly weird set).

Before giving a proof of this important theorem, which is long and complex, we
start by giving two of its straightforward corollaries. This is a way of getting familiar
with its meaning.

The first corollary gives an error bound for XG. An error bound is an estimate of
the distance to a set by a quantity more easily computable (numerically or analyt-
ically). In general, XG is a set that is more “complex” than G, if only because G is
convex, which may not the case of XG “ c´1pGq, which can be tortuous through the
action of the arbitrary function c. The error bound of Robinson (2.12) below gives an
estimate of the distance distpx,XGq, which may be difficult to compute, by the much
simple distance distpcpxq, Gq.

Corollary 2.11 (Robinson’s error bound for XG) If c is continuously dif-
ferentiable in a neighborhood of x0 P XG and if Robinson’s constraint qualifica-
tion (CQ-R) holds at x0, then, there exists a constant µ ě 0, such that, for all x



2.1. First Order Optimality Conditions for pPGq 59

near x0, the following inequality holds

distpx,XGq ď µ distpcpxq, Gq. (2.12)

Proof. Just take y “ 0 in (2.11) and use the fact that XG “ c´1pGq. l

Robinson’s error bound (2.12) will play a major part in the proof of the fact that
(CQ-R) is a sufficient condition of constraint qualification (proposition 2.21).

The inequalities (2.11) of theorem 2.10 form a family of error bounds for the sets
c´1pG` yq, with y small enough, which are small perturbations of XG. Theorem 2.10
claims that this family of error bounds is an equivalent condition to (CQ-R), while its
corollary 2.11 tells us that the single error bound (2.12) is a consequence of (CQ-R).

The distance to an empty set is infinite (see the remark after (1.1)). Since the
distance in the right-hand side of (2.11) is finite (G is nonempty), the one in the
left-hand side is also finite. This means that c´1pG ` yq is nonempty for small per-
turbations y of G. It is this stability result for small perturbations that is claimed in
the second corollary. The comments in this paragraph serve as its proof.

Corollary 2.12 (stability of XG for small perturbations) If c is contin-
uously differentiable in a neighborhood of x0 P XG and if Robinson’s constraint
qualification (CQ-R) holds at x0, then, for any perturbation y P F close to 0, the
following holds

tx P E : cpxq P G ` yu ‰ ∅. (2.13)

Remark that (2.13) makes no reference to the point x0, which can therefore be an ar-
bitrary point in XG satisfying (CQ-R). Exercise 2.1.4 tells us that, for pPEIq, (CQ-R)
is equivalent to (CQ-MF), so that the following example shows that the reciprocal of
the claim of corollary 2.12 is false: stability does not imply (CQ-R). Consider indeed
the following set

tx P R
2 : ´x31 ď x2 ď x31u. 0

∇c1p0q

∇c2p0q

This one reads tx P R2 : cpxq P Gu with c : R2 Ñ R2 : px1, x2q ÞÑ p´x31 `x2,´x31 ´x2q
and G “ R2

´. It is nonempty, whatever the translation y of G is, while (CQ-MF) does
not hold at x “ 0 (because the gradients of the constraints ∇c1p0q and ∇c2p0q are
collinear and opposite).

The rest of this section is entirely dedicated to the proof of theorem 2.10, whose
generality suggests its strength, but also augurs the difficulty of its analysis. The
hurried reader or the reader not interested in the proof can go directly to the following
section 2.1.4. This one only uses from this section the corollary 2.11.
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The proof of theorem 2.10, which will be given on page 70, is the consequence of
two interpretations and two main results (theorem 2.15 and proposition 2.19). The
analysis uses the multifunction toolbox. The following two multifunctions will play a
major part:

T : E ⊸ F : x ÞÑ T pxq :“ cpxq ´G, (2.14a)

T0 : E ⊸ F : x ÞÑ T0pxq :“ cpx0q ` c1px0q ¨ px´ x0q ´G. (2.14b)

The multifunction T was already used in (2.2) to provide a sufficient condition ensur-
ing the convexity of the feasible set XG “ T´1p0q, while T0 is a kind of linearization
of T at x0, in which only c is linearized, not G. One can now give the scheme of the
proof of theorem 2.10.

1. First interpretation. Since the range of T0 is cpx0q ` c1px0qE ´ G, Robinson’s
condition (CQ-R) at x0 reads

0 P intRpT0q.

This justifies the introduction of T0.

2. First result. For a convex multifunction, like T0 (but not T !), this last condition
turns out to be equivalent to the metric regularity of T0 at px0, 0q P GpT0q (theo-
rem 2.15). This means that there exists a constant µ0 ě 0 such that, for all px, yq
near px0, 0q, the following inequality holds

distpx, T´1
0 pyqq ď µ0 distpy, T0pxqq.

This notion is clarified below, after its definition 2.14.

3. Second result. When x is close to x0, T is “close” to T0 near x0 (and reciprocally),
in a sense that will be made precise below. Then, one uses the fact that the metric
regularity of T0 is “diffused” to T (proposition 2.19): there exists a constant µ ě 0

such that, for px, yq near px0, 0q, the following inequality holds

distpx, T´1pyqq ď µ distpy, T pxqq.

4. Second interpretation. To get (2.11), it suffices now to observe that

T´1pyq “ c´1pG ` yq and distpy, T pxqq “ distpcpxq, G ` yq.

The first identity results from the equivalences x1 P T´1pyq ô y P T px1q “ cpx1q ´
G ô cpx1q P G ` y ô x1 P c´1pG ` yq; while the second identity comes from
distpy, T pxqq “ distpy, cpxq ´Gq “ distpcpxq, G ` yq.

This proof scheme will be resumed in the proof of theorem 2.10 at the end of the section
(on page 70). Let us now establish the results that will allow us to implement it.

We start by giving expressions that are equivalent to the fact that a point y0 is
interior to the range of a convex multifunction. As explained in the proof scheme afore-
mentioned (see its steps 1 and 2), this result will be applied to the multifunction T0
defined in (2.14b), not to T defined in (2.14a), which is generally nonconvex. We shall
need the two important multifunction properties described by the definitions 2.13
and 2.14 below.



2.1. First Order Optimality Conditions for pPGq 61

Definition 2.13 (open multifunction) A multifunction T : E ⊸ F is said to
be open at px0, y0q P GpT q with ratio ρ ą 0, if there exists a neighborhood W of
px0, y0q and a maximal radius rmax ą 0, such that, for all px, yq P W X GpT q and all
r P r0, rmaxs, the following holds

y ` ρ r B̄F Ď T px` r B̄Eq. (2.15)

The ratio ρ is the quotient between the radius of the ball y ` ρ r B̄F of F that can be
inscribed in the image T px` r B̄Eq and the radius r. l

By taking r “ 0 in the inclusion (2.15), it appears that px, yq must necessarily belong
to the graph of T , and this fact is indeed assumed in the definition.

The picture in the left-hand side of figure 2.2 illustrates the notion of open mul-

slope ě 1{µ

px0, y0q

r
x x

y
GpT q GpT qdistpy, T pxqq

slope ρ

y

y ` ρp2rqB̄F

y ` ρrB̄F T pxq

distpx, T´1pyqq

T pxq

T´1pyq

Fig. 2.2. Illustration of the notions of open multifunction of ratio ρ (left) and of metric reg-
ularity of modulus µ (right): both notions describe the variation of T pxq with x; the openness
property makes this description from inside the graph, the metric regularity property makes
it from outside; these are not infinitesimal concepts.

tifunction. One can see the balls centered at y in T px ` rB̄Eq and T px ` 2rB̄Eq, for
a certain radius r ą 0 (they are translated for giving more visibility). The increase
rate of the radius of these balls with r provides the ratio ρ. This ratio is not an in-
finitesimale notion. Thus, it does not provide the infinitesimal variation of the size of
T px ` rB̄Eq with r, at r “ 0, but provides an approximation of this variation from
inside the graph of T (the pairs px, yq belong to this graph).

Whilst the openness of T describes the variation of T pxq with x, from inside the
graph GpT q, the metric regularity defined below provides a similar description, but
from outside that graph.

Definition 2.14 (metric regular multifunction) A multifunction T : E ⊸ F is
said to be metric regular at px0, y0q P GpT q of modulus µ ą 0, if for all px, yq near
px0, y0q, the following inequality holds

distpx, T´1pyqq ď µ distpy, T pxqq. (2.16)

This inequality assumes that distp¨,∅q “ `8. l

The picture in the right-hand side of figure 2.2 illustrates the notion of metric reg-
ularity and its link with the notion of open multifunction. Note first that, to have
an estimate (2.16) bringing information, it is necessary to have px, yq outside the
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graph GpT q (otherwise y P T pxq, y P T´1pyq, and the two distances in (2.16) vanish),
hence not to have px0, y0q in the interior of that graph, but on its boundary, like in the
picture. We see that the modulus distpy, T pxqq{ distpx, T´1pyqq » 1{µ has a meaning
that is similar to the ratio ρ in the left-hand side picture.

Note that (2.15) and (2.16) contain existence results. Indeed, when (2.15) holds
and y1 P y ` ρrB̄F, then, there exists an x1 P x` rB̄E such that y1 P T px1q: hence, the
inclusion problem “given y1, find an x1 such that y1 P T px1q” has a solution. Similarly,
when (2.16) holds, distpx, T´1pyqq is finite (because distpy, T pxqq is always finite),
which means that T´1pyq ‰ ∅ or that there exists an x1 such that y P T px1q. In the
proof of the theorem below, we use these openness and metric regularity properties
in that manner.

Theorem 2.15 (open multifunction) Let B̄E and B̄F be the closed unit balls
of E and F respectively, T : E ⊸ F be a convex multifunction, and px0, y0q P
GpT q. Then, the following properties are equivalent:

piq y0 P intRpT q,
piiq for any r ą 0, one has y0 P intT px0 ` rB̄Eq,

piiiq T is open at px0, y0q with some ratio ρ ą 0,
pivq T is metric regular at px0, y0q with some modulus µ ą 0.

One can take µ “ 1{ρ in point pivq if ρ is given by point piiiq.

Before proving this theorem, let us make some remarks on its assumptions and its
meaning.

The open multifunction theorem above generalizes to convex multifunctions, which
is a nonlinear object, the open mapping theorem on linear continuous maps, which
is a basic tool in functional analysis [24]. This latter result is proposed in the
exercise 2.1.2 as an equivalence between three claims piq-piiiq (its proof in finite
dimension is easy). Its claim piq is comparable to point piq above; its point piiq is
similar to point piiq and piiiq above and it point piiiq is related to point pivq above.

The convexity of T cannot be discarded without loosing the implications piq ñ
piiq and piq ñ piiiq. Indeed, for the nonconvex multifunction T , whose graph is
given in the figure below, y0 P intRpT q, but y0 R intT px0 ` rB̄Eq for small r ą 0;

RpT q
y0

x0

T px0 ` rB̄Eq

x0 ` rB̄E

GpT q

furthermore, T is not open at px0, y0q, since T px0 ` rB̄Eq does not contain any ball
in F centered at y0.

By its equivalence piq ô pivq, the theorem allows us to translate (CQ-R) in a
metric regularity property, which is what we wanted to do, but the equivalence is
limited to convex multifunctions for the while.
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The equivalence between points piiiq and pivq makes explicit the link between open
multifunction and metric regularity, in a rigorous manner. Thus, a large value of ρ
testifies a fast variation of T pxq with x, while a large value of µ expresses a slow
variation of T pxq with x.

Proof of proposition 2.15. [piq ñ piiq] Let r ą 0. By the convexity de T and (1.45),
T px0 ` rB̄Eq is convex. Then, it suffices to show that y0 is absorbing for T px0 ` rB̄Eq;
see (1.14). Let p P F. Since y0 P intRpT q, one can find an α ą 0 such that y0 ` αp P
RpT q. This implies that there exists dα P E such that

y0 ` αp P T px0 ` dαq.

This dα is not necessarily in rB̄E. By the convexity of T , one can scale αp and dα in
the same proportion. Indeed, because y0 P T px0q, we also have for all t P r0, 1s (see
exercise ??):

p1 ´ tqy0 ` tpy0 ` αpq P T pp1 ´ tqx0 ` tpx0 ` dαqq.
Hence, y0 ` tαp P T px0 ` tdαq Ď T px0 ` rB̄Eq, for t ą 0 small enough.

[piiq ñ piiiq] By piiq, there exist radiuses α ą 0 and β ą 0 such that

y0 ` β B̄F Ď T px0 ` α B̄Eq. (2.17)

The question now is to know whether such an inclusion is maintained for pairs
px, yq P GpT q near px0, y0q and for variable radiuses. Let us show that one can take

$

&

%

W “ px0 ` αB̄Eq ˆ py0 ` β
2
B̄Fq

ρ “ β
4α

rmax “ 2α.

GpT q

x0 ` αB̄E

y0 ` βB̄F

slope ρ “ β
4α

y0

x0

W

px, yq

Indeed, let px, yq P W X GpT q. Observe that, by the definition of W and (2.17):

y ` β
2
B̄F Ď y0 ` βB̄F Ď T px0 ` αB̄Eq. (2.18)

Then, for any t P r0, 1s, there holds

y ` t β
2
B̄F “ p1 ´ tqy ` tpy ` β

2
B̄Fq

Ď T pp1 ´ tqx` tpx0 ` α B̄Eqq rT convex, y P T pxq, (2.18)s
“ T px` tppx0 ´ xq ` α B̄Eqq
Ď T px` 2tα B̄Eq rx0 P x` α B̄Es.

Making the change of variable t ñ r “ 2tα, which is indeed in r0, rmaxs, we get the
desired inclusion since then tβ{2 “ rβ{p4αq “ ρr.

[piiiq ñ pivq] One can assume that the neighbothood W of px0, y0q and the maxi-
mal radius rmax of the definition 2.13 satisfy

W :“ px0, y0q ` εpB̄E ˆ B̄Fq and rmax ď ε

2ρ
, (2.19)
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for some ε ą 0. Let us show that the metric regularity holds at px0, y0q with the
module µ “ 1{ρ in the neighborhood W 1 of px0, y0q defined as follows

W 1 “ px0, y0q ` ε1pB̄E ˆ B̄Fq, with ε1 ď min

ˆ

ε,
ρ rmax

1 ` ρ

˙

. (2.20)

Clearly W 1 Ď W , since ε1 ď ε. Let px, yq P W 1. It suffices to show that the inequality
(2.16) hods with µ “ 1{ρ for this pair px, yq. We consider two complementary cases,
illustrated in figure 2.3.

distpy, T pxqq

y0

y

x

distpx, T´1pyqq

T´1pyq

x1

GpT q

W 1

x0

T pxq

distpy, T pxqq

y0

yδ

y

x

distpx, T´1pyqq

T´1pyq

x2 x1

GpT q

W 1

x0

T pxq

Fig. 2.3. Illustration of the proof of the implication piiiq ñ pivq of theorem 2.15: (2.15) is
applied at px0, y0q in the left-hand side picture (case 1) and at px, yδq in the right-hand side
picture (case 2).

First case, which works when y is far enough from T pxq in the sense that

distpy, T pxqq ě p1 ` ρqε1. (2.21)

One can apply (2.15) at px0, y0q P GpT q XW (red circle in the left-hand-side picture
in figure 2.3), which yields

@ r P r0, rmaxs : y0 ` ρ r B̄F Ď T px0 ` r B̄Eq. (2.22)

Note that y P y0 ` ρ r B̄F, since }y ´ y0} ď ε1 ď ρ rmax (px, yq P W 1 and ε1 ď ρ rmax

by (2.20)). One can also write

y “ y0 ` ρ
}y ´ y0}

ρ
looomooon

“:r

" y´y0

}y´y0} if y ‰ y0

0 otherwise,
looooooooooooomooooooooooooon

PB̄F

which shows that y P y0 ` ρ r B̄F with r :“ }y ´ y0}{ρ ď ε1{ρ ď rmax. Therefore, by
(2.22), there exists a point x1 P x0 ` rB̄E such that y “ T px1q. We can now estimate
the distance distpx, T´1pyqq as follows

distpx, T´1pyqq ď }x´ x1} rx1 P T´1pyqs
ď }x´ x0} ` }x0 ´ x1} rtriangular inequalitys
ď }x´ x0} ` 1

ρ
}y ´ y0} r}x1 ´ x0} ď r “ }y ´ y0}{ρs

ď ε1 ` 1
ρ
ε1 rchoice of x and ys.

ď 1
ρ
distpy, T pxqq r(2.21)s,



2.1. First Order Optimality Conditions for pPGq 65

which is the desired inequality when µ “ 1{ρ.
Second case, which works when y is close enough to T pxq in the sense that

distpy, T pxqq ă p1 ` ρqε1. (2.23)

Then, for any δ ą 0 sufficiently small, one can find yδ P T pxq such that

}y ´ yδ} ď distpy, T pxqq ` δ rdefinition of the distances (2.24)

ď p1 ` ρqε1 r(2.23) and δ ą 0 smalls
ď ρ rmax r(2.20)s (2.25)

ď ε
2

r(2.19)s. (2.26)

One can apply (2.15) at px, yδq (red circle in the right-hand-side picture in fig-
ure 2.3), since px, yδq P WXGpT q. Indeed, px, yδq P GpT q by construction of yδ P T pxq.
Next, }x´ x0} ď ε1 ď ε, by px, yq P W 1 and (2.20). Finally,

}yδ ´ y0} ď }yδ ´ y} ` }y ´ y0} ď 1

2
ε` 1

2
ε “ ε,

where the last inequality comes from (2.26) and from }y ´ y0} ď ε1 ď ρ rmax ď ε{2
(because px, yq P W 1 and by (2.20) and (2.19).

The application of (2.15) at px, yδq (red circle in the right-hand-side picture in
figure 2.3) yields

@ r P r0, rmaxs : yδ ` ρ r B̄F Ď T px` r B̄Eq. (2.27)

Like in the first case, one can also write

y “ yδ ` ρ
}y ´ yδ}

ρ
looomooon

“:r

" y´yδ

}y´yδ} if y ‰ yδ

0 otherwise,
looooooooooooomooooooooooooon

PB̄F

which shows that y P yδ ` ρ r B̄F with r :“ }y´ yδ}{ρ ď rmax by (2.25). Therefore, by
(2.27), there exists a point x2 P x ` rB̄E such that y “ T px2q. This point x2 allows
us to have the following estimation of the distance distpx, T´1pyqq:

distpx, T´1pyqq ď }x´ x2} rx2 P T´1pyqs
ď 1

ρ
}y ´ yδ} rx2 P x` rB̄E with r “ }y ´ yδ}{ρs

ď 1
ρ

pdistpy, T pxqq ` δq r(2.24)s.

Since δ ą 0 can be taken arbitrarily small, one deduces the desired inequality when
µ “ 1{ρ.

[pivq ñ piq] Let us show the contrapositive. If y0 R intRpT q, one can find a
y R RpT q as close as desired to y0. For such a y, T´1pyq is empty, implying that
distpx0, T´1pyqq “ `8, so that the inequality (2.16) cannot hold for y close to y0,
since this one would imply that T px0q “ ∅, which is in contradiction with the fact
that px0, y0q P GpT q. l
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The goal of property 2.19 below is to show that the metric regularity property can
“diffuse” from one multifunction to another one close to it, at least for particular forms
of multifunctioins and perturbations, those in which we are interested in, namely T
and T0 in (2.14). We mean by this that, under certain conditions expressing the
proximity of T and T0, if T0 is metric regular, T is also metric regular. It is that
property that allows us to have the metric regularity of T from that of T0, and
reciprocally. The result does not require the convexity of the multufunctions under
consideration.

The idea of the proposed proof (there are other possibilities) derives from the
following change in perspective [35]. The metric regularity gives an upper bound of
distpx, T´1pyqq. Observe that

x P T´1pyq ðñ y P T pxq ðñ distpy, T pxqq “ 0,

where the last equivalence assumes that T pxq is closed (this assumption is verified if
the multifunction T is given by (2.14a) and G is closed). Let us introduce the function
ϕy : E Ñ R` defined at x P E by

ϕypxq :“ µ distpy, T pxqq, (2.28)

with µ ą 0. We see now that

T´1pyq is the set of the zeros of ϕy . (2.29)

The metric regularity property can then be expressed as follows:

@ px, yq near px0, y0q : ϕy has a zero in B̄px, ϕypxqq, (2.30)

where B̄px, rq is the closed ball centered at x with radius r.
This viewpoint suggests us to look at conditions ensuring that a function with

values in R` has a zero that is not too far from a given point x. We do this by using
two function properties and one lemma.

Definition 2.16 (subcontinuous function) A function ϕ : E Ñ R` is subcontin-
uous if, for all sequence txku Ñ x such that ϕpxkq Ñ 0, one has ϕpxq “ 0. l

A continuous function is clearly subcontinuous.

Definition 2.17 (r-steep function) A function ϕ : E Ñ R` is r-steep at x, with
r P r0, 1q, if

@x1 P B̄
ˆ

x,
ϕpxq
1 ´ r

˙

, D x2 P B̄
`

x1, ϕpx1q
˘

: ϕpx2q ď r ϕpx1q.
l

One can express this property as follows: for each point x1 in the ball B̄px, ϕpxq{
p1 ´ rqq, one can find another point x2, not too far from x1 (x2 P B̄px1, ϕpx1qq), at
which ϕ decreases significantly (ϕpx2q ď r ϕpx1q). Note that, assuming ϕpx1q ‰ 0,

ϕpx1q ´ ϕpx2q
}x1 ´ x2} ě ϕpx1q ´ rϕpx1q

ϕpx1q “ 1 ´ r,
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which provides a guarantee on the decrease of ϕ.
As shown by the next lemma, a function having the two preceeding properties has

a zero that is not too far from the point at which it is r-steep.

Lemma 2.18 (Lyusternik) If ϕ : E Ñ R` is subcontinuous and r-steep at
x P domϕ, with r P r0, 1q, then, ϕ has a zero in B̄px, ϕpxq{p1 ´ rqq.

Proof. Let us construct a sequence txkukě0 Ď E with the following properties:

distpxk`1, xkq ď ϕpxkq and 0 ď ϕpxk`1q ď rϕpxkq. (2.31)

Take x0 “ x. Now, suppose that x0, . . . , xk have been determined and let us show
how to compute xk`1. Thanks to the properties (2.31), one has

distpxk, xq ď
k´1
ÿ

i“0

distpxi`1, xiq ď
k´1
ÿ

i“0

ϕpxiq ď
˜

k´1
ÿ

i“0

ri

¸

ϕpxq ď ϕpxq
1 ´ r

. (2.32)

Since ϕ is r-steep at x, one can find xk`1 P E such that (2.31) holds.
The sequence txku is a Cauchy sequence, since distpxk`1, xkq ď rkϕpxq, by (2.31).

Therefore, for positive integers p ă q, there holds

distpxq , xpq ď
˜

q
ÿ

k“p

rk

¸

ϕpxq,

where the factor of ϕpxq in the right-hand side tends to zero when p and q Ñ 8.
As a result, the sequence txku converges: xk Ñ x P B̄px, ϕpxq{p1 ´ rqq by (2.32).
Furthermore, taking the limit in ϕpxk`1q ď rϕpxkq shows that ϕpxkq Ñ 0. The
subcontinuity of ϕ now implies that ϕpxq “ 0. l

If c is continuous and if the multifunction T is metric regular, then, the function ϕy

defined by (2.28) is subcontinuous and 0-steep:

it is even continuous since x ÞÑ distpy, T pxqq “ distpy, cpxq ´Gq “ distpcpxq ´y,Gq
is the composition of the continuous functions x ÞÑ cpxq ´ y and distp¨, Gq,
it is 0-steep by the expression (2.30) of the metric regularity.

It looks now reasonable to think that these two properties are maintained for a small
perturbation of T . It is the underlying idea of the proof of the next proposition.

Proposition 2.19 (metric regularity diffusion) let c : E Ñ F be a continu-
ous function, δ : E Ñ F be a Lipschitz continuous function of modulus L ą 0 in
a neighborhood of a point x0 P E, and G be a nonempty convex set of F. If the
multifunction

T : E ⊸ F : x ÞÑ cpxq ´G
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is metric regular at px0, y0q P GpT q with modulus µ ă 1{L, then the multifunction

T̃ : E ⊸ F : x ÞÑ cpxq ` δpxq ´G

is metric regular at px0, y0 ` δpx0qq P GpT̃ q with modulus µ{p1 ´Lµq, i.e., for all
px, yq near px0, y0 ` δpx0qq, the following inequality holds

distpx, T̃´1pyqq ď µ

1 ´ Lµ
distpy, T̃ pxqq. (2.33)

Proof. One can suppose that δpx0q “ 0 since the metric regularity is invariant with
respect to translation of the graph GpT q in E ˆ F. The effects of the continuity are
better seen if the function c in T is made visible. One gets, for all px, yq P E ˆ F:

T´1pyq “ c´1pG ` yq, T̃´1pyq “ c̃´1pG ` yq, (2.34a)

distpy, T pxqq “ distpcpxq, G ` yq, distpy, T̃ pxqq “ distpc̃pxq, G ` yq. (2.34b)

The identity (2.34a) comes from the equivalences x P T´1pyq ô y P T pxq ô y P
cpxq ´G ô cpxq P G` y ô x P c´1pG` yq. The identity (2.34b) can be obtained by
distpy, T pxqq “ distpy, cpxq ´Gq “ distpcpxq, G ` yq.

1) Consider the map

ϕ̃y : x P E ÞÑ ϕ̃ypxq :“ µ distpy, T̃ pxqq, (2.35)

which can be compared to the one introduces in (2.28). Let us show the it suffices to
prove the next claim, in which r :“ Lµ ă 1:

DU P N px0q, DV P N py0q, @ px, yq P U ˆ V ,
ϕ̃y is subcontinuous on E and r-steep at x.

(2.36)

Indeed, by Lyusternik’s lemma (lemma 2.18), ϕ̃y has then a zero in the ball B̄px, ϕ̃ypxq{p1´
rqq. Yet, the zet of zeros of ϕ̃y is T̃´1pyq (by the smae reasoning as the one yielding
(2.29); it is here that we use the closure of G). As a result, for all px, yq P U ˆ V , one
gets (2.33):

distpx, T̃´1pyqq ď ϕ̃ypxq
1 ´ r

“ µ

1 ´ Lµ
distpy, T̃ pxqq.

2) It remains to prove (2.36).
By the continuity of c and the continuity of the distance to a convex set, one sees

that ϕ̃y is continuous on E, hence subcontinuous on E.
Let us now determine the neighborhoods U of x0 and V of y0 such that, for all

px, yq P U ˆ V , ϕ̃y is r-steep at x.

By the µ-metric regularity of T at px0, y0q and by (2.34), one can find the neigh-
borhoods U1 of x0 and V1 of y0 such that, for all px, yq P U1 ˆ V1, there holds

distpx, c´1pG ` yqq ď µ distpcpxq, G ` yq. (2.37a)
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One can also find the neighborhoods U2 Ď U1 of x0 and V2 Ď V1 of y0 such that,
for all px, yq P U2 ˆ V2, there holds

B̄
´

x, µ distpc̃pxq, G ` yq
¯

Ď U1 and y ´ δpxq P V1. (2.37b)

The inclusion in U1 comes from the continuity of px, yq ÞÑ distpc̃pxq, G` yq and its
vanishment at px0, y0q P GpT q; the belonging in V1 comes from the continuity of
the map px, yq ÞÑ y ´ δpxq and its value y0 at px0, y0q.
Finalement, one takes neighborhoods U Ď U2 of x0 and V Ď V2 of y0 such that,
for all px, yq P U ˆ V , there holds

B̄

ˆ

x,
µ

1 ´ r
distpc̃pxq, G ` yq

˙

Ď U2. (2.37c)

This is again possible by continuity and vanishment of distpc̃pxq, G` yq at px, yq “
px0, y0q (like above).

Let us show that, for all px, yq P U ˆ V , ϕ̃y is r-steep at x. Let us fix px, yq P
U ˆ V . Let x1 P B̄px, ϕ̃ypxq{p1 ´ rqq. One must now find x2 P B̄px1, ϕ̃ypx1qq such that
ϕ̃ypx2q ď rϕ̃ypx1q.

Since x1 P B̄px, ϕ̃ypxq{p1 ´ rqq, the definition (2.35) of ϕ̃y and (2.37c) show that
x1 P U2.
Since y P V Ď V2, one can apply (2.37b) at px, yq ñ px1, yq, which yields

B̄
´

x1, µ distpc̃px1q, G ` yq
¯

Ď U1 and y1 :“ y ´ δpx1q P V1. (2.38)

One can therefore use (2.37a) at px, yq ñ px1, y1q, which yields

distpx1, c´1py1 `Gqq ď µ distpcpx1q, y1 `Gq.

Since c´1py1 `Gq is closed, this implies that there exists

x2 P c´1py1 `Gq (2.39)

such that

distpx1, x2q ď µ distpcpx1q, y1 `Gq
“ µ distpcpx1q, y ´ δpx1q `Gq ry1 “ y ´ δpx1q by (2.38)s
“ µ distpc̃px1q, G ` yq rc̃ “ c ` δs
“ µ distpy, T̃ px1qq r(2.34b)s
“ ϕ̃ypx1q r(2.35)s. (2.40)

Therefore, we have found a point x2 at an appropriate distance from x1. We still
have to show that this point provides an appropriate decrease of ϕ̃y.
Let us use (2.39), which reads

cpx2q P y1 `G or cpx2q ` δpx1q P G ` y. (2.41)

Then,
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distpy, T̃ px2qq “ distpc̃px2q, G ` yq r(2.34b)s
ď distpcpx2q ` δpx2q, cpx2q ` δpx1qq r(2.41)s
“ distpδpx2q, δpx1qq
ď L distpx2, x1q
ď Lϕ̃ypx1q r(2.40)s.

If the two extreme sides are multplied by µ, we get thanks to (2.35):

ϕ̃ypx2q ď Lµϕ̃ypx1q “ rϕ̃ypx1q.
This is the expected inequality. l

Proof of proposition 2.10. Let T0 be the multifunction defined by (2.14b). Then, we
have seen that

(CQ-R) at x0 ðñ 0 P intRpT0q.
The multifunction T is convex, since x ÞÑ cpx0q ` c1px0q ¨ px ´ x0q is affine and G is
a convex set, and px0, 0q P GpT0q, since x0 P XG. Then, one can apply theorem 2.15,
whose equivalence piq ô pivq yields

(CQ-R) at x0 ðñ T0 is µ0-metric regular at px0, 0q.
We now apply proposition 2.19, with T ñ T0, T̃ ñ T (the multifunction defined

in (2.14a)) and δ : E Ñ F is defined at x P E by

δpxq “ cpxq ´ cpx0q ´ c1px0q ¨ px ´ x0q.
Since c is C1 in a neighborhood of x0, δ is Lipschitz continuous in a neighborhood
of x0:

}δpx2q ´ δpx1q} “ }cpx2q ´ cpx1q ´ c1px0q ¨ px2 ´ x1q}

ď
˜

sup
zPrx1,x2s

}c1pzq ´ c1px0q}
¸

}x2 ´ x1}

ď L }x2 ´ x1},
where L ą 0 can be taken as small as desired, provided x1 and x2 are sufficiently
close to x0 (c1 is continuous), in particular ă 1{µ0. Then, proposition 2.19 shows that
the metric regularity of T0 at px0, 0q implies that of T at the same point. One can
reverse the roles of T0 and T , since the convexity of one of the multifunctions does
not intervene in proposition 2.19 and L can be taken arbitrarily small by reducing
the neighborhood of x0. As a result, the metric regularity of T at px0, 0q implies that
of T0 at the same point. We have shown that

(CQ-R) at x0 ðñ T is µ-metric regular at px0, 0q.
It remains to give an interpretation to the right-hand side of the previous équiva-

lence. This one actually means that, for all px, yq near px0, 0q, the following holds

distpx, T´1pyqq ď µ distpy, T pxqq.
Since distpx, T´1pyqq “ distpx, c´1pG ` yqq and distpy, T pxqq “ distpcpxq, G ` yq, the
equivalence of proposition 2.10 is proven. l
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2.1.4 Robinson’s Constraint Qualification

Let us recall the Robinson condition (2.42) and write it at a point x P E:

(CQ-R) 0 P int
`

cpxq ` c1pxqE ´G
˘

. (2.42)

The main goal of this section is to show that this condition is sufficient for ensuring
that the constraint qualification conditions (2.6) hold at a given point of XG. To
achieve this goal, is is useful to have at hand the few equivalent formulations of
(CQ-R), given in the next proposition. Recall some definitions: for a closed convex
set C and a point x P C, the cone of feasible directions to C at x reads Tf

xC :“
R`pC ´ xq, while the tangent cone TxC to C at x is the closure of Tf

xC.

Proposition 2.20 (other formulations of (CQ-R)) If c is differentiable at
x P XG, the following properties are equivalent:

0 P int
`

cpxq ` c1pxqE ´G
˘

, (2.43a)

c1pxqE ´ T
f

cpxqG “ F, (2.43b)

c1pxqE ´ TcpxqG “ F, (2.43c)

c1pxqE ´ TcpxqG “ F. (2.43d)

Proof. [(2.43a) ñ (2.43b)] It suffices to prove the inclusion “Ě”. Let y P F. Then, by
(2.43a), y{t P c1pxqE ´ pG ´ cpxqq for a sufficiently large t ą 0. Hence y P c1pxqrtEs ´
rtpG ´ cpxqqs Ď c1pxqE ´ T

f

cpxqG.

[(2.43b) ñ (2.43c) ñ (2.43d)] These implications are clearly satisfied, since the
sets in the left-hand sides are larger and larger.

[(2.43c) ñ (2.43b)] We start by exploiting the link between T
f

cpxqG and TcpxqG:

c1pxqE ´ TcpxqG “ c1pxqE ´ T
f

cpxqG rdefinition of TcpxqGs

Ď c1pxqE ´ T
f

cpxqG rA`B Ď A`Bs

Ď c1pxqE ´ TcpxqG rTf

cpxqG Ď TcpxqGs
“ F r(2.43d)s.

Taking the closure of all these sets shows that

c1pxqE ´ T
f

cpxqG “ F.

Sonce c1pxqE ´ T
f

cpxqG is convex, this identity certainly implies (2.43b) (see also ex-

ercise 1.2.4).
[(2.43b) ñ (2.43a)] From (1.14), it suffices to prove that 0 is absorbing for the

convex set C :“ cpxq ` c1pxqE ´ G de F. Let y P F. Condition (2.43b) implies that
there exists d P E, y1 P G, and α ą 0 such that y “ c1pxqd´αpy1 ´cpxqq. For t :“ 1{α,
we get ty “ cpxq ` c1pxqptdq ´ y1 P C; hence 0 is absorbing for C. l
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Note that, in (2.43b)-(2.43d), one can change the minus sign by a plus, since c1pxqE
and F are vector spaces. Conditions (2.43b) and (2.43c) convey the fact that F can
be written as the sum of a subspace, say F0, and a cone, say K. According to exer-
cise 1.2.7, this is equivalent to saying that

F0 ` vectK “ F and F0 X priKq ‰ ∅.

Proposition 2.21 (constraint qualification by (CQ-R)) If c is continu-
ously differentiable in the neighborhood of a point x P XG and if the Robinson
condition (CQ-R) holds at this point, then, the constraint c is qualified to repre-
sent XG at x, in the sense of definition 2.4.

Proof. We must show that (CQ-R) implies the two properties (2.6a) and (2.6b).
[(2.6a)] For this step of the proof, it suffices to use Robinson’s error bound (2.12).

According to proposition 2.3, it suffices to show the inclusion T1
xXG Ď TxXG. Let

d P T1
xXG. To show that d P TxXG, it suffices to build a sequence txku Ď XG (a

priori a difficult task) and a sequence ttku Ó 0 such that pxk ´xq{tk Ñ d. The followed
approach is illustrated by figure 2.4: thanks to the Robinson error bound (2.12), one

cpxq

c1pxq ¨ d P Tcpxq G

x

x1
k

cpx1
kq

cpxkq

ykxk

c : E Ñ F

G

d P T
1
x XG

XG :“ c´1pGq

Fig. 2.4. Illustration of the proof of (2.6a) to establish proposition 2.21

can create a sequence txku Ď XG :“ c´1pGq with the desired properties; these are due
to the good feature of the sequence tcpx ` tkdqu in F, which is to be asymptotically
very close to the sequence tyku. Here are the details.

Since d is in the linearizing cone T1
xXG, it satisfies c1pxq¨d P TcpxqG, which implies

that there exist sequences tyku Ď G and ttku Ó 0 (it is the good one!), such that

yk ´ cpxq
tk

Ñ c1pxq ¨ d or cpxq ` c1pxq ¨ ptkdq ´ yk “ optkq. (2.44)

Consider the sequence tx1
ku Ď E defined by

x1
k :“ x` tkd.

This sequence is not necessary in XG; hence the sequence tcpx1
kqu is not necessary

in G, but it is not far from tyku (which is in G) asymptotically. Indeed, by the
differentiability of c, one has

cpx1
kq “ cpxq ` c1pxq ¨ ptkdq ` optkq
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and therefore, using (2.44),
cpx1

kq “ yk ` optkq. (2.45)

We now build the appropriate sequence txku Ď XG thanks to Robinson’s error bound
(2.12) at x0 ñ x. This one can be applied at x1

k since this point is close to x for
sufficiently large k (and c is C1 in a neighborhood of x). It tells us that there exists a
constant µ ě 0 such that, for sufficiently large k, one has

distpx1
k, XGq ď µ distpcpx1

kq, Gq r(2.12)s
ď µ distpcpx1

kq, ykq ryk P Gs
“ optkq r(2.45)s.

This implies that there exists a sequence txku Ď XG such that xk “ x1
k ` optkq. We

have build the desired sequence txku since

xk ´ x

tk
“ xk ´ x1

k

tk
` x1

k ´ x

tk
“ optkq

tk
` d Ñ d.

[(2.6b)] This step of the proof uses the expression (2.43c) of (CQ-R). We consider
a convergent sequence in the cone K :“ c1pxq˚rpTcpxq Gq`s, whose closure has to be
shown:

c1pxq˚λk Ñ y, (2.46)

where tλku Ď pTcpxqGq`. The goal now is to show that y is in K. In finite dimension,
it suffices to show that the sequence tλku is bounded (then, one extracts from it a
convergent subsequence, whose limit is in the closed cone pTcpxqGq`, and one takes
the limit in (2.46), which shows that y P K). One proceeds by contradiction. If tλku
is unbounded, one can extract a subsequence from tλk{}λk}u Ď pTcpxq Gq`, which
converges to a nonzero vector (it has unit norm), say µ. We see on (2.46) that µ
verifies

c1pxq˚µ “ 0 and µ P pTcpxqGq`. (2.47)

Since µ P F, (2.43c) tells us that it can be written µ “ c1pxqd ´ p for some d P E and
p P TcpxqG. Therefore,

}µ}2 “ xµ, c1pxqd ´ py “ ´xµ, py ď 0,

where we have used (2.47) and p P TcpxqG. This implies that µ “ 0, which is in
contradiction with the fact observed above, indicating that µ ‰ 0. l

2.1.5 Set of optimal multipliers

In the light of the optimality conditions (2.8a)-(2.8b), the set of optimal multipliers
associated with a stationary point x of problem pPGq reads

Λ “ tλ P NcpxqG : ∇fpxq ` c1pxq˚λ “ 0u, (2.48)

where we have alleviated notation by dropping the star indices. As an intersection of
a closed convex cone and an affine subspace, this is a closed convex set. This section
gives more properties of this set.
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The next proposition cares about the boundedness of Λ (hence of its compact-
ness) and, in this sense, extends point 1 of proposition 1.42 from problem pPEIq to
problem pPGq. It does it by computing first its asymptotic cone Λ8 and then uses
proposition 1.13 to characterize the boundedness of Λ.

Proposition 2.22 (boundedness of the set of multipliers, Gauvin’s
property) Suppose that f and c are differentiable at a stationary point x of
problem pPGq and that the set Λ of associated multipliers is nonempty. Then, the
asymptotic cone of Λ reads

Λ8 “ pNcpxqGq X N pc1pxq˚q “
“

c1pxqE ´ TcpxqG
‰`
. (2.49)

It results that, Λ is bounded if and only if the Robinson condition (CQ-R) holds
at x0 “ x.

Proof. According to exercise 1.2.13, the asymptotic cone of Λ is given by the first
identity in (2.49). Now, using point 4 of proposition 1.7, NcpxqG “ p´TcpxqGq`, and

N pc1pxq˚q “ Rpc1pxqqK “ pc1pxqEq`, we get the second identity in (2.49).
Next, according to proposition 1.13, Λ is bounded if and only if its asymptotic

cone is reduced to t0u. Hence, we only have to prove

“

c1pxqE ´ TcpxqG
‰` “ t0u ðñ (CQ-R). (2.50)

The implication “ð” is clear, if we consider the form (2.43c) of (CQ-R). For the
reverse implication “ñ”, take the dual of the two sides of the identity in the left-hand
side of (2.50) and use (1.16) to get clpc1pxqE ´ TcpxqGq “ F, which is equivalent to
(CQ-R) by (2.43d). l

The final claim of the previous proposition may look strange since (CQ-R) only
depends on the constraints of the optimization problem pPGq, while the optimal mul-
tiplier set Λ defined by (2.48), which is used to characterize (CQ-R), also depends on
the objective of the problem. Observe, however, that the characterization only uses
the asymptoric cone Λ8, which does not depend on the objective of the optimization
problem.

Proposition 2.24 [129] below highlights conditions ensuring that Λ is a singleton,
which is an esoteric way of saying that there is a unique multiplier associated with
the given stationary point x. We pave the way to this uniqueness result by the next
lemma, which gives an expression of the dual cone of c1pxqE´ rpTcpxqGqXλKs, where,
for λ P F:

λK :“ tµ P F : xµ, λy “ 0u “ pRtλuqK.

Note that the a priori larger set c1pxqE ´TcpxqG is equal to F, when (CQ-MF) holds;
see proposition 2.20. A comparison with the dual cone of c1pxqE ´ Tcpxq G, whose
expression is given in (2.49), may be instructive.
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Lemma 2.23 Let x P E be a feasible point of problem pPGq and let λ P NcpxqG.
Then,

rpTcpxqGq X λKs` “ ´TλpNcpxqGq, (2.51a)
`

c1pxqE ´ rpTcpxqGq X λKs
˘` “ N pc1pxq˚q X TλpNcpxqGq. (2.51b)

Proof. [(2.51a)] Let us first compute

rpTcpxqGq X λKs` “ pTcpxqGq` ` tλKu` r(1.21)s
“ ´NcpxqG` Rtλu rpTcpxq Gq` “ ´NcpxqGs

“ ´T
f
λpNcpxqGq rλ P NcpxqG and exercise 1.2.11s

“ ´TλpNcpxqGq r(1.22)s.

[(2.51b)] Using property 6 of proposition 1.7, one gets

`

c1pxqE ´ rpTcpxqGq X λKs
˘` “ pc1pxqEq` X ´rpTcpxqGq X λKs`.

One can then conclude by using pc1pxqEq` “ Rpc1pxqqK “ N pc1pxq˚q, since c1pxqE “
Rpc1pxqq is a subspace, and (2.51a). l

Proposition 2.24 (uniqueness of the optimal multiplier) Let px, λq P
E ˆ F be a stationary pair of problem pPGq and denote by Λ the set (2.48) of
optimal multipliers associated with x. Consider the following properties:

piq Λ “ tλu,
piiq N pc1pxq˚q X T

f
λpNcpxqGq “ t0u,

piiiq N pc1pxq˚q X TλpNcpxqGq “ t0u,
pivq c1pxqE ´ rpTcpxq Gq X λKs “ F.

Then, piq ô piiq ð piiiq ô pivq. If T
f
λpNcpxqGq “ TλpNcpxqGq, then the four

properties piq-pivq are equivalent.

Proof. [piq ñ piiq] Let µ P N pc1pxq˚q X T
f
λpNcpxqGq. It suffices to show that µ “ 0.

Since µ P T
f
λpNcpxq Gq, it is of the form µ “ αpλ1 ´λq for some α ě 0 and λ1 P NcpxqG.

If α “ 0, we get µ “ 0 as desired. Otherwise, λ1 “ λ` µ{α, which satisfies

∇fpxq ` c1pxq˚λ1 “ 0 and λ1 P NcpxqG.

Hence λ1 P Λ “ tλu, implying that λ1 “ λ. Hence µ “ 0.
[piq ð piiq] Let λ1 P Λ and set µ :“ λ1 ´ λ. It suffices to show that µ “ 0. It

immediately follows from λ and λ1 P Λ in (2.48) that

c1pxq˚µ “ 0 and µ P T
f
λpNcpxqGq.
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Then, piiq implies that µ “ 0.

[piiq ð piiiq] This is because T
f
λpNcpxqGq Ď TλpNcpxqGq.

[piiiq ñ pivq] Taking the dual of both sides of the identity in piiiq and using (2.51b),
we have that the closure of c1pxqE ´ rpTcpxqGq X λKs is F (see (1.16)). Since this last
set is convex, we certainly have pivq (see exercise 1.2.4).

[piiiq ð pivq] Taking the dual of both sides of the identity in pivq and using (2.51b),
we get piiiq.

[Last claim] If Tf
λpNcpxqGq “ TλpNcpxqGq, then piiq and piiiq are clearly identical

and, therefore, all the properties piq-pivq are equivalent. l

Remarks 2.25 1q When G is a convex polyhedron, like in problem pPEIq, its normal
cone NcpxqG is also a convex polyhedron (see (1.27a)). Then, the tangent cone and
the cone of feasible directions to NcpxqG are identical (see (1.26a)) and the four
properties piq-pivq of proposition 2.24 are equivalent.

2q One can recover the conditions 2.piiq and 2.piiiq of proposition 1.42 for prob-
lem pPEIq from the conditions piiiq and pivq of the previous proposition. This is
part of the subject of exercise 2.1.6.

2.1.6 Other problems N

In this section, we show how the results obtained for the general problem pPGq can
be applied to other propblems.

Problem with an additional set constraint N

Let E and F be two Euclidean vector spaces. Consider the problem

pPQ,Gq

$

&

%

min fpxq
x P Q
cpxq P G,

(2.52)

where f : E Ñ R and c : E Ñ F are two smooth functions, Q is a nonempty closed
convex set of E and G is a nonempty closed convex set of F. We denote its feasible
set by

XQ,G :“ tx P E : x P Q, cpxq P Gu.
We now give a series of results, whose proofs are proposed in exercise 2.1.8.

We first look at various adaptations to problem pPQ,Gq of the Robinson constraint
qualification assumption (CQ-R) associated with problem pPGq. They are similar to
those given in proposition 2.20.

Proposition 2.26 (constraint qualification) If c is differentiable at a feasi-
ble point x P XQ,G, the following properties are equivalent:
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0 P int
´

cpx˚q ` c1px˚qpQ ´ x˚q ´G
¯

, (2.53a)

(2.53b)

(2.53c)

(2.53d)

The following result gives necessary first order optimality conditions (NC1) for
problem pPQ,Gq.

Proposition 2.27 (NC1 for problem pPQ,Gq) Let x˚ be a local solution to
problem pPQ,Gq. Suppose that f and c are differentiable at x˚ and that the con-
straint qualification assumption (2.53) holds. Then, there exists λ˚ P F such that

∇fpx˚q ` c1px˚q˚λ˚ P pTx˚
Qq` (2.54a)

λ˚ P Ncpx˚q G. (2.54b)

As usual, the NC1 become sufficient optimality conditions of the first order (SC1)
for a “convex problem” pPQ,Gq, in a sense specified in the next proposition.

Proposition 2.28 (SC1 for a convex pPQ,Gq) Suppose that problem pPQ,Gq
is convex in the sense that f is convex and its feasible set XQ,G is convex. Sup-
pose also that f and c are differentiable at a point x˚ P XQ,G, and that there
exists a multiplier λ˚ P F such that px˚, λ˚q verifies the first order optimality
conditions (2.54). Then, x˚ is a global solution to pPQ,Gq.

One can also adapt, from propositions 2.22 and 2.24, the conditions ensuring
the boundedness of the set of optimal multipliers and the uniqueness of the optimal
multiplier.

Proposition 2.29 (boundedness of the set of multipliers, Gauvin’s
property) Suppose that f and c are differentiable at a stationary point x of
problem pPQ,Gq and that the set Λ of associated multipliers is nonempty. Then,
the asymptotic cone of Λ reads

Λ8 (2.55)

It results that, Λ is bounded if and only if
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Proposition 2.30 (uniqueness of the optimal multiplier) Let px, λq P
E ˆ F be a stationary pair of problem pPQ,Gq and denote by Λ the set (2.48)
of optimal multipliers associated with x. Consider the following properties:

piq Λ “ tλu,
piiq

piiiq
pivq

Then, piq ô piiq ð piiiq ô pivq.

Composite optimization

Let E and F be two Euclidean vector spaces. As already quoted in example 2.2(3), a
composite optimization problem is an optimization problem of the form

pPcompq
"

minxPE pg ˝ F qpxq
x P Q, (2.56)

where F : E Ñ F is a differentiable function, g P ConvpFq, pg ˝ F q denotes the
composition of g and F [hence pg ˝ F qpxq “ gpF pxqq] and Q is a nonempty closed
convex set of E. These assumptions are made in all this section.

Definition 2.31 (convex problem pPcompq) The problem pPcompq is said to be
convex if the function pg ˝F q `IQ is convex or, equivalently, if g ˝F is convex on the
convex set Q. l

Problem (2.56) is equivalent to (same optimal value, identical x-solution)

$

&

%

minpx,αqPEˆR α

x P Q
pg ˝ F qpxq ď α.

Since the first constraint also reads px, αq P Q ˆ R and the second constraint also
reads gpF pxqq ď α or pF pxq, αq P epipgq, this last problem, and therefore (2.56), is
equivalent to solving

$

&

%

minpx,αqPEˆR α

px, αq P Qˆ R

pF pxq, αq P epipgq.
(2.57)

Problem (2.57) is of the form pPQ,Gq in (2.52), so that the results obtained for this
latter problem can be used to determine analog properties for problem pPcompq.

The proof of the propositions of this section are proposed in exercise 2.1.9.
We start by adapting to problem pPcompq the constraint qualification assump-

tions (2.53) associated with problem (2.57). The reason of the need of such a function
qualification might not be obvious when one looks at the formulation (2.56) of the
composite problem. Actually, it is linked to implicit constraints introduced by the in-
finite values that g can take. Observe indeed that the equivalent conditions (2.58) of
the next proposition, in particular its condition (2.58c), are satisfied if the considered
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point x P E is such that F pxq P intpdom gq (since then TF pxqpdom gq “ F), that is,
when the infinite values of g do not appear in the neighborhood of F pxq.

Proposition 2.32 (function qualification) The following properties are
equivalent:

0F P int
`

F pxq ` F 1pxqpQ ´ xq ´ pdom gq
˘

, (2.58a)

F 1pxqpTf
xQq ´ T

f

F pxqpdom gq “ F, (2.58b)

F 1pxqpTxQq ´ TF pxqpdom gq “ F, (2.58c)

F 1pxqpTxQq ´ TF pxqpdom gq “ F (2.58d)

and, for any α ě gpF pxqq, these conditions are equivalent to the Robinson con-
straint qualification (CQ-R) at px, αq for the constraints of problem (2.57).

Proposition 2.27 for problem (2.57) yields the following necessary optimality con-
ditions of the first order (NC1) for problem pPcompq. Observe that if g is differentiable
at F pxq, (2.59) becomes

∇pg ˝ F qpx˚q P pTx˚
Qq`,

which is then the expected Peano-Kantorovich optimality condition (1.51) for problem
pPcompq. This observation should help to understand and remember (2.59).

Proposition 2.33 (NC1 for problem pPcompq) Suppose that x˚ is a local
solution to problem pPcompq and that the function qualification condition (2.58)
holds. Then, there exists λ˚ P F such that

F 1px˚q˚λ˚ P pTx˚
Qq`, (2.59a)

λ˚ P BgpF px˚qq, (2.59b)

where Bgpyq denotes the subdifferential of g at y.

As usual, the NC1 become sufficient conditions of the first order (SC1) for global
optimality of a convex problem pPcompq. It turns out that the appropriate notion
of convexity for problem pPcompq is the one of definition 2.31 (actually, it has been
introduced for being useful in the next proposition).

Proposition 2.34 (SC1 for a convex pPcompq) Suppose that problem pPcompq
is convex in the sense of definition 2.31, that x˚ P Q and that there exists a multi-
plier λ˚ P F such that px˚, λ˚q verifies the first order optimality conditions (2.59).
Then, x˚ is a global solution to pPcompq.
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Notes

The condition (2.43c) is reminiscent of the notion of transversality in differential
geometry [109]. The link between the boundedness of the set of optimal multipliers
and (CQ-MF) in nonlinear optimization (point 1 of proposition 1.42, extended to
problem pPGq by proposition 2.22) was observed by Gauvin [59; 1977]. More on
metric regularity can be found in [44; 2009].

Exercises

2.1.1. Convex pPEIq. Let G “ t0RmE u ˆ R
mI
´ and T : R

n
⊸ R

m : x ÞÑ cpxq ´ G be
the multifunction associated with the constraint of problem pPEIq. Show that T is
convex if and only if cE is affine and cI is componentwise convex.

2.1.2. Open mapping theorem. Let A : E Ñ F be a linear map between the finite dimension
normed vector spaces E and F (the result also holds for infinite dimension Banach
spaces, but is more difficult to prove [24]). Denote by B̄E and B̄F the closed unit
balls of E and F respectively. Then, the following properties are equivalent:

piq A is surjective,
piiq D ρ ą 0 such that ρB̄F Ď ApB̄Eq,

piiiq Dµ ą 0 such that: @ y P F, Dx P E such that Ax “ y and }x} ď µ}y}.
2.1.3. Examples of use of Robinson’s constraint qualification condition. Consider the fol-

lowing sets of the form XG :“ tx P E : cpxq P Gu, with G Ď F, and points x0 P XG:

1) E “ F “ R
2, and c and G are defined by

cpxq “ px2
1`px2´1q2´1, x

2
1`px2`1q2´1q, G “ R

2
´, and x0 “ p0, 0q,

2) E “ F “ R
2, and c (2 identical constraints) and G are defined by

cpxq “ px2, x2q, G “ R
2
`, and x0 “ p0, 0q.

For these sets XG and points x0 P XG,

piq determine whether Robinson’s constraint qualification condition holds at x0,
without using its equivalence with (CQ-MF),

piiq find a mudulus of metric regularity of the multifunction x ÞÑ cpxq´G at px0, 0q
if any.

2.1.4. Robinson’s constraint qualification condition for pPEIq. Viewing problem pPEIq as
a particular instance of problem pPGq, show that the Robinson constraint qualifi-
cation condition (CQ-R) is equivalent to the Mangasarian-Fromovitz’s constraint
qualification condition (CQ-MF).

2.1.5. Robinson’s contraint qualification and the primal SDO problem. Let S
n be the

set of symmetric matrices of order n, which is equipped with the scalar product
xA,By “ trAB (the trace of AB). Let S

n
` be the cone of Sn made of the positive

semidefinite matrices and S
n
`` be the cone of S

n made of the positive definite
matrices. We abbreviate X ě 0 for X P S

n
` and X ą 0 for X P S

n
``.

Consider the primal semidefinite optimization (SDO) problem, written as follows

pP q

$

&

%

infXPSn xC,Xy
ApXq “ b

X ě 0,

(2.60)
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where C P S
n, A : Sn Ñ R

m is a linear map, and b P R
m. The feasible and strictly

feasible sets of this problem are respectively denoted by

FP :“ tX P S
n
` : ApXq “ bu and F

s
P :“ tX P S

n
`` : ApXq “ bu.

We assume that FP ‰ ∅.

Let us represent the feasible set of problem (2.60) by FP :“ tX P S
n : cpXq P Gu,

where

c : X P S
n ÞÑ pApXq ´ b,Xq P R

m ˆ S
n and G “ t0Rmu ˆ S

n
`. (2.61)

Let (CQ-R) denote Robinson’s constraint qualification condition for the above rep-
resentation of FP .

1) Show that (CQ-R) at X0 P FP can equivalently be written

pA, IqSn ´ t0Rmu ˆ TX0 S
n
` “ R

m ˆ S
n
, (2.62)

where pA, Iq : Sn Ñ R
m ˆ S

n is the linear map X ÞÑ pApXq, Xq.
2) Show that if (CQ-R) holds at some point X0 P FP , then

A is surjective and F
s
P ‰ ∅. (2.63)

3) Show that if (2.63) holds then (CQ-R) holds at any point X0 P FP .
4) Show that if X solves pP q and (2.63) holds then there is a pair py, Sq P R

m ˆ S
n

such that
A

˚pyq ` S “ C, S ě 0, and xX,Sy “ 0. (2.64)

Furthermore, the set of pairs py, Sq P R
m ˆ S

n satisfying these three conditions
is compact.

5) Reciprocally, show that if X P FP is such that the set of pairs py, Sq verifying
(2.64) is nonempty and bounded, then (2.63) holds.

2.1.6. Multiplier uniqueness for two-side inequality constraints. Consider the optimization
problem pPGq, in which F is R

m “ R
mE ˆ R

mI and

G “ t0RmE u ˆ rl, us,

where for some vectors l and u P R
mI , rl, us :“ tv P R

mI : l ď v ď uu. Let
px, λq P E ˆ R

m be a stationary pair of the problem pPGq and denote by Λ the set
(2.48) of optimal multipliers associated with x. Define the following index sets

I l :“ ti P I : cipxq “ liu, Iu :“ ti P I : cipxq “ uiu,
I l0 :“ ti P I : cipxq “ li, λi “ 0u, Iu0 :“ ti P I : cipxq “ ui, λi “ 0u,
I l´ :“ ti P I : cipxq “ li, λi ă 0u, Iu` :“ ti P I : cipxq “ ui, λi ą 0u.

Show that the following properties are equivalent:

piq Λ “ tλu,
piiq there is no nonzero α P R

|EYIlYIu| such that
ř

iPEYIlYIu αi∇cipxq “ 0, αIl0 ď 0, and αIu0 ě 0,

piiiq for any v P R
|EYIlYIu|, there is a d P E such that

c
1
EYIl´YIu` pxqd “ vEYIl´YIu` , c

1
Il0pxqd ď vIl0 , and c

1
Iu0pxqd ě vIu0 ,

pivq c1
EYIl´YIu` pxq is surjective and there is a d P E such that

c
1
EYIl´YIu` pxqd “ 0, c

1
Il0pxqd ă 0, and c

1
Iu0pxqd ą 0.
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2.1.7. Multiplier uniqueness for pPGq with G “ S
n
` [129]. Consider the problem pPGq in

which F is the vector space S
n formed of the symmetric matrices of order n equipped

with the scalar product x¨, ¨y : pA,Bq P S
n ˆ S

n ÞÑ xA,By “ trAB P R (the trace
of the matrix AB) and G “ S

n
` is the cone of Sn made of the positive semidefinite

matrices. The problem reads
"

min fpxq
cpxq P S

n
`.

(2.65)

We also define S
n
´ “ ´S

n
`. Let px, λq P E ˆ S

n be a stationary pair of (2.65). Let
r :“ rankpcpxqq be the rank of the matrix cpxq P S

n, so that there is an n ˆ pn ´ rq
injective matrix V such that N pcpxqq “ RpV q.
1q Show that λ is of the form λ “ V ΘV T, for some Θ P S

n´r
´ .

2q Show that rankpλq ` rankpcpxqq ď n.

From now on, we assume that strict complementarity holds, which means that
rankpλq ` rankpcpxqq “ n.

3q Show that T
f
λpNcpxq S

n
`q “ TλpNcpxq S

n
`q “ tV ΘV T : Θ P S

n´ru.
4q Show that x has a unique associated multiplier λ if and only if

c
1pxqE ` tZ P S

n
: V

T
ZV “ 0u “ S

n
.

2.1.8. Optimality conditions of the first order for a problem with an additional set-inclusion
constraint. Prove propositions 2.26, 2.27, 2.28, 2.29 and 2.30.

2.1.9. Optimality conditions of the first order for a composite problem. Prove proposi-
tions 2.32, 2.33 and 2.34.

2.2 Second Order Optimality Conditions for pPEIq

Second order optimality conditions are used to determine whether a stationary point
is a local minimizer or maximizer; sometimes these conditions are not precise enough
to conclude. One makes a distinction between necessary optimality conditions (those
that are implied by a local minimizer) and sufficient optimality conditions (those that
guarantee that a given point is a local minimizer).

The necessary optimality conditions of the second order for the problem with
equality and inequality constraints pPEIq defined in section 1.4.4 can neither be ob-
tained as easily nor be written as simply as for a problem with only equality constraints
(theorem 1.33). There is a common feature however, which is that it is the Hessian
of the Lagrangian that intervenes in these conditions; the reason is that, like for the
equality constrained problem, the gradient of the Lagrangian vanishes at a local so-
lution to the problem (compare theorems 1.30 and 1.40). But there are two main
differences. First, it is not on the tangent cone to the feasible set that the Hessian
of the Lagrangian is positive semi-definite, but on a smaller one, called the critical
cone (this is further discussed in section 2.2.1). The second difference comes from the
choice of the optimal multiplier that intervenes in the Hessian of the Lagrangian (for
an inequality constrained problem, it is frequent that the set of optimal multipliers
associated with a given solution is not reduced to a singleton): the key observation is
that the optimal multiplier must be chosen according to the given critical direction
(this is further discussed in section 2.2.2).
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Getting second order sufficient conditions of optimality is not a difficult task
(section 2.2.4), but getting the second order necessary conditions of optimality is
much more serious (section 2.2.3). There are many possibilities to establish them.
Our strategy is the following. The approach assumes at once that the Mangasarian-
Fromovitz constraint qualification condition (CQ-MF) holds at the solution. This one
is strong enough to show the existence of paths in the feasible set, emanating from the
considered solution. Then, the behavior of the objective of the problem is examined
along these paths, which allows us to derive weak necessary optimality conditions
of the second order. These optimality conditions can be reinforced in the presence of
stronger constraint qualification conditions. It is the subject of exercise ?? to consider
the case of (CQ-A) and (CQ-LI) and to ask to show that a strong form of the second
order optimality conditions are then obtained (this is not surprising for (CQ-LI), since
then the optimal multiplier is uniquely determined).

2.2.1 Critical Cone

It is tempting to try to generalize the necessary optimality conditions of the second
order of problem pPEq, stated in theorem 1.33, to problem pPEIq. This extension could
be that, at a stationary pair px˚, λ˚q, one must have xL˚d, dy ě 0 for all tangent
directions d P Tx˚

XEI (we have denoted by L˚ :“ ∇2
xxℓpx˚, λ˚q the Hessian of the

Lagrangian at the considered stationary pair). This result is not correct, since the
tangent cone Tx˚

XEI is not the appropriate one, as shown by the following example

min

" ´1

x` 1
: x P R`

*

.

R`

fpxq“´1{px`1q (2.66)

This problem has for unique stationary point px˚, λ˚q “ p0, 1q and the tangent cone
at x˚ reads Tx˚

XEI “ R`, so that one can take d “ 1 as tangent direction, but
xL˚d, dy “ ´2 has not the right sign. We shall see that xL˚d, dy ě 0, but for direc-
tions d in a cone that is smaller than the tangent cone.

Looking for a smaller cone, one could imagine it as a tangent cone to a smaller set
than XEI . Observe now that a solution x˚ to pPEIq also minimises f locally on the
smaller set

X“
EI :“ tx P E : cEYI0

˚
pxq “ 0, cIzI0

˚
pxq ă 0u.

Theorem 1.33 tells us that xL˚d, dy ě 0 for all directions d P Tx˚
X“

EI and all as-
sociated multipliers λ˚ P Λ˚ (these are also multipliers of the problem consisting in
minimizing f on X“

EI). We shall see, however, that Tx˚
X“

EI is too small, in the sense
that it does not allow us to establish sufficient optimality condition of the second
order. Consider indeed the problem

min t´x2 : x P R`u.
R`

fpxq“´x2

(2.67)

The point x˚ “ 0 is a stationary point of this problem (for arbitrary multipliers
in R`). Since X“

EI “ t0u, it follows that Tx˚
X“

EI “ t0u. Furthermore, the Hessian of
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the Lagrangian at px˚, λ˚q is L˚ “ ´2 (for any chosen multiplier). Now, xL˚d, dy is
positive for all d in Tx˚

X“
EIzt0u “ ∅, but x˚ not a local minimum of the problem.

The appropriate cone will turn out to be the linearizing cone T1
x˚

pSol pPEIqq to
the solution set of pPEIq, written as follows

Sol pPEIq :“ tx P XEI : fpxq ď fpx˚qu. (2.68)

This cone is smaller than the linearizing cone to the feasible set XEI at x˚, but suffi-
ciently large to yield sufficient optimality condition of the second order (theorem 2.39).
It is called the critical cone of the problem.

Definition 2.35 The critical cone of problem pPEIq at a feasible point x P XEI is
the polyhedral cone denoted and defined by

Cpxq :“ td P E : c1
Epxq ¨ d “ 0, c1

I0pxqpxq ¨ d ď 0, f 1pxq ¨ d ď 0u. (2.69a)

A direction d P Cpxq is called a critical direction at x. We shall use the simplified
notation C˚ :“ Cpx˚q. l

Therefore, the critical cone is the linearizing cone (1.56), with the additional constraint
f 1pxq ¨ d ď 0 on its directions d.

In the example (2.66), C˚ “ t0u is smaller than the tangent cone Tx˚
XEI “ R`.

In the example (2.67), C˚ “ R` is larger than the tangent cone Tx˚
X“

EI “ t0u. It is
remarkable that the optimality at the second order can be synthetised by means of the
single critical cone, while the two previous problems cover very different situations.

At a stationary pair px˚, λ˚q, the critical cone at x˚ also reads

C˚ “ td P E : c1
Epx˚q ¨ d “ 0, c1

I0
˚

px˚q ¨ d ď 0, f 1px˚q ¨ d “ 0u, (2.69b)

“ td P E : c1
EYI

0`

˚

px˚q ¨ d “ 0, c1
I00

˚

px˚q ¨ d ď 0u, (2.69c)

where we have used the index sets

I0˚ :“ ti P I : cipx˚q “ 0u,
I0`

˚ :“ ti P I0˚ : pλ˚qi ą 0u,
I00˚ :“ ti P I0˚ : pλ˚qi “ 0u.

The expressions (2.69b) and (2.69c) can be obtained by using the optimality conditions
(1.58). Observe finally that, if strict complementarity holds, in the sense (1.59), the
critical cone simply reads

C˚ “ td P E : c1
EYI0

˚

px˚q ¨ d “ 0u, (2.69d)

which is the linearizing cone T1
x˚
X“

EI (it is a linear subspace in E). Without strict com-

plementarity, the linear subspace (2.69d) is included in C˚, itself included in T1
x˚
XEI .
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2.2.2 Three Instructive Examples

Another difficulty in establishing second order optimality conditions for problem pPEIq
comes from the fact that the optimal multiplier intervening in the Hessian of the
Lagrangian L˚ :“ ∇2

xxℓpx˚, λ˚q must be chosen according to the critical direction. In
others words, the proof of theorem 1.33, based on the development of the Lagrangian
ℓp¨, λ˚q for an a priori given multiplier λ˚ no longer works for a solution satisfying
only the Mangasarian-Fromovitz constraint qualification (CQ-MF) (see exercise ??
for the constraint qualification (CQ-A) and (CQ-LI), for which such a technique can
be used). We give three examples to better understand the situation and to learn how
to select the correct sequence of quantifiers to apply to d P C˚ and λ˚ P Λ˚.

Consider first the simple two variable problem

"

min x2
x2 ě x21.

(2.70)

Its feasible set is represented in the right-hand side above. The problem has for
unique solution x˚ “ p0, 0q and there is a unique associated multiplier λ˚ “ 1.
Since the constraint is active at x˚, px˚, λ˚q is also a stationary pair of the equal-
ity constrained problem mintx2 : x2 “ x21u, so that the Hessian of the Lagrangian
L˚ :“ ∇2

xxℓpx˚, λ˚q “ diagp2, 0q must be positive semi-definite on the tangent space
td P R2 : d2 “ 0u. This is the most simple situation that can occur. Below, we shall say
that the strong second order optimality conditions hold, meaning that, for any optimal
multiplier λ˚ (there is a single one here), L˚ is positive semi-definite on the critical
cone. These conditions are verified if there is a unique multiplier, like here, or when
the constraint qualification conditions (CQ-A) or (CQ-LI) hold (see exercise ??).

Consider now a variation of problem (2.70), in which a superfluous constraint is
added:

$

&

%

min x2
x2 ě x21
x2 ě ´ 1

2
x21.

(2.71)

The second constraint does not modify the solution to the problem, which is again
x˚ “ p0, 0q, but there are now several optimal multipliers, forming the set Λ˚ “ tλ P
R2

` : λ1 ` λ2 “ 1u. By taking the multiplier λ˚ “ p1, 0q, a vertex of Λ˚, one ignores
the second constraint, which is appropriate, and one has the preceding result on the
positive semi-definiteness of L˚ “ diagp2, 0q on the critical cone C˚ “ td P R2 :

d2 “ 0u. In contrast, with λ˚ “ p0, 1q, the other vertex of Λ˚, the Hessian of the
Lagrangian L˚ “ diagp´1, 0q is negative definite on C˚. This is normal; with that λ˚,
the Lagrangian ℓp¨, λ˚q can only see the second constraint, hence ignoring the first
one, and p0, 0q is only a stationary point of the problem mintx2 : x2 ě ´ 1

2
x21u, not

a local minimum. Below, we shall say that the semi-strong second order optimality
conditions hold, meaning that, there exists an optimal multiplier λ˚, such that L˚ is
positive semi-definite on the critical cone.

An inequality constrained optimization problem is not always as simple as problem
(2.71), in which one can locally (around the solution) discard all the constraints but
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one, while keeping optimality of the solution. Sometimes, each time a constraint is
discarded, the optimality is lost and this phenomenon is reflected in the second order
optimality conditions. Here is an example with three variables:

$

’

’

&

’

’

%

min x3
x3 ě px1 ` x2qpx1 ´ x2q
x3 ě px2 ` 3x1qp2x2 ´ x1q
x3 ě p2x2 ` x1qpx2 ´ 3x1q.

(2.72)

The three pictures in the right-hand side above represent, for each of the three con-
straints, the coordinates px1, x2q giving a positive value of their right-hand side. We
see that, for any nonzero px1, x2q, one of these right-hand side is positive. As a result,
the unique solution to the problem is x˚ “ 0. Furthermore, the set of associated op-
timal multipliers is the unit simplex Λ˚ “ tλ P R3

` : λ1 ` λ2 ` λ3 “ 1u. Finally, the
Hessian of the Lagrangian reads

Lpx, λq “

¨

˝

2λ1 ´ 6pλ2 ` λ3q 5pλ2 ´ λ3q 0

5pλ2 ´ λ3q ´2λ1 ` 4pλ2 ` λ3q 0

0 0 0

˛

‚.

Whatever is the vector λ˚ chosen in Λ˚, L˚ is not positive semi-definite on the critical
cone C˚ “ td P R3 : d3 “ 0u. Indeed, the element p1, 1q of L˚ has the value 8λ1 ´ 6

and the element (2,2) is 4´ 6λ1, so that the positive definiteness of L˚ would require
to have λ1 ą 3{4 and λ1 ă 2{3, an impossibility. Below, we shall say that the weak
second order optimality conditions hold, meaning that, for all critical direction d,
there is a multiplier λ˚ (depending on d), such that xL˚d, dy ě 0.

2.2.3 Second Order Necessary Optimality Conditions

Theorem 2.37 below states necessary optimality conditions of the second order, as-
suming that the Mangasarian-Fromovitz constraint qualification (CQ-MF) holds at
the considered solution. This assumption is not very restrictive, since it is the weakest
of the sufficient constraint qualification conditions presented in section 1.4.4. Theo-
rem 2.39 states sufficient optimality conditions of the second order, without constraint
qualification conditions.

The necessary conditions lie on the examination of the behavior of the criterion f
along paths t ÞÑ ξptq emanating from the considered solution x˚ at t “ 0 and remain-
ing in the feasible set XEI for small positive values of the parameter t. More paths
of this type are considered, more information will be obtained. The approach is the
same for the equality constrained problem pPEq, but it turned out that all the paths
having the same tangent at the origin gave the same second order information for
that problem. In the presence of inequality constraints, for a given tangent direction
d P Tx˚

XEI , it is useful to distinguish paths having d “ ξ1p0q as tangent at the origin,
but having distinct curvatures h “ ξ2p0q. Therefore, for given d and h, one looks for
paths t ÞÑ ξptq such that

ξp0q “ x˚, ξ1p0q “ d, ξ2p0q “ h, ξptq P XEI , for small t ě 0. (2.73)

Tangency and curvature must satisfy compatibility relations so that (2.73) holds. Let
us guess what can be these conditions; the first three (2.74a)-(2.74c) determined below
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are necessary and the last one (2.74d) has a sufficient flavor. Lemma 2.36 will show
that they can be satisfied under (CQ-MF) and that, all together, they are indeed
sufficient to guarantee the existence of a path satisfying (2.73).

Consider first the equality constraints: the map ξ must verify cEpξptqq “ 0, for all
small t ě 0. Differentiating once the vanishing map t ÞÑ cEpξptqq, we get c1

Epξptqq ¨
ξ1ptq “ 0 for all small t ě 0. At t “ 0, (2.73) gives

c1
Epx˚q ¨ d “ 0. (2.74a)

Differentiating once the vanishing map t ÞÑ c1
Epξptqq ¨ ξ1ptq, we get c2

Epξptqq ¨ pξ1ptqq2 `
c1
Epξptqq ¨ ξ2ptq “ 0 for all small t ě 0. At t “ 0, (2.73) gives

c2
Epx˚q ¨ d2 ` c1

Epx˚q ¨ h “ 0. (2.74b)

Consider now the inequality constraints: the map ξ must verify cIpξptqq ď 0, for all
small t ě 0. If i P IzI0px˚q, cipx˚q ă 0, so that cipξptqq ď 0 for small t ě 0 if both
ci and ξ are continuous. Consider now the indices i P I0px˚q of the active constraints
at x˚. Taking a first order development of the map t ÞÑ cipξptqq around t “ 0 and
using (2.73), we get cipx˚q`rc1

ipx˚q¨ds t`optq ď 0 for all small t ě 0. Since cipx˚q “ 0,
dividing by t ą 0 and taking the limit when t Ó 0, we see that we must have

c1
I0

˚

px˚q ¨ d ď 0. (2.74c)

Taking a second order development of t ÞÑ cipξptqq, we see that we must have

cipx˚q
loomoon

“0

`t c1
ipx˚q ¨ d
loooomoooon

ď0

` t2

2

`

c2
i px˚q ¨ d2 ` c1

ipx˚q ¨ h
˘

` opt2q ď 0.

Here, one cannot deduce a necessary condition on d and h, but to have satisfaction
of the previous inequality it is sufficient to impose

c2
i px˚q ¨ d2 ` c1

ipx˚q ¨ h ď ´ε e, (2.74d)

where ε ą 0 and e is the vector of all ones.
Note that d satisfying (2.74a) and (2.74c) is, by definition, a direction of the

linearizing cone to XEI at x˚, hence a tangent direction to XEI at x˚ if the constraints
are qualified at x˚.

Lemma 2.36 (existence of a feasible path) Let x˚ P XEI . Suppose that
cE is C2 in a neighborhood of x˚, that cI0

˚
is twice differentiable at x˚, and that

cI„
˚

is continuous at x˚. Suppose also that the Mangasarian-Fromovitz constraint
qualification condition (CQ-MF) holds at x˚. Let ǫ ą 0. Then,

1q for all d P Tx˚
XEI, there exists h P E such that (2.74b) and (2.74d) hold,

2q for all pd, hq P EˆE satisfying (2.74), there exists a path ξ : t P R ÞÑ ξptq P E

of class C2, defined for |t| sufficiently small, such that (2.73) holds.

Proof. 1) This is a direct consequence of (CQ-MF), expressed by the point piiq of
proposition 1.39.
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2) Let AE :“ c1
Epx˚q be the Jacobian of cE at x˚. This one being surjective, one

can find a linear operator Z : E Ñ Rn´mE , such that

ˆ

AE

Z

˙

: E Ñ R
n is bijective. (2.75)

Note that this property implies that N pAEq X N pZq “ ∅ and N pAEq ` N pZq “ E,
so that E can be written as a direct sum: E “ N pAEq ‘ N pZq.

For d P Tx˚
XEI and h P E given by point 1, one considers the function F :

E ˆ R Ñ Rn defined at pξ, tq P E ˆ R by

F pξ, tq “
ˆ

cEpξq
Zpξ ´ x˚ ´ td ´ t2

2
hq

˙

.

d P N pc1
Epx˚qq

x˚ ` td ` t2

2
h

x˚

XEI c´1
E p0q

x˚ ` td
x˚ ` N pZq

ξptq

If F pξ, tq “ 0, ξ P E is necessarily a point on the manifold c´1
E p0q, while ξ ´ x˚ ´

td ´ pt2{2qh is a displacement in the null space of Z, which is complementary to the
null space of AE , itself tangent to the manifold c´1

E p0q at x˚. The path t ÞÑ ξptq is
obtained by imposing the nullity of F pξ, tq and using the implicit function theorem.
By assumption, the function F is of class C2 in a neighborhood of px˚, 0q, F px˚, 0q “ 0

and F 1
ξpx˚, 0q is nonsingular. By the implicit function theorem, there exists a function

t ÞÑ ξptq, defined for |t| small, of class C2, such that F pξptq, tq “ 0 for all small |t| and
ξp0q “ x˚. By differentiating once F pξptq, tq “ 0 at t “ 0, one gets

ˆ

AE

Z

˙

ξ1p0q “
ˆ

0

Zd

˙

“
ˆ

AE

Z

˙

d,

because AEd “ 0. Therefore, (2.75) shows that ξ1p0q “ d. By differentiating twice
F pξptq, tq “ 0 at t “ 0, one gets

ˆ

AE

Z

˙

ξ2p0q “
ˆ

´c2
Epx˚q ¨ d2
Zh

˙

“
ˆ

AE

Z

˙

h,

by (2.74b). Therefore, ξ2p0q “ h. Finally, ξptq P XEI for small t ě 0, thanks to the
choice of h verifying (2.74c) and (2.74d). l

Theorem 2.37 (NC2 for pPEIq with (CQ-MF)) Suppose that x˚ is a local
solution to pPEIq, that f and cE are C2 in a neighborhood of x˚, that cI0

˚
is twice

differentiable at x˚, that cI„
˚

is continuous at x˚, and that the Mangasarian-
Fromovitz constraint qualification condition (CQ-MF) hods at x˚. Then
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@ d P C˚ : max
λ˚PΛ˚

xL˚d, dy ě 0, (2.76)

where L˚ :“ ∇2
xxℓpx˚, λ˚q is the Hessian of the Lagrangian.

Proof. Let d P C˚ Ď T1
x˚
XEI be fixed. For each choice of h P E verifying (2.74b) and

(2.74d), lemma 2.36 ensures the existence of a path t ÞÑ ξptq of class C2 satisfying
(2.73). The direction h will be chosen to get the best information. Let us see this. A
second order development of t ÞÑ fpξptqq at t “ 0 reads

fpξptqq “ fpx˚q ` tf 1px˚q ¨ d ` t2

2

“

f2px˚q ¨ d2 ` f 1px˚q ¨ h
‰

` opt2q.

By optimality, fpξptqq ě fpx˚q, for t ě 0 small (since then ξptq P XEI), and f 1px˚q¨d ď
0 (since d P C˚). Therefore,

0 ď t2

2

“

f2px˚q ¨ d2 ` f 1px˚q ¨ h
‰

` opt2q.

Dividing by t2 ą 0 and taking the limit when t Ó 0, we get

0 ď f2px˚q ¨ d2 ` f 1px˚q ¨ h. (2.77)

To get as much information as possible, it is better to find an h minimizing the
right-hand side of the above inequality. This remark leads us to the following linear
probkem in h P E:

$

&

%

inf f 1px˚q ¨ h ` f2px˚q ¨ d2
c1
ipx˚q ¨ h` c2

i px˚q ¨ d2 “ 0, for i P E
c1
ipx˚q ¨ h` c2

i px˚q ¨ d2 ` ǫ ď 0, for i P I0˚.
(2.78)

This problem is feasible (i.e., its feasible set is nonempty, thanks to (CQ-MF)) and
bounded (by zero). Therefore, by (1.63), the problem has a solution and by the sen-
tence after (1.66), there is no duality gap between its optimal value and the optimal
value of its dual: these are both equal and nonnegative by (2.77). The dual problem
is the following linear optimization problem in λ P Rm

$

’

’

&

’

’

%

sup xLpx˚, λqd, dy ` ǫ}λI}1
∇xℓpx˚, λq “ 0

λI0
˚

ě 0

λI„
˚

“ 0.

Observe now that the feasible set of this last problem is the set of optimal multipli-
ers Λ˚. Therefore, we have shown that

0 ď max
λ˚PΛ˚

xL˚d, dy ` ǫ}pλ˚qI}1.

We have used the operator “max”, since Λ˚ is ocmpact by (CQ-MF). Since ǫ ą 0 is
arbitrary and since Λ˚ is compact, one gets the result by taking ε Ñ 0. l
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When (CQ-MF) holds at x˚, Λ˚ is compact, so that the condition (2.76) also reads

@ d P C˚, Dλ˚ P Λ˚ : xL˚d, dy ě 0. (2.79a)

It is then said that the weak necessary optimality conditions of the second order hold.
They are satisfied under the assumptions given by theorem 2.37. This is the case in
the example 2.72. If stronger conditions holds, namely

Dλ˚ P Λ˚, @ d P C˚ : xL˚d, dy ě 0, (2.79b)

it is said that the semi-strong necessary optimality conditions of the second order
hold. They are satisfied in example 2.71. If even stronger conditions holds, namely

@λ˚ P Λ˚, @ d P C˚ : xL˚d, dy ě 0, (2.79c)

it is said that the strong necessary optimality conditions of the second order hold.
They are satisfied in example 2.70.

The strong second order necessary conditions of optimality (2.79c) are clearly
satisfied when there is a unique optimal multiplier, since then (2.79a), (2.79b), and
(2.79c) contain the same information and (2.79a) holds by theorem 2.37. These con-
ditions are also satisfied when some constraint qualification conditions stronger than
(CQ-MF) are satisfied. The next theorem claims that this is the case when (CQ-A)
or (CQ-LI) holds; this resultat was the one presented in most textbooks on nonlinear
optimization prior to 1980, say; see [53, 95, 34, 8; 1968-1976] for instance.

Theorem 2.38 (NC2 for pPEIq with (CQ-A) or (CQ-LI)) Suppose that x˚

is a local solution to pPEIq, that f and c are twice differentiable at x˚, and that
the constraint qualification conditions (CQ-A) or (CQ-LI) hold at x˚. Then, the
strong second order necessary conditions of optimality (2.79c) hold.

Proof. See exercise ??. l

The numerical verification of the necessary optimality conditions of the second
order is not an easy task. Even when the semi-strong conditions (2.79b) hold for an
optimal multiplier λ˚, one has to verify that the quadratic form d ÞÑ xL˚d, dy as-
sociated with the Hessian of the Lagrangian is positive semi-definite on the critical
cone C˚, which is polyhedral; in other words, L˚ is C˚-copositive [70, 16, 68]. In all
generality, such a verfication is an NP-hard problem [104, 43]. Now, if strict comple-
mentarity also holds, the critical cone reduces to the linear subspace (2.69d) and the
verification of the positive semi-definiteness of d ÞÑ xL˚d, dy on this subspace is then
a simple linear algebra operation.

2.2.4 Second Order Sufficient Optimality Conditions

The next proposition gives sufficient conditions of optimality of the second order for
problem pPEIq. It is worth noting that these do not call on a constraint qualification
assumption. The fact that the critical cone also intervenes in these conditions is an
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evidence of its relevance. The inequality (2.81) is known as the quadratic growth
property. It tells us that f grows at least quadratically on the “interior” of the feasible
set XEI .

Theorem 2.39 (SC2 for pPEIq) Suppose that f and cEYI0
˚

are differentiable
on a neighborhood of a point x˚ P E and twice differentiable at x˚. Suppose
also that the set Λ˚ of optimal multipliers λ˚ such that px˚, λ˚q verifies the KKT
optimality conditions (1.58) is nonempty. Suppose finally that the following equiv-
alently properties hold p} ¨ } is an arbitrary norm)

@d P C˚zt0u, Dλ˚ P Λ˚ : xL˚d, dy ą 0, (2.80a)

D γ̄ ą 0, @d P C˚, Dλ˚ P Λ˚ : xL˚d, dy ě γ̄}d}2. (2.80b)

Then, for all γ P r0, γ̄q, there exists a neighborhood V of x˚ such that

@x P pXEI X V qztx˚u : fpxq ą fpx˚q ` γ

2
}x´ x˚}2. (2.81)

In particular, x˚ is a strict local minimum of pPEIq.

Proof. Let us first show that (2.80a) and (2.80b) are equivalent. It is clear that (2.80b)
implies (2.80a). Let us show the contrapositive of the reverse implication, assuming
that (2.80b) does not hold. Then, there would existts a sequence tdku Ď C˚ such that

}dk} “ 1 and xLpx˚, λ˚qdk, dky Ñ 0,

where λ˚ is arbitrary fixed in Λ˚. Since C˚ is closed, one could extract a converging
subsequence dk Ñ d P C˚zt0u. Then, for any λ˚ P Λ˚, we get xL˚d, dy “ 0, for some
d P C˚zt0u. This contradicts (2.80a).

We prove the main claim of the theorem by contradiction, assuming that one can
find γ P r0, γ̄q and a sequence txku Ď XEI such that xk Ñ x˚, xk ‰ x˚, and

fpxkq ď fpx˚q ` γ

2
}xk ´ x˚}2. (2.82)

Extracting a subsequence if needed, one can assume that with tk :“ }xk ´ x˚}, there
holds

xk ´ x˚

tk
Ñ d.

Therefore, d P Tx˚
XEIzt0u. Furthermore, from (2.82) and fpxkq “ fpx˚q ` f 1px˚q ¨

pxk ´ x˚q ` op}xk ´ x˚}q (differentiability of f at x˚, one gets f 1px˚q ¨ d ď 0. We have
shown that d P C˚zt0u.

To get a contradiction, we take a second order expansion of the Lagrangian ℓp¨, λ˚q,
where λ˚ is the multiplier associated with d by (2.80b):

ℓpxk, λ˚q “ ℓpx˚, λ˚q ` 1

2
ℓ2
xxpx˚, λ˚q ¨ pxk ´ x˚q2 ` op}xk ´ x˚}2q.

By the stationarity of x˚ (see (1.58)), it follows that ℓpx˚, λ˚q “ fpx˚q. By the
feasibility of xk and pλ˚qI ě 0, one gets ℓpxk, λ˚q ď fpxkq, which does not exceed
fpx˚q ` γ

2
}xk ´ x˚}2 by (2.82). Therefore,
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γ

2
}xk ´ x˚}2 ě 1

2
xL˚pxk ´ x˚q, xk ´ x˚y ` op}xk ´ x˚}2q.

Dividing by t2k and taking the limit yield

xL˚d, dy ď γ}d}2,

which contradicts (2.80b), since γ ă γ̄ and d P C˚zt0u. l

Condition (2.81) is known as the quadratic growth property of f in XEI around x˚.
The equivalent conditions (2.80a) and (2.80b) are called the weak sufficient op-

timality conditions of the second order . Obviously, the conclusion of the theorem is
still true if in (2.80a), λ˚ can be taken indepently of d:

Dλ˚ P Λ˚, @d P C˚zt0u : xL˚d, dy ą 0. (2.83)

It is then said that semi-strong sufficient optimality conditions of the second order
hold. Obviously also, the conclusion of the theorem remains true, if λ˚ can be chosen
arbitrarily:

@λ˚ P Λ˚, @d P C˚zt0u : xL˚d, dy ą 0. (2.84)

It is then said that strong sufficient optimality conditions of the second order hold.
A natural question to ask is whether the conditions of the previous theorem not

only ensure that x˚ is a strict local minimum, but that it is also an isolated minimum.
The answer is negative, as shown by the following counter-example [121; (2.5)].

Counter-example 2.40 (strict but nonisolated minimum) Consider the follow-
ing problem in x P R:

min t 1
2
x2 : cpxq “ 0u, where cpxq “

"

x6 sin 1
x

if x ‰ 0

0 otherwise.

The conditions of theorem 2.39 are satisfied at the solution x˚ “ 0 with the multiplier
λ˚ “ 0, since ℓ2

xxpx˚, λ˚q “ 1 but x˚ is not an isolated minimum. Indeed, 0 is an
accumulation point of the feasible set, which reads t0u Y tkπ : k P Nu, and every
feasible point is a local minimizer. l

The undesirable situation of counter-example 2.40 would not occur if the (CQ-MF)
constraint qualification was added to the assumptions of the theorem; see [121; § 2].

Notes

There are many ways to get second order conditions of optimality. The one followed
here, which is based on the design of paths in the feasible set, on the expression of the
behavior of the objective along these path, and on the dualization of this expression
is the one followed in the short account of Gauvin [60].

Second order optimality conditions for pPEIq were given in [53; 1968] under restric-
tive conditions. The conditions related here can be found in [72, 13, 15; 1979-1982].
See also the exact penalty viewpoint of Burke [28].
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Exercises

2.2.1. Second order optimality conditions. Consider the following nonlinear optimization
problem in x P R

2:
$

’

&

’

%

min ´ 1

2
px2

1 ` x2
2q

x2 ě x2
1 ´ 1

x1 ě 0.

Using the Lagrangian ℓ : R2 ˆ R
2 Ñ R defined at px, λq by

ℓpx, λq “ ´ 1

2
px2

1 ` x2
2q ` λ1px2

1 ´ x2 ´ 1q ` λ2p´x1q,

it can be shown that the first order optimality conditions are verified by the following
primal-dual pairs

x “ 0 and λ “ 0, (2.85a)

x “ p0,´1q and λ “ p1, 0q, (2.85b)

x “ p
?
2{2,´1{2q and λ “ p1{2, 0q. (2.85c)

Using the second order optimality conditions, determine analytically which of the
points in (2.85) are (strict) local minimum, (strict) local maximum, or undeter-
mined.





3 Perturbation Analysis

3.1 Linear System N

3.2 Nonlinear System N

3.3 Optimization N

Let E and F be a vector spaces, Ω be an open convex set of E, and P be a topological
space. Consider the family of optimization problems

pP p
Kq

"

minx fpx, pq
cpx, pq P K,

parametrized by p P P , in which f : Ω ˆ P Ñ R and c : Ω ˆ P Ñ F are smooth
functions, and K Ď F is a nonempty closed convex cone. This problem will be viewed
as a perturbation of a problem of the form (2.1), that is supposed to be recovered
when p is set to some reference parameter p0 P P , in the sense that fp¨, p0q “ fp¨q
and cp¨, p0q “ cp¨q. Here, the set G “ K of problem pPGq is supposed to be a cone,
which was not necessarily the case in chapter 2.

We assume that, for some given point x0 P Ω, the following smoothness properties
of f and c hold:

for all p in P , fp¨, pq and cp¨, pq are differentiable on Ω,
fp¨, p0q and cp¨, p0q are twice continuously differentiable on Ω,
f , c, f 1

x, and c1
x are continuous on Ω ˆ P .

We have denoted by f 1
x and c1

x the derivatives of f and c, respectively, with respect
to x. Similarly, we denote the second derivatives with respect to x of f and c by f2

xx

and c2
xx, respectively.

From theorem 2.6 and proposition 2.21, it is known that at a local minimizer x P Ω
of pP p

Kq at which the following constraint qualification (CQ-R) holds

0 P int
`

cpx, pq ` c1
xpx, pqE ´K

˘

, (3.1)

one can associate a multiplier λ P F such that

"

∇xfpx, pq ` c1
xpx, pq˚λ “ 0

K´ Q λ K cpx, pq P K. (3.2)

Let us introduce the multiplier multifunction Λ : Ω ˆ P ⊸ F, which is defined at
px, pq P Ω ˆ P by

95
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Λpx, pq :“ tλ P F : px, p, λq satisfies (3.2)u,

as well as the stationary point multifunction Σ : P ⊸ Ω, which is defined at p P P

by
Σppq :“ tx P Ω : Λpx, pq ‰ ∅u.

Proposition 3.1 (stability of pPKq with a polyhedral K) In the framework
presented above, assume that

piq P is a subset of a vector space,
piiq K is a convex polyhedral cone,

piiiq f 1
x, c and c1

x are Lipschitz continuous near some px0, p0q P Ω ˆ P,
pivq (3.1) holds for px, pq “ px0, p0q, and
pvq there is a λ0 P Λpx0, p0q such that the strong SC2 holds for pP p0

K q.
Then, there exists a constant L ě 0, such that, for all p near p0, one has

1q Σppq ‰ ∅,
2q for all x P Σppq near x0 and all λ P Λpx, pq, one has

dist
`

px, λq, tx0u ˆ Λpx0, p0q
˘

ď L }p´ p0}.

Notes

Proposition 3.1 rephrases corollary 4.3 in [121; 1982].



4 A Few Methods for Nonsmooth Systems

This chapter presents and analyzes algorithms to solve various nonsmooth “systems”
by “pseudo-linearization” techniques. The term systems is vague, but may be viewed
as “mathematical models” in the discussion that follows; the types of systems con-
sidered in this chapter will be clarified in section 4.1.1 ; they includes variational
problems, variational inequality problems, complementarity problems, first order op-
timality conditions of an optimization problem, nonsmooth equations, to mention a
few of the most important ones. The important qualifier nonsmooth means that these
systems are defined by functions that are not differentiable in the classical sense of
Fréchet, or are defined by multifunctions. The term pseudo-linearization refers to the
fact that this lack of differentiability makes a true linearization impossible, but that
some kind of surrogate is nevertheless available.

It may be instructive to gather the various approaches presented in this chapter
into two classes. Both classes are constituted of algorithms that have a fast speed
of convergence in a neighborhood of a regular solution (a concept to be defined,
which depends on the considered system and algorithm), which is due to the pseudo-
linearization of the systems they solve.

We gather into the first class, the methods that try to have a rather precise descrip-
tion of the system to solve around the current iterate. The amount of information
collected there gives to the iteration a nonlinear nature. This results in algorithms
that have a rather complex iteration, which may require a rather significant com-
puting effort to be processed (usually more than a single linear system to solve,
certainly). An advantage of these algorithms is that they are often rather easy to
globalize, meaning that one can design convergent versions of these algorithms even
though the starting iterate is far from a solution.

The first example of methods of this class is the Josephy-Newton algorithm for solv-
ing functional inclusions. It is analyzed in section 4.1. Its rather precise description
at the current iterate of the system to solve is obtained by keeping unaltered the
part of the system that is not easy to linearize, the one that involves a multifunc-
tion.

The SQP algorithm of section 5.1 is also a member of the first class of approaches,
since it can be viewed as an application of the Josephy-Newton algorithm to the
first order optimality system of the optimization problem pPEIq, which has equality
and inequality constraints. The SQP algorithm is one of the most frequently used
methods to solve pPEIq. It was mainly developed in the mid-1970s.

The B-Newton algorithm of section 4.2, which solves a nonsmooth system of equa-
tions, has also a complex iteration. This one is due to the nonlinear nature of the

97
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B-differential that is used to compute the new iterate. When applied to some re-
formulation of the first optimality conditions of a nonlinear optimization problem,
however, it results in a simpler iteration than the SQP algorithm.

We gather into the second class of methods, those that have a very economical
iteration, in the sense that a single linear system needs to be solved at each itera-
tion.

The semismooth algorithm of section 4.4, which solves a nonsmooth system of
equations, belongs to this second class. The linear system to solve at the current
iteration comes from a choice of local first order approximation of the nonsmooth
system. Despite this poor description, a fast local convergence is also possible,
which is a surprising and remarkable fact. On paper, the description of the algo-
rithm is simple, but in practice the choice of the linear system is not always easy
to determine. It may also be inappropriate, when the globalization of the method
is an issue.

Interior point methods in linear, conic, or nonlinear optimization also belong to
this class of methods, but we shall see them in another chapter, chapter ??.

4.1 Josephy-Newton Algorithm for Functional Inclusions

The Josephy-Newton (JN) algorithm has been designed to solve functional inclu-
sions. This type of systems is described in section 4.1.1; they include variational
problems (section 4.1.1), variational inequality problems (section 4.1.1), complemen-
tarity problems (section 4.1.1), and various systems of optimality conditions (the
Peano-Kantorovich condition of the general problem pPXq and the first order nec-
essary optimality conditions of the problems pPGq or pPEIq; see section 4.1.1). The
algorithm is described in section 4.1.2, its asymptotic behavior is analyzed in sec-
tion 4.1.4, and conditions ensuring its local convergence are provided in section 4.1.5.

4.1.1 A Gallery of Problems

Functional Inclusion Problem

Let E and F be two vector spaces having the same finite dimension. In this section,
we are interested in solving a functional inclusion problem1, which, by definition, is a
problem that reads in the following manner:

pPfiq F pxq `Npxq Q 0. (4.1)

In this problem model, F : E Ñ F is a function that is supposed to be differentiable
and N : E ⊸ F is a multifunction “sufficiently simple”. This system means that one
has to determine a point x in E such that the set F pxq ` Npxq contains the zero
element of F; one can also say that x is sought such that the vector ´F pxq is in the
set Npxq. If N is the zero multifunction, one recovers a nonlinear system to solve

1 This is the author’s own terminology. One more frequently finds the vaguer terms gener-
alized equation [120, 46] or variational inclusion [2].
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F pxq “ 0. One could also incorporate F in N , hence removing the presence of the
function value F pxq in pPfiq, without loss of generality, but the linearization method
presented in section 4.1.2 takes advantage of this smooth function; furthermore, N
could not be “simple” with this incorporation.

As we shall see, the system pPfiq models many problems.

Variational Problem

A variational problem2 is a functional inclusion problem of the form pPfiq, in which
F “ E and the multifunction N : E ⊸ E is the normal cone map NX to a nonempty
closed set X Ď E (the notation N in pPfiq comes from this problem); in other words,
NXpxq is the normal cone (1.50) to X at x. The problem reads and can be viewed as
below:

pPvq F pxq ` NXpxq Q 0.
x

´F pxq

X
NXpxq

(4.2)

With the convention that NxX “ ∅ when x R X , one looks for a point x P X such
that ´F pxq is in the normal cone to X at x.

The first order necessary condition of optimality of Peano-Kantorovich (1.51) is
a variational problem of the form pPvq, in which F is the gradient of a function
f : E Ñ R. However, unless the feasible set X is simple, its normal cone is often
too complex for allowing the problem to be solved by the Josephy-Newton algorithm
introduced in section 4.1.2 below.

Variational Inequality Problem

A variational inequality problem is a variational problem of the form pPvq, in which the
set X ” C is nonempty, closed, and convex. Then, according to (1.23), problem pPvq,
which reads ´F pxq P NCpxq, can also be written

pPviq
"

x P C
xF pxq, y ´ xy ě 0, @ y P C.

NCpxq

´F pxq

C

x
(4.3)

The presence of the infinite number of inequalities induces the problem name. Now, it
is usually better not to see this problem as one with that infinite number of inequal-
ities, but to see it in terms of multifunction like in pPvq.

The system (4.3) can be written like a nonsmooth equation in x (see exercise 4.1.2)

PCpx´ F pxqq ´ x “ 0. (4.4)

This reformulation of the variational inequality problem is not necessarily advanta-
geous, since the use of the projector PC on C in (4.4) often yields a system that lacks
appropriate differentiability properties (see remark 1.12), at a point that the usual

2 One also encounters the denominaltion variational condition [126, 124].
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techniques for solving equations cannot be used. This point of view may change for
particular convex sets C.

An equilibrium problem is a significant extension of a variational inequality prob-
lem. Being given a set X of a topological space E and a function f : X ˆX Ñ R, one
seeks a point x such that

"

x P X
fpx, yq ě 0, @ y P X. (4.5)

We will not talk about this problem in these notes.

Proposition 4.1 (existence of solution for pPviq) Consider the variation
inequality problem pPviq in (4.3) with a nonempty closed convex set C, on which F
is continuous. Then, the set of solutions to pPviq is closed. This solution set is
also nonempty if C is bounded.

Proof. l

Complementarity Problem

A complementarity problem is a functional inclusion problem of the form pPfiq, in
which F is a Euclidean space and the multifunction N is defined at x P E by Npxq “
NK`pGpxqq, where G : E Ñ F, K is a nonempty closed convex cone of F, K` is the
positive dual cone of K in F, and NK` is the application “normal cone to K`”. Then,
by proceeding in the same way as for obtaining pPviq, the function inclusion becomes

Gpxq P K` and
´

@ y P K` : xF pxq, y ´Gpxqy ě 0
¯

.

Next, taking y “ 2Gpxq and y “ Gpxq{2 (or zero, since K` is closed) as test elements
in K` above, we see that the problem can be written

pPcq K` Q Gpxq K F pxq P K.

K`

Gpxq

K

0

F pxq

(4.6)

This expression means that three conditions must be satisfied at the sought x:
F pxq P K, Gpxq P K`, and xF pxq, GpxqyF “ 0.

Constrained Optimization

Let E and F be two Euclidean vector spaces. Consider the problem of the form pPGq:
"

min fpxq
cpxq P K, (4.7)
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in which f : E Ñ R and c : E Ñ F are differentiable maps and K is a nonempty closed
convex cone of F. Its optimality conditions at a local solution x P E is the following
system in px, λq P E ˆ F (see theorem 2.6, in the case when G ” K is a closed convex
cone)

∇fpxq ` c1pxq˚λ “ 0 and K´ Q λ K cpxq P K. (4.8)

This optimality system can also be written as a complementarity problem of the
form pPcpq, whose objects are topped by a tilde: the spaces are Ẽ “ F̃ :“ E ˆ F, the
function G̃ :“ I

Ẽ
, while the function F̃ : Ẽ Ñ Ẽ and the set K̃ Ď Ẽ are defined as

follows

F̃ px̃q “
ˆ

∇fpxq ` c1pxq˚λ

´cpxq

˙

and K̃ “ t0Eu ˆ p´Kq, (4.9a)

where we have set x̃ :“ px, λq. Since K̃` “ E ˆK´, the system (4.8) reads

K̃` Q x̃ K F̃ px̃q P K̃, (4.9b)

which is of the form of pPcpq in (4.6).
Since the optimization problem pPEIq, with equality and inequality constraints,

can be written like (4.7) with F “ R
mE ˆ R

mI , c “ pcE , cIq : E Ñ R
mE ˆ R

mI , and
K “ t0RmE u ˆ R

mI

´ , its optimality conditions, the KKT system (1.58), can also be
written as a complementarity problem (4.9b). From (4.9a), it suffices to take x̃ :“
px, λq and

F̃ px̃q :“
ˆ

∇fpxq ` c1pxq˚λ

´cpxq

˙

and K̃ “ t0Eu ˆ pt0RmE u ˆ R
mI

` q. (4.10)

Equality and Inequality Systems

When N is the constant multifunction x P E ÞÑ t0mE

R
u ˆ R

mI

` Ď Rm ” F, where E
and I form a partition of r1 :ms, the functional inclusion problem pPfiq amounts to
find a point x P E satisfying a system of equalities and inequalities:

FEpxq “ 0 and FIpxq ď 0.

Nevertheless, as we shall see, the algorithmic approach of section 4.1 will not be
immediately workable to find a solution to such a system, because its solutions are
usually not isolated.

4.1.2 The Josephy-Newton Algorithm

The Josephy-Newton (JN) algorithm is an iterative method to solve the functional
inclusion problem pPfiq in (4.1). It generates a sequence txku Ď E as follows. Knowing
xk P E, the next iterate xk`1 P E is computed as a solution in x (if this is possible!)
to the functional inclusion pPfiq, “linearized” in x, namely

F pxkq ` F 1pxkq ¨ px´ xkq `Npxq Q 0. (4.11)

The linearization is only partial: whilst F is linearized at xk like in Newton’s algorithm
(1.68), the multifunction N is left unchanged. Such a linearization of pPfiq is named a
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JN linearization below. The system (4.11) to solve in xk`1 at each iteration is therefore
often “nonlinear”, meaning that it is not enough to solve a single linear system to
get one of its solutions. As a result, the algorithm is generally more expensive than
the standard Newton algorithm (1.68) for the system of equations (1.67). One can
also say that the algorithm captures from the system, much more than the linear
approximation of its functions, since N is used without approximation. For future
references, let us write explicitly the functional inclusion verified by xk`1 P E:

F pxkq ` F 1pxkq ¨ pxk`1 ´ xkq `Npxk`1q Q 0. (4.12)

Now, it may arise that no algorithm is known to solve (4.11) efficiently; in which case,
it is necessary to turn towards other solution approaches.

One can now understand the assumptions required on F and N after (4.1). The
function F must be differentiable so that its derivative operator F 1pxkq can be used
in the definition (4.12) of the algorithm. The multifunction N needs not have dif-
ferentiability properties, but must be simple enough to make the computation of a
solution to (4.12) not too expensive.

4.1.3 Regularity

The standard quadratic convergence result of Newton’s method for finding a zero
of a nonlinear system of equations F pxq “ 0, the one of theorem 1.48, requires the
nonsingularity of F 1px˚q. We would like to extend this assumption to the more com-
plex functional inclusion system pPfiq in (4.1), which is not straightforward with
the presence of the multifunction N , in order to ensure quadratic convergence of the
Josephy-Newton algorithm. Getting such an extension is often a matter of rephrasing.

Consider the system F pxq “ 0, for which we rephrase the property of the injectivity
of F 1px˚q, which is equivalent to the nonsingularity of F 1px˚q when dimE “ dimF.
Observe that, when F px˚q “ 0, the definition of the assumed differentiability of F
implies that

F pxq “ F 1px˚qpx´ x˚q ` op}x´ x˚}q.
Now, if F 1px˚q is injective, this development implies that, for some constant σ1 ą 0

and σ2 ą 0, independent of x,

}x´ x˚} ď σ1 ùñ }x´ x˚} ď σ2}F pxq}.

This property can also be written as follows: there are constants σ1 ą 0 and σ2 ą 0

such that
px, pq P E ˆ F

F pxq “ p

}x´ x˚} ď σ1

,

.

-

ùñ }x´ x˚} ď σ2}p}.

It is this formulation of the injectivity of F 1px˚q that we chose to keep as a desired
property of a root x˚ of the functional inclusion system, because it makes no use of
the differential of F at the considered zero x˚ and can therefore be applied to F `N .
This concept is called semi-stability; it was introduced in [19].
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Definition 4.2 (semi-stability) A solution x˚ to the functional inclusion pPfiq in
(4.1) is said to be semi-stable if there are constants σ1 ą 0 and σ2 ą 0 such that

px, pq P E ˆ F

F pxq `Npxq Q p
}x´ x˚} ď σ1

,

.

-

ùñ }x´ x˚} ď σ2}p}.
l

In plain words, one can also say that x˚ is semi-stable if any solution x of the slightly
perturbed system F pxq `Npxq Q p that is close to x˚, depends on the perturbation p
in a Lipschitz manner.

Remarks 4.3

1q The semi-stability is a concept that applies on the “nonlinear” functional inclusion
F pxq ` Npxq Q 0, not on its “linearization” F px˚q ` F 1px˚qpx ´ x˚q ` Npx1q Q 0.
By proposition 4.6 below, we shall see, however, that the semi-stability implies a
property on the linearized functional inclusion and that this property is actually
equivalent to the semi-stability if N is the normal cone to a convex polyhedron
(proposition 4.7).

2q The semi-stability does not claim anything on the existence of solution to the
functional inclusion F pxq ` Npxq Q p for the considered px, pq. It only requires a
Lipschitz property with respect to the perturbation of the solutions to the per-
turbed system F pxq `Npxq Q p, if these solutions exist and are close to x˚.

3q The straightforward following observation will have important consequences below.

Proposition 4.4 (isolation of a semi-stable solution) A semi-stable so-
lution to pPfiq is isolated.

Proof. It is certainly sufficient to show that, if x˚ is a semi-stable solution to pPfiq,
the functional inclusion has no other solution than x˚ in B̄px˚, σ1q, where σ1 ą 0

is the constant appearing in the definition of the semi-stability. Let x1
˚ P B̄px˚, σ1q

be a solution to pPfiq. Hence }x1
˚ ´ x˚} ď σ1 and F px1

˚q ` Npx1
˚q Q 0, so that

}x1
˚ ´ x˚} ď σ2}0}, implying that x1

˚ “ x˚. l

4q Semi-stability can also be viewed as a local error bound for the isolated solution
set tx˚u, since it also reads: there exist positive constants σ1 and σ2 such that

}x´ x˚} ď σ1 ùñ }x´ x˚} ď σ2 distp0, F pxq `Npxqq. (4.13)

Indeed, taking the infimum in p P F pxq ` Npxq in the definition 4.2 of the semi-
stability yields the implication above. Conversely, this implication yields the one
in definition 4.2 since distp0, F pxq `Npxqq ď }p} when distp0, F pxq `Npxqq Q p.

5q As expected by its construction, the notion of semi-stability reduces to the injec-
tivity of F 1px˚q in the absence of the multifunction N (hence to its nonsingularity
when dimE “ dimF).
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Proposition 4.5 (semi-stability and nonsingularity) Assume that N ”
0 in pPfiq and that F is differentiable at a point x˚ such that F px˚q “ 0.
Then x˚ is a semi-stable solution to pPfiq if and only if F 1px˚q is injective.

Proof. [ñ] Let d such that F 1px˚qd “ 0 and set xt :“ x˚ ` td with t ą 0. Then
F pxtq “ optq by the differentiability of F at x˚ and F px˚q “ 0. The semi-stability
of x˚ then implies that, as soon as t ą 0 is small enough, t}d} “ }xt´x˚} ď σ2optq.
Hence, one must have d “ 0.

[ð] This is a consequence of the reasoning that led to the definition of the semi-
stability (see the discussion before definition 4.2). By the differentiability of F
at x˚ and F px˚q “ 0, one has

F pxq “ F 1px˚qpx´ x˚q ` op}x´ x˚}q. (4.14)

By the injectivity of F 1px˚q, there is a constant C ą 0 such that

}F 1px˚qh} ě C}h}, @h P E. (4.15)

Furthermore, by (4.14), there exists σ1 ą 0 such that

}x´ x˚} ď σ1 ùñ }F pxq ´ F 1px˚qpx´ x˚q} ě C

2
}x´ x˚}. (4.16)

Combining (4.14), (4.15), and (4.16), we obtain

}x´ x˚} ď σ1 ùñ }F pxq} ě C

2
}x´ x˚}.

Setting σ2 “ 2{C, we see that if px, pq P EˆF verifies }x´x˚} ď σ1 and F pxq “ p,
the following holds }x´ x˚} ď σ2}p}. l

We have observed that a semi-stable solution to the functional inclusion pPfiq is an
isolated solution (proposition 4.4). The next result tells us that it is also an isolated
solution to the functional inclusion, derived from pPfiq by linearizing F at x˚:

F px˚q ` F 1px˚qpx ´ x˚q `Npxq Q 0. (4.17)

We shall see in proposition 4.7 that the reciprocal holds when N is the multifunction
“normal cone to a convex polyhedron”.

Proposition 4.6 (isolated solution to the linearized functional inclu-
sion) Let x˚ be a semi-stable solution to the functional inclusion pPfiq, in which F
is differentiable at x˚. Then, x˚ is an isolated solution to (4.17).

Proof. Let σ1 ą 0 and σ2 ą 0 be the constants given by the semi-stability of x˚.
Suppose that there is a solution x to (4.17) that is arbitrary close to x˚. Then,
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F pxq ` NCpxq Q F pxq ´ F px˚q ´ F 1px˚qpx ´ x˚q and }x´ x˚} ď σ1.

By the semi-stability and the differentiability of F at x˚, the following holds

}x´ x˚} ď σ2}F pxq ´ F px˚q ´ F 1px˚qpx´ x˚q} “ op}x´ x˚}q.

This implies that x “ x˚. Hence a solution close to x˚ cannot be different fomr x˚. l

We understand that the semi-stability property of a solution x˚ to the functional
inclusion problem pPfiq is rather restrictive, since it requires in particular that

x˚ be an isolated solution to the functional inclusion pPfiq (proposition 4.4),
x˚ be an isolated solution to (4.17), the functional inclusion linearized at x˚ (propo-
sition 4.6).

One of the interests of semi-stability is to identify the situations where the JN algo-
rithm described and analyzed in section 4.1 has fast convergence (proposition 4.9 and
theorem 4.12) and it is known that linearization algorithms, like Newton’s method
(section 1.5.2) or the JN algorithm (section 4.1.2) or the SQP algorithm (section 5.1),
can behave badly when the aimed solution is not isolated.

We conclude this section with characterizations of the semi-stability, when N

is the map “normal cone NC to a nonempty convex polyhedron C ”, that highlight
the role of the linearized functional inclusion. The condition piiq will be used for
characterizing the semi-stability of a stationary point of pPEIq (proposition ??) and
the condition piiiq for characterizing the semi-stability of a local solution to pPEIq
(proposition 5.4). Be mindful that the normal cone is evaluated a the point x˚ in piiiq,
while this evaluation is done at x in piiq and pivq.

Proposition 4.7 (charaterization of the semi-stability of a polyhedral
VI) Suppose that E “ F and that x˚ P E is a solution to the functional inclusion
pPfiq, in which F is differentiable at x˚ and N is the map normal cone NC to a
nonempty closed convex set C of E. Then, the implications piq ñ piiq ñ piiiq ñ
pivq hold for the following claims:

piq x˚ is semi-stable,
piiq x˚ is an isolated solution to the linearized functional inclusion

F px˚q ` F 1px˚qpx ´ x˚q ` NCpxq Q 0, (4.18)

piiiq any x P Cztx˚u verifying

xF px˚q, x ´ x˚y “ 0 (4.19a)

F px˚q ` F 1px˚qpx ´ x˚q ` NCpx˚q Q 0, (4.19b)

is such that xF 1px˚qpx ´ x˚q, x´ x˚y ą 0,
pivq the system in x below has no other solution than x˚:
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NCpxq Ď NCpx˚q (4.20a)

xF px˚q, x ´ x˚y “ 0 (4.20b)

R` F px˚q ` F 1px˚qpx´ x˚q ` NCpxq Q 0. (4.20c)

If C is a nonempty convex polyhedron, then the four properties piq-pivq are equiv-
alent.

Proof. [piq ñ piiq] This is proposition 4.6 for the particular case when N “ NC .
[piiq ñ piiiq] We show the contrapositive, assuming that there exists an x1 P

Cztx˚u such that piiiq does not hold or

xF px˚q, x1 ´ x˚y “ 0, (4.21a)

F px˚q ` F 1px˚qpx1 ´ x˚q ` NCpx˚q Q 0, (4.21b)

xF 1px˚qpx1 ´ x˚q, x1 ´ x˚y ď 0 (4.21c)

and show that xt :“ p1 ´ tqx˚ ` tx1 is a solution to (4.18) for all t P r0, 1s, which
contredicts piiq.

Observe first that one has an equality in (4.21c):

xF 1px˚qpx1 ´ x˚q, x1 ´ x˚y “ 0. (4.22)

This is because by (4.21b) and x1 P C, one has xF px˚q`F 1px˚qpx1´x˚q, x1´x˚y ě 0.
Next, using (4.21a) in this inequality yields xF 1px˚qpx1 ´ x˚q, x1 ´ x˚y ě 0, which is
the reverse inequality of (4.21c), hence (4.22).

To show that xt is a solution to (4.18), we have to prove that xt P C, which is
clear by the convexity of C, and that, for all y P C, the following value is nonnegative:

xF px˚q ` F 1px˚qpxt ´ x˚q, y ´ xty
“ xF px˚q ` t F 1px˚qpx1 ´ x˚q, y ´ x˚ ´ tpx1 ´ x˚qy
“ xF px˚q ` t F 1px˚qpx1 ´ x˚q, y ´ x˚y r(4.21a) and (4.22)s
ě p1 ´ tq xF px˚q, y ´ x˚y r(4.21b)s
ě 0 r1 ´ t ě 0 and F px˚q ` NCpx˚q Q 0s.

[piiiq ñ pivq] We show the contrapositive: assuming that there exists an x ‰ x˚

satisfying (4.20), we find some t ą 0 such that xt :“ x˚ ` tpx´ x˚q satisfies

xF px˚q, xt ´ x˚y “ 0, (4.23a)

F px˚q ` F 1px˚qpxt ´ x˚q ` NCpx˚q Q 0, (4.23b)

xF 1px˚qpxt ´ x˚q, xt ´ x˚y ď 0, (4.23c)

which contradicts (4.19).
Observe already that (4.23a) follows at once from (4.20b). To get (4.23c), we use

(4.20c), which reads for some α ě 0:

xαF px˚q ` F 1px˚qpx´ x˚q, y ´ xy ě 0, @ y P C. (4.24)
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Now (4.23c) follows by taking y “ x˚ P C in this inequality, multiplying the left-hand
side by t2 (hence x ´ x˚ becomes xt ´ x˚) and using (4.23a). It remains to show
(4.23b), which also reads

xF px˚q ` F 1px˚qpxt ´ x˚q, y ´ x˚y ě 0, @ y P C. (4.25)

This is almost the form (4.24) of (4.20c). We axamine two cases.

If α ą 1, we divide the left-hand side of (4.24) by α and get (4.25) with t “ 1{α P
p0, 1s.
If α P r0, 1s, instead of (4.24), we use (4.20a) and (4.20c) to get for some α ě 0:

xαF px˚q ` F 1px˚qpx´ x˚q, y ´ x˚y ě 0, @ y P C. (4.26)

Now, F px˚q ` NCpx˚q Q 0 (x˚ is a solution to pPviq) implies that

xF px˚q, y ´ x˚y ě 0, @ y P C.

Multiplying the left-hand side of these inequalities by 1 ´ α ě 0 and combining
with (4.26), yield (4.25) with t “ 1.

[pivq ñ piq] Suppose now that C is a convex polyhedron. We show the contra-
positive, assuming that x˚ is not semi-stable and show that the system (4.20) has a
solution x ‰ x˚.

Letting the constants σ1 Ñ 0 and σ2 Ñ 8 in the definition 4.2 of the semi-stability,
we see that one can find sequences txku Ď E and tpku Ď F such that

F pxkq ` NCpxkq Q pk, (4.27a)

xk Ñ x˚ with xk ‰ x˚, (4.27b)

}pk}{}xk ´ x˚} Ñ 0. (4.27c)

Extracting a subsequence if necessary, one can suppose that, with tk :“ }xk ´x˚}, we
have pxk ´x˚q{tk Ñ d. Since xk P C by (4.27a), it clearly follows that d P TCpx˚qzt0u.

Let us now take the limit in (4.27a), after the expension of F pxkq around x˚ and
division by tk ą 0:

1

tk
F px˚q ` F 1px˚qxk ´ x˚

tk
` op}xk ´ x˚}q

tk
` NCpxkq Q pk

tk
.

The first term is annoying since tk Ñ 0, but it belongs to R`F px˚q and we can
replace it by that set, while keeping the inclusion. The second term tends to F 1px˚qd
and the third one to zero. By extracting a subsequence if necessary, one can fix the
normal cones in the fourth term to a unique one (exercise 1.2.1), which is denoted by
NCpxkq ” NCpx0q below. Finally, the right-hand side tends to zero by (4.27c). Since
R`F px˚q ` NCpx0q is closed (the sum of two convex polyhedrons is a polyhedron [a
property recalled in point 2 of proposition 1.1], hence closed), we obtain at the limit:

R` F px˚q ` F 1px˚qd ` NCpx0q Q 0.

This inclusion resembles (4.20c), which we now try to establish for the point

x “ x˚ ` εd,
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where ε ą 0 is taken sufficiently small in order to have x P Cztx˚u; this is possible

since d ‰ 0 and d P TCpx˚q “ T
f
Cpx˚q by (1.26a). With that x, the preceding inclusion

becomes
R` F px˚q ` F 1px˚qpx´ x˚q ` NCpx0q Q 0. (4.28)

For y P C, let us denote by Ipyq the set of the indices of the active inequality affine
constraints defining the polyhedron C that are active at y. To get (4.20) and therefore
conclude, it is sufficient to show that

Ipx0q Ď Ipxq Ď Ipx˚q, (4.29a)

xF px˚q, x´ x˚y “ 0. (4.29b)

Indded, by (1.27b), (4.29a) implies that NCpx0q Ď NCpxq Ď NCpx˚q and therefore
(4.20a); (4.29b) is (4.20b); and (4.28) and NCpx0q Ď NCpxq implies (4.20c).

Consider first (4.29a). Observe that the convergence xk Ñ x˚ and the fact that
Ipxkq ” Ipx0q (for the subsequence txku having the same Ipxkq, selected above)
imply that

Ipxkq “ Ipx0q Ď Ipx˚q.
Therefore, if i P Ipxkq, it follows that i P Ipx˚q and that i P Ipp1´ε{tkqx˚ `pε{tkqxkq.
Since pr1´ ε{tksx˚ ` rε{tksxkq “ x˚ ` εpxk ´ x˚q{tk Ñ x˚ ` εd “ x, we have the first
in clusion in (4.29a). For the second inclusion in (4.29a), we take ε ą 0 small enough,
so that x “ x˚ ` εd is sufficiently close to x˚ to have Ipxq Ď Ipx˚q.

Consider now (4.29b). First, xF px˚q, x ´ x˚y ě 0, since F px˚q ` NCpx˚q Q 0 and
x P C. To get the reverse inequality, we use (4.27a) and x˚ P C to get xF pxkq ´ pk,

x˚ ´ xky ě 0. Dividing by tk ą 0 and taking the limit in k yield xF px˚q, dy ď 0 since
px˚ ´ xkq{tk Ñ ´d, hence xF px˚q, x´ x˚y ď 0 since d “ px´ x˚q{ε. l

Definition 4.8 (strong regularity) A solution x˚ to the functional inclusion pPfiq
is said to be strongly regular if there is a constant ε ą 0 such that, for all p near zero,
the system

"

F px˚q ` F 1px˚qpx´ x˚q `Npxq Q p
}x´ x˚} ď ε

has a unique solution xppq and xp¨q is Lipschitz near zero. l

This is a much stronger assumption than semi-stability in that it assumes the existence
of a solution for small perturbations p and that this solution is unique.

4.1.4 Speed of Convergence

In this section, we consider a structurally slight but important generalization of the
JN algorithm (4.12), in which the next iterate xk`1 following the current one xk is
computed by

F pxkq `Mkpxk`1 ´ xkq `Npxk`1q Q 0, (4.30)

where Mk P LpE,Fq may be the Jacobian F 1pxkq or an approximation to it. Hence
this algorithm includes the quasi-Newton vertions of the JN algorithm.
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Let us now highlight conditions ensuring superlinear and quadratic convergence
of the sequences generated by the JN algorithm (4.30). In this analysis, we assume
that a sequence txku is generated by the algorithm and that this sequence converges
to a solution x˚ to pPfiq. These conditions depend on the smoothness of F , on the
quality of the approximation of F 1pxkq by Mk, and on the regularity of the solution x˚

(its semi-stabiity, actually). The conditions on Mk used in proposition 4.9 below have
to be compared with the Dennis and Moré condition for nonlinear systems (proposi-
tion 1.49): fast convergence is guaranteed, provided Mk is close to F 1pxkq along the
displacement direction xk`1 ´ xk. Nothing is required on the multifunction N ; a pos-
teriori, this can be understood by the fact that the algorithm takes all information
from N , not only a kind of linearization like it does for F .

Proposition 4.9 (sufficient conditions for fast convergence) Let x˚ be a
semi-stable solution to pPfiq. Suppose that F is differentiable in a neighborhood
of x˚ and that F 1 is continuous at x˚. Let txku be a sequence satisfying the
recurrence (4.30) and converging to x˚.

1q If pMk ´F 1px˚qqpxk`1 ´ xkq “ op}xk`1 ´ xk}q, then the convergence of txku
is superlinear.

2q If pMk ´F 1px˚qqpxk`1 ´xkq “ Op}xk`1 ´xk}2q and if F 1 is radially Lipschitz
at x˚, then the convergence of txku is quadratic.

Proof. Let σ1 and σ2 be the positive constants of the semi-stable solution x˚ and let
us us simplify the writing by introducing sk :“ xk`1 ´xk and ∆k :“ pMk ´F 1px˚qqsk.

0) We want to apply the semi-stability to have an estimate of the updated error
xk`1 ´ x˚, hence having an implication of the form

F pxk`1q `Npxk`1q Q pk`1

}xk`1 ´ x˚} ď σ1

*

ùñ }xk`1 ´ x˚} ď σ2 }pk`1}. (4.31)

The fact that }xk`1 ´x˚} ď σ1 is guaranteed for large k, by the assumed convergence
of txku to x˚. For the inclusion in the left-hand side of (4.31), it is natural to start
with the iteration recurrence (4.30), which provides the aforementioned inclusion with

pk`1 :“ F pxk`1q ´ rF pxkq `Mksks “ F pxk`1q ´ F pxkq ´ F 1px˚qsk ´∆k.

Therefore, by the implication (4.31), we have

}xk`1 ´ x˚} ď σ2}pk`1}. (4.32)

The goal now is to get an estimate of }pk`1} in terms of }xk ´x˚}. By the mean value
theorem (corollary 1.25), we have that

}pk`1} ď
˜

sup
tPr0,1s

›

›F 1pxk ` tskq ´ F 1px˚q
›

›

¸

}sk} ´∆k. (4.33)

1) The continuity of F 1 at x˚ and the assumption ∆k “ op}sk}q of the case allow
us to deduce from (4.33) that pk`1 “ op}sk}q. Therefore xk`1 ´ x˚ “ op}sk}q by
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(4.32). We deduce from this estimate that xk`1 ´ x˚ “ op}xk ´ x˚}q, which is the
mark of the superlinear convergence of txku.

2) If F 1 is L-Lipschitz continuous near x˚ and ∆k “ Op}sk}2q, we can esimate
pk`1 from (4.33) as follows

}pk`1} ď L}xk ´ x˚} }sk} `Op}sk}2q “ Opp}xk ´ x˚}2q,

since sk „ pxk ´ x˚q, by the superlinear convergence of txku established in point 1
and lemma 1.47. Then, one deduces from (4.32) that xk`1 ´ x˚ “ Op}xk ´ x˚}2q,
which is the mark of the quadratic convergence of txku. l

The next corollary, whose proof is straightforward, essentially deals with the case
when Mk “ F 1pxkq.

Corollary 4.10 (speed of convergence of the JN algorithm) Suppose that
F is C1 in a neighborhood of a semi-stable solution x˚ to pPfiq and that the
sequence txku satisfies the recurrence (4.11) and converges to x˚.

1q If Mk Ñ F 1px˚q, then the convergence of txku is superlinear.
2q If Mk ´F 1px˚q “ Op}xk ´x˚}q and if F 1 is radially Lipschitz at x˚, then the

convergence of txku is quadratic.

Proof. 1) Point 1 follows immediately from point 1 of proposition 4.9.
2) If Mk ´F 1px˚q “ Op}xk ´x˚}q, then pMk ´F 1px˚qqpxk`1 ´xkq “ Op}xk ´x˚}

}xk`1 ´ xk}q, which implies the superlinear convergence of txku by point 1 of propo-
sition 4.9. Next lemma 1.47 implies that pxk ´x˚q „ pxk`1 ´xkq, from which we have
pMk ´F 1px˚qqpxk`1 ´xkq “ Op}xk`1 ´xk}2q. Now the quadratic convergence of txku
follows from the radial Lipschitz continuity of F 1 at x˚ and point 2 of proposition 4.9.

l

4.1.5 Local Convergence

The preceding section analyzed the speed of convergence of the sequence of iter-
ates txku generated by the JN algorithm, assuming that such a sequence is generated
and that this one converges to some semi-stable solution to the functional inclusion
problem pPfiq in (4.1). This section clarifies the last two aspects. On the one hand, the
well-posedness of the algorithm is shown, which amounts to ensure that the linearized
functional inclusion (4.11) has a solution. On the other hand, the local convergence of
the algorithm is proved, meaning that the generated sequence converges to the con-
sidered neighboring solution x˚. For the two goals, the current iterate xk is supposed
to be close to a solution x˚, having an additional property.

Whilst the semi-stability of definition 4.2 has a local injectivity flavor, revealed
by propositions 4.4 and 4.5, the hemi-stability defined below has a local surjectivity
interpretation, in the sense that it requires the pseudo-linearized function inclusion
to have a solution at linearization points close to x˚.
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Definition 4.11 (hemi-stability) A solution x˚ to pPfiq is said to hemi-stable if for
all α ą 0, there exists β ą 0 such that, for all x0 P B̄px˚, βq, the following functional
inclusion in x

F px0q ` F 1px0qpx ´ x0q `Npxq Q 0

has a solution in B̄px˚, αq. l

In plain words, x˚ is hemi-stable if one can find a solution to the linearized func-
tional inclusion (4.11) that is as close as desired to x˚, just by taking the point of
linearization xk sufficiently close to x˚. It is not claimed that, when xk is close to x˚,
the linearized functional inclusion (4.11) has a unique solution; in particular, this one
could have another solution that is not close to x˚. In the next theorem, we use the
phrase “can generate” to express the fact that, when xk is close to an hemi-stable
solution, the JN algorithm takes a solution xk`1 to the linearized inclusion (4.11)
that is also close to the solution x˚.

Theorem 4.12 (local convergence of the JN algorithm) Let x˚ be a semi-
stable and hemi-stable solution to pPfiq. Suppose that F is differentiable in a
neighborhood of x˚ and that F 1 is continuous at x˚. Consider the JN algorithm
(4.12). Then, there exists an ε ą 0, such that

1q if the first iterate x1 is in the closed ball B̄px˚, εq, then the JN algorithm can
generate a sequence txku in B̄px˚, εq,

2q any sequence txku generated in B̄px˚, εq by the JN algorithm converges su-
perlinearly to x˚ (and quadratically if F 1 is radially Lipschitz at x˚q.

Proof. 0) Let us first fix a few constants in the right order. Let σ1 ą 0 and σ2 ą 0 be
the constants given by the semi-stability at x˚. Define

ppx, x1q :“ F px1q ´ F pxq ´ F 1pxqpx1 ´ xq.

The mean value theorem (corollary 1.25) allows us to write

}ppx, x1q} ď
˜

sup
zPpx,x1q

›

›F 1pzq ´ F 1pxq
›

›

¸

}x1 ´ x}.

By the assumed continuity of F 1 at x˚, the factor in parentheses can be made as small
as desired by taking x and x1 close enough to x˚. Therefore, one can find a constant
α P p0, σ1s such that

x, x1 P B̄px˚, αq ùñ }ppx, x1q} ď 1

3σ2
}x1 ´ x}. (4.34)

Let β ą 0 be the constant associated with α by the hemi-stability of x˚ and set
ε :“ minpα, βq.

1) Suppose now that xk P B̄px˚, εq. By the hemi-stability of x˚ and ε ď β, there
exists a new iterate xk`1 P B̄px˚, αq such that

F pxkq ` F 1pxkqpxk`1 ´ xkq `Npxk`1q Q 0. (4.35)
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Since this inclusion is the JN algorithm recurrence formula (4.12), the algorithm can
take this xk`1 as the iterate following xk. Therefore, we have shown that the JN
algorithm can generate a sequence in B̄px˚, εq.

2) Assume now that the JN generates a sequence txku in B̄px˚, εq. Hence the
inclusion (4.35) holds. Let us now apply the semi-stability property of x˚. It follows
from (4.35) that

F pxk`1q `Npxk`1q Q F pxk`1q ´ F pxkq ´ F 1pxkqpxk`1 ´ xkq “ ppxk, xk`1q.

Since xk`1 P B̄px˚, εq and ε ď α ď σ1, the semi-stability at x˚ implies that

}xk`1 ´ x˚} ď σ2}ppxk, xk`1q}

ď 1

3
}xk`1 ´ xk} r(4.34) and xk, xk`1 P B̄px˚, αqs

ď 1

3
}xk`1 ´ x˚} ` 1

3
}xk ´ x˚}.

Therefore }xk`1 ´ x˚} ď 1
2

}xk ´ x˚}. We have shown that xk Ñ x˚.
The superlinear and quadratic convergence speed of convergence follows from

corollary 4.10. l

4.1.6 Globalization by Line-Search N

Notes

Historically, the variational inequality problem pPviq was introduced by Hartman and
Stampacchia [64; 1966] for solving some nonlinear elliptic partial differential equation
and was subsequently developed in many papers, including [94, 131, 96]. Karamar-
dian [81; 1971] was the first to establish the relationship between the variational
inequality problem pPviq in (4.3) and the complementarity problem pPcpq. The ex-
istence result for variational inequality problems, the one of theorem 4.1, is taken
from [46; theorem 2A.1]. Surveys on variational inequality problems can be found
in [63, 50, 76].

Josephy [79; 1979] considers the complementarity problem pPcpq, hence a func-
tional inclusion in which the multifunction N is the normal cone to a closed convex
cone K, and shows existence, uniqueness, and convergence of a sequence satisfying
the iterations (4.12), provided the sought solution x˚ is strongly regular in the sense
of Robinson [120]. Bonnans [19; 1994] introduces the weaker regularity condition that
is presented here, namely the semi-stability and hemi-stability of the sought solu-
tion, and so provides the strongest local convergence result of the functional inclusion
problem pPfiq known so far. The results presented in this section are essentially those
in [19]. For an analysis of the local convergence of the inexact JN algorithm, in which
the recurrence formula (4.12) is solved inexactly, we refer the reader to [75]; many
algorithms enter that framework, like the stabilized version of SQP and the linearly
constrained augmented Lagrangian methods. Josephy has also given a Kantorovich-
like existence result based on the iterations (4.12) in [79] and a quasi-Newton analysis
of the algorithm in [80]. Analyzes of the inexact version of the Josephy-Newton algo-
rithm have been undergone in [75, 45].
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Exercises

4.1.1. Explicit variational problem. Let E be a Euclidean space, X be a (not necessarily
convex) subset of E, and F : E Ñ E be a smooth map. Consider the variational
problem

pPvq F pxq ` NXpxq Q 0,

where NXpxq is the normal cone to X at x. Suppose that F is another Euclidean
space and that X has actually the following form

X :“ tx P E : cpxq P Gu,

in which c : E Ñ F is a smooth function and G is a closed convex set of F. Show
that if x˚ is a solution to pPvq satisfying

0 P inttcpx˚q ` c
1px˚qE ´ Gu,

then, there exists λ˚ in the normal cone to G at cpx˚q such that

F px˚q ` c
1px˚q˚

λ˚ “ 0.

4.1.2. Equation formulation of a variational inequality problem. Show that x P E is a
solution to the variational inequality problem (4.3) if and only if x solves (4.4).

4.1.3. Normal map reformulations.

1q Variational inequality problem [123]. Show that x P E solves the variational in-
equality problem pPviq in (4.3) if and only if x “ PCpzq where z P E solves

F pPCpzqq ` z ´ PCpzq “ 0. (4.36)

2q Complementarity problem. Show that x P E solves the complementarity problem
pPcq in (4.6) if and only if there is a z P E such that px, zq solves

F pxq “ PKpzq and Gpxq “ ´PK´ pzq. (4.37)

4.1.4. JN algorithm for a complementarity problem. Let E and F be two Euclidean
spaces, K be a nonempty closed convex cone of F, K` its positive dual, and F

and G : E Ñ F be two differentiable functions. Consider the complementarity prob-
lem

K Q Gpxq K F pxq P K
`
. (4.38)

Show that the algorithm that computes the next iterate xk`1 from the current one xk

by solving the linear complementarity problem in x

K Q
´

Gpxkq ` G
1pxkqpx ´ xkq

¯

K
´

F pxkq ` F
1pxkqpx ´ xkq

¯

P K
`
, (4.39)

is the JN algorithm on a certain functional inclusion problem like (4.1), in which
the multifunction N is the normal cone map to a convex cone; which one?
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4.2 B-Newton Method for Systems of Equations N

4.3 Linearization method for PC
1 functions N

4.4 Semismooth Newton Method for nonlinear systems

Let E and F be two finite dimensional vector spaces. In this section, we present a
linearization algorithm for solving a nonlinear system of equations of the form

F pxq “ 0, (4.40)

where F : Ω Ñ F is a nonsmooth function defined on an open set Ω Ď E. The
nonsmoothness means here that F is differentiable, but in a weaker sense than that
of Fréchet. We shall see that a fast (superlinear or quadratic) local convergence can
be obtained if F is semismooth, a concept presented in section 4.4.3.

Section 4.4.1 presents some examples where such nonsmooth systems occur. It
also discuss an example of function F showing that the Lipschitz continuity of F is
not a sufficiently strong assumption for guaranteeing the convergence of the Newton
algorithm, since this one may then cycle whatever the solution proximity of the initial
iterate can be. A first guess of an appropriate smoothness assumption ensuring the
local convergence of a Newton-like algorithm is also presented. Section 4.4.3 defines the
concept of semismoothness and gives some of its main properties. A remarkable one
is that it is transmissible to the minimum or maximum of two semismooth functions,
which makes the concept widespread. The semismooth Newton algorithm is set out
in section 4.4.4 and its local convergence is analyzed.

Prerequisite: generalized differentiability (section 4.4.2).

4.4.1 Motivation, Orientation, Examples

Let us start by giving some examples of problems that can be reformulated as nons-
mooth systems of equations.

Examples 4.13 1q Reformulation of a complementarity problem. Consider the com-
plementarity problem (4.6), in which F “ Rn, K “ Rn

`, and F and G are re-
named A and B, to avoid confusion with the function F introduced above:

0 ď Apxq K Bpxq ě 0. (4.41)

In this system, A and B : E Ñ Rn are two functions defined on a vector space E.
This problem means that one seeks a point x P E such that Apxq ě 0, Bpxq ě 0,
and ApxqTBpxq “ 0 (or equivalently AipxqBipxq “ 0 for all i P r1 :ns, which
highlights the combinatorial aspect of the problem). Such a problem can be written
in the form of a nonsmooth equation, thanks to a C-function. A C-function (C for
complementarity) is a function ϕ : R2 Ñ R such that

ϕpa, bq “ 0 ðñ a ě 0, b ě 0, ab “ 0.
a

b

(4.42)



4.4. Semismooth Newton Method for nonlinear systems 115

Hence ϕpa, bq “ 0 expresses the complementarity of the two scalars a and b. The
most frequently encountered C-functions are the C-function “min” and the Fischer
C-function.

The min C-function is defined by

ϕpa, bq “ minpa, bq. (4.43)

It is easy to verify that (4.42) holds for this function. The min function is
concave (minimum of two linear functions) and nondifferentiable at points pa, bq
verifying a “ b.

The Fischer C-function is defined by

ϕpa, bq “
a

a2 ` b2 ´ pa` bq. (4.44)

It is also easy to verify that (4.42) holds for this function. This function is
convex (it is the ℓ2 norm of pa, bq minus a linear function) and differentiable
everywhere except at p0, 0q.

With a C-function ϕ, the complementarity problem (4.41) can be written like the
nonsmooth equation

F pxq ”

¨

˚

˝

ϕpA1pxq, B1pxqq
...

ϕpAnpxq, Bnpxqq

˛

‹

‚
“ 0.

2q Reformulation of a variational inequality problem. The variational inequality prob-
lem (4.3), written here Φpxq ` NCpxq Q 0, where NC is the multifunction “normal
cone to the nonempty closed convex set C”, can be rewritten like a nonsmooth
equation F pxq “ 0 by observing that ´Φpxq P NCpxq if and only if the projection
of x´ Φpxq on C is x [47]. Then, it suffices to define F : E Ñ E at x P E by

F pxq :“ x´ PCpx ´ Φpxqq,

where PC is the orthogonal projector on C. Note that the boundary of C must
have some smoothness to make this approach work (recall remark 1.12).

Another way of reformulating a variational inequality problem as a nonsmooth
equation is to introduce an equation characterizing the point z :“ x´Φpxq instead
of x. This point of view is examined in the exercise 4.1.3.

Below, we consider the generalization of the Newton algorithm for solving the
nonsmooth equation (4.40) that reads locally

xk`1 :“ xk ´ J´1
k F pxkq, (4.45)
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where Jk P LpE,Fq is a nonsingular element of the Clarke differential BCF pxkq. The
target we fix ourselves is very ambitious, since the iteration (4.45) only requires the
solution to a linear system, which is much less expensive than the JN algorithm,
whose iteration is potentially nonlinear. We shall see that one can take assumptions
on F , often verified, such that locally this algorithm generates sequences that converge
superlinearly or quadratically to a “regular” zero of F . Therefore, one recovers the two
conditions that are required for ensuring the convergence of the Newton algorithm:
a certain smoothness of F and the regularity of the sought zero, in a sense that still
needs to be clarified.

Let us start by observing that, without an adequate smoothness assumption on F ,
the proposed generalization (4.45) of Newton’s method is doomed for failure, even
though the iterates only visit points of differentiability of F , with nonsingular Jaco-
bians. This is what is shown in the next example.

Counter-example 4.14 (nonconvergence of the Newton algorithm for a
nonsmooth equation [88]) We construct a funcion F : r´1, 1s Ď R Ñ r´1, 1s Ď R,
by repeating indefinitely a pattern that is scaled in proportion to its proximity to
the unique zero x˚ “ 0 of the function. The pattern is designed in order to force the
Newton method to make a cycle, which can be arbitrary close to the zero (the graph
of the function is given on the right-hand side of figure 4.1).

fn

gn

1

n
1

n´1

1

n

1

n´1

mnm2n

´mn

Fig. 4.1. Kummer’s function [88], for which the Newton method makes cycles, as close as
desired to its unique zero x˚ “ 0. The function is constructed by repeating the pattern on
the left-hand side, scaling it in proportion to its proximity to the zero.

Here is how this function is constructed. The function is defined on r´1, 1s, is
continuous and odd (meaning that F p´xq “ ´F pxq for all x P r´1, 1s), so that it
suffices to define it on p0, 1s and to set F p0q “ 0. This is done by means of a function
pattern that is piecewise affine on the intervals r1{n, 1{pn´ 1qs for all integer n ě 2,
takes the value 1{pn´1q at x “ 1{pn´1q and the value 1{n at x “ 1{n (see the graph
of the pattern in the left-hand side of figure 4.1). This pattern is then reproduced and
scaled to define the function on p0, 1s. Let us denote by
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mn :“ 1

2

ˆ

1

n
` 1

n´ 1

˙

“ 2n´ 1

2npn´ 1q

the middle point of the interval r1{n, 1{pn´ 1qs. This point will be a point of a cycle
for Newton’s method, if F is affine near mn with the values

fnpxq “ anpx`mnq, where an “ 1{pn´ 1q
1{pn´ 1q `mn

“ 2n

4n´ 1
.

Indeed, in this case, the iterate that follows mn is ´mn (because fnp´mnq “ 0), itself
followed by mn (by the oddness of the function); hence the Newton algorithm (4.45)
cycles between mn and ´mn. The second affine part of the pattern is the function gn
that must take the value 1{n at x “ 1{n (so that the connexion with the following
pattern is done continuously) and must have a sufficiently large slope bn (so that
its intersection with fn occurs at an abscissa lower than mn (so that the previously
mentioned cycle can still occur). As we shall see, this last condition is satisfied if gn
vanishes at x “ m2n, i.e., if

gnpxq “ bnpx´m2nq, with bn “ 1{n
1{n´m2n

“ 8n´ 4

4n´ 3
.

To check that the slope bn of gn is large enough, it suffices to verify that, for any
integer n ě 2, we have fnpmnq ă gnpmnq, which reads 4n2 ` n´ 1 ą 0, an inequality
that is verified for all positive integers.

The function F so obtained has its graph represented on the right-hand side in
figure 4.1. Its unique zero is x˚ “ 0. It is Lipschitz continuous on r´1, 1s, with the
modulus maxn bn “ b2 “ 12{5. Since, for all x in the interval r1{n, 1{pn´ 1qs, F pxq is
in the same interval, it follows that F pxq{x P rpn´ 1q{n, n{pn´ 1qs and therefore, by
parity, F 1p0q “ 1. The C-differential BCF p0q is the convex hull of the limits of the an
and bn when n Ñ 8, by the definition 4.15, that is r1{2, 2s. This C-differential does
not contain the zero slope. In summary:

F : R Ñ R is Lipschitz continuous and has directional derivatives, (4.46a)

F p0q “ 0, (4.46b)

F 1p0q “ 1, (4.46c)

BCF p0q “ r 1
2
, 2s S 0. (4.46d)

l

What is wrong with the nonsmooth function F in example 4.14? Is there no hope
to get local convergence of the Newton algorithm with a nonsmooth function? An
answer is given by the following expression of the error xk`1 ´ x˚:

xk`1 ´ x˚ “ xk ´ x˚ ´ J´1
k F pxkq r(4.45)s

“ ´J´1
k

“

F pxkq ´ F px˚q ´ Jkpxk ´ x˚q
‰

rF px˚q “ 0s
“ ´J´1

k

“

F px˚ ` hkq ´ F px˚q ´ Jkhk
‰

rhk :“ xk ´ x˚s.

As a result, if tJ´1
k u is bounded and if
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F px˚ ` hkq ´ F px˚q ´ Jkhk “ op}hk}q, (4.47)

the superlinear convergence of the generated sequence is guaranteed. Conversely, if
tJku is bounded and the generated sequence converges superlinearly, then (4.47) holds.
Hence this condition is almost necessary and sufficient to get superlinear convergence.

The condition (4.47) makes no assumption on the way of choosing Jk (only the
boundedness of tJku and tJ´1

k u is assumed in the discussion). In the semismooth
Newton algorithm of section 4.4.4 below, Jk is chosen in BCF pxkq, so that (4.47)
becomes a condition of the generalized differential BCF pxkq “ BCF px˚ ` hkq, not
a condition on BCF px˚q, as an analogy with the Fréchet differentiability condition
“F px˚ `hkq ´F px˚q ´F 1px˚qhk “ op}hk}q” would incline us to do. This small change
is a fundamental aspect of semismoothness, which takes indeed the condition (4.47)
in its definition 4.20. We shall see that this notion of weak differentiability is to be
shared by a large number of functions, so that superlinear convergence of a Newton-
like method is attainable for many nonsmooth systems of equations. This is good news.

Let us come back to the counter-example 4.14 and show that the condition (4.47)
does not hold at x˚ “ 0, which explains a posteriori why the local convergence of the
Newton method cannot be guaranteed for the constructed function. The Jacobians Jk
are the slopes an, whose inverses a´1

n “ 2´1{p2nq form a bounded sequence. Consider
now the condition (4.47). If we take a sequence of points hn P p1{n, ynq, where yn is
the abscissa of the intersection of fn and gn, we have

lim
nÑ8

|F p0 ` hnq ´ F p0q ´ F 1phnq ¨ hn|
|hn| “ lim

nÑ8

|bnphn ´ m2nq ´ bnhn|
hn

ě lim
nÑ8

bnm2n

mn

rhn ď mns
“ 1,

which is nonzero. Taking hn “ mn would have given the limit 1{2. Hence, the condition
(4.47) does not hold.

4.4.2 Generalized Differentiability

Definition

Let E and F be two finite dimensional normed spaces and F : E Ñ F be a function. We
assume that the reader is aware of the notions introduced in sections 1.3.2 and 1.3.4.

Definitions 4.15 (B-differential, C-differential) The B-differential3 of F at x
is the set denoted and defined by

BBF pxq :“ tJ P LpE,Fq : D txku Ď DF such that xk Ñ x, F 1pxkq Ñ Ju.

The C-differential4 of F at x is the convex hull of the B-differential, namely

BCF pxq :“ co BBF pxq. l

3 The “B” of the B-differential is honoring Bouligand [122].
4 The “C” of the C-differential is for Clarke.
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If F : E Ñ F is differentiable near x P E and if F 1 is continuous at x, it is clear that
BBF pxq “ BCF pxq “ tF 1pxqu. But if F is Lipschitz near x and only differentiable at
x, BCF pxq is not necessarily a singleton (Kummer’s function in section 4.4.1, with its
properties (4.46c) and (4.46d), will provide an example of this curiosity); nevertheless,
by taking xk “ x for all k in the definition of BBF pxq, we see that F 1pxq P BBF pxq in
this case.

We refer the reader to the monograph [32] for a detailed study of the C-differential.
Below, we try to say as little as possible, although enough to cover our future needs.
The notion of upper semi-continuous multifunction used below has been introduced
in section 1.3.4.

Proposition 4.16 (compactness and upper semi-continuity) If F : Ω Ñ
F is L-Lipschitz near x P Ω, then

1q BCF pxq is nonempty compact pĎ LB̄q and convex,
2q BCF is upper semi-continuous at x.

Proof. 0) Let us start by showing that }F 1px0q} ď L for all x0 P DF near x. By the
differentiability of F at x0, it follows that F px1q “ F px0q`F 1px0qpx1´x0q`op}x1´x0}q.
Hence, for small ε ą 0, there exists δ ą 0 such that, for x1 P B̄px0, δq, one has
}F 1px0qpx1 ´ x0q} ď }F px1q ´F px0q} ` ε}x1 ´ x0} ď pL` εq}x1 ´ x0}. We deduce from
this that }F 1px0q} ď L` ε, and next that }F 1px0q} ď L since ε ą 0 is arbitrary.

1) The C-differential is convex by construction. Next, it suffices to show that
BBF pxq is nonempty, closed, and in LB̄ (since, according to (1.2), the convex hull of
a compact set is compact).

[BBF pxq ‰ ∅] Since ΩzDF has measure zero, one can find a sequence txku Ď DF

converging to x (otherwise there would exists an ε ą 0 such that x` εB Ď ΩzDF ,
which is in contradiction with the zero measure of ΩzDF ). Since the sequence
tF 1pxkqu is bounded (point 0), one can extract a convergent subsequence. The limit
of this one is therefore in BBF pxq, by definition of this last set.

[BBF pxq is closed] Indeed, if tJku Ď BBF pxq and Jk Ñ J , then, for all ε ą 0,
one can find an index k such that }Jk ´ J} ď ε and a point xk P DF such that
}F 1pxkq ´ Jk} ď ε and }xk ´ x} ď ε. Clearly, when ε Ó 0, the sequence txku so
constructed converges to x and F 1pxkq converges to J . Hence J P BBF pxq.
[BBF pxq Ď LB̄] Any element J P BCF pxq is the limit of operators F 1pxkq with a
norm not exceeding L (point 0). Hence }J} ď L, by the continuity of the norm.

2) It suffices to show that,

@ ε ą 0, D δ ą 0, @x1 P x` δB : BBF px1q Ď BCF pxq ` εB.

Indeed, this last inclusion implies the desired inclusion BCF px1q Ď BCF pxq`εB, since
BCF pxq ` εB is a convex set.

We proceed by contradiction. If the claim is not true, there exists ε ą 0 and
a sequence txku Ď E converging to x and elements Jk P BBF pxkq that are not in
BBF pxq ` εB. Then,

`

Jk ` ε
2
B
˘

X
`

BBF pxq ` ε
2
B
˘

“ ∅.
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The fact that Jk P BBF pxkq implies, by definition, that there is a point x̃k P DF such
that }x̃k ´ xk} ď 1{k and F 1px̃kq P Jk ` ε

2
B. On the other hand, since xk Ñ x, the

sequence tF 1pxkqu is bounded and, by extracting a subsequence if needed, one can
assume that it converges to some J . Then, one would have x̃k Ñ x and F 1px̃kq Ñ J ,
so that J P BBF pxq. But then F 1px̃kq P BBF pxq ` ε

2
B for k large. We have the

contradiction since F 1px̃kq belongs to the two sets Jk ` ε
2
B and BBF pxq ` ε

2
B, which

have been shown to be disjoint. l

Properties

The standard quadratic convergence result of the Newton method to solve the smooth
system F pxq “ 0 requires that the Jacobian F 1px˚q be nonsingular at the sought
root x˚ (this has been recalled in proposition 1.48). When F P C1, this nonsingularity
property is “diffused” to the Jacobians F 1pxq if x is close to x˚ (this is due to the
continuity of F 1 and the fact that the set of nonsingular operators is open), which
makes the Newton algorithm well defined in a neighborhood of a “regular” root of F .
This diffusion property is made precise in the following Banach perturbation lemma,
which is recalled below in the finite dimension setting.

Lemma 4.17 (Banach perturbation lemma) Let E and F be two vector
spaces, A : E Ñ F be a nonsingular linear operator, and B : E Ñ F be an-
other linear operator sufficiently close to A in the sense that }A´1pB ´Aq} ă 1.
Then, B is also nonsingular and

}B´1} ď }A´1}
1´}A´1pB ´Aq} .

In the case of the semismooth Newton algorithm of section 4.4.4, this regularity
assumption becomes the nonsingularity of all the generalized Jacobians in BCF px˚q,
a property that is called C-regularity.

Definitions 4.18 (regular C-differential, C-regular point) The C-differential
BCF pxq is said to be regular if all its jacobians J P BCF pxq are nonsingular. Then,
one also say that the point x is C-regular for F . l

The next proposition shows a property similar to the Banach perturbation lemma,
but for a locally Lipschitz function F : the points close to a C-regular point for F are
also C-regular and a bound on the Jacobians of their C-differential, and their inverse,
can be given.

Proposition 4.19 (C-regularity diffusion) If F : E Ñ F is Lipschitz near a
C-regular point x P E, then, there are constants C ą 0 and δ ą 0 such that any
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point in Bpx, δq is C-regular and

sup
x1PBpx,δq
JPBCF px1q

max
`

}J}, }J´1}
˘

ď C. (4.48)

Proof. 1) Let us first show the bound on }J}. By point 1 of proposition 4.16, we know
that BCF pxq Ď LxB̄, for a constant Lx ě 0 depending on x. We now use the upper
semi-continuity of BCF with the open neighborhood BCF pxq `B of BCF pxq: one can
find ε ą 0 such that, if x1 P Bpx, εq, it follows that BCF px1q Ď BCF pxq ` B. As a
result, for all x1 P Bpx, εq and all J P BCF px1q, we have }J} ď Lx ` 1.

2) Let us now show the bound on }J´1}. Consider first a particular Jacobian J0 P
BCF pxq. This one is nonsingular by the C-regularity of x. By the Banach perturbation
lemma, if }J ´ J0} ď εpJ0q :“ 1{p2}J´1

0 }q, it follows that }J´1
0 pJ ´ J0q} ď 1{2 and

therefore

}J´1} ď }J´1
0 }

1 ´ }J´1
0 pJ ´ J0q}

ď 2}J´1
0 }. (4.49)

Consider now a cover of BCF pxq by the open sets tJ ` εpJqB : J P BCF pxqu.
By the compacity of BCF pxq (point 1 of proposition 4.16), one can extract a finite
sub-cover (Heine-Borel-Lebesgue property): one can find m elements Ji P BCF pxq,
such that the open set

V :“
ď

iPr1 :ms

pJi ` εpJiqBq

covers BCF pxq. Remark that the operators in V have bounded inverses: for all J P V ,
one has

}J´1} ď max
iPr1 :ms

2}J´1
i } “: β. (4.50)

thanks to (4.49). It now suffices to show that BCF px1q Ď V when x1 is close to x. To
this end, one uses the compacity of BCF pxq and the upper semi-continuity of BCF .

By compacity of BCF pxq, one can find an ε ą 0 such that

BCF pxq ` εB Ď V.

Indeed, otherwise, one could find operator sequences tJ 1
ku and tJ2

k u such that J 1
k R V ,

J2
k P BCF pxq, and }J 1

k ´ J2
k } ď 1{k. By compacity BCF pxq, one can extract a subse-

quence of tJ2
ku converging to some J P BCF pxq. Obviously J 1

k Ñ J , so that J 1
k is in

some Ji ` εpJiqB for some i P r1 :ms, and therefore J 1
k P V , which contradicts the

starting assumption.
Finally, by the upper semi-continuity of BCF : one can find a δ ą 0 such that, if

x1 P x ` δB, one has BCF px1q Ď BCF pxq ` εB Ď V , which is what we wanted to
show. l
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4.4.3 Semismoothness N

Definition

Throughout this section, E and F are two normed spaces and Ω be an open set of E.

Definitions 4.20 (semismoothness) Let F : Ω Ñ F be a function and x P Ω.
The function F is said to be semismooth at x if the following three conditions hold:

(SS1) F is Lipschitz near x,
(SS2) F has directional derivatives at x in all directions,
(SS3) when h Ñ 0 in E, one has

sup
JPBCF px`hq

}F px` hq ´ F pxq ´ Jh} “ op}h}q. (4.51a)

The function F is said to be strongly semismooth at x if it is strongly semismooth at
x with (SS3) strengthened into

(SS3’) for h near 0, one has

sup
JPBCF px`hq

}F px` hq ´ F pxq ´ Jh} “ Op}h}2q. (4.51b)

The function F : Ω Ñ F is said to be semismooth (resp. strongly semismooth) on a
part P of Ω if it is semismooth (resp. strongly semismooth) at all points of P . l

Remarks 4.21 1q The local Lipschitz continuity of F at x in (SS1) guarantees that
the Clarke differential BCF is well defined and nonempty near x (point 1 of propo-
sition 4.16), so that its use in (SS3) and (SS3’) makes sense. Property (SS2) is
useful so that the semismoothness enjoys good properties, those given in propo-
sitions 4.23-4.29 below. As announced in the discussion of section 4.4.1, property
(SS3) is the one that ensures the superlinear convergence of the semismooth New-
ton algorithm and property (SS3’) its quadratic convergence (theorem 4.31). We
stress again the fact that, in (SS3) and (SS3’), the Jacobians J are taken in the
C-differential BCF px ` hq and not in BCF pxq, as one could be tempted for mim-
icking the Fréchet differentiability; the motivation of this choice has been given in
section 4.4.1.

2q The differential BCF is not always easy to compute. However, if an overestimate D
of this one is known, in the sense that BCF px1q Ď Dpx1q for all x1 near the point x
of interest, and if (4.51a) or (4.51b) can be verify with BCF replaced by D, the
corresponding smoothness property will hold.

As shown in the next proposition, semismoothness (resp. strong semismoothness)
can be defined by other properties. More precisely, the assumption (SS3) (resp. (SS3’))
can be replace by other assumptions.
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Proposition 4.22 (semismoothness characterizations) Let F : Ω Ñ F

be a function and x P Ω. Suppose that F satisfies (SS1) and (SS2). Then the
following properties are equivalent:

piq F is semismooth (resp. strongly semismooth) at x,
piiq for h Ñ 0, there holds

sup
JPBCF px`hq

}Jh´ F 1px;hq} “ op}h}q presp. “ Op}h}2qq,

piiiq for h Ñ 0 such that x` h P DF , there holds

F 1px` hqh ´ F 1px;hq “ op}h}q presp. “ Op}h}2qq.

Proof. l

Properties

Here are a few useful properties of semismooth functions. There is no need to know
them for proving theorem 4.31 giving the local convergence of the semismooth Newton
algorithm, but they are very useful for recognizing the semismoothness of functions
and therefore for knowing whether the convergence result applies to them.

The first property tells us that sufficiently smooth functions are semismooth, which
is somehow reassuring.

Proposition 4.23 (differentiability and semismoothness) If F : Ω Ñ F

is differentiable near x P Ω and F 1 is continuous at x (resp. radially Lipschitz
at xq, then F is semismooth (resp. strongly semismooth) at x.

Proof. [(SS1)] By the mean value theorem 1.24, for x1 and x2 near x, there holds

}F px2q ´ F px1q} ď
˜

sup
zPpx1,x2q

}F 1pzq}
¸

}x2 ´ x1}.

By the continuity of F 1 at x, the first factor in the right-hand side is as close to
}F 1pxq} as desired, by taking x1 and x2 sufficiently close to x. Le Lipschitz continuity
of F near x follows.

[(SS2)] This property is a consequence of the differentiability of F at x: F 1px;hq “
F 1pxqh.

[(SS3)] By the differentiability of F at x and the continuity of F 1 at x, we get

F px` hq ´ F pxq ´ F 1px` hqh “
`

F 1pxq ´ F 1px` hq
˘

h` op}h}q “ op}h}q.

[(SS3’)] Assume now that F 1 is radially L-Lipschitz at x. By the mean value
corollary 1.25, for h small, there holds
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}F px` hq ´ F pxq ´ F 1px` hqh}

ď
˜

sup
zPpx,x`hq

}F 1pzq ´ F 1px` hq}
¸

}h}

ď L

˜

sup
tPp0,1q

}p1 ´ tqx` tpx` hq ´ px` hq}
¸

}h}

ď L}h}2.

This shows the strong semismoothness of F at x. l

Proposition 4.24 (semismoothness of a convex function) If f : Ω Ñ R

is convex on the open convex set Ω Ď E and if x P Ω, then f is semismooth at x.

Proof. A convex function is Locally Lipschitz on the relative interior of its domain [65],
hence certainly on Ω in our case. It has also directional derivatives at any point of
its domain (but these can have infinite values), which have here finite values since f
takes only finite values on Ω. In addition, BCfpxq is the subdifferential of f at x in
the sense of convex analysis [32; propositions 2.2.6 and 2.2.7]. . . . (for the sequel, see
[100] or the prof of [50; prop. 7.4.5(c)]). l

In the proposition below, F : Ω Ñ F is said to be piecewise semismooth at x P Ω,
if there is a neighborhood V of x and semismooth functions Fi : V Ñ F, for i P I with
finite |I|, such that, for all x1 P V , there is an index i P I such that F px1q “ Fipx1q.

Proposition 4.25 (piecewise semismoothness) If F : Ω Ñ F is piecewise
semismooth at x P Ω, then F is semismooth en x.

The function F is said to be piecewise affine at x if the pieces in the definition of
piecewise semismoothness are affine.

Proposition 4.26 (piecewise affinity) If F : Ω Ñ F is piecewise affine at
x P Ω, then F is strongly semismooth at x.

The semismoothness of a vector-valued function can be deduced from the semis-
moothness of its components.

Proposition 4.27 (componentwise semismoothness) Let F1 : Ω Ñ F1 and
F2 : Ω Ñ F2 be two functions with values in the finite dimensional normed
spaces F1 and F2, and let x P Ω. Then,
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pF1, F2q : x1 P Ω Ñ pF1px1q, F2px1qq P F1 ˆ F2

is semismooth (resp. strongly semismooth) at x if and only if F1 and F2 are
semismooth (resp. strongly semismooth) at x.

Semismoothness is stable by composition.

Proposition 4.28 (semismoothness and composition) If F : Ω Ñ F is
semismooth (resp. strongly semismooth) at x P Ω, if ΩF is a neighborhood of
F pxq in F, and if G : ΩF Ñ G is semismooth (resp. strongly semismooth) at
F pxq, then G ˝ F is semismooth (resp. strongly semismooth) at x.

An important asset of the semismoothness is to be stable with respect to the
minimum or maximum of functions, which is of course not the case for the Fréchet
differentiability! Since many nonsmooth functions can be defined by using these op-
erators, these functions are often semismooth.

Proposition 4.29 (calculus) If F1 : Ω Ñ F and F2 : Ω Ñ F are semismooth
(resp. strongly semismooth) at x, then the following functions are semismooth
(resp. strongly semismooth) at x (for the last two, F “ Rm and the operators
“max” and “min” act componentwise):

F1 ` F2, xF1, F2y, maxpF1, F2q, and minpF1, F2q.

Proof. The semismoothness result for F1 ` F2 can be obtained by viewing this func-
tion as the composition of x ÞÑ pF1pxq, F2pxqq, which is semismooth (resp. strongly
semismooth) by proposition 4.27, and the addition pu, vq ÞÑ u`v, that is linear. Now,
use proposition 4.28 to conclude.

The function xF1, F2y is also a composition of semismooth (resp. strongly semis-
mooth) functions, namely x ÞÑ pF1pxq, F2pxqq like above and the scalar product of F,
which is bilinear, hence C8.

The function maxpF1, F2q (the same reasoning holds for minpF1, F2q) is still the
composition of x ÞÑ pF1pxq, F2pxqq and the function pu, vq P FˆF ÞÑ maxpu, vq which
is piecewise linear, hence strongly semismooth by proposition 4.26. l

Here are a few examples and counter-examples of (strongly) semismooth functions.

Examples 4.30 1q We already know that a norm is semismooth, due to its con-
vexity (proposition 4.24). The ℓp norms are, furthermore, strongly semismooth
(exercise 4.4.1).

2q The “min” and Fischer C-functions, (4.43) and (4.44), are strongly semismooth
(exercise 4.4.2).
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3q The projector on a convex set defined by C2 constraints is strongly semismooth at
a point of the convex set that satisfies (CQ-LI) (exercise ??).

4q For an arbitrary convex set C, the projector PC may not have directional deriva-
tives at a point not belonging to C [86, 128] and is therefore not semismooth at
such a point. This is not good news for solving variational inequality problem using
the reformulation in example 4.13(2). Nevertheless, the situation is more favorable
if C is a polyhedron or has a smooth boundary. Also semismooth-Newton-like
algorithms give excellent results by using some kind of pseudo-generalized Jaco-
bians [93; 2018]. l

4.4.4 The Semismooth Newton Method N

The semismooth Newton algorithm is designed to solve the system (4.40), in which
F : Ω Ñ F is semismooth (section 4.4.3). Locally (i.e., near a solution x˚ to this
system), it consists in generating a sequence txku in the open set Ω Ď E by the
recurrence

xk`1 :“ xk ´ J´1
k F pxkq, (4.52)

where Jk is a nonsingular Jacobian of the Clarke differential BCF pxkq. To be well
defined, it is clear that such a Jacobian must exist in the C-differential of F at the
visited points. But the technique of proof used below requires a little more than that,
namely the boundedness of the sequence of inverses tJ´1

k u and the property (SS3) or
(SS3’) of the semismoothness. In the terms of theorem 4.31 below, the boundedness
of tJ´1

k u is ensured by the regularity of BCF px˚q and proposition 4.19.
It is important to observe that the semismooth Newton method is particularly

computationally sober, since it only requires to solve a linear system per iteration,
like the Newton algorithm for smooth systems, but unlike the JN algorithm for func-
tional inclusions (section 4.1.2) or the SQP algorithm for nonlinear optimization (sec-
tion 5.1), derived from the latter. Now, all these algorithms are not used to solve
similar problems and cannot be globalized with the same ease.

Theorem 4.31 (local convergence of the semismooth Newton algo-
rithm) Suppose that F is semismooth at a C-regular solution x˚ to (4.40).
Then, there exists a neighborhood V of x˚ such that, if the first iterate x1 is in
V , the semismooth Newton algorithm (4.52) is well defined and generates a se-
quence txku in V , which converges superlinearly to x˚ (and quadratically if F is
strongly semismooth at x˚q.

Proof. The regularity of BCF px˚q and proposition 4.19 imply that there exist constants
C1 ą 0 and ε1 ą 0 such that

sup
xPB̄px˚,ε1q
JPBCF pxq

max
`

}J}, }J´1}
˘

ď C1. (4.53)

By the semismoothness property (SS3) of F at x˚, one can find ε P p0, ε1s such that
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}F pxq ´ F px˚q ´ Jpx´ x˚q} ď 1

2C1

}x´ x˚}, (4.54)

when x P B̄px˚, εq and J P BCF pxq.
Suppose now that xk P V :“ B̄px˚, εq. Then the algorithm is well defined at this

point since any Jacobian Jk chosen in BCF pxkq is nonsingular (by ε ď ε1 and (4.53)).
A new iterate xk`1 can therefore be computed by (4.52). One has

xk`1 ´ x˚ “ xk ´ x˚ ´ J´1
k F pxkq “ ´J´1

k

`

F pxkq ´ F px˚q ´ Jkpxk ´ x˚q
˘

,

hence
}xk`1 ´ x˚} ď }J´1

k }
›

›F pxkq ´ F px˚q ´ Jkpxk ´ x˚q
›

›. (4.55)

By (4.53) and (4.54), }xk`1´x˚} ď 1
2

}xk´x˚}, which shows that xk`1 P B̄px˚, εq “ V ,
the wellposedness of the algorithm, and the convergence of the convergence txku to x˚.

Then, the semismoothness implies that F pxkq ´ F px˚q ´ Jkpxk ´ x˚q “ op}xk ´
x˚}q, so that xk`1 ´ x˚ “ op}xk ´ x˚}q by (4.55) and (4.53). This is the superlinear
convergence of txku to x˚.

In case of strong semismoothness, F pxkq ´F px˚q ´ Jkpxk ´ x˚q “ Op}xk ´ x˚}2q,
so that xk`1 ´x˚ “ Op}xk ´x˚}2q by (4.55) and (4.53), showing that the convergence
is quadratic. l

4.4.5 Globalization by linesearch N

It is well known that the Newton direction is a descent direction to the least-squares
merit function. If this surprising local property is not able to ensure global convergence
of the damped Newton iterates to a zero of F , when this one exists, it paves the way to
algorithmic techniques having interesting properties, in particular when trust regions
are used.

This descent property is no longer guaranteed when F is only semismooth. Never-
theless, when the least-squares merit function is smooth, some interesting properties
can be obtained [78; 1999]. We describe this particular case in this section.

Let us start by giving a concrete example of such a situation, which has numerous
applications.

Here is a short review of what has been explored.

Jiang and Ralph [78; 1999] analyze semismooth Newton and Gauss-Newton al-
gorithms, globalized with lineaserch or trust regions on the least-squares merit
function, provided this one is smooth (with application to the nonlinear comple-
mentarity problem).

Ueda and Yamashita [134; 2012] also suppose that the least-squares merit func-
tion is smooth and analyze the complexity of the Levenberg-Morrison-Marquardt
approach for nonsmooth equations (with application to the nonlinear complemen-
tarity problem).

See also [114; 2016] (with application to the nonlinear complementarity problem)
and many other papers.
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4.4.6 Globalization by trust regions N

4.4.7 Examples of use N

Notes

The notion of semismoothness was first introduced by Mifflin [100; 1977] for real-
valued functions and extended to vector-valued functions by Qi and Sun [112, 113;
1993]. Excellent textbooks have been written on the semismooth Newton method; let
us cite [83, 50, 74, 76; 2002-2014].

Exercises

4.4.1. Strong semismoothness of the ℓp-norm. For p P r1,8s, the ℓp-norm } ¨ }p : Rn Ñ R,
defined at x P R

n by

}x}p “
#

`
ř

1ďiďn |xi|p
˘1{p

if 1 ď p ă 8,
max1ďiďn |xi| if p “ 8,

is strongly semismooth.

4.4.2. Strong semismoothness of C-functions. The C-function “min” (4.43) and of Fischer
(4.44) are strongly semismooth.

4.5 Reformulation Methods for Complementarity Problems N

Let E be a Euclidean space, and F : E Ñ Rn and G : E Ñ Rn be two smooth
functions. The (nonlinear) complementarity problem (CP) consists in finding a point
x P E such that

0 ď F pxq K Gpxq ě 0. (4.56)

This system means that x must be such that F pxq ě 0 and Gpxq ě 0, componentwise,
and F pxqTGpxq “ 0. A more general setting is presented in (4.56); here, we limit our
presentation to the case where the functions F and G take their values in Rn and
the cone K of Rn is its nonnegative orthant Rn

` (recall that Rn
` is self-dual, meaning

that its positive dual cone pRn
`q` is Rn

`). Less or more recent states of the art on the
analysis of complementarity problems and numerical methods to solve them can be
found in [103, 73, 107, 50, 39, 40, 76].

Occasionally, we shall make reference to the linear complementarity problem (LCP)
in its standard form, which reads

0 ď x K pMx` qq ě 0, (4.57)

where its unknown is x P R
n, while q P R

n and M P R
nˆn are its data. It corresponds

to the nonlinear complementarity problem (4.56) with F : x ÞÑ Mx` q is affine and
G : x ÞÑ x is the identity operator.

A major difficulty of problem (4.56) (and (4.57)) comes from its combinatorial as-
pect. Since both F pxq and Gpxq must have nonnegative components, the orthogonality
conditions F pxqTGpxq “ 0 is equivalent to the n identities
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@ i P r1 :ns : FipxqGipxq “ 0. (4.58)

There are 2n possibilities to realize (4.58), by forcing, for each i P r1 :ns, either Fipxq of
Gipxq to vanish. This fact yields much difficulty to the algorithms to find a solution.
For instance, even when the functions F and G are affine like in (4.57), finding a
solution is NP-hard [31, 84; 1989-1991].

Since at a solution x̄ to (4.56), either F px̄q “ Gpx̄q “ 0, or 0 “ F px̄q ă Gpx̄q, or
F px̄q ą Gpx̄q “ 0, it is natural to introduce the following index sets:

Epxq :“ ti P r1 :ns : Fipxq “ Gipxqu,
Fpxq :“ ti P r1 :ns : Fipxq ă Gipxqu,
Gpxq :“ ti P r1 :ns : Fipxq ą Gipxqu.

(4.59)

Obviously, these form a partition of r1 :ns.
The decomposition of the orthogonality condition F pxqTGpxq “ 0 into the n com-

plementarity conditions (4.58) also shows that these count for n equations. Indeed, if
the index sets Epx̄q, Fpx̄q, and Gpx̄q at a solution x̄ of (4.56) were known, this solution
would also satisfy the following system of n equations

"

Fipxq “ 0 if i P F̃px̄q,
Gipxq “ 0 if i P G̃px̄q,

where the pair pF̃px̄q, G̃px̄qq forms a partition of r1 :ns and satisfies F̃px̄q Ě Fpx̄q and
G̃px̄q Ě Gpx̄q, together with the implicit constrains F pxq ě 0 and Gpxq ě 0. Therefore,
the system (4.56) has more chance to be well-posed if dimE “ n. It is often the case
that the complementarity system (4.56) is completed by equality constraints; the
system is then called a mixed complementarity problem; if there is m such equalities,
it is natural to have dimE “ n`m.

Complementarity conditions arise spontaneously in the first order optimality con-
ditions of an optimization problem with inequality constraints and these conditions
can be written like the system (4.56); see (1.58c) in the KKT system or, more gen-
erally, (??).. The complementarity system (4.56) is also often used to model in part
problems in which several systems of equations are, to some extend, in competition.
The one that is active in a given place and at a given time, corresponding to a com-
mon index of F pxq and Gpxq, depends on threshold effects; if the threshold Fipxq “ 0

is not reached, i.e., Fipxq ą 0, then the equation Gipxq “ 0 is active, and vice versa.
Examples include problems in nonsmooth mechanics and dynamics [1, 25], the phase
transition problem in multiphase flows [98, 99, 12, 41, 9, 27, 10, 11], precipitation-
dissolution problems in chemistry [26, 85], portfolio management in finance [58], com-
puter graphics [48], meteorology simulation, economic equilibrium, to mention a few.
Surveys on examples of applications of the complementarity problem can be found in
[63, 73, 107, 52, 50].

Many techniques have been proposed to solve (4.56) since the problem was in-
troduced by Cottle in his PhD thesis, dated 1964 [36, 37]. It is out of the scope of
this section to review all of them and we refer instead the interested reader to the
monographs [50, 76]. Below, we limit our account to the algorithms using the two
most often encountered reformulation of (4.56) in the form of a nonsmooth equa-
tion. The reformulation by the Fischer function is examined in section 4.5.1 and the
reformulation using the minimum function is considered in sections 4.5.2 and 4.5.2.



130 4. A Few Methods for Nonsmooth Systems

4.5.1 Fischer-Newton Algorithm

The Fischer C-Function

In this section, we consider the reformulation based on the Fischer [54] C-function
ϕf : R2 Ñ R, defined at pa, bq P R2 by

ϕfpa, bq “
a

a2 ` b2 ´ pa ` bq. a

b

(4.60)

This is indeed a C-function since, for two real numbers a and b, ϕfpa, bq “ 0 if and
only if a ě 0, b ě 0, and ab “ 0. This function is convex (it is the Euclidean norm plus
a linear function) and is C8, except at pa, bq “ p0, 0q where it is non differentiable.
The function is strongly semismooth however (exercise 4.4.2).

The equation reformulation of (4.56) using ϕf reads

Φfpxq “ 0, (4.61a)

where Φf : Rn Ñ Rn is defined at x by

Φfpxq “ ϕfpF pxq, Gpxqq, (4.61b)

where ϕf acts componentwise. A natural merit function associated with the reformu-
lation (4.61) is the least-square function θf : Rn Ñ R, defined at x P Rn by

θfpxq “ 1

2
}Φfpxq}2,

where } ¨ } denotes the Euclidean norm.
We have the following smoothness result.

Proposition 4.32 (smoothness of the Fischer reformulation) If F and G
are C1,1, then Φf is locally Lipschitz and θf is C1,1.

Proof. See [51, 30]. l

Globalization

A function F : E Ñ E is called a uniform P-function [29] if there is an α ą 0 such
that for all x, y P E:

max
iPr1 :ns

pyi ´ xiqpFipyq ´ Fipxqq ě α}y ´ x}2.
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Proposition 4.33 (smoothness of the Fischer reformulation) Suppose F :

Rn Ñ Rn is a C1 uniform P-function. Then, for any x P Rn and any J P BΦfpxq,
J is nonsingular.

Proof. See [77; 1997, proposition 3.2]. l

4.5.2 Newton-Min Algorithm

The Minimum C-Function

In this section, we consider the reformulation based on the Minimum C-function
ϕmin : R2 Ñ R, defined at pa, bq P R2 by

ϕminpa, bq “ minpa, bq. a

b

(4.62)

This is indeed a C-function since, for two real numbers a and b, ϕminpa, bq “ 0 if and
only if a ě 0, b ě 0, and ab “ 0. This function is concave (minimum of two linear
functions) and strongly semismooth (exercise 4.4.2).

Plain Newton-Min algorithm

Polyhedral Newton-Min Algorithm

Notes

There are many other C-functions than those used in sections 4.5.1 and 4.5.2 that
have been proposed in the literature. Tseng [133] studies the C-function obtained by
replacing the ℓ2 norm of pa, bq in the Fischer Function by its ℓp norm.





5 A Few Methods for Optimization

5.1 SQP Algorithm for pPEIq

In this section, we apply the Josephy-Newton (JN) algorithm of section 4.1.2 to the
equality and inequality constrained optimization problem pPEIq, more precisely to
the system formed by its first order optimality conditions. As already observed in
section 4.1.1, this optimality system can indeed be written as a complementarity
problem, which is a special case of function inclusion. This approach yields an algo-
rithm named SQP for Sequential Quadratic Programming, which is one of the most
often used algorithm to solve problem pPEIq, when derivatives are available.

In addition to give a consistent and illuminating way of introducing the SQP
algorithm, this approach is also fruitful. In particular, it offers to possibility to get
the conditions of local convergence inherited from those ensuring the local convergence
of the JN algorithm (theorem 4.12), which were not known before this technique was
introduced in [19; 1994].

For the reader’s convenience, we recall the form of the optimization problem pPEIq:

pPEIq

$

&

%

min fpxq
cipxq “ 0, i P E
cipxq ď 0, i P I.

In this setting, the vector x to optimize lies in a Euclidean vector space E and the
functions f : E Ñ R and ci : E Ñ R defining the objective and the constraints are
supposed smooth. The index sets E and I form a partition of r1 :ms: E Y I “ r1 :ms
and E X I “ ∅.

Here are some more notation. We denote by c : E Ñ Rm the function whose ith
component is ci. The cardinality of E and I are denoted by mE :“ |E| and mI :“ |I|,
so that m “ mE `mI . If v P Rm, we denote by vE (resp. vI) the vector of RmE (resp.
RmI ) formed of the components vi of v with index i P E (resp. i P I). Applying this
to c, cE : E Ñ RmE (resp. cI : E Ñ RmI ) is now the constraint function defining the
equality (resp. inequality) constraints. To a vector v P Rm, we associate the vector
v# P Rm, defined by

pv#qi “
"

vi if i P E
v`
i if i P I,

where v`
i “ maxp0, viq. With this notation, the constraints of pPEIq read cpxq# “

0, whose interest lies in its compactness (note indeed that x ÞÑ cpxq# is usually
nonsmooth, so that the difficulty associated with the inequality constraints has been
transferred to the difficulty coming from nonsmoothness).

133
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5.1.1 The SQP Algorithm

Figure 5.1 below gives a flowchart that can allow the reader to see schematically the

Function
linearization

pPEIq (KKT)
(5.1)

(KKT) as a FIP
(5.2a)

Hybrid
quadratization

Josephy-
Newton

(KKT’) as a FIP
(5.4a)

(KKT) as a CP
(5.2b)

(KKT’) as a CP
(5.4b)

(KKT’)
(5.7)

(OQP)
(5.9)

Function
linearization

Fig. 5.1. Flowchart of the systems encountered in section 5.1.1.

links between all the systems encountered in this section, which lead to the definition
of the SQP algorithm and its osculating quadratic problem (OQP). The meaning of its
blocs, which refer to formulas not already encountered, will be revealed progressively
throughout the section. A simple horizontal arrow indicates an implication between
the systems; a double horizontal arrow means an equivalence. The labels of the vertical
arrows indicate the type of transformation used to go from the upper box to the lower
one. Even though we do not have all the elements at hand to understand this diagram,
we can already outline it.

1. Most presentations of the SQP algorithm confine themselves to the leftmost two
blocs, hence viewing the osculating quadratic problem (OQP) defined below as a
kind of hybrid quadratization of pPEIq.

2. When, one goes through the first order optimality conditions, the (KKT) bloc
in the flowchart, one gets the first order optimality conditions (KKT’) of the
OQP by a pseudo-linearization, which linearizes the functions in the KKT system,
while keeping its structure. This is probably the fastest and meaningful way of
presenting the SQP algorithm and its osculating quadratic problem.

3. It makes even more sense, and this is what we do below, to view the KKT system
as the functional inclusion problem (5.2a), denoted FIP in the flowchart, and apply
the JN linearization to it. Then, one gets (5.4a), which is actually a functional
inclusion expression of (KKT’).

4. The approach made in point 3 on the functional inclusion form (5.2a) of (KKT),
can also be done on its complementarity form (5.2b). The linearization of the
functions appearing in the latter yields (5.4b), which is the complementarity form
of (KKT’).

We now expound the approach described schematically in the points 3 and 4 afore-
mentioned, with more precision.

Like Newton’s method for solving an unconstrained optimization method, the
SQP algorithm for solving pPEIq focuses on the solutions to the first order optimality
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conditions of the problem or its KKT system (1.58), which we recall below for the
reader’s convenience. It is the following system in px, λq P E ˆ Rm:

(KKT)

$

&

%

∇fpxq ` c1pxq˚λ “ 0

cEpxq “ 0

0 ď λI K ´cIpxq ě 0.

(5.1)

With the inequality ´cIpxq ě 0, the last complementarity condition is written slightly
differently than in (1.58), since for the sequel we would like to have λI and ´cIpxq to
belong to dual cones (actually to R

mI

` , which is self-dual in the sense that pRmI

` q` “
R

mI

` ). A pair px, λq solution to this system is called a primal-dual solution and the
primal solution x is also sometimes called a stationary point.

We have seen in section 4.1.1, and this is a fundamental observation, that this
system reads like the following functional inclusion or complementarity problem in
z :“ px, λq:

F pzq ` NK` pzq Q 0, (5.2a)

K` Q z K F pzq P K, (5.2b)

where

F pzq “
ˆ

∇fpxq ` c1pxq˚λ

´cpxq

˙

and K “ t0Eu ˆ pt0mE

R
u ˆ R

mI

` q. (5.3)

Because of the importance of this equivalence for this section, let us check it again.
Since K` “ E ˆ pRmE ˆ R

mI

` q, we have that

px, λq P K` reads λI ě 0,
F px, λq P K reads ∇xℓpx, λq “ 0, cEpxq “ 0, and cIpxq ď 0,
px, λq K F px, λq amounts then to the complementarity expression λI K cIpxq.

Hence, one recovers indeed (5.1).
The pure JN algorithm (4.11), that is with Mk “ F 1pxkq, applied to the functional

inclusion (5.2a) or to the complementarity problem in (5.2b) leads to determine the
next iterate zk`1 :“ pxk`1, λk`1q from the current one zk :“ pxk, λkq by solving
in z :“ px, λq the following linearized functional inclusion problem or its equivalent
linearized complementarity problem:

F pzkq ` F 1pzkqpz ´ zkq ` NK` pzq Q 0, (5.4a)

K` Q z K
`

F pzkq ` F 1pzkqpz ´ zkq
˘

P K. (5.4b)

Let us see the form of this algorithm when pF,Kq is given by (5.3). Observe that

F 1pzq “
ˆ

Lpx, λq c1pxq˚

´c1pxq 0

˙

, (5.5)

where we simplified the notation by introducing

Lpx, λq :“ ∇2
xxℓpx, λq.

Consider (5.4b).
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The condition z P K` reads like above

λI ě 0. (5.6a)

The condition F pzkq ` F 1pzkqpz ´ zkq P K means

∇xℓpxk, λq ` Lpxk, λkqpx ´ xkq ` c1pxkq˚pλ ´ λkq “ 0, (5.6b)

cEpxkq ` c1
Epxkqpx´ xkq “ 0, (5.6c)

cIpxkq ` c1
Ipxkqpx´ xkq ď 0. (5.6d)

Finally, the orthogonality relation z K pF pzkq`F 1pzkqpz´zkqq can be expressed by

λI K rcIpxkq ` c1
Ipxkqpx´ xkqs. (5.6e)

Gathering the conditions in (5.6) yields the system

(KKT’)

$

&

%

∇xℓpxk, λkq ` Lpxk, λkqpx´ xkq ` c1pxkq˚pλ´ λkq “ 0,

cEpxkq ` c1
Epxkqpx ´ xkq “ 0,

0 ď λI K rcIpxkq ` c1
Ipxkqpx´ xkqs ď 0.

(5.7)

We could obtain the same system from the KKT system (5.1) by linearizing its func-
tions and keeping its structure, made of the equalities, inequalities and perpendicu-
larity operator.

Solving (KKT’) is not an easy task: this system is not a classic problem that can be
solved by the usual pieces of software; in addition, the original optimization nature of
problem pPEIq looks lost in this formulation. This latter observation is in appearance
only, since the fact that the system (KKT’) comes from the linearization of a KKT
system, it is also a KKT system, but now of a quadratic optimization problem. Let us
see this. Note first that it is not the I-component of the multiplier pλ´λkq appearing
in the first equation of (5.7) that must be nonnegative, but λI , as imposed by the
last condition in (5.7). This is problematic when one tries to see (5.7) as a KKT
system. But there is cure to that difficulty, which consists in eliminating λk from the
first equation of (5.7) (it appears twice in terms that cancel each other). The system
becomes

$

&

%

∇fpxkq ` Lpxk, λkqpx ´ xkq ` c1pxkq˚λ “ 0,

cEpxkq ` c1
Epxkqpx´ xkq “ 0,

0 ď λI K rcIpxkq ` c1
Ipxkqpx ´ xkqs ď 0.

(5.8)

Now, it is not difficult to observe that (5.8) is formed of the first order optimality
conditions of the following quadratic optimization problem

$

&

%

minx x∇fpxkq, px ´ xkqy ` 1
2

xLpxk, λkqpx ´ xkq, px´ xkqy
cEpxkq ` c1

Epxkqpx ´ xkq “ 0

cIpxkq ` c1
Ipxkqpx ´ xkq ď 0.

Note that the multiplier associated with the linearized constraints is the sought dual
solution λ to this problem, not the increment λ´ λk. For the sequel, it is convenient
to set d “ x ´ xk, so that the previous quadratic problem can also be written as a
quadratic problem in d P E:
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(OQP)k

$

&

%

mind x∇fpxkq, dy ` 1
2

x∇2
xxℓpxk, λkqd, dy

cEpxkq ` c1
Epxkqd “ 0

cIpxkq ` c1
Ipxkqd ď 0.

(5.9)

This problem is called the osculating quadratic problem of pPEIq at pxk, λkq. Its ob-
jective has a hybrid nature, since the linear term is formed with the gradient of the
objective of pPEIq, while the quadratic term is formed with the Hessian of the La-
grangian of the problem.

One can now specify the local SQP iteration, local means here without globalization
technique like those of sections 5.1.4 and 5.1.5.

Algorithm 5.1 (local SQP) One iteration, from pxk, λkq P E ˆ R
m to

pxk`1, λk`1q is made of the following steps:

1. Stopping test : if the current pair pxk, λkq is satisfactory, stop;
2. QP solve: let pdk, λk`1q be an appropriate primal-dual solution to the oscu-

lating quadratic problem (5.9), if any;
3. New iterate: set xk`1 :“ xk ` dk and λk`1 :“ λk`1.

This algorithm deserves some remarks.

Remarks 5.2 1q The SQP algorithm decomposes the computation of a solution to
pPEIq in a sequence of osculating quadratic optimization problems (5.9), easier to
solve than pPEIq. Therefore, the combinatorial aspect of problem pPEIq (liked to
the determination of the active inequality constraints), is transferred to the OQP,
where it is still serious, but less than in the nonlinear problem pPEIq.

2q The computationally expensive part of the SQP algorithm is the computation of
the solution to the osculation quadratic problem (OQS), which can be much more
comptation time consuming than a linear system. Therefore, we are in the class
of algorithms with an expensive iteration; this is expected since we have seen that
the SQP algorithm is derived from the JN algorithm, which has that property.

3q The OQP is still computationally expensive to solve:

if Lk |ě 0, then the OQP is NP-hard,
if Lk ě 0, then the OQP can be solved in polynomial time (by an interior point
method, but this is not necessarily the best approach).

For this reason, many implementations approach the Hessian of the Lagrangian Lk

by a positive definite matrix (using a quasi-Newton technique for example), see
also section 5.1.4.

4q We shall see in section 5.1.2 that algorithm 5.1 enjoys a local rapid convergence: it
is quadratic if f and c are sufficiently smooth (of class C2,1). This means that, once
an iterate is close to a “regular solution” (a notion that will be clarify in the next
section), the convergence to that solution is very fast (less than 5 or 10 iterations,
to give a number), whatever the dimension of the problem is. Furthermore, the
algorithm provides a very accurate approximation to the solution. Nothing is done,
however, in algorithm 5.1 to ensure the convergence if the itnitial iterate px1, λ1q is
not close to a regular solution. This subject is considered in sections 5.1.4 and 5.1.5.
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5q The phrase “if any” in step 2 of the algorithm hides a lot of difficulties that a fully
developed piece of software must overcome. Let us mention the three main ones.

It may occur that the linearized constraints of the OQP are not compatible,
even if problem pPEIq is feasible. For example, assume that in pPEIq, n “ 1,
mE “ 0, and mI “ 2, with the constraints

x ě 0 and logpx` 1q ď 1,

which is a complicated way of requiring to have x P r0, 9s. The linearization of
these compatible constraints at x “ 99 reads “x ě 0 and 2 ` px´ 99q{100 ď 1”
or “x ě 0 and x ď ´1”, which are not compatible.

It may occur that the OQP is feasible but unbounded (its optimal value is ´8).

If none of the previous situations occur, the OQS has a solution (like in linear
optimization, since one can show that a possibly nonconvex quadratic optimiza-
tion problem with a real optimal value has a solution [56; 1956, appendix (i)]).
Nevertheless, it may have undesirable solutions. Here is an example. Consider
the following problem in x P R:

"

minx logpx` 1q
0 ď x ď 3.

Its solution is x˚ “ 0 and there is a unique associated multiplier λ˚ “ p1, 0q.
The OQP at px˚, λ˚q reads

"

mind d ´ 1
2
d2

0 ď d ď 3.

This problem has three stationary points: 0, which is a local minimum, 1, which
a global maximum, and 3, which is a global minimum. Clearly, only the first
one is satisfactory (at a solution to a problem any sensible algorithm should
provide a zero displacement).

5.1.2 Local Convergence

Definition 5.3 A stationary pair z˚ :“ px˚, λ˚q of pPEIq is said to be semi-stable
(resp. hemi-stable) if z˚ is a semi-stable (resp. hemi-stable) solution to the functional
inclusion (5.2a) with F and K given by (5.3).

If px˚, λ˚q verifies the KKT conditions, it follows that

F px˚, λ˚q “

¨

˝

0E
0RmE

´cIpx˚q

˛

‚, (5.10)

F px˚, λ˚q ` F 1px˚, λ˚qpd, µq “

¨

˝

L˚d ` c1px˚q˚µ

´c1
Epx˚qd

´cIpx˚q ´ c1
Ipx˚qd

˛

‚. (5.11)

where we have used (5.5) and set L˚ :“ Lpx˚, λ˚q :“ ∇2
xxℓpx˚, λ˚q. The condition

F px˚, λ˚q ` F 1px˚, λ˚qpd, µq ` NK` px˚, λ˚q Q 0 reads
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L˚d` c1px˚q˚µ “ 0,

c1
EYI

0`

˚

px˚qd “ 0, c1
I00

˚

px˚qd ď 0, cI„
˚

px˚q ` c1
I„

˚
px˚qd ď 0.

Proposition 5.4 (semi-stability of a local minimum) If x˚ is a local min-
imum of pPEIq and λ˚ is an associated optimal multiplier, then the following
properties are equivalent:

piq px˚, λ˚q is semi-stable,
piiq λ˚ is the unique optimal multiplier associated with x˚ and the second order

sufficient conditions of optimality hold: xL˚d, dy ą 0, for all d P C˚zt0u.

Proof. 1) We take advantage of the equivalence piq ô piiiq of proposition 4.7 to
get another expression of the semi-stability of px˚, λ˚q, hence another expression of
point piq in the present proposition. To this end, we introduce

pd, µq :“ z ´ z˚ “ px´ x˚, λ´ λ˚q

and we observe that, with F defined in (5.3), with (5.10) and (5.11), one has

xF 1px˚, λ˚qpd, µq, pd, µqy “ xL˚d, dy,
xF px˚, λ˚q, pd, µqy “ 0 ðñ µI„

˚
“ 0.

By the equivalence piq ô piiiq of proposition 4.7, the semi-stability of px˚, λ˚q is
equivalent to

one has xL˚d, dy ą 0 for all pd, µq P E ˆ Rm such that (5.12a)

pd, µq ‰ 0, (5.12b)

pλ˚ ` µqI0
˚

ě 0, µI„
˚

“ 0, (5.12c)

L˚d ` c1
EYI0

˚

px˚q˚µEYI0
˚

“ 0, (5.12d)

d P C˚, and cI„
˚

px˚q ` c1
I„

˚
px˚qd ď 0. (5.12e)

where C˚ :“ td P E : c1
EYI

0`

˚

px˚qd “ 0, c1
I00

˚

px˚qd ď 0u is the critical cone.

2) [piq ñ piiq] Since px˚, λ˚q is semi-stable, it is an isolated solution to the opti-
mality system (1.58) (proposition 4.4). Since the set of optimal multipliers associated
with x˚ is convex (it is a convex polyhedron), this one must be a singleton, which
proves the first part of piiq.

The set of optimal multipliers associated with x˚ being bounded (it is a single-
ton), the constraint qualification condition (CQ-MF) holds (see proposition 2.22 and
exercise 2.1.4). Therefore, by the second order necessary conditions of optimality (the-
orem 2.37), xL˚d, dy ě 0 for all critical directions d P C˚. To show that the second
order sufficient conditions of optimality also holds, we proceed by contradiction, as-
suming that there is a nonzero direction d1 P C˚ such that xL˚d1, d1y “ 0. Then, this
direction d1 is a solution to the quadratic problem

$

’

&

’

%

min xL˚d, dy
c1
EYI

0`

˚

px˚qd “ 0

c1
I00

˚

px˚qd ď 0,
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whose constraints define critical directions. Since (CQ-A) holds for this problem, its
optimality conditions ensure the existence of a multiplier µ1 P Rm such that

pµ1qI„
˚

“ 0,

L˚d1 ` c1px˚q˚µ1 “ 0,

c1
EYI

0`

˚

px˚qd1 “ 0,

0 ď pµ1qI00
˚

K c1
I00

˚

px˚qd1 ď 0.

Then pd, µq “ tpd1, µ1q, for t ą 0 sufficiently small, verifies (5.12b)-(5.12e) but not
the conclusion xL˚d, dy ą 0 in (5.12a). This contradiction shows that SC2 is verified.

3) [piq ð piiq] To show the semi-stability of px˚, λ˚q, we show that (5.12) holds. Let
pd, µq verifying (5.12b)-(5.12e). It suffices to show that d ‰ 0, since then d P C˚zt0u
and the conclusion xL˚d, dy ą 0 in (5.12a) follows from the SC2 that is assumed
in piiq. We proceed again by contradiction, assuming that d “ 0. Then µ ‰ 0 by
(5.12b) and it is plain to see by (5.12c)-(5.12d) that λ˚ ` µ would then be another
optimal multiplier associated with x˚, which would contradict the uniqueness of the
optimal multiplier, assumed in piiq. l

Proposition 5.5 (sufficient condition of hemi-stability) If x˚ is a local
minimum of pPEIq, with an associate multiplier λ˚ such that px˚, λ˚q is semi-
stable, then px˚, λ˚q is also hemi-stable.

Proof. By the definition 4.11 of the hemi-stability, one has to show that, for all α ą 0,
one can find β ą 0, such that, for all px0, λ0q P B̄ppx˚, λ˚q, βq, the following inclusion
in px, λq

ˆ

∇fpx0q ` c1px0q˚λ0
´cpx0q

˙

`
ˆ

Lpx0, λ0q c1px0q˚

´c1px0q 0

˙ˆ

x´ x0
λ´ λ0

˙

` NK` px, λq Q 0

has a solution in B̄ppx˚, λ˚q, αq. This inclusion is the first order optimality system of
the following quadratic optimizatiion problem in x P E:

$

&

%

min x∇fpx0q, x´ x0y ` 1
2

xLpx0, λ0qpx ´ x0q, x´ x0y
cEpx0q ` c1

Epx0qpx ´ x0q “ 0

cIpx0q ` c1
Ipx0qpx ´ x0q ď 0.

(5.13)

The system (5.13) can be viewed as a perturbation of the quadratic optimizatiion
problem in x P E that is obtained by taking px0, λ0q “ px˚, λ˚q, namely

$

&

%

min x∇fpx˚q, x ´ x˚y ` 1
2

xL˚px´ x˚q, x´ x˚y
cEpx˚q ` c1

Epx˚qpx´ x˚q “ 0

cIpx˚q ` c1
Ipx˚qpx´ x˚q ď 0.

(5.14)

The first order optimality conditions of (5.14) read: there exists λ P Rm such that
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∇fpx˚q ` L˚px´ x˚q ` c1px˚q˚λ “ 0

cEpx˚q ` c1
Epx˚qpx´ x˚q “ 0

0 ď λ K
`

cIpx˚q ` c1
Ipx˚qpx ´ x˚q

˘

ď 0.

By the KKT conditions of problem pPEIq, this system is verified by px, λq “ px˚, λ˚q.
Now, by proposition 5.4, the assumed semi-stability of px˚, λ˚q implies that λ˚ is
the unique optimal mutiplier associated with x˚ and that the second order sufficient
conditions of optimlaty hold. We deduce from this that first px˚, λ˚q verifies the
second order optimality conditions of (5.14), which are the same as those of pPEIq,
and that (CQ-MF) holds for (5.14) (by the uniqueness of the associated multiplier
and the Gauvin property of proposition 2.22). By proposition 3.1, these properties
ensure that the perturbed problem (5.13) has a primal-dual solution px, λq (it may
have other undesirable solutions, however), whose distance to px˚, λ˚q is bounded by
a constant times the norm of the perturbation px0 ´ x˚, λ0 ´ λ˚q. l

Theorem 5.6 (local convergence of the SQP algorithm) If f and c are
C2,1 in a neighborhood of a local minimum x˚ of pPEIq, if there exists a unique
multiplier associated with x˚, and if the sufficient conditions of optimality of the
second order are satisfied, then there exists a neighborhood V of px˚, λ˚q such
that, if the first iterate px1, λ1q P V , then
1q the SQP algorithm can generate a sequence tpxk, λkqu in V ,
2q tpxk, λkqu converges quadratically to px˚, λ˚q.

Proof. By proposition 5.4, the uniqueness of the optimal multiplier, and the second
order optimality conditions, px˚, λ˚q is a semi-stable solution of (5.2). By proposi-
tion 5.5, this is also an hemi-stable solution. One can then apply theorem 4.12, which
gives the result. l

5.1.3 Exact Penalization

Motivation

A review of penalty techniques

The augmented Lagrangian is a first way of getting an exact penalization, provided one
knows an optimal multiplier (since this is usually not the case, the multiplier method
generates a sequence approaching an optimal multiplier). The underlying idea is to
penalize quadratically a function whose first derivative vanishes at the considered
solution, which is the Lagrangian ℓp¨, λ˚q.

Another way of getting an exact penalty function is to do this using a nondif-
ferentiable function. Let us illustrate the idea in the case of the following simple
optimization problem in x P R:

"

inf 1 ´ x´ 1
3
x3

x ď 0.
(5.15)
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X
cpxq

fpxq “ 1 ´ x ´ 1

3
x3

x˚

σ “ 1 σ “ 2

σ “ 3

σ “ 4

Fig. 5.2. Nondifferentiable penalization for the problem (5.15) with σ “ 1, 2, 3 and 4.

Figure 5.2 shows that if the term σ x` “ σ maxp0, xq is added to the objective of the
problem, one gets an exact penalty function, as soon as σ ą 1. This threshold σ “ 1

comes in the present case from the slope of f at zero. More generally, it is the “slope”
(if this one exists) of the value function at zero that is important, so that it is the
optimal multipliers associated with x˚ that will play a key role in the determination
of the value of the threshold above which an exact penalty is obtained.

An exact penalty function

In this section, we consider the following penalty function, which is associated with
problem pPEIq:

Θσpxq “ fpxq ` σ}cpxq#}p, (5.16)

where σ ą 0 and } ¨ }p is an arbitrary norm. The fundamental result is given in
theorem 5.11; it provides conditions ensuring the exactness of Θσ. Its proof uses the
following three lemmas.

The first lemma is relevant in a larger context than ours, since it highlights con-
ditions for having the directional differentiability of a composition of functions and
shows that the chain rule (5.17) applies in that case. To motivate the Lipschitz as-
sumption taken in the lemma, let us point out that the composition of functions
having directional derivatives may not have a directional derivative.

Counter-example 5.7 (not directionally differentiable composition) Let ϕ :

R Ñ R
2 and ψ : R2 Ñ R be defined by

ϕpxq “
"

px, x2 sinp1{xqq if x ‰ 0

0 if x “ 0
and ψpy1, y2q “

"

y1 if y2 “ 0

0 if y2 ‰ 0.

It is plain to see that ϕ is Fréchet differentiable at zero, that ψ is positively homo-
geneous, hence directionally differentiable at zero, but that ψ ˝ ϕ is not directionally
differentiable at zero. l
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This counter-example [127; p. 484] shows that the Lipschitz continuity of the second
function of the composition, the function ψ, assumed in the lemma below, is not
superfluous. It is worth noting that the notion of directional differentiability in the
sense of Hadamard (i.e., rfpx`tkdkq´fpxqs{tk converges to the same vector whatever
the sequences tdku Ñ d and ttku Ó 0 are) is stable for the composition and the chain
rule applies [127; proposition 3.6].

Lemma 5.8 (directional differentiability of a composition) Let E, F,
and G be three normed vector spaces. Suppose that ϕ : E Ñ F has a directional
derivative at x P E in the direction h P E and that ψ : F Ñ G is Lipschitz con-
tinuous in a neighborhood of ϕpxq and has a directional derivative at ϕpxq in the
direction ϕ1px;hq. Then pψ˝ϕq has a directional derivative at x in the direction h
and there holds

pψ ˝ ϕq1px;hq “ ψ1pϕpxq;ϕ1px;hqq. (5.17)

Proof. For t Ó 0, use successively the directional differentiability of ϕ, the Lipschitz
continuity of ψ, and the directional differentiability of ψ:

pψ ˝ ϕqpx ` thq “ ψpϕpxq ` tϕ1px;hq ` optqq
“ ψpϕpxq ` tϕ1px;hqq ` optq
“ pψ ˝ ϕqpxq ` tψ1pϕpxq;ϕ1px;hqq ` optq.

The result follows. l

The second lemma explores the differentiability of Θσ and uses the operator Pv :

Rm Ñ Rm, defined for u P Rn and v P R´ by

pPvuqi “

$

&

%

ui if i P E,
u`
i if i P I and vi “ 0,

0 if i P I and vi ă 0.

to have an explicit expression of Θ1
σpx; dq at a point x that is feasible or pPEIq.

Lemma 5.9 If f and c have directional derivatives at x P E, then Θσ has di-
rectional derivatives at x. In particular, if x is feasible for pPEIq, the following
formula holds

Θ1
σpx; dq “ f 1px; dq ` σ}Pcpxqc

1px; dq}p.

Proof. The directional differentiability of Θσ “ f ` σp} ¨ }p ˝ p¨q# ˝ cq comes from
lemma 5.8, the assumptions on f and c, and the fact that } ¨ }p and p¨q# are Lipschitz
continuous and have directional derivatives.

If x is feasible, cpxq# “ 0 and we have from lemma 5.8,

Θ1
σpx; dq “ f 1px; dq ` σp} ¨ }pq1p0; pc#q1px; dqq.
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We now observe that

p} ¨ }pq1p0; vq “ lim
tÑ0`

1

t
p}tv}p ´ 0q “ }v}p

and
pc#q1px; dq “ p¨#q1pcpxq; c1px; dqq “ Pcpxqc

1px; dq.
The result follows. l

The third lemma shows that, when σ is sufficiently large, Θσ dominates the La-
grangian ℓp¨, λ˚q on E (λ˚ is an optimal multiplier associated with x˚). Recall that
the dual norm of } ¨ }p for the Euclidean scalar product is the norm } ¨ }d : Rm Ñ R

defined at v P Rm by
}v}d “ sup

}u}pď1

vTu.

The generalized Cauchy-Schwarz inequality

@u, v P R
m : |uTv| ď }u}p }v}d. (5.18)

follows readily from the definition of the dual norm.

Lemma 5.10 If λ P Rm satisfies σ ě }λ}d and λI ě 0, then, for all x P E, one
has ℓpx, λq ď Θσpxq.

Proof. We have successively

ℓpx, λq “ fpxq ` λTcpxq rdefinition of the Lagrangians
ď fpxq ` λTcpxq# rλI ě 0 and cpxq ď cpxq#s
ď fpxq ` }λ}d }cpxq#}p r(5.18)s
ď fpxq ` σ }cpxq#}p r}λ}d ď σs
“ Θσpxq. l

Here is the announced result giving sufficient conditions ensuring the exactness
of Θσ at a solution x˚ of pPEIq. Assumption (5.19) can only hold if the set of optimal
multipliers Λ˚ is bounded, which amounts to say that the Mangasarian-Fromovitz suf-
ficient qualification condition (CQ-MF) holds (see below definition 1.38, exercise 2.1.4
and Gauvin’s property of proposition 2.22).

Theorem 5.11 (exactness of Θσ) Let x˚ be a local minimum of pPEIq. Sup-
pose that f and c are twice differentiable at x˚ and Lipschitz continuous in a
neighborhood of x˚. Suppose also that x˚ satisfies the weak second order condi-
tions of optimality (2.80) and denote by Λ˚ the nonempty set of optimal multi-
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pliers associated with x˚. Suppose finally that

σ ě sup
λ˚PΛ˚

}λ˚}d and σ ą }λ̂˚}d, for some λ̂˚ P Λ˚. (5.19)

Then, x˚ is a strict local minimum of the penalty function Θσ given by (5.16).

Proof. We prove the result by contradiction, assuming that x˚ is not a strict local
minimum of Θσ. Then, there exists a sequence txku such that xk ‰ x˚, xk Ñ x˚ and

Θσpxkq ď Θσpx˚q, @k ě 1. (5.20)

We now want to show that the preceeding inequalities imply that xk must approach x˚

along a nonzero critical direction.
Since the sequence tpxk ´x˚q{}xk ´x˚}u is bounded (here }¨} denotes an arbitrary

norm), it has a subsequence such that pxk ´ x˚q{}xk ´ x˚} Ñ d, where }d} “ 1.
Denoting tk :“ }xk ´ x˚}, one has

xk “ x˚ ` tkd` optkq.

Let us show that d is the desired critical direction.

On the one hand, because Θσ is Lipschitz continuous near x˚, the following holds

Θσpxkq “ Θσpx˚ ` tkdq ` optkq.

This estimate and (5.20) show that Θ1
σpx˚; dq ď 0. Then, from lemma 5.9, one can

write
f 1px˚q ¨ d` σ}Pcpx˚qpc1px˚q ¨ dq}p ď 0. (5.21)

This certainly implies that
f 1px˚q ¨ d ď 0. (5.22)

On the other hand, from the assumptions, there is an optimal multiplier λ̂˚ such
that σ ą }λ̂˚}d. We have

´f 1px˚q ¨ d “ λ̂T˚pc1px˚q ¨ dq r∇xℓpx˚, λ̂˚q “ 0s
ď λ̂T˚Pcpx˚qpc1px˚q ¨ dq rpλ̂˚qI ě 0 and pλ̂˚qTI cIpx˚q “ 0s
ď }λ̂˚}d}Pcpx˚qpc1px˚q ¨ dq}p r(5.18)s.

Then (5.21) and σ ą }λ̂˚}d imply that Pcpx˚qpc1px˚q ¨ dq “ 0, i.e.,

"

c1
ipx˚q ¨ d “ 0 for i P E
c1
ipx˚q ¨ d ď 0 for i P I0˚.

These and (5.22) show that d is a nonzero critical direction.
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Now, let λ˚ be the multiplier depending on d, determined by the weak second-
order sufficient condition of optimality (2.80). By this condition and d P C˚zt0u, one
has

x∇2
xxℓpx˚, λ˚qd, dy ą 0.

The following Taylor expansion (use ∇xℓpx˚, λ˚q “ 0)

ℓpxk, λ˚q “ ℓpx˚, λ˚q ` t2k
2

x∇2
xxℓpx˚, λ˚qd, dy ` opt2kq

allows us to see that, for k large enough,

ℓpxk, λ˚q ą ℓpx˚, λ˚q. (5.23)

Then, for large indices k, there holds

Θσpxkq ď Θσpx˚q r(5.20)s
“ fpx˚q rcpx˚q# “ 0s
“ ℓpx˚, λ˚q rλT˚cpx˚q “ 0s
ă ℓpxk, λ˚q r(5.23)s
ď Θσpxkq [lemma 5.10, σ ě }λ˚}d, and pλ˚qI ě 0].

We have shown Θσpxkq ă Θσpxkq, which is the expected contradiction. l

5.1.4 Globalization by Line-Search for pPEIq N

Definition of the algorithm

The global extension of the local SQP algorithm 5.1 analyzed in this section replaces
the Hessian of the Lagrangian ∇2

xxℓpxk, λkq by a positive definite linear operator Mk :

E Ñ E (a property that we condense by the notation Mk ą 0). Hence, the osculating
quadratic problem (5.9) becomes

(OQP)k

$

&

%

mind x∇fpxkq, dy ` 1
2

xMkd, dy
cEpxkq ` c1

Epxkqd “ 0

cIpxkq ` c1
Ipxkqd ď 0.

(5.24)

We shall need the KKT system of this optimization problem: if dk solves (5.24), then
there exists a multiplier λQP

k P Rm (since the constraints are qualified by (CQ-A))
such that

∇fpxkq `Mkdk ` c1pxkq˚λQP

k “ 0, (5.25a)

cEpxkq ` c1
Epxkqdk “ 0, (5.25b)

0 ď pλQP

k qI K pcIpxkq ` c1
Ipxkqdkq ď 0. (5.25c)

There are several reasons motivating the choice of making the substitution
∇2

xxℓpxk, λkq ñ Mk, with a positive definite operator Mk. Some are related to re-
mark 5.2:
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problem (OQP)k has more often a solution; this is actually the case if and only
if its constraints are compatible (Frank and Wolfe [56]); furthermore, there are
techniques that can face the situations where the constraints are inconsistent (but
this is more technical);
when (OQP)k has a solution, this one is unique in dk (but not in λQP

k , whose
uniqueness depends on a constraint qualification);
problem (OQP)k can be solved in polynomial time, which is crucial for the effi-
ciency of the overall algorithm.

The inconvenient of this modification of the direction definition is that the primal-
dual quadratic convergence of theorem 5.6 is normally lost (at least if the Hessian
of the Lagrangian is not positive definite at the solution). Nevertheless, when Mk is
updated by a quasi-Newton formula, the convergence is often superlinear and a very
precise solution can be obtained in very few iterations (for quasi-Newton methods
the number of iterations is often roughly proportional to the number of variables,
while with second derivative computation this number is independent of the number
of variables).

Another reason for making the substitution ∇2
xxℓpxk, λkq ñ Mk, with a positive

definite operator Mk, is that the SQP direction dk, solution to the above quadratic
optimization problem (OQP)k, is then a descent direction of the exact penalty func-
tion Θσ at xk, as claimed by the following proposition.

Proposition 5.12 (descent property of the SQP direction) Suppose
that f and c are differentiable at xk P E, that pdk, λQP

k q P E ˆ Rm is a stationary
pair of the osculating quadratic optimization problem (5.24), and that } ¨# }p is
convex. Then,

1q Θ1
kpxk; dkq ď ∆k, where

∆k :“ x∇fpxkq, dky ´ σ}cpxkq#}p, (5.26a)

“ ´ xMkdk, dky ` pλQP

k qTcpxkq ´ σ}cpxkq#}p, (5.26b)

ď ´ xMkdk, dky ` p}λQP

k }d ´ σq}cpxkq#}p, (5.26c)

2q if, furthermore, σ ě }λQP

k }d, then Θ1
kpxk; dkq ď ´xMkdk, dky,

3q if, furthermore, Mk ą 0, then Θ1
kpxk; dkq ď 0,

4q if, furthermore, xk is not a stationary point of pPEIq, then Θ1
kpxk; dkq ă 0.

Proof. 1) Using lemma 5.8, we get

Θ1pxk; dkq “ x∇fpxkq, dky ` σp} ¨# }pq1pcpxkq; c1pxkqdkq.

Let us examine the last directional derivative. One has
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p} ¨# }pq1pcpxkq; c1pxkqdkq

“ lim
tÓ0

1

t

`

}r cpxkq ` tc1pxkqdk
looooooooomooooooooon

“p1´tqcpxkq`tpcpxkq`c1pxkqdkq

s#}p
looooooooooooooooooooomooooooooooooooooooooon

ďp1´tq}cpxkq#}p`t}pcpxkq`c1pxkqdkq#}p

rconvexity of } ¨# }ps

´}cpxkq#}p
˘

ď ´}cpxkq#}p rpcpxkq ` c1pxkqdkq# “ 0s,

where we have used the constraints of the OQP (5.24). This gives (5.26a). For getting
(5.26b), we rewrite x∇fpxkq, dky as follows

x∇fpxkq, dky “ ´xMkdk, dky ´ pλQP

k qTc1pxkqdk r(5.25a)s
“ ´xMkdk, dky ` pλQP

k qTcpxkq,

since c1
Epxkqdk “ ´cEpxkq by (5.25b) and pλQP

k qTI c1
Ipxkqdk “ ´pλQP

k qTI cIpxkq by (5.25c).
Inequality (5.26c) is now a consequence of (5.26b) and (5.18).

2) We have to show that, when σ ě }λQP

k }d, the last two terms in (5.26b) form a
nonpositive difference. This is indeed the case, since

pλQP

k qTcpxkq ´ σ}cpxkq#}p
ď pλQP

k qTcpxkq# ´ σ}cpxkq#}p rpλQP

k qI ě 0s
ď p}λQP

k }d ´ σq }cpxkq#}p r(5.18)s
ď 0 rσ ě }λQP

k }ds.

3) Clear.
4) We proceed by contraposition. If Θ1

kpxk; dkq “ 0, dk “ 0 by the inequality in
point 2. Now (5.25) with dk “ 0 shows that pxk, λQP

k q is a stationary pair of pPEIq. l

The assumption on the convexity of } ¨# }p in the previous proposition is satisfied
by many standard norm, in particular by the ℓp-norms with 1 ď p ď 8, but not by
all the norms. This question is examined in exercise 5.1.2.

The sufficient condition guaranteeing the descent of Θσ along the SQP direction dk,
in point 2 of the previous proposition, namely σ ě }λQP

k }d, recalls the sufficient condi-
tion σ ą supt}λ˚}d : λ˚ P Λu, exhibited by theorem 5.11, that ensures the exactness
of the merit function Θσ. This is not surprising and reassuring on the correctness of
the analysis.

Observe now that the threshold supt}λ˚}d : λ˚ P Λu above which σ must be is not
known by the algorithm or the user of the algorithm (it depends on the optimal mul-
tipliers that are not known) but, in a certain way, the values }λQP

k }d, evolving along
the iterations, can inform the algorithm on the value that σ must have to make Θσ

exact at the limit point of the generated sequence of primal iterates txku. This obser-
vation also indicates that the value of σ, which is monitored by the algorithm, may
have to be updated during the iterative process. Therefore σ depend on the iteration
counter k and is now denoted by σk. Specific update rules are used to ensure that

σk ě }λQP

k }d ` σ̄, (5.27a)
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where σ̄ ą 0 is some constant safeguard. Typically, one takes

σ̄ :“ maxp
?
e, }λQP

1 }d{100q and σ1 :“ }λQP

1 }d ` σ̄,

where e is the machine-epsilon. The inequality (5.27a) does not prevent from taking
arbitrarily σk very large, which is both harmful form the numerical efficiency of the
algorithm and for its convergence nalysis (for example, because one can force σk to
blow up without a reason motivated by the behavior of the algorithm). For this reason,
one also requires that the following condition be satisfied:

tλQP

k u is bounded ùñ σk is constant for k large. (5.27b)

An example of update rule of σk satisfying these conditioins (5.27) is the following.

Rule 5.13 (update of σk – I) Given a threshold σ̄ ą 0, the current OQP
multiplier λQP

k and the previous penalty parameter σk´1, compute the new
penalty parameter σk as follows.

if σk´1 ě }λQP

k }d ` σ̄;
then σk “ σk´1;
else σk “ maxp1.5 σk´1, }λQP

k }d ` σ̄q;

This update rule has the nice property to eventually fix σk to a constant value when
the sequence tλQP

k u is bounded. It is not without flaw, however, since tσku is nonde-
creasing and is, therefore, penalized by a badly chosen initial penalty parameter σ1
or a high value of the parameter determined far from the solution. For this reason,
one often adds instructions to decrease σk if this one is clearly too large, with respect
to the current }λQP

k }d.

Rule 5.14 (update of σk – II) Given a threshold σ̄ ą 0, the current OQP
multiplier λQP

k and the previous penalty parameter σk´1, compute the new
penalty parameter σk as follows.

if σk´1 ě 1.1p}λQP

k }d ` σ̄q;
then σk “ pσk´1 ` }λQP

k }d ` σ̄q{2;
else

if σk´1 ě }λQP

k }d ` σ̄;
then σk “ σk´1;
else σk “ maxp1.5 σk´1, }λQP

k }d ` σ̄q;

With the rule 5.14, property (5.27b) is no longer guaranteed, however, and the con-
vergence result of proposition 5.17 below is no longer ensured.

One can now state a frequently used line-search version of the SQP algorithm.
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Algorithm 5.15 (SQP with line-search) Let β P p0, 1q and ω P p0, 1
2

q be pa-
rameters used in the line-search (typically β “ 1{2 and ω “ 10´4). One iteration,
from pxk, λk,Mkq P EˆRmˆRnˆn to pxk`1, λk`1,Mk`1q is made of the following
steps (the penalty parameter σk is also updated):

1. Stopping test : if the current pair pxk, λkq is satisfactory, stop;
2. QP solve: let pdk, λQP

k q be the primal-dual solution to the osculating quadratic
problem (5.24), if any;

3. New penalty parameter : update σk so that (5.27) is satisfied;
4. Armijo line-search: determine αk :“ βik where ik is the smallest nonnegative

integer such that

Θσk
pxk ` αkdkq ď Θσk

pxkq ` ωαk∆k, (5.28)

where ∆k is given by (5.26);
5. Update Mk: by some technique (for example, modification of ∇2

xxℓpxk, λkq or
a quasi-Newton update);

6. New iterate: set xk`1 :“ xk ` αkdk and λk`1 “ λk ` αkpλQP

k ´ λkq;

Remarks 5.16 1q The algorithm cannot do better than finding a stationary point
of problem pPEIq, in particular because when it starts at such a point it may
compute a vanishing displacement dk (and will do so if M1 ą 0). Therefore, the
only reasonable stopping criterion in step 1 is to test the approximate satisfaction
of the first order (KKT) optimality conditions (5.1).

2q In the line-search of step 4, instead of giving to the trial stepsizes the predetermined
values βik it is better to do interpolation.

Global convergence

Proposition 5.17 (global convergence of the SQP algorithm with line-
search) Suppose that f and c are C1,1, that } ¨# }p is convex, that the se-
quences tMku and tM´1

k u are bounded, that at each iteration the OQP (5.24) has
a solution pdk, λQP

k q, that the update rule of σk satisfies (5.27), and that Θkpxkq is
bounded below. Then, one of the following two complementary situations occurs

1q the sequence tσku is unbounded, in which case tλQP

k u is also unbounded,
2q the sequence tσku is bounded, in which case algorithm 5.15 converges, in the

sense that

∇xℓpxk, λQP

k q Ñ 0, cpxkq# Ñ 0, pλQP

k qI ě 0 and pλQP

k qTI cIpxkq Ñ 0.

Proof. 1) If tσku is unbounded, we see from rule (5.27b) that tλQP

k u is unbounded.
2) If tσku is bounded, the inequality (5.27a) shows that tλQP

k u is also bounded.
Then, the rule (5.27b) guarantees that there exists an index k1 such that σk “ σ for
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all k ě k1. Now, each iteration after k1 forces the decrease in the same function Θσ.
Since tΘσpxkqu is bounded below, Armijo’s condition (5.28) shows that

αk∆k Ñ 0.

If we show tαku is bounded away from zero (i.e., αk ě α for some α ą 0), the
result follows. Indeed, then ∆k Ñ 0, and with (5.26c) and (5.27a), we deduce that

dTkMkdk Ñ 0 and cpxkq# Ñ 0,

so that the second claim is satisfied. Because Mk is positive definite and has a
bounded inverse, dk Ñ 0. Then, from (5.25a) and the boundedness of Mk, we see
that ∇xℓpxk, λQP

k q Ñ 0, so that the first claim is satisfied. Furthermore, (5.25c) shows
that pλQP

k qI ě 0, so that the third claim is satisfied. Finally, ∆k “ ∇fpxkqTdk ´
σ}cpxkq#}p Ñ 0 and cpxkq# Ñ 0 imply that ∇fpxkqTdk Ñ 0 and, using (5.25a),
pλQP

k qTc1pxkqdk Ñ 0. Hence

pλQP

k qTI cIpxkq “ ´pλQP

k qTI c1
Ipxkqdk r(5.25c)s

“ pλQP

k qTEc1
Epxkqdk ` op1q rpλQP

k qTc1pxkqdk Ñ 0s
“ ´pλQP

k qTEcEpxkq ` op1q r(5.25b)s
“ op1q,

because tλQP

k u is bounded and cEpxkq Ñ 0. We have shown the fourth and last claim.
Therefore, it remains to prove that αk ě α ą 0, for all k and some constant α,

which is a rather technical part of the proof. We can consider the indices k of K :“
tk ě k1 : αk ă 1u. Then, from the rule determining the stepsize αk, the Armijo
inequality is not verified for ᾱk :“ αk{β:

Θσpxk ` ᾱkdkq ą Θσpxkq ` ωᾱk∆k. (5.29)

Let us expand the left-hand side of (5.29). Using the smoothness of f and c, ᾱk ď 1,
the convexity of } ¨# }p (hence its Lipschitz continuity), (5.25b), and finally (5.26), we
have successively

fpxk ` ᾱkdkq “ fpxkq ` ᾱk∇fpxkqTdk `Opᾱ2
k}dk}2q

cpxk ` ᾱkdkq “ cpxkq ` ᾱkc
1pxkqdk `Opᾱ2

k}dk}2q
“ p1 ´ ᾱkqcpxkq ` ᾱkpcpxkq ` c1pxkqdkq `Opᾱ2

k}dk}2q
}cpxk ` ᾱkdkq#}p ď p1 ´ ᾱkq}cpxkq#}p ` ᾱk}pcpxkq ` c1pxkqdkq#}p `Opᾱ2

k}dk}2q
“ p1 ´ ᾱkq}cpxkq#}p `Opᾱ2

k}dk}2q
Θσpxk ` ᾱkdkq ď Θσpxkq ` ᾱk∆k ` C1ᾱ

2
k}dk}2.

Then (5.29) yields
´p1 ´ ωqᾱk∆k ď C1ᾱ

2
k}dk}2.

But ∆k “ ´dTkMkdk ` pλQP

k qTcpxkq ´ σ}cpxkq#}p ď ´dTkMkdk ď ´C2}dk}2 (bound-
edness of tM´1

k u), so that we deduce from the above inequality:

ᾱk ě pC2{C1qp1 ´ ωq ą 0,

because ω ă 1. The positive lower bound on αk can therefore be taken as α :“
βpC2{C1qp1 ´ ωq. This concludes the proof. l



152 5. A Few Methods for Optimization

Admissibility of the unit stepsize N

5.1.5 Globalization by Trust-Region for pPEq N

Notes N

The analysis of the local convergence of the SQP algorithm, inherited from the one
of the JN algorithm (section 5.1.2), has been taken up from [19; 1994]. This one
gives the local convergence result of theorem 5.6, with the weakest assumptions on
the limit point (uniqueness of the optimal multiplier and SC2) known so far. Before
that, one had results assuming the SC2 and the stronger (CQ-LI) [20; theorem 15.4]
and sometimes strict complementarity ([17; p. 252-256], [20; theorem 15.2], and the
original work [117]).

For the algorithmic issues, we refer the reader to the state of the art by Fletcher [55].

Exercises

5.1.1. Nondifferentiable augmented Lagrangian. Let E be a Euclidean vector space. Con-
sider the optimization problem pPEIq and its Lagrangian ℓ : px, λq P E ˆ R

m Ñ
ℓpx, λq “ fpxq ` λTcpxq P R. Let x˚ be a local minimum of problem pPEIq at which
the KKT conditions hold and denote by Λ˚ the set of optimal multipliers associated
with x˚. Suppose that the weak second-order sufficient condition of optimality holds
at x˚. Let } ¨ }p be a norm on R

m and } ¨ }d be its dual norm with respect to the
Euclidean scalar product. Let µ P R

m and σ P R` verifying

σ ě sup
λ˚PΛ˚

}λ˚ ´ µ}d and σ ą }λ̂˚ ´ µ}d, for some λ̂˚ P Λ˚. (5.30)

We want to show that the function Θµ,σ : E Ñ R defined at x P E by

Θµ,σpxq :“ fpxq ` µ
T
cpxq# ` σ}cpxq#}p

has a strict local minimum at x˚. We propose a reasoning by contradiction.

1. Show that if Θµ,σ has not a strict local minimum at x˚, one can find a sequence
txku Ď E, a sequence of positive real numbers ttku Ó 0, and a nonzero critical
direction d such that xk “ x˚ ` tkd ` optkq.

2. Show that
Dλ˚ P Λ˚, @ k large : ℓpx˚, λ˚q ă ℓpxk, λ˚q.

3. Get a contradiction.

5.1.2. Norm assumptions. For an arbitrary norm } ¨ } on R
m, show that the following

properties are equivalent (the operators | ¨ | and p¨q` act componentwise):

piq 0 ď u ď v ñ }u} ď }v},
piiq u ď v ñ }u`} ď }v`},

piiiq v ÞÑ }v`} is convex.

Remark: These equivalences show that the convexity of } ¨# }p assumed in proposi-
tion 5.12 is satisfied with the ℓp norms, 1 ď p ď 8, since the ℓp norms satisfy piq.
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5.2 SQP Algorithm for pPGq N

5.2.1 The SQP Algorithm

Consider the optimization problem pPGq in (2.1) with its Lagrangian ℓ : E ˆ F Ñ R

defined at px, λq P E ˆ F by

ℓpx, λq “ fpxq ` xλ, cpxqy. (5.31)

The first order optimality conditions (2.8) at a primal-dual solution px, λq (we
drop the star indices to alleviate notation) read

∇fpxq ` c1pxq˚λ “ 0 and λ P NGpcpxqq. (5.32)

Let us show that this system reads like the following functional inclusion

F pzq ` NCpzq Q 0, (5.33)

for some variable z, some function F , and some closed convex set C. Observe first
that (5.32) also reads as the following system in z :“ px, y, λq P E ˆ F ˆ F:

∇fpxq ` c1pxq˚λ “ 0, λ P NGpyq and y ´ cpxq “ 0. (5.34)

This one can be written like (5.33) in the variable z, where the function F and the
closed convex set C are defined by

F pzq “

¨

˝

∇fpxq ` c1pxq˚λ

´λ
y ´ cpxq

˛

‚ and C “ E ˆG ˆ F. (5.35)

Indeed, NCpzq “ NEpxq ˆ NGpλq ˆ NFpyq “ t0Eu ˆ NGpyq ˆ t0Fu, so that (5.34) and
(5.33) are the same systems.

The Josephy-Newton (JN) algorithm consists in determining z` :“ px`, y`, λ`q
as a solution to the linearized functional inclusion

F pzq ` F 1pzq ¨ pz` ´ zq ` NCpz`q Q 0.

We have

F 1pzq “

¨

˝

L 0 c1pxq˚

0 0 ´I
´c1pxq I 0

˛

‚ (5.36)

where L :“ ∇2
xxℓpx, λq. Therefore, z` is determined as a solution to
$

&

%

∇fpxq ` c1pxq˚λ` Lpx` ´ xq ` c1pxq˚pλ` ´ λq “ 0

λ` pλ` ´ λq P NGpy`q
y ´ cpxq ´ c1pxqpx` ´ xq ` py` ´ yq “ 0,

which after elimination of y and λ becomes
$

&

%

∇fpxq ` Lpx` ´ xq ` c1pxq˚λ` “ 0

λ` P NGpy`q
cpxq ` c1pxqpx` ´ xq “ y`.
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After elimination of y` and the introduction of d “ x` ´ x, we get

"

∇fpxq ` Ld` c1pxq˚λ` “ 0

λ` P NGpcpxq ` c1pxqdq.

This system is the first order optimality conditions of the osculating quadratic problem

(OQP)

"

mind x∇fpxq, dy ` 1
2

x∇2
xxℓpx, λqd, dy

cpxq ` c1pxq ¨ d P G. (5.37)

Algorithm 5.18 (local SQP for pPGq) One iteration, from pxk, λkq P E ˆ F

to pxk`1, λk`1q P E ˆ F is made of the following steps:

1. Stopping test : if the current pair pxk, λkq is satisfactory, stop;
2. QP solve: let pdk, λQP

k q be an appropriate primal-dual solution to the osculat-
ing quadratic problem (5.37), if any;

3. New iterate: set xk`1 :“ xk ` dk and λk`1 :“ λQP

k .

5.2.2 Local Convergence



6 Self-dual Conic Optimization

Let E and F be two finite dimension vector spaces, and x¨, ¨y be a scalar product on E.
A conic optimization problem is an optimization problem of the form

$

&

%

infxPE xc, xy
Apxq “ b

x P K,
(6.1)

where c P E, A : E Ñ F is a linear map, b P F, and K is a closed cone of E. Hence, one
minimizes a linear function on the intersection of an affine space and a closed cone.

Problem (6.1) may look like a very structured problem, but without more spec-
ifications on K, a problem as general as infxtfpxq : x P Xu, where f : E Ñ R and
X Ď E, can be written in the form (6.1). This is a consequence of the following two
observations.

There is no restriction in assuming that the objective of an optimization problem
is linear, like in (6.1). For example, the problem infxPEtfpxq : x P Xu can be
rewritten into the problem infpx,tqPEˆRtt : fpxq ď t, x P Xu (the equivalence is
about the optimal values and the x-part of the solutions).

We are now reduced to rewrite a problem of the form infxPEtxc, xy : x P Xu into
the form (6.1). This is done by a technique called conification of X (also called
homogenization [125; § 8], [118], but we prefer to avoid this term, which is used in
the field of partial differential equations with a completely different meaning). One
introduces the closed cone X of E ˆ R defined by

X :“ clX , where

X :“ tpx, αq P E ˆ R : α ą 0, α´1x P Xu.

X

0 X

1

E

R

Since X is clearly a cone of E ˆ R, X is a closed cone. Furthermore, x P X if
and only if px, 1q P X . Therefore, the problem infxPEtxc, xy : x P Xu also reads
infpx,αqPEˆRtxc, xy : px, αq P X , and α “ 1u, which is in the form of (6.1).

Therefore, to really take advantage of the structure of (6.1), more assumptions must
be given on the cone K.

A certainly much more specific problem is obtained with (6.1) if one assumes
that K is a closed convex cone. This does not imply that problem (6.1) becomes
easy to understand and to solve. A rather fruitful analysis is possible at this level of
generality [14, 116], but in this chapter will limit our presentation to three particular

155
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self-dual cones K, meaning that they verify K` “ K (hence K is necessarily a closed
convex cone).

A semidefinite optimization problem is obtained from (6.1) when E “ Sn is the
space of symmetric matrices of order n and K “ Sn

` is the cone of positive semi-
definite matrices. This problem is analyzed in section 6.1.

A circular optimization problem arises when E “ Rn and K “ Rn is the circular
cone (section 6.2).

In copositive optimization (section 6.3), the cone is formed of symmetric matrices
(E “ Sn again) whose associated quadratic form is nonnegative on the positive
orthant.

These problems have been meticulously analyzed in the last decades for various rea-
sons. The first reason deals with complexity issues. The first two problems can indeed
be solved in a time that is polynomial in the dimension of the problem. The last one is
NP-hard, despite the convexity of its objective, which is linear, and its convex feasible
set; its computational complexity then comes from the complexity of the boundary
of its feasible set, but the convexity of the latter and the convexity of the solution
set make these problems very attractive to study. The second reason comes from the
fact that many problems can be formulated as one of these three conic problems. If
they can be written like the first two, they can then be solved in polynomial time.
If the problem can be formulated as a copositive optimization problem, they benefit
from the convexity of this problem, which makes it possible to approximate them by
sequences of easier problems. As a last reason, let us mention that many nonconvex
NP-hard problems have semidefinite or circular relaxations. Sometimes, this provides a
rather precise lower bound on their optimal value, which is an important information
in some branching approach to solve them.

6.1 Semidefinite Optimization

6.1.1 Primal and Dual Problems

The Cones Sn
` and Sn

``

Semidefinite optimization has an unknown belonging to the cone of positive definite
matrices. We denote by Sn the Euclidean space of symmetric n ˆ n real matrices,
equipped with the scalar product

x¨, ¨y : pA,Bq P pSnq2 ÞÑ xA,By “ trpABq “
ř

ij AijBij P R,

where trM :“
řn

i“1Mii denotes the trace of a square matrix M . It is easy to see
that, for A and B P Rnˆn, trAB “ trBA.

A real symmetric matrix A P Sn has n real eigenvalues λi P R with which are
associated orthonormal eigenvectors vi, i P r1 :ns:

Avi “ λivi and vTi vj “ δij ,

where δij is the Kronecker symbol (δij “ 1 if i “ j, δij “ 0 if i ‰ j). If we denote
by V P Rnˆn the matrix whose columns are the eigenvectors v1, . . . , vn, we have
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AV “ V Λ, where Λ “ Diagpλ1, . . . , λnq. Since V is orthogonal, V ´1 “ V T and we get
the spectral decomposition of A P Sn:

A “ V ΛV T “
n
ÿ

i“1

λiviv
T

i .

The cone of Sn made of the positive semidefinite matrices is denoted by Sn
`. We

use the notation A ě 0 to quote the fact that A P Sn
`. Recall that A ě 0 if its

eigenvalues are nonnegative:

A ě 0 ðñ A P Sn
` ðñ @ v P R

n : vTAv ě 0 ðñ λpAq ě 0,

where we have denoted by λpAq the vector of the eigenvalues of A P Sn. The cone
of Sn made of the positive definite matrices is denoted by Sn

``. We use the notation
A ą 0 to quote the fact that A P Sn

``. Recall that A ą 0 if its eigenvalues are positive:

A ą 0 ðñ A P Sn
`` ðñ @ v P R

nzt0u : vTAv ą 0 ðñ λpAq ą 0.

Lemma 6.1 (cones Sn
` and Sn

``)

1q A ě 0 ðñ @B P Sn
` : xA,By ě 0.

2q A ą 0 ðñ @B P Sn
`zt0u : xA,By ą 0.

3q For A and B P Sn
` : xA,By “ 0 ðñ AB “ 0.

Proof. 1) Let A and B P Sn
`. Take B “

ř

i λiviv
T

i the spectral decomposition of B.
Then,

xA,By “
n
ÿ

i“1

λixA, vivTi y “
n
ÿ

i“1

λi trpAvivTi q “
n
ÿ

i“1

λipvTi Aviq ě 0,

where we have used trpAvivTi q “ trpvTi Aviq “ vTi Avi P R and, finally, the fact that
vTi Avi ě 0 and λi ě 0 by the positive semidefiniteness of A and B respectively.

Conversely, by taking B “ vvT ě 0 for an arbitrary v P Rn, we get that 0 ď
xA, vvTy “ vTAv, which characterizes the positive semidefiniteness of A.

2) Let A ą 0 and B ě 0 with B ‰ 0. In the spectral decomposition of B “
řn

i“1 λiviv
T

i , at least one of the λi’s is positive and the others are nonnegative. Then,
like above, xA,By “ řn

i“1 λipvTi Aviq, which is positive since all the vTi Avi ą 0 and all
the λi ą 0, with at least one λi ą 0.

Conversely, assume that xA,By ą 0 for all nonzero B ě 0. By taking B “ vvT ě 0,
with an arbitrary nonzero v, one must have 0 ă xA,By “ vTAv, which shows that
A ą 0.

3) With the spectral decomposition of B “ řn
i“1 λiviv

T

i (the λi’s are ě 0) and
xA,By “ 0, one gets

ř

i λiviAv
T

i “ 0. Since A P Sn
`, this implies that Avi “ 0 when

λi ą 0. Then, AB “
řn

i“1 λiAviv
T

i “ 0.
Conversely, it is clear that AB “ 0 implies xA,By “ 0. l

Here are some remarks and properties of the cones Sn
` and Sn

``.



158 6. Self-dual Conic Optimization

Point 1 of lemma 6.1 expresses that fact that Sn
` is self-dual:

pSn
`q` “ Sn

`.

Point 2 of lemma 6.1 is often used in the form of the following implication

xA,By “ 0, A ą 0 and B ě 0 ùñ B “ 0. (6.2)

The tangent and normal cone to Sn
` have the following expressions:

TA Sn
` “ tD P Sn : vTDv ě 0, for all v P N pAqu, (6.3)

NA Sn
` “ tN P Sn

´ : xA,Ny “ 0u “ Sn
´ X tAuK. (6.4)

Sn
`` is the cone of Sn made of the positive definite matrices:

A ě 0 and [vTMv ą 0, @ v P N pAqzt0u] ùñ M ` rA ą 0 for large r.

This last property is the so-called Finsler lemma.

Problem Definitions

The primal and (Lagrange) dual of the SDO problem read

pP q

$

&

%

infXPSn xC,Xy
ApXq “ b

X ě 0

and pDq

$

&

%

suppy,SqPRmˆSn bTy

A˚pyq ` S “ C

S ě 0,

(6.5)

where
C P Sn and b P Rm,
A : Sn Ñ Rm is linear (A˚ : Rm Ñ Sn is its adjoint).

Some notation
Feasible sets:

FP :“ tX P Sn
` : ApXq “ bu,

FD :“ tpy, Sq P R
m ˆ Sn

` : A˚pyq ` S “ Cu,
F :“ FD ˆ FD.

Strictly feasible sets:

Fs
P
:“ tX P Sn

`` : ApXq “ bu,
Fs

D
:“ tpy, Sq P R

m ˆ Sn
`` : A˚pyq ` S “ Cu,

Fs :“ FD ˆ FD.

Optimal values: valpP q and valpDq. Duality gap: valpP q ´ valpDq
Solution sets: SolpP q and SolpDq.
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One can represent A by m matrices Ak P Sn (Riesz-Fréchet representation theo-
rem), as follows

ApXq “

¨

˚

˝

xA1, Xy
...

xAm, Xy

˛

‹

‚
. (6.6a)

In this représentation, the map A is surjective if and ony if the matrices Ak are linearly
independent in Sn. With the representation (6.6a) and the Euclidean scalar product
on Rm, the adjoint A˚ of A takes at y P Rm the value

A˚pyq “
ÿ

kPr1 :ns

ykAk P Sn. (6.6b)

Concrete problems usually specify A (resp. A˚) using the representation (6.6a) (resp.
(6.6b)), but the theory given in this chapter is easier to develop and present with the
abstract forms pP q and pDq of the primal and dual problems.

The Lagrangian of problem pP q is the function ℓ : Sn ˆ Rm ˆ Sn Ñ R that takes
at pX, y, Sq P Sn ˆ Rm ˆ Sn the value

ℓpX, y, Sq “ xC,Xy ´ xy,ApXq ´ by ´ xS,Xy.
Note that the dual problem can also be written by eliminating the variable S as
follows

pDq
"

supyPRm bTy

C ´ A˚pyq ě 0.

In that case it is more appropriate to take as Lagrangian of pP q the function that
only dualises the equality constraint:

pX, yq P Sn ˆ R
m ÞÑ xC,Xy ´ xy,ApXq ´ by.

Proposition 6.2 (consequences of the Lagrangian dualization)

1q valpDq ď valpP q.
2q pX, y, Sq P F ñ xC,Xy ´ bTy “ xX,Sy ě 0.
3q pX, y, Sq P F , xX,Sy “ 0

ô X P SolpP q, py, Sq P SolpDq, valpDq “ valpP q,
ô pX, py, Sqq is a saddle-point of ℓ on Sn ˆ pR ˆ Sn

`q.

Proof. 1) This is the weak duality inequality (1.60).
2) If pX, y, Sq P F , then xC,Xy “ xA˚pyq `S,Xy “ xy,ApXqy ` xX,Sy “ xy, by `

xX,Sy. Furthermore xX,Sy ě 0 since X ě 0 and S ě 0.
3) [ñ] If pX, y, Sq P F , the following holds

bTy ď valpDq ď valpP q ď xC,Xy.
Since xX,Sy “ 0, bTy “ xC,Xy by point 2 and therefore equality holds everywhere
above, which implies that X P SolpP q, py, Sq P SolpDq, and valpDq “ valpP q.

[ð] Clearly, pX, y, Sq P F , when X P SolpP q and py, Sq P SolpDq. Furthermore, by
point 2, xX,Sy “ xC,Xy ´ bTy “ valpP q ´ valpDq “ 0. l
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6.1.2 Examples of SDO Formulation

Suppose that the principal submatrix A of the square symmetric matrix

K :“
ˆ

A B

BT C

˙

is nonsingular. Then, the Schur complement of A in K is the matrix denoted and
defined by

pA |Kq :“ C ´BTA´1B.

This matrix can also be defined when K is nonsymmetric. It occurs in many circum-
stances [38]. From the block Gaussian factorization of K, which reads

K “
ˆ

I 0

BTA´1 I

˙ˆ

A 0

0 pA |Kq

˙ˆ

I A´1B

0 I

˙

,

we deduce that the following characterization of the positive definiteness of K:

K ą 0 ðñ
"

A ą 0

pA |Kq ą 0.
(6.7)

As we shall see, this characterization often occurs in semi-definite optimization. For a
characterization of the positive semi-definiteness of K with a Schur-like complement,
see exercise 6.1.1.

Linear Optimization

Convex Quadratic Optimization

Global Minimization of Polynomials

Consider the problem of finding the global minimum of a real polynomial p P Rrxs, in
the variable x P Rn, which reads

inf
xPRn

˜

ppxq :“
ÿ

αPNn

pα x
α

¸

, (6.8)

where there is only a finite number of nonzero coefficients pα P R and, for α “
pα1, . . . , αnq P Nn, the monomial xα is a compact writing for

xα :“ xα1

1 xα2

2 ¨ ¨ ¨xαn
n .

The degree of the monomial xα is denoted by |α| :“ řn
i“1 αi.

We show below, that when n “ 1, problem (6.8) can be rewritten as an SDO
problem. When n ą 1, this is usually not the case, but more and more precise SDO
relaxations of the problem can be obtained. SDO relaxations can also be defined for
problems with polynomial constraints; for simplicity and by the need for brevity, we
will not consider that possibility here; see [108, 90, 91, 6, 18, 92] for more complete
presentations.

The optimal value of problem (6.8) can be obtained by solving
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"

supsPR s

ppxq ě s, @x P Rn.

This problem has a single unknown s P R but an infinite number of constraints,
which is not a desirable feature. This infinite number of constraints “disappears”
if we trivially express them in terms of membership to the cone P of nonnegative
polynomials:

"

supsPR s

p´ s P P .
(6.9)

Normally, we should not have gained much by these trivial transformations, unless
membership to P can be described in a pleasant manner. Let us look at that.

A real nonnegative number p P R can always be written as the square of another
number p “ q2 (take the square root of p for q). When p is a nonnegative polynomial,
it cannot be written in general as the square of another polynomial. For example
ppxq “ x2 ` 1 cannot be written pax` bq2, since one should have both a “ b “ 1 and
ab “ 0, which are not compatible conditions. It turn out, however, that for n “ 1 a
polynomial p P P can be written as the sum of two squares of polynomials. This is a
remarkable fact and we shall see below why this observation is useful.

Proposition 6.3 (nonnegative univariate polynomial) A univariate poly-
nomial p P Rrxs is nonnegative on R if and only if it is of even degree, say 2m,
and reads p “ q2 ` r2, with q, r P Rrxs, deg q “ m, and deg r ď m´ 1.

Proof. The given conditions are clearly sufficient. Let us show that they are necessary.
Being nonnegative on R the polynomial is necessary of even degree, say 2m, and

the leading coefficient is positive. There is therefore no loss of generality in supposing
that this leading coefficient is 1. Then the polynomial can be decomposed in m factors
of the form

px´ aq2 ` b2.

It is indeed the form of px´rqpx´ r̄q when r and r̄ are complex conjugate roots a˘ ib.
On the other hand, any real root has an even multiplicity (otherwise the polynomial
would have positive and negative values around the root) and each double root is of
the form above with b “ 0.

The m factors of the form q2 ` r2 are then multiplied successively, by using the
following formula

pq2j ` r2j qpq2 ` r2q “ pqjq ` rjrq2 ` pqjr ´ rjqq2 “: q2j`1 ` r2j`1.

By induction, we see that deg qj “ j and deg rj ď j ´ 1. It is indeed the case for
j “ 1 since deg q1 “ 1 and deg r1 “ 0. Now, be r vanishing or not, deg qj`1 “
deg qj ` 1 “ j ` 1. Finally, if r “ 0, deg rj`1 “ deg rj ` 1 ď j and, if r ‰ 0,
deg rj`1 ď maxpdeg qj , deg rj ` 1q ď j. l

A multivariate nonnegative polynomial cannot be written as the sum of two
squares of polynomials, but, on a compact set, these can be approached by SOS
polynomials. An SOS polynomial is a polynomial that can be written as a sum of
squares of polynomials and the set of SOS polynomials is denoted by
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Σrxs.

Since Σrxs Ď P , problem (6.9) can be approached by
"

supsPR s

p´ s P Σrxs. (6.10)

This is a relaxation of problem (6.9) in the sense that its optimal value does not
exceed the one of problem (6.9).

Proposition 6.4 tells us that a multivariate polynomial p P Σrxs has a nice repre-
sentation, making use of a positive semi-definite symmetric matrix S. As we shall see,
a consequence of this observation is that problem (6.10) is an SDO problem, so that
we have obtained an SDO relaxation of the problem consisting in finding the global
minimum value of a multivariate polynomial. The proposition uses the vector vmpxq,
whose components are the multivariate monomials of degree ď m. Since there are

`

n`d´1
d

˘

monomials of degree d (it is the number of combination with repetition of d elements
among n), the dimension of the vector vmpxq is

N :“
`

n´1

0

˘

`
`

n
1

˘

` ¨ ¨ ¨ `
`

n`d´1

d

˘

“
`

n`m
n

˘

.

Hence a polynomial of degree ď m can be written sTvmpxq, for some s P RN .

Proposition 6.4 (caracterization of SOS polynomials) A multivariate
polynomial p P Rrxs of degree ď 2m is a sum of r squares of polynomials if
and only if there exists a matrix S ě 0 of order N and of rank ď r such that
ppxq “ vmpxqTSvmpxq.

Proof. [ñ] If p P Rrxs is of degree ď 2m and reads
řr

i“1 σ
2
i , where σi P Rrxs, the

degrees deg σi ď m. Therefore, on can find vectors si P Rm`1 such that

ppxq “
r
ÿ

i“1

psTi vmpxqq2 “
r
ÿ

i“1

vmpxqTsisTi vmpxq “ vmpxqTSvmpxq,

where S :“ řr
i“1 sis

T

i ě 0 is of rank ď r.
[ð] Conversely, suppose that ppxq “ vmpxqTSvmpxq, with S ě 0 of rank ď r. The

spectral decomposition of S “ řr
i“1 sis

T

i allows us to write

ppxq “
r
ÿ

i“1

vmpxqTsisTi vmpxq “
r
ÿ

i“1

psTi vmpxqq2,

showing that p is the sum of the squares of at most r polynomials. l

Using the above propositions and setting t :“ ´s, problem 6.10 can be written
$

&

%

infpS,tqPSm`1ˆR t

ppxq ` t “ vmpxqTSvmpxq, @x P Rn

S ě 0.

(6.11)
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Knowing p, the first constraint in (6.11) is an affine constraint on the unknown t P R

and the unknown real coefficients of S, if we impose equality between the coefficients
of the same monomials in both sides of the equality. Therefore, problem (6.11) is
almost in the primal form of an SDO problem. The difference is the free variable t,
which is only constrained by the affine constraint in (6.11), not by a nontrivial cone.
This small difference can be dealt with by standard SDO codes.

Rank Relaxation of a QCQP

6.1.3 Existence of Solution, Optimality Conditions

Existence of Solution

In linear optimization, according to (1.63), a finite optimal value guarantees that the
problem has a solution. We have seen this result as a consequence of the fact that
the image T pP q of a convex polyhedron P by a linear map T is a convex polyhedron,
hence a closed set. This approach no longer works for an SDO problem. Although
T p¨q “ xC, ¨y is linear, the feasible set FP :“ tX P Sn : ApXq “ b, X ě 0u is not a
convex polyhedron, so that T pP q may not be closed. As a result, in general

valpP q P R ­ùñ SolpP q ‰ ∅.

See example 6.7-2 below. The existence of solution is then ensured by using some kind
of constraint qualification.

The assumptions of the next proposition can be understood, or at least memorized,
with the following scheme in mind. If Fs

D
‰ ∅, a kind of Slater constraint qualification

(CQ-S) holds for the dual problem pDq; hence, the dual solutions of pDq, which are the
solutions of pP q, must exist and form a bounded set (recall that (CQ-S) is equivalent
to (CQ-MF) or (CQ-R) for convex problems, and use propositions 2.6 and 2.22); this
is point 1 of the proposition (this way of thinking is not quite correct, since it is not
assumed there that the dual problem has a solution). Similarly, if Fs

P
‰ ∅, a kind of

Slater constraint qualification (CQ-S) holds for the primal problem pP q; hence, the
dual solutions of pP q, which are the solutions of pDq, must exist and form a bounded
set; this is point 2 of the proposition (this way of thinking is not quite correct, since
it is not assumed there that the primal problem has a solution). Point 3 just gathers
the results in points 1 and 2.

We start with a lemma giving a consequence of the strict primal or dual feasibility.

Lemma 6.5 (consequence of strict feasibility)

1q If Fs
P

‰ ∅, then any pd,Dq P Rm ˆ Sn verifying xb, dy ě 0, A˚pdq ` D “ 0,
D ě 0 and d P RpAq vanishes.

2q If Fs
D

‰ ∅, then any D P Sn verifying xC,Dy ď 0, ApDq “ 0 and D ě 0

vanishes.

Proof. 1) Suppose that pd,Dq P Rm ˆ Sn verifies xb, dy ě 0, A˚pdq ` D “ 0, D ě 0

and D P RAq. Since Fs
P

‰ ∅, there exists an X0 P Sn
`` such that ApX0q “ b. Then,
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0 “ xX0,A
˚pdq `Dy rA˚pdq `D “ 0s

“ xb, dy ` xX0, Dy rApX0q “ bs
ě xX0, Dy rxb, dy ě 0s
ě 0 rX0 ě 0 and D ě 0s.

Hence xX0, Dy “ 0. Now X0 ą 0, D ě 0 and (6.2) imply that D “ 0. Next, A˚pdq “ 0

and d P RpAq imply that d “ 0.
2) Suppose that D P Sn verifies xC,Dy ď 0, ApDq “ 0 and D ě 0. Since Fs

D
‰ ∅,

there exists a pair py0, S0q P Rm ˆ Sn
`` such that A˚py0q ` S0 “ C. Then,

0 “ xy0,ApDqy rApDq “ 0s
“ xC,Dy ´ xS0, Dy rA˚py0q ` S0 “ Cs
ď ´xS0, Dy rxC,Dy ď 0s
ď 0 rS0 ě 0 and D ě 0s.

Hence xS0, Dy “ 0. Now S0 ą 0, D ě 0 and (6.2) imply that D “ 0. l

Proposition 6.6 (existence of compact sets of solutions)

1q FP ˆ Fs
D

‰ ∅ ùñ SolpP q is nonempty and compact.
2q Fs

P
ˆ FD ‰ ∅ ùñ SolpDq X pRpAq ˆ Snq is nonempty and compact.

3q Fs ‰ ∅ ùñ SolpP q and SolpDqXpRpAqˆSnq are nonempty and compact.

In all these cases, there is no duality gap: valpDq “ valpP q.

Proof. 1) [SolpP q nonempty and compact ] Problem pP q reads

inf
XPSn

´

ϕpXq :“ xC,Xy ` IA pXq ` ISn
`

pXq
¯

,

where A :“ tX P Sn : ApXq “ bu. The value atD P Sn of the asymptotic function ϕ8

of ϕ reads
ϕ8pDq “ xC,Dy ` IN pAqpDq ` ISn

`
pDq.

By the implication pivq ñ piiiq of proposition 1.20, SolpP q is nonempty and compact
if we have that ϕ8pDq ą 0 for all nonzero D or, equivalently, if

ApDq “ 0, D ě 0, xC,Dy ď 0 ùñ D “ 0. (6.12a)

By lemma 6.5, this is a consequence of Fs
D

‰ ∅.
[No duality gap] Consider first the case when C P RpA˚q “ N pAqK (see figure 6.1,

left). Then, C is perpendicular to N pAq, any primal feasible X P FP should be a
solution and the optimal value valpP q should not be affected by a perturbation of
Sn

`, so that S0 “ 0 should be an optimal dual variable. Let us check this rigorously.
Indeed, since when C P RpA˚q, one can find a y0 P Rm such that C “ A˚py0q, we have
for an arbirary X P FP : valpP q “ xC,Xy “ xy0,ApXqy “ xb, y0y. But py0, 0q P FD,
hence valpDq ě xb, y0y, which shows the absence of duality gap.
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C C

S1Sn
`

SolpP q

Sn
`

tX P Sn : ApXq “ b

xC,Xy ď valpP q ´ εu

tX P Sn : ApXq “ bu

SolpP q

Fig. 6.1. Artistic 2D illustration of the proof of proposition 6.6 (Sn
` is much more complex

than in the given representation): the simple case when C P N pAqK (left) and the separation
technique when C R N pAqK (right)

Consider now the case when C R RpA˚q “ N pAqK (see figure 6.1, right). Take
ε ą 0. It suffices to find a py0, S0q P FD such that xb, y0y ě valpP q ´ ε. The dual
variable S0 will be obtained by a separation argument, while y0 will result as a by-
product. Consider the two sets

C1 :“ Sn
` and C2 :“ tX P Sn : ApXq “ b, xC,Xy ď valpP q ´ εu.

These sets

are closed and convex (clear),
are nonempty (for C2, take H P N pAq such that xC,Hy ă 0 [possible since C R
RpA˚q] and observe that ApX ` tHq “ b and xC,X ` tHy Ñ ´8 when t Ñ 8),
are disjoint (by the definition of valpP q) and
verify C8

1 XC8
2 “ t0u (indeed, if D P C8

1 “ Sn
` and D P C8

2 “ tD P Sn : ApDq “
0, xC,Dy ď 0u, we have D “ 0 by (6.12a)).

Therefore, C1 and C2 can be strictly separated (point 2 of proposition 1.15): there
exists S1 P Sn such that

α :“ sup
ApXq“b

xC,XyďvalpP q´ε

xS1, Xy ă inf
Xě0

xS1, Xy “: β.

Take in the right-hand side X “ 0 to get α ă 0 and X “ tvvT with t Ñ 8 to get
S1 ě 0. Next, observe that the problem in the left-hand side is a linear optimization
problem on the vector space Sn, whose optimal value is finite. By (1.63), there exist
multipliers py1, σ1q P Rm ˆ R such that

A˚py1q ` S1 “ σ1C, σ1 ě 0 and ´ xb, y1y ` σ1pvalpP q ´ εq “ α ă 0.

We necessarily have σ1 ą 0, since otherwise, the last inequality would yield xb, y1y ą 0

and, scalarly multiplying the first identity by an X P FP would give xb, y1y “
´xX,S1y ď 0, a contradiction. Now setting y0 “ y1{σ1 and S0 :“ S1{σ1, we get
py0, S0q P FD verifying xb, y0y ą valpP q ´ ε, as desired.

2) The claim can be shown like in the proof of point 1 (exercise 6.1.2).
3) This is a consequence of points 1 and 2. l

The result in point 2 and 3 of proposition 6.6 simplify if A is surjective, since then
they become
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Fs
P

ˆ FD ‰ ∅, A surjective ùñ SolpDq is nonempty and compact.

Fs ‰ ∅, A surjective ùñ SolpP q ˆ SolpDq is nonempty and compact.

If A is not surjective, either b R RpAq, in which case the feasible set FP “ ∅ and
valpP q “ `8, or b P RpAq. In the latter case, when A has the representation (6.6a),
one can remove redundant constraints xAk, Xy “ bk and end up with a linear indepen-
dent set of matrices Ak forming a new surjective operator A. Therefore, numerially,
adding an asumption on the surjectivity of A is not dramatic but, in theory, it is more
elegant and it can be useful to avoid it.

We conclude this subsection by giving some examples and counter-examples re-
lated to proposition 6.6.

Examples 6.7 Here are some situations that can occur (the proof of the claims made
below are proposed in the exercice 6.1.3).

1q A is surjective, pP q has a unique solution, Fs
D

‰ ∅, valpDq P R but pDq has no
solution, there is no duality gap.

This situation is compatible with point 1 of proposition 6.6. Here is an example
with n “ 2 and m “ 2:

C “
ˆ

0 1

1 0

˙

, A1 “
ˆ

´1 0

0 0

˙

, A2 “
ˆ

0 0

0 ´1

˙

, b “
ˆ

´1

0

˙

.

2q A is surjective, Fs
P

‰ ∅, valpP q P R but pP q has no solution, pDq has a unique
solution but Fs

D
“ ∅, there is no duality gap.

This situation is compatible with point 2 of proposition 6.6. Here is an example
with n “ 2 and m “ 1:

C “
ˆ

2 ´1

´1 0

˙

, A1 “
ˆ

0 ´1

´1 2

˙

and b “ 2.
l

Optimality Conditions

Proposition 6.8 (optimality conditions) Suppose that Fs
P

‰ ∅ or Fs
D

‰ ∅,
then

pX, py, Sqq P SolpP q ˆ SolpDq ðñ

$

&

%

A˚pyq ` S “ C, S ě 0,

ApXq “ b, X ě 0,

xX,Sy “ 0.

(6.13)

Proof. [ñ] The first two conditions are the dual and primal feasibility, which is sat-
isfied by a primal-dual solution. The third condition is the absence of duality gap,
guaranteed by proposition 6.6.

[ð] This is point 3 of proposition 6.2. l
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6.1.4 Interior Point Algorithms N

Central Path

There are good reasons to generate iterates well inside Fs
P
. This is obtained analyti-

cally (not geometrically) by an interior penalization:

pP q ñ pPµq
"

infX xC,Xy ` µ ldpXq
ApXq “ b,

pDq ñ pDµq
"

suppy,Sq xb, yy ´ µ ldpSq
A˚pyq ` S “ C,

where ld : Sn Ñ R is the strictly convex and closed function defined at X by

ldpXq :“
"

´ log detpXq if X ą 0

`8 otherwise.

Here are three properties of ld (with X ą 0 and H , K P Sn):

ld1pXq ¨ H “ ´xX´1, Hy,
ld2pXq ¨ pH,Kq “ xX´1HX´1,Ky,

ld8 “ ISn
`
.

The central path is the smooth curve C : µ P R`` ÞÑ the unique solution to

pOµq

$

&

%

A˚pyq ` S “ C, S ą 0,

ApXq “ b, X ą 0,

XS “ µI.

(6.14)

Lemma 6.9 (equivalent definitions of the central path) Suppose that
Fs ‰ ∅ and µ ą 0. Then,

1q Xµ P Sn
`` solves problem pPµq if and only if there is a pair pyµ, Sµq P Rm ˆ

Sn
`` such that pOµq holds,

2q pyµ, Sµq P Rm ˆSn
`` solves problem pDµq if and only if there is an Xµ P Sn

``

such that pOµq holds.

Proof. We alleviate the notation by dropping the subscript µ on the variables.
1) By the convexity of the objective of problem pPµq (ld is a convex function) and

the affinity of its constraint (hence it is qualified by (CQ-A)), X P Sn
`` solves pPµq

if and only if it verifies ApXq “ b and there exists a multiplier y P R
m such that the

gradient of the Lagrangian of the problem vanishes:

C ´ µX´1 ´ A˚pyq “ 0.

Setting S :“ µX´1 ą 0, we get pOµq.
2) By the concavity of the objective of problem pDµq and the affinity of its con-

straint, py, Sq P Rm ˆ Sn
`` solves pDµq if and only if it verifies A˚pyq ` S “ C and
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there exists a multiplier X P Sn such that the gradient of the Lagrangian of the
problem vanishes:

´b` ApXq “ 0 and ´ µS´1 `X “ 0.

Hence X “ µS´1 ą 0 and we get also pOµq. l

Proposition 6.10 (existence and smoothness of the central
path) Suppose that Fs ‰ ∅ and µ ą 0. Then,

1q the system pOµq has a solution pXµ, yµ, Sµq, unique in Sn
`` ˆ RpAq ˆ Sn

``,
2q the map µ P R`` ÞÑ pXµ, yµ, Sµq P Sn

`` ˆ RpAq ˆ Sn
`` is C8.

Proof. We alleviate the notation by dropping the subscript µ on the variables.
1) By lemma 6.9, pX, y, Sq solves pOµq, if and only if X solves pPµq and py, Sq is

a pair of optimal multipliers associated with the constraints of that problem.
Therefore, to prove the existence of a solution to pOµq, it suffices to show that

pPµq has a solution. Now, problem pPµq also reads

inf
XPSn

´

ϕµpXq :“ xC,Xy ` µ ldpXq ` IA pXq
¯

,

where A :“ tX P Sn : ApXq “ bu. The value atD P Sn of the asymptotic function ϕ8
µ

of ϕµ reads
ϕ8
µ pDq “ xC,Dy ` ISn

`
pDq ` IN pAqpDq.

Like in the proof of proposition 6.6, Fs
D

‰ ∅ implies that ϕ8
µ pDq ą 0 for D ‰ 0. By

the implication pivq ñ piiiq of proposition 1.20, ϕµ has a nonempty and compact set
of minimizers.

The uniqueness of the solution Xµ of pOµq comes from the strict convexity of ld,
which ensures the uniqueness in Xµ of the solution to pPµq and the recalled equiv-
alence between the solutions to pPµq and pOµq. The uniqueness of Sµ comes from
the uniqueness of Xµ and the equation XµSµ “ µI, which determines Sµ from Xµ.
The uniqueness of yµ in RpAq comes from the following observations. Since y only
intervenes in pOµq through the equation

A˚pyq ` S “ C,

and since any solution yµ can be written yµ “ y0µ ` y1µ with y0µ P N pA˚q and y1µ P
N pA˚qK “ RpAq, pXµ, y

1
µ, Sµq is also a solution to pOµq with its y-component in

RpAq. Now, if pXµ, yµ, Sµq and pXµ, y
1
µ, Sµq are two solutions to pOµq with a y-

component in RpAq, h :“ y1
µ ´ yµ satisfies h P RpAq and h P N pA˚q “ RpAqK, hence

h “ 0 and yµ “ y1
µ.

2) We have just shown, actually, that, when Fs ‰ ∅ and µ ą 0, pXµ, yµ, Sµq is
the unique solution to the system

$

&

%

A˚pyq ` S “ C,

ApXq “ b,

XS “ µI
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in the open set Sn
`` ˆ RpAq ˆ Sn

`` of the vector space Sn ˆ RpAq ˆ Sn. Thanks to
this system, the smoothness of the map µ P p0,`8q ÞÑ zµ :“ pXµ, yµ, Sµq can be
derived from the implicit function théorem. Indeed, pzµ, µq is a zero of F pz, µq, where

F : pSn ˆ RpAq ˆ Snq ˆ R Ñ Sn ˆ RpAq ˆ Sn

is defined at pz, µq P pSn ˆ RpAq ˆ Snq ˆ R by

F pz, µq “

¨

˝

A˚pyq ` S ´ C

ApXq ´ b

XS ´ µI

˛

‚.

Since F is infinitely continously differentiable, this smoothness property will be inher-
ited by the implicit function µ ÞÑ zµ, provide F 1

zpzµ, µq is bijective, or even injective
since for fixed µ the dimension of the range space of F is equal to the one of its
definition space. Therefore, we only have to show that

¨

˝

0 A˚ I

A 0 0

S 0 X

˛

‚

¨

˝

dX
dy
dS

˛

‚“ 0 and dy P RpAq

implies that pdX , dy, dSq “ 0. From the last row, we get dX “ ´S´1XdS, which with
the second row yields AS´1XdS “ 0. Since dS “ ´A˚dy by the first row, we get
AS´1XA˚dy “ 0. Now S´1X “ µS´2 ą 0, so that A˚dy “ 0 and finally dy “ 0 by
the fact that dy P RpAq. Next dS “ ´A˚dy “ 0 and dX “ ´S´1XdS “ 0. l

A Convergent Algorithm With Feasible Iterates

A primal-dual path-following interior-point algorithm generates iterates

zk :“ pXk, yk, Skq P Fs

in a neighborhood V pθq of the central path C (θ P p0, 1q is a parameter that deter-
mines the size of the neighborhood). Each iteration proceeds along a Newton direction
aiming a moving point on C , whose central parameter if σµ̄pzq where σ P p0, 1q and

µ̄pzq :“ xX,Sy
n

.

Algorithm 6.11 (interior point scheme in SDO) One iteration, from z :“
pX, y, Sq to the next one z` :“ pX`, y`, S`q.
1. Newton step: Let d be the Newton direction on a symmetrized version of

pOσµ̄pzqq.
2. Displacement : Determine a large stepsize α ą 0 such that z ` αd P V pθq.
3. New iterate: z` :“ z ` αd.
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A Practical Algorithm With Infeasible Iterates

6.1.5 A Nonsmooth Algorithm N

Notes

This chapter owes a lot to the reviews of Alizadeh [3; 1995], Vandenberghe and Boyd
[135; 1996], Monteiro and Todd [102; 2000], Todd [132; 2001] and to the book of
Nemirovskii and Nesterov [105; 1994]. The monographs of Saigal, Vandenberghe and
Wolkowicz [136; 2000], de Klerk [42; 2002] and Anjos and Lasserre [5; 2012] are rich in
information on the theory, algorithms and applications. Monteiro [101; 2003] reviews
methods for solving SDO problems, including approaches that do not use the notion
of interior points.

The proof of proposition 6.3 is taken from [111; 1976 ; VI 44]. The presented proof
of the absence of duality gap in proposition 6.6 is due to Todd [132; theorem 4.1].

Exercises

6.1.1. Schur complement of a positive semi-definite matrix. Let A P S
n, C P S

m, and
B P R

nˆm. Denote by A: the pseudo-inverse of A. Show that

ˆ

A B

BT C

˙

ě 0 ðñ

$

&

%

A ě 0

RpBq Ď RpAq
C ´ BTA:B ě 0.

(6.15)

6.1.2. Existence of a nonempty compact solution set and no duality gap. Prove point 2 of
proposition 6.6 and the absence of duality gap in that case.

6.1.3. SDO examples. Prove the claims made in examples 6.7.

6.2 Circular Optimization N

6.3 Copositive Optimization N
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Index

affine hull, 11
– of a convex polyhedron, 26
algorithm
– gradient, 48
– JN (Josephy-Newton), 102, 108
– semismooth Newton, 126
– SQP, 137, 150
– SQP for pPGq, 154
– steepest descent, 48

B-differential
– definition, 118
Banach
– perturbation lemma, 120
bidual cone, 15
– expression, 17
binary relation, 30

C-differential
– definition, 118
– regular, 120
C-function, 131
– definition, 114
– Fischer, 115
– min, 115
C-regular point, 120
circular cone, 16
closed function, 28
closure, 10
complementarity condition, 39
– strict, see strict complementarity
complementarity problem, 128
– linear, 128
– mixed, 129
cone, 12
– asymptotic, 20, 23, 26
– bidual, see bidual cone
– circular, see circular cone
– critical, see critical cone
– dual, see dual cone

– feasible directions, 17
– linearizing, 38, 53
– normal, see normal cone
– tangent, see tangent cone
conification, 155
constraint
– active, 37
constraint qualification
– affinity (CQ-A), 38, 90
– for representing XE , 35
– for representing XEI , 38
– for representing XG, 54
– linear independence (CQ-LI), 38, 90

– Mangasarian-Fromovitz (CQ-MF), 38,
57, 80, 87, 88

– Robinson (CQ-R), 57
– Slater (CQ-S), 38
convergence to zero, equivalently, 45
convex optimization problem
– pPcompq, 78
– pPEq, 35
– pPEIq, 37
– pPGq, 52
convex polyhedron, 13
– addition, 13
– affine hull, 26
– dual form, 13
– linear transformation:, 13
– normal cone, 19
– relative interior, 26
– tangent cone, 19
– upper semi-continuity of the set of ac-

tive inequalities, 13
convex set, 10
critical cone
– for pPEIq, 84

degree of a monomial, 160
derivative, 28
differentiability
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– directional, see directional differentia-
bility

– Fréchet, 28

differential quotient, 24
direction
– critical, 84
– feasible, 18
directional differentiability, 22
– composition, 143
– in the sense of Hadamard, 143
distance to a set, 10
dual cone, 15
– inclusion, 17
– negative, 15
– of a Cartesian product, 17
– of a convex hull, 17
– of a sum, 17
– of a union, 17
– of an intersection of cones, 17
– self-dual, 15
duality gap, 42

epigraph of a function, 21
error bound
– and semi-stability, 103
– definition, 58
– Robinson for XG, 58

feasible direction, see direction
feasible point, 32
feasible set, 32
– XE of pPEq, 35
– XEI of pPEIq, 37
– XG of pPGq, 52
Finsler lemma, 158
Fréchet, 28
function
– closed, 21
– convex, 21
– domain, 21
– epigraph, 21
– Lipschitz (continuous), 143
– piecewise affine, 124
– piecewise semismooth, 124
– proper, 21
– r-steep, 66
– semismooth, 122
– strongly semismooth, 122
– subcontinuous, 66
– subdifferentiable, 25
functional inclusion, 98
– hemi-stable solution, 111

– semi-stable solution, 103
– strongly regular solution, 108

global convergence
– of the SQP algorithm with line-search,

150
gradient, 10

homogenization, 155
hull
– affine, see affine hull
– closed convex, 12
– conical, 12
– convex, 12
– vector, see vector hull

index set
– active constraint, 37
– inactive constraint, 37
indicator function, 21
interior, 10
interval, 9
isolated solution
– of a functional inclusion, 103
– of the optimization problem pPGq, 92

Kronecker symbol, 156

Lagrangian
– equality and inequality constrained op-

timization problem, 39
– equality constrained optimization prob-

lem, 35
– general optimization problem, 56
– semidefinite optimization problem, 159
Lagrangian dual
– linear optimization, 43
lemma
– Banach perturbation, 120
linear map
– adjoint, 10
– of a relative interior, 14
linear preimage
– of a relative interior, 15
linearization
– JN (Josephy-Newton), 102
lower semi-continuous function, 27
Lyusternik, 67

machine-epsilon, 149
matrix
– copositive, 90
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minimizing sequence, 32
Minkowski sum, 9
monomial, 160
– degree, 160
multifunction
– closed, 31
– convex, 30
– definition, 29
– domain, 30
– graph, 30
– image, 30
– inverse, 30
– metric regular, 61
– multiplier, 95
– open, 61
– range, 30
– stationary point, 96
– upper semi-continuous at a point, 31
multiplier set
– boundedness for pPEIq, 40
– boundedness for pPGq, 74
– boundedness for pPQ,Gq, 77
– uniqueness for pPEIq, 40

N pxq, family of neighborhoods of x, 28
Necessary optimality condition
– first order
– – for pPEq (Lagrange), 35
– – for pPEIq (Karush-Kuhn-Tucker), 39
– – for pPXq (Peano-Kantorivich), 34
– – for unconstrained optimization (Fer-

mat), 33
neighborhood, 10
norm
– dual, 144
normal
– map, 113
normal cone
– intersection, 18
– map, 99
– product, 18
– to a convex set, 18
– to a nonconvex set, 33
– to S

n
`, 158

normal-cone-intersection, 18
normal-cone-product, 18

optimal multiplier
– for pPEq, uniqueness, 36
– for pPEIq, bounded, 40
– for pPEIq, uniqueness, 40
optimality conditions for pPcompq

– necessary of the first order (SC1), 79
– sufficient of the first order (SC1), 79
optimality conditions for pPEIq
– necessary
– – of the second order (NC2), 88, 90
– – of the second order (NC2), semi-strong,

85, 90
– – of the second order (NC2), strong, 85,

90
– – of the second order (NC2), weak, 86,

90
– sufficient
– – of the second order (SC2), 91
– – of the second order (SC2), semi-strong,

92
– – of the second order (SC2), strong, 92
– – of the second order (SC2), weak, 92
optimality conditions for pPGq
– necessary of the first order (NC1), 55
– sufficient of the first order (SC1), 56
optimality conditions for pPQ,Gq
– necessary of the first order (SC1), 77
– sufficient of the first order (SC1), 77
optimization problem
– bounded, 32
– conic, 155
– convex, see convex optimization prob-

lem
– equality and inequality constrained, 37
– equality constrained, 34
– linear, 43
– nonlinear, 37
– pPEq, 35
– pPEIq, 37, 52, 133
– pPErl,usq, 52
– pPGq, 51
– pPLq, 43
– pPQ,Gq, 76
– semidefinite, 52
– unbounded, 32

pairing function, 41
– in linear optimization, 44
polynomial
– SOS, 161
power set, 29
problem
– complementarity pPcpq, 100
– – reformulation as nonsmooth equation,

114
– functional inclusion pPfiq, 98
– optimization, see optimization problem



184 Index

– variational inequality
– – reformulation as nonsmooth equation,

115
– variational inequality pPviq, 113
– variational inequality pPviq, 99

– variational pPvq, 99
projection
– contraction, 20
– monotonicity, 20
projector, 19
– Cartesian, 30

quadratic convergence
– definition, 45
– of Newton’s method for equations, 46
– of the JN algorithm, 109–111
– of the semismooth Newton algorithm,

126
quadratic growth property, 91, 92

reformulation
– normal map, 113
relative interior, 13
– of a convex polyhedron, 26

saddle-point, 42
Schur complement, 160
segment, 10
semi-continuity
– upper, see upper semi-continuity
set-valued function/map/mapping, see mul-

tifunction
simplex
– unit – of Rn, 11
small o, 29
S

n
`, 11

S
n
``, 11

solution
– hemi-stable of pPEIq, 138
– improper, 43
– semi-stable of pPEIq, 138
speed of convergence
– linear, 45
– quadratic, see quadratic convergence
– superlinear, see superlinear convergence
stability
– of a set with respect to small perturba-

tions, 59
stationary point
– for pPEq, 35
– for pPEIq, 39
– for pPGq, 56

strict complementarity, 40
– for an S

n
`-valued constraint, 82

strong duality
– in linear optimization, 44
subdifferentiability, 25
subdifferential, 25
subgradient, 25
superlinear convergence
– and equivalent sequences, 45
– definition, 45
– Dennis and Moré criterion, 47
– of Newton’s method for equations, 46
– of the JN algorithm, 109–111
– of the semismooth Newton algorithm,

126

tangent cone
– to a convex set, 18
– to a nonconvex set, 33
– to S

n
`, 158

theorem
– mean value, 29
– open mapping, 80
trace of a matrix, 156

upper semi-continuity
– of a multifunction, 31
– of the C-differential, 119
– of the set of active inequalities, 13
– of the subdifferential of a convex func-

tion, 31

vector hull, 11

weak duality inequality, 42
– in linear optimization, 44

zero of a function, 46
Zoutendijk condition, 48


	Background
	Notation
	Convex Analysis
	Convex Set
	Hulls
	Convex Polyhedron
	Relative Interior
	Dual Cone and Farkas Lemma
	Tangent and Normal Cones
	Projection
	Asymptotic Cone
	Convex Function
	Asymptotic Function
	Subdifferentiability
	Notes
	Exercises

	Nonsmooth Analysis
	Lower semi-continuity
	Lipschitz Continuity
	Differentiability
	Multifunction
	Notes
	Exercises

	Optimization
	Generic Problem
	Peano-Kantorovich Optimality Condition
	Equality Constrained Problem (PE)
	Equality and Inequality Constrained Problem (PEI)
	Abstract Duality
	Linear Optimization Problem (PL)

	Algorithmics
	Speeds of Convergence
	Newton and Quasi-Newton Algorithms 
	Global Convergence in Unconstrained Optimization 
	Global Convergence for Nonlinear Equations 


	Optimality Conditions
	First Order Optimality Conditions for (PG)
	Definition of the General Problem
	First Order Optimality Conditions
	Robinson's Condition
	Robinson's Constraint Qualification
	Set of optimal multipliers
	Other problems 
	Notes
	Exercises

	Second Order Optimality Conditions for (PEI)
	Critical Cone
	Three Instructive Examples
	Second Order Necessary Optimality Conditions
	Second Order Sufficient Optimality Conditions
	Notes
	Exercises


	Perturbation Analysis
	Linear System 
	Nonlinear System 
	Optimization 
	Notes


	A Few Methods for Nonsmooth Systems
	Josephy-Newton Algorithm for Functional Inclusions
	A Gallery of Problems
	The Josephy-Newton Algorithm
	Regularity
	Speed of Convergence
	Local Convergence
	Globalization by Line-Search 
	Notes
	Exercises

	B-Newton Method for Systems of Equations 
	Linearization method for PC1 functions 
	Semismooth Newton Method for nonlinear systems
	Motivation, Orientation, Examples
	Generalized Differentiability
	Semismoothness 
	The Semismooth Newton Method 
	Globalization by linesearch 
	Globalization by trust regions 
	Examples of use 
	Notes
	Exercises

	Reformulation Methods for Complementarity Problems 
	Fischer-Newton Algorithm
	Newton-Min Algorithm
	Notes


	A Few Methods for Optimization
	SQP Algorithm for (PEI)
	The SQP Algorithm
	Local Convergence
	Exact Penalization
	Globalization by Line-Search for (PEI) 
	Globalization by Trust-Region for (PE) 
	Notes 
	Exercises

	SQP Algorithm for (PG) 
	The SQP Algorithm
	Local Convergence


	Self-dual Conic Optimization
	Semidefinite Optimization
	Primal and Dual Problems
	Examples of SDO Formulation
	Existence of Solution, Optimality Conditions
	Interior Point Algorithms 
	A Nonsmooth Algorithm 
	Notes
	Exercises

	Circular Optimization 
	Copositive Optimization 

	Appendices
	References
	Index


