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Abstract

Rank-metric code-based cryptography relies on the hardness of decoding a random
linear code in the rank metric. The Rank Support Learning problem (RSL) is a
variant where an attacker has access to N decoding instances whose errors have the
same support and wants to solve one of them. This problem is for instance used in
the Durandal signature scheme [5]. In this paper, we propose an algebraic attack on
RSL which clearly outperforms the previous attacks to solve this problem. We build
upon [8], where similar techniques are used to solve MinRank and RD. However,
our analysis is simpler and overall our attack relies on very elementary assumptions
compared to standard Gröbner bases attacks. In particular, our results show that
key recovery attacks on Durandal are more efficient than was previously thought.

keywords Post-quantum cryptography - rank metric code-based cryptography -
algebraic attack.

1 Introduction.

Rank metric code-based cryptography. In the last decade, rank metric code-based
cryptography has proved to be a powerful alternative to traditional cryptography based on
the Hamming metric. Compared to the situation in the Hamming metric, a few families
of codes with an efficient decoding algorithm were considered in rank-based cryptography.
Starting with the original GPT cryptosystem [13], a first trend was to rely on Gabidulin
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codes. However, their algebraic structure was successfully exploited by the Overbeck attack
[25] and variants. More recent proposals [15, 17, 2, 3] inspired by the NTRU cryptosystem
[20] were based on LRPC codes. These schemes can be viewed as the rank metric analogue
of the MDPC cryptosystem in the Hamming metric [22], where the trapdoor is given by a
small weight dual matrix which allows efficient decoding.

The cryptosystems submitted to the NIST post-quantum Standardization Process [4, 1]
were of this kind. They have not passed the second round of this competition, but the
NIST still encourages further research on rank-based cryptography. First, they offer an
interesting gain in terms of public-key size due to the underlying algebraic structure. Also,
this type of cryptography is not restricted to the abovementioned encryption schemes, as
shown by a proposal for signature [5] and even the IBE scheme from [14], and more progress
might be made in that direction.

Decoding problems in rank metric. Codes used in rank metric cryptography are
linear codes over an extension field Fqm of degree m of Fq. An Fqm-linear code of length
n is an Fqm-linear subspace of F

n
qm , but codewords can also be viewed as matrices in

F
m×n
q . Indeed, if (β1, . . . , βm) is an Fq-basis of Fqm , the word x = (x1, . . . , xn) ∈ F

n
qm

corresponds to the matrix Mat(x) = (Xij)i,j ∈ F
m×n
q , where xj = β1X1j + · · · + βmXmj

for j ∈ {1..n}. The weight of x is then defined by using the underlying rank metric on
F
m×n
q , namely |x|RANK := Rank(Mat (x)), and it is also equal to the dimension of the

support Supp(x) := 〈x1, . . . , xn〉Fq
. Similarly to the Hamming metric, the main source

of computational hardness for rank-based cryptosystems is a decoding problem. It is the
decoding problem in rank metric restricted to Fqm-linear codes, namely

Problem 1. (Rank Decoding problem (RD))
Input: an Fqm-basis (c1, . . . , ck) of a subspace C of Fn

qm, an integer r ∈ N, and a vector
y ∈ F

n
qm such that |y − c|

RANK
≤ r for some c ∈ C.

Output: c ∈ C and an error e ∈ F
n
qm such that y = c + e and |e|

RANK
≤ r.

We also adopt the syndrome formulation: given s ∈ F
n−k
qm and H ∈ F

(n−k)×n
qm a parity-

check matrix of the code, find e ∈ F
n
qm such that HeT = sT and |e|RANK ≤ r. Without

this restriction to Fqm-linear codes, the decoding of arbritrary codes in rank metric is also
worthy of interest. It is equivalent to the following MinRank problem, as explained in [12].

Problem 2. (MinRank problem)
Input: an integer r ∈ N and K matrices M 1, . . . ,MK ∈ F

m×n
q .

Output: field elements x1, x2, . . . , xK ∈ Fq, not all zero, such that

Rank

(
K∑

i=1

xiM i

)
≤ r.

This problem was originally defined and proven NP-complete in [10], and it is now
ubiquitous in multivariate cryptography. However, the RD problem is not known to be
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NP-complete, even if there exists a randomized reduction to the decoding in the Hamming
metric, which is NP-complete [18]. Still, this problem is believed to be hard and the best
attacks have exponential complexity. The first attacks against RD were of combinatorial
nature [16][19][6], but the recent developments in [7][8] tend to show that algebraic methods
now perform better, even for small values of q.

The RSL problem. The Rank Support Learning problem is a generalization of the RD
problem to several syndromes which correspond to errors with the same support.

Problem 3. (Rank Support Learning (RSL))

Input: (H ,HET), where H ∈ F
(n−k)×n
qm is full-rank and E ∈ F

N×n
qm has all its entries

lying in a subspace V ⊂ Fqm of dimension r for some r ∈ N.
Output: The secret subspace V.

In other words, an RSL instance of parameters (m,n, k, r, N) consists ofN RD instances
HeT

i = sTi with common support V of dimension r for i ∈ {1..N}. The RSL problem can
be seen as the rank metric analogue of the Support-Learning problem in the Hamming
metric, which had already been used for cryptographic purposes [21][23]. However, the RSL
problem turns out to be much more versatile for the future of rank-based cryptography. It
was introduced in [14] to build an IBE scheme, broken lately in [11]. More importantly, this
problem is at the heart of the security of the Durandal signature scheme [5], and solving
the underlying RSL instance leads to a key recovery attack. It is readily apparent that
the difficulty of RSL decreases when the number of RD instances grows. On the one hand,
the RSL problem is equivalent to RD when N = 1, and therefore the best known attacks
are exponential in the parameters (m,n, k, r). On the other hand, difficult instances must
satisfy N < kr, as explained in [11]. So far, the only attempt to solve RSL for all values of
N was the combinatorial algorithm from the original RSL paper [14], which leaves room
for improvement.

Contribution. Our contribution is an algebraic attack on the RSL problem and therefore
a key recovery attack on Durandal. To the best of our knowledge, it is the only attack
on RSL when N < kr which is not an attack on RD since [14]. Note that the Durandal
current parameter sets were already broken by the algebraic attacks from [8] and have not
been updated since then. Therefore, we propose new parameters in order to avoid these
attacks as well as the other known attacks on Durandal (see Section 5), and in Table 1 we
compare our attack to the best existing attack on RSL for these parameters.

Our attack is very often more efficient than the best current RSL attack, especially
for a large number of errors. The improvement is also more significant for larger values of
parameters (see for instance the last row in Table 1 compared to the other ones). Regarding
the security of Durandal, our work greatly improves upon previous key recovery attacks
and therefore it will have to be taken into account when selecting future parameters for
the scheme.

3



Table 1: Complexity of our attack on parameters (m,n, k, r, N) corresponding to Durandal
parameter sets given in Table 2. “Best RD” refers to the RD attack from [8] which is the
best RSL attack so far. The last two columns correspond to our attack for the two values
of N considered in Durandal. An underlined value is an improvement upon the RD attack.

(m,n, k, r) Best RD N = k(r − 2) N = k(r − 1)
(277, 358, 179, 7) 130 125 126
(281, 242, 121, 8) 159 170 128
(293, 254, 127, 8) 152 172 125
(307, 274, 137, 9) 251 187 159

The original attack from [14] is a combinatorial algorithm to look for elements of low
weight in a code Caug := C + 〈e1, . . . , eN〉Fq

of typical dimension km + N which contains
many such codewords. Our approach is to attack the very same code Caug but by using
algebraic techniques. A direct adaptation would be to consider a MinRank instance with
km + N matrices in F

m×n
q which represent an Fq-basis of Caug. However, the region of

parameters used in rank-based cryptography is typically m = Θ(n) and k = Θ(n), so that
the number of matrices is Θ(n2) due to the term km. This makes the cost of this approach
too high to be relevant. Therefore, we propose a bilinear modeling of the problem with
only N matrices in F

m×n
q instead of km + N . The way this system is obtained is very

reminiscent of the work of [8] to attack MinRank and RD. First, it consists of the set of
all maximal minors of a matrix of linear forms over Fqm which are then “descended” over
Fq as in the MaxMinors modeling. Second, we adopt a similar λ-XL type strategy by
multiplying the initial equations by monomials in only one of the two blocks of variables.
The system is then solved by linearization at some bi-degree (b, 1). To determine precisely
this degree, we have to carefully count the number of independent equations at each bi-
degree. In the case of MinRank, Bardet et al. are able to construct explicit linear relations
between the augmented equations and they argue that the rest of the equations are linearly
independent [8, Heuristic 2, p.19]. Their counting is valid whenever b < r + 2, where r is
the target rank in MinRank. However, our analysis will be much tighter. Indeed, up to a
minor assumption on the RSL instance that can be easily checked by linear algebra on the
syndromes, we can construct an explicit basis for the rowspace of the Macaulay matrix at
each bi-degree (b, 1), and we do no longer have a limitation on the value of b apart from
b < q (q 6= 2).
Also, we do not restrict ourselves to the words of lowest weight in Caug as in [14]. The
reason is that decreasing the target weight r as much as possible is always advantageous for
the combinatorial attacks, but not necessarily for the algebraic attacks. Indeed, decreasing
r will cause to decrease both the number of equations and variables in the system, but the
ratio between the two might become defavorable.

Notation. For a, b integers such that a ≤ b, we denote by {a..b} the set of integers from
a to b. The notation #I stands for the cardinality of the finite set of integers I, and for
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a an integer, I + a stands for the set {i + a : i ∈ I}. Also, we denote by Pos(i, I) the
position of the integer i in the ordered set I.
The space of matrices of size m×n over a field K is denoted by K

m×n. Matrices and vectors
are denoted by bold lowercase letters (M , v). For I ⊂ {1..n} and J ⊂ {1..m}, we use the
notation M I,J for the submatrix of M formed by its rows (resp. columns) with indexes
in I (resp. J). We adopt the shorthand notation M ∗,J = M {1..m},J and M I,∗ = M I,{1..n},
where M has size m× n.

2 Durandal and the RSL problem.

Assessing the hardness of RSL is needed to evaluate the security of the Durandal signature
scheme [5]. This scheme is based on the Lyubashevsky framework adapted to the rank
metric setting. For a 128-bit security level, the original parameters offer a signature size
of less than 4kB and a public key of size less than 20kB.

2.1 Key pair in Durandal.

Durandal is an authentication protocol turned into a signature thanks to the Fiat-Shamir
transform. For the purposes of this paper, we simply describe the key pair and we refer
the reader to [5, §3] for a full presentation of this protocol. First, the secret key consists
of a couple of matrices (E1,E2) ∈ F

lk×n
qm × F

l′k×n
qm whose entries lie in a subspace V of

dimension r. The public key is (H ,S1|S2) such that H ∈ F
(n−k)×n
qm is a random full-rank

ideal matrix 1, S1 = HET

1 ∈ F
(n−k)×lk
qm and S2 = HE2

T ∈ F
(n−k)×l′k
qm , where | denotes

matrix concatenation. It is readily verified that the couple (H ,S1|S2) is an instance of
RSL with parameters (m,n, k, r) and N = lk + l′k, and that solving this instance leads to
a key-recovery attack. However, it is not a random instance. Indeed, the matrix S1 (resp.
S2) can be reconstructed from only l (resp. l′) of its columns due to the ideal structure
of H . However, we have not been able to exploit this fact, and since this extra structure
is only used for efficiency, we assume without loss of generality that we attack a random
RSL instance.

2.2 Previous cryptanalysis on RSL.

The security of Durandal relies on the hardness of RD and RSL, as well as of the PSSI+

problem, which is an ad hoc assumption [5, Problem 5]. In this section, we describe the
prior work on RSL which was considered to design the parameters.

Attacks for large N . First, the RSL problem becomes easy when N ≥ nr and a
polynomial attack is detailed in [14, §4.2, p.14]. This linear algebra argument is not really
specific to the rank metric in the sense that it can be applied to the very same problem

1See for instance [5, §2.2, Definition 8] for a definition.
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in the Hamming metric. A more powerful attack is given in [11] and suggests that secure
instances of RSL must satisfy the stronger condition N < kr. The idea is that when
N ≥ kr, the public Fq-linear code

Csynd :=
{
xEHT, x ∈ F

N
q

}

is such that dimFq
(Csynd ∩ Vn−k) ≥ N − kr, and therefore there exist at least qN−kr words

of weight r in Csynd. The authors propose a bilinear modeling to recover one of these
codewords and due to the high number of solutions, many variables can be eliminated
from the system. The attack is efficient because the Gröbner basis techniques on this
system are expected to take subexponential time. However, it seems difficult to adapt the
argument of [11] for N even slightly below kr, because the intersection Csynd ∩ Vn−k will
be trivial. Therefore, the Durandal parameter sets are chosen such that N = (k − 2)r or
N = (k − 1)r and the complexity analysis is based on the original attack from [14].

Solving RSL when N < kr. A naive way to solve RSL when N < kr is to attack one
of the N RD instances. Following [24], the strategy is to look for words of weight ≤ r in
an augmented Fqm-linear code of the form Ce = C ⊕〈e〉. To tackle several errors, note that
adding e1, . . . , eN to the code C in an Fqm-linear manner will lead to a deadlock, because
the augmented code quickly covers the whole space F

n
qm. Therefore, the authors of [14]

consider a code containing all the errors but which is simply Fq-linear. Let WU ⊂ F
n−k
qm be

the Fq-linear space generated by the sTi for i ∈ {1..N} and let Caug be the Fq-linear code
defined by

Caug :=
{
x ∈ F

n
qm, Hx ∈ WU

}
.

We clearly have C′ ⊂ Caug, where C′ is defined by C′ :=
〈
eT

1 , . . . , e
T

N

〉
Fq
. Codewords in

C′ all have weight ≤ r, and therefore the code Caug typically contains qN words of this
weight. It also contains the public Fqm-linear code C :=

{
x ∈ F

n
qm , Hx = 0

}
. We have

dimFq
Caug ≤ dimFq

C + dimFq
WU ≤ km + N . In general, this inequality is an equality

and we will make make this assumption from now on. In particular, it implies that the
errors e1, . . . , eN are linearly independent over Fq. The authors propose a combinatorial
algorithm [14, §4.3, Algorithm 1] to look for low weight codewords in Caug. Their attack
greatly benefits from the fact that there are many words of weight r in C′ and, a fortiori,
in Caug. Indeed, the algorithm will still succeed by targeting a word of weight equal to the
minimum distance of C′. This leads to the complexity claimed in [14, Theorem 2], which
is equal to qmin(e−,e+), where K = km+N and

e− =

(
w −

⌊
N

n

⌋)(⌊
K

n

⌋
−

⌊
N

n

⌋)

e+ =

(
w −

⌊
N

n

⌋
− 1

)(⌊
K

n

⌋
−

⌊
N

n

⌋
− 1

)
+ n

(⌊
K

n

⌋
−

⌊
N

n

⌋
− 1

)
.
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3 The RSL-Minors modeling.

In this section, we introduce the algebraic modeling that we use to solve the RSL problem
and we propose two ways to restrict the number of solutions, so that the final system has
roughly one solution.

3.1 The basic modeling.

Our system is obtained as follows. First, a public basis of the code Caug can be obtained by
considering an Fqm-basis of C (i.e. a full-rank generator matrix G ∈ F

k×n
qm ) together with

elements yi ∈ F
n
qm such that yiH

T = si for i ∈ {1..N}. A word of weight w ≤ r in Caug is
then written as

e := xG+

N∑

i=1

λiyi := (β1, β2, . . . , βm)CR,

where the quantities x ∈ F
k
qm , λi ∈ Fq for i ∈ {1..N}, C ∈ F

m×w
q and R ∈ F

w×n
q are

unknowns 2. Since GHT = 0, variables can be removed by multiplying to the right by
HT, and one obtains

N∑

i=1

λisi = (β1, . . . , βm)CRHT.

The vector
∑N

i=1 λisi is a linear combination over Fqm of the rows of RHT. This means
that the following matrix

∆H :=

(∑N
i=1 λisi
RHT

)
=

(∑N
i=1 λiyi

R

)
HT ∈ F

(w+1)×(n−k)
qm

has rank at most w. Finally, equations are obtained by canceling all the maximal minors
of ∆H . They are labelled by all the subsets J ⊂ {1..n− k} of size w + 1.

F =
{
|∆H |∗,J = 0

∣∣∣J ⊂ {1..n− k}, #J = w + 1
}
. (1)

The following Lemma 9 shows that the equations are bilinear in the λi and in the rT
variables, which are the maximal minors of R.

Lemma 1. Let J ⊂ {1..n− k} such that #J = w + 1. We have

QJ := |∆H |∗,J =
N∑

i=1

λi

∑

T⊂{1..n},#T=w

rT
∑

t/∈T

yi,t(−1)1+Pos(t,T∪{t}) |H |J,T∪{t} ,

where rT = |R|∗,T , T ⊂ {1..n}, #T = w. Without loss of generality, we assume that

H∗,{k+1..n} = In−k, so that QJ contains N
(
k+1+w

w

)
monomials.

2We adopt this notation because the matrix R (resp. C) represents a basis of the Rowspace (resp.
Column space) of Mat (e).
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The proof can be found in Appendix G. Since the equations have coefficients in Fqm and
solutions λi, rT are searched in Fq, we unfold the system over Fq. It consists in expanding
each equation f over Fqm as m equations [f ]j over Fq for j ∈ {1..m} which represent the
“coordinates” of f in an Fq-basis of Fqm .

Modeling 1 (RSL Minors modeling). We consider the system over Fq obtained by unfold-
ing the system (1):

UnFold(F) = UnFold
({

f = 0
∣∣∣f ∈ MaxMinors(∆H)

})
. (2)

We search for solutions λi, rT ’s in Fq. This system contains:

• m
(
n−k
w+1

)
bilinear equations with coefficients in Fq,

• N +
(
n
w

)
unknowns: λ = (λ1, · · · , λN) and the rT ’s, where rT = |R|∗,T for T ⊂

{1..n}, #T = w.

We now describe two ways to restrict the number of solutions to the RSL Minors system.
Note that the weight w ≤ r in Modeling 1 is not set to a precise value, and contrary to
[14], we will not necessarily target the words of lowest weight in Caug. Actually, we prefer
to attack codes obtained by shortening Caug.

Definition 1 (Shortening a matrix code). Let Cmat ⊂ F
m×n
q be a matrix code of parameters

[m×n,K]q and I ⊂ {1..n}. The shortening SI(Cmat) ⊂ F
m×(n−#I)
q of Cmat is the [m× (n−

#I), K ′ ≥ K −m#I]q-code defined as follows:

SI(Cmat) :=
{
R∗,{1..n}\I | R ∈ Cmat, R∗,I = 0∗,I

}
.

Moreover, when the code Cmat is Fqm-linear, this definition coincides with the usual defini-
tion of shortening on Fqm-linear codes.

This operation is interesting because it allows to decrease the number of rT variables
in Modeling 1 without altering the number of equations, which would be the case if we
simply target a word of lower weight but without shortening.

3.2 Shortening Caug as much as possible (δ = 0).

A first idea is to look for a word of weight r in a shortening of Caug which contains roughly
a unique word of this weight. Let a ∈ N be the unique integer such that ar < N ≤
(a + 1)r. From now on, we only consider N ′ = ar + 1 errors. For i ∈ {1..N ′}, we write
ei = (β1, . . . , βm)CRi, where the matrix C ∈ F

m×r
q is an Fq-basis of V and the matrices

R1, . . . ,RN ′ are random in F
r×n
q . Thus, there exists roughly one linear combination of the

ei of the form

e = (β1, . . . , βm)×C
(
0r×a R̃

)
,
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where R̃ ∈ F
r×(n−a)
q . A fortiori the error e lies in Caug, and its first a coordinates are zero.

In other words, the shortening S{1..a}(Caug) contains about one word of weight ≤ r. We
use Modeling 1 to attack this codeword, and the product RHT from the original system

is replaced by R̃H̃
T

, where the matrix H̃ consists of the last n − a columns of H (note

that we still have H̃∗,{k+1..n} = In−k). The resulting system has roughly one solution. It

consists of m
(
n−k
r+1

)
equations but with only N ′ variables λi and

(
n−a
r

)
variables rT . Finally,

the number of non-zero terms per equation is N ′
(
k+1+r

r

)
.

3.3 Looking for words of smaller weight in Caug (δ > 0).

Let dC′ be the minimum distance of C′ and δmax = r − dC′. When N is large enough,
we have δmax > 0 and therefore there exist codewords of weight w = r − δ in C′ for all
δ ∈ {1..δmax}. Once again, these codewords can be recovered by using Modeling 1. To
estimate the number of solutions, we try to be more precise than the argument in [14, C.1,
Lemma 2] based on the rank Singleton bound and we use the following proposition.

Proposition 1. Let r ∈ N and w ≤ r. Let XC′,w be the random variable counting the
number of codewords of weight w in C′, where the randomness comes from the choice of
a support V of dimension r and of N errors with support V. The expectation and the
variance of XC′,w are respectively given by

E[XC′,w] =
Sw,r,n

qr×n−N
and

Var[XC′,w] = Sw,r,n × (q − 1)×

(
1

qr×n−N
−

(
1

qr×n−N

)2
)
,

where Sw,r,n is the cardinality of the sphere of radius w in F
r×n
q for the rank metric.

The proof can be found in Appendix H. When q is a constant, one obtains:

E[XC′,w] = Θ(qw(n+r−w)−r×n+N) = Θ(qN−(r−w)(n−w)) and (3)

Var[XC′,w] = Θ(qN+1−(r−w)(n−w)) = Θ(qN−(r−w)(n−w)). (4)

Then, the code C′ contains a word of weight r − δ with good probability whenever N ≥
δ(n− r + δ) using Equation (3), and we look for such a codeword in the public code Caug.
Also, when there are many of them, we proceed as in Section 3.2 by shortening this code.
For instance, if one has

N > δ(n− r + δ) + a× (r − δ),

we assume that there exists roughly one word of weight ≤ r − δ in S{1..a}(C′). Therefore,

the numbers of equations and monomials at bi-degree (1, 1) are now m
(

n−k
r−δ+1

)
and N ′

(
n−a
r−δ

)

respectively, where N ′ = δ(n− r+ δ)+a× (r− δ). The number of monomials per equation
is N ′

(
k+1+r−δ

r−δ

)
. In practice, we choose the value of a which leads to the best complexity

(see Table 2).
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4 Solving the RSL Minors equations by linearization.

Now that we have restricted the number of solutions, we follow the approach from [8] which
consists in multiplying the bilinear equations by monomials in the λi’s and then solving
by linearization at some bi-degree (b, 1) when there are enough equations compared to the
number of monomials. In our case, the counting is much easier than in [8] and we are able
to determine with certainty the number of equations which are linearly independent over
Fqm .

4.1 Number of independent equations for the system over Fqm.

In this section, we focus on the initial system (1) whose equations are in Fqm. Our results
rely on the following assumption. This assumption is very easy to check by linear algebra
on the syndromes and was always verified in practice.

Assumption 1. Let S =
(
sT1 . . . sTN

)
∈ Fqm

(n−k)×N . We assume that S{1..n−k−w},∗ has
rank n− k − w.

Under this assumption, we show that all the equations in system (1) are linearly inde-
pendent over Fqm. The proof can be found in Appendix G.

Theorem 1 (Under Assumption 1). The
(
n−k
w+1

)
equations of system (1) are linearly inde-

pendent over Fqm.

As mentioned above, we are also interested in the number of independent equations
over Fqm at a higher bi-degree (b, 1) for b ≥ 2. This number is not the maximal possible
since linear relations between the augmented equations occur starting at b = 2. However,
this phenomenon is perfectly under control and Theorem 2 gives the exact number of
independent equations at bi-degree (b, 1). Contrary to [8], this counting is still exact even
when b ≥ w + 2.

Theorem 2 (Under Assumption 1). For any b ≥ 1, the Fqm-vector space generated by the
rows of the Macaulay matrix in bi-degree (b, 1) has dimension

Nb :=
n−k−w+1∑

d=2

(
n− k − d

w − 1

) d−1∑

j=1

(
N − j + 1 + b− 2

b− 1

)
. (5)

4.2 Solving the RSL Minors equations by linearization.

To obtain solutions over Fq, one can expand each of the independent equations over Fqm as
m equations over Fq. We assume that linear relations do not occur after this process when
there are less equations than the number of monomials in the resulting system. Recall also
that this system has a unique solution. Therefore, the following Assumption 2 gives the
number of linearly independent equations at bi-degree (b, 1) at hand for any b < q. This
assumption was somehow implicit in [8] for the MaxMinors modeling, and it is also verified
on our experiments in magma.
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Assumption 2. For b ≥ 1 and b < q, let Mb be the number of monomials at bi-degree
(b, 1). Then, the number of linearly independent equations at bi-degree (b, 1) in the aug-
mented system (2) is mNb when mNb < Mb, and Mb − 1 otherwise, where Nb is defined
as in Theorem 2.

Combining Assumption 2 and Theorem 2, we obtain that one can solve by linearization
at bi-degree (b, 1) whenever b < q and mNb ≥ Mb − 1, where Nb is defined above and
Mb :=

(
n
w

)(
N+b−1

b

)
.

For cryptographic applications, we are mainly interested in the q = 2 case, and due
to the field equations we only have to consider squarefree monomials. In this particular
case, we determined experimentally that there are some new reductions dues to the field
equations compared to Theorem 2, see Appendix G for a description. The full proof of
the number of independent equations in the q = 2 case will be the subject of a dedicated
paper. However, note that for b = 1 < 2 = q our proof is still valid.

The number of independent equations is nowmN F2

b when mN F2

b < MF2

b , whereMF2

b :=(
n
w

)(
N
b

)
and

N F2

b :=

b∑

d=1

n−k∑

j=1

(
j − 1

d− 1

)(
n− k − j

w − d+ 1

)(
N − j

b− d

)
for b ≤ w + 1(heuristic).

When q = 2, it is favorable to consider all the equations up to bi-degree (b, 1) instead
of those of exact bi-degree (b, 1). With MF2

≤b :=
∑b

j=1M
F2

j and N F2

≤b :=
∑b

j=1N
F2

j , the
condition to solve by linearization therefore reads

mN F2

≤b ≥ MF2

≤b − 1. (6)

The final linear system can be solved using the Strassen algorithm or the Wiedemann
algorithm. If b is the smallest positive integer such that (6) holds, the complexities of
solving this system are

O
(
(N F2

≤b)(M
F2

≤b)
ω−1
)
and O

(
N

(
k + 1 + w

w

)
(MF2

≤b)
2

)
(7)

field operations over F2 respectively, where ω is the linear algebra constant. Finally, one
can use the hybrid approach [9] that performs exhaustive search in αR variables rT and/or
αλ variables λi in order to solve at a smaller bi-degree (b, 1), and this strategy sometimes
leads to better results (see Table 2).

5 Complexity of the attack on new Durandal param-

eters.

We now present the best complexities obtained with our attack. In order to apply this
attack to Durandal, we construct new parameters (m,n, k, r, N) for the scheme by taking
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into account the constraints mentioned in [5, §6.1] but also the recent algebraic attacks
from [8]. The main ways to counteract these attacks are to increase the couple (n, k)
compared to m or to increase the weight r, and the proposed parameters try to explore
the two options. The missing parameters are chosen as follows. We always take d = r and
also l′ = 1 in N = (l + l′)k as in [5, §6.2]. Apart from the key recovery attack, the most
threatening attack against the scheme is the distinguishing attack on the PSSI+ problem
[5, §4.1], which basically prevents from taking too small values for m and N . Finally, for a
given 4-tuple (m,n, k, r), we propose several values of N to grasp how our attack behaves
by increasing the number of errors.

In Table 2, Column 2 refers to the distinguishing attack on PSSI+. The cost corresponds
to the advantage given in [5, §4.1, Proposition 18]. The attacker is supposed to have access
to 264 signatures, so that the success probability must be ≤ 2−192 instead of ≤ 2−128.
Column 3 refers to the RD attack from [8] which is the best key recovery attack so far.
The former combinatorial attack on RSL is much less efficient, so we do not even mention
it. The rest of the table corresponds to our attack. We present the two ways to decrease
the number of solutions described in Section 3.2 (“δ = 0”) and Section 3.3 (“δ > 0”) and
we give the value of b to solve by linearization. Sometimes, the best strategy is the hybrid
approach by fixing αR columns in R or αλ variables λi. Also, the attack from Section 3.3
looks for a word of weight w < r in Caug and proceeds by shortening the matrices on a

columns. Therefore, the couple (w, a) leading to the best complexity is also given. Finally,
an underlined value represents an improvement upon the best RD attack, and a value in
bold is a value below the 128-bit security level.

Table 2: Attack on 128-bit security parameter sets for Durandal. The missing parameters
are chosen as in [5]: we always take d = r and also l′ = 1 in N = (l + l′)k. These
choices only impact the PSSI+ attack. Recall that the value in Column 2 must be ≥ 192
assuming that the attacker has access to 264 signatures. A starred value is obtained with
the Wiedemann algorithm, otherwise the Strassen algorithm is used.

(m,n, k, r), N PSSI+ Best RD δ = 0 b (αC , αλ) δ > 0 b w = r − δ a (αC , αλ)

(277, 358, 179, 7)
N = k(r − 3) 199 130 173 2 (0,0) 174∗ 3 6 60 (0,0)
N = k(r − 2) 207 130 147 1 (0,0) 126 1 5 37 (0,2)
N = k(r − 1) 213 130 145 1 (0,0) 125 1 5 19 (0,1)

(281, 242, 121, 8)
N = k(r − 2) 193 159 170 2 (0,0) 170∗ 3 7 70 (0,0)
N = k(r − 1) 201 159 144 1 (0,0) 128 1 5 27 (2,3)

(293, 254, 127, 8)
N = k(r − 2) 205 152 172 2 (0,0) 172∗ 3 7 73 (0,0)
N = k(r − 1) 213 152 145 1 (0,0) 125 1 5 28 (1,4)

(307, 274, 137, 9)
N = k(r − 2) 199 251 187 2 (0,0) 187∗ 3 8 86 (0,0)
N = k(r − 1) 207 251 159 1 (0,0) 165∗ 2 8 103 (0,0)
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Our attack is very often more efficient than the best RD attack, and it is always the
case when N = (k − 1)r in Table 2. This improvement is not associated to a particular
value of N from which our attack will always be superior, but it is particularly obvious
when the system can be solved at b = 1. Note also that the progress is significant on the
set of parameters with r = 9, which suggests that our attack will be probably better for
larger values of parameters as well. Finally, even if the cost of our attack is sometimes
slightly below the 128-bit security level, the effect on Durandal remains limited. This is
mainly due to the fact that the attack on PSSI+ is very powerful in a scenario in which
the attacker has access to 264 signatures.

6 Conclusion.

In this paper, we propose a new algebraic attack on RSL which clearly improves upon the
previous attacks on this problem. As in [8], it relies on a bilinear modeling and avoids the
use of generic Gröbner bases algorithms. However, the algebraic properties of our system
allow a clearer analysis.

G Technical material.

This section contains the technical proofs of Lemma 9, Theorem 1 and Theorem 2.

G..1 Proof of Eq. (9).

Then, we use the linearity of the determinant and Laplace expansion along first row to
obtain, for any J ⊂ {1..n− k} of size w + 1:

QJ = |∆H |∗,J =
N∑

i=1

∑

j∈J

(−1)1+Pos(j,J)λisi,j
∣∣RHT

∣∣
∗,J\{j}

.

Then we use the Cauchy-Binet formula to express the determinant of a product of non-
square matrices A of size w × n and B of size n× (n− k),

|AB| =
∑

T⊂{1..n}
#T=w

|A|∗,T |B|T,∗ .

to get

QJ =
N∑

i=1

λi

∑

j∈J

(−1)1+Pos(j,J)si,j
∑

T⊂{1..n}
#T=w

rT |H|J\{j},T .

=
N∑

i=1

∑

T⊂{1..n}
#T=w

rTλi

(
∑

j∈J

(−1)1+Pos(j,J)si,j |H|J\{j},T

)
.
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Without loss of generality, we assume from now on that H∗,{k+1..n} = In−k. Then by
Laplace expansion along columns in {k+1..n}, it is clear that if T ∩ {k+1..n} 6⊂ (J + k),
we have |H|J\{j},T = 0 for any j and the monomials involving rT do not appear in QJ .

There are at most N
(
k+w+1

w

)
terms in QJ , that can be written

QJ =

N∑

i=1

λi

∑

T=T1∪T2

T1⊂{1..k+1},T2⊂(J+k)
#T=w

rT

(
∑

j∈J

(−1)1+Pos(j,J)si,j |H|J\{j},T

)
. (8)

G..2 Proof of Theorem 1.

We start by fixing a particular monomial ordering on R and we then provide, under As-
sumption 1, a concrete linear transformation of the equations such that the resulting equa-
tions have distinct leading monomials. This will prove that they are linearly independent.

Let ≺ be the grevlex monomial ordering on the variables λi and rT such that

r{t1<···<tw} ≺ r{t′
1
<···<t′w} iff ti = t′i for all i < j and tj < t′j ,

rT ≺ λN ≺ λN−1 ≺ · · · ≺ λ1 ∀T ⊂ {1..n},#T = w.

This means that λirT ≺ λjrT ′ iff rT ≺ rT ′ or rT = rT ′ and λi ≺ λj , and for instance with
w = 3,

λ1r{n−2,n−1,n} ≻ . . . λNr{n−2,n−1,n} ≻ λir{n−3,n−1,n} · · · ≻ λir{n−3,n−2,n} · · · ≻ λNr{1,2,3}.

Lemma 2. For any J ⊂ {1..n− k} of size w + 1, one can write

QJ =
∑

j∈J

N∑

i=1

(−1)1+Pos(j,J)si,jλir(J\{j})+k + (smaller terms wrt ≺). (9)

where the smaller monomials are λirT with T ∩ {1..k} 6= ∅, whereas the largest monomials
are λirT with T ⊂ (J + k) ⊂ {k + 1..n}.

Proof. We start from (8). According to the coince of the monomial ordering, the largest
monomials are the λjrI with I ⊂ {k + 1..n}, and they come from subsets T ⊂ (J + k)
of size w. Now, if T ⊂ J + k and j ∈ T , then |H|J\{j},T = IJ\{j},T−k = 0 whereas for
{j} = J \ (T − k) we have |H|J\{j},T = IT−k,T−k = 1. Then,

QJ =
N∑

i=1

λi

∑

T⊂J+k
#T=w,{j}=J\T

rT (−1)1+Pos(j,J)si,j + (smaller terms)

=

N∑

i=1

∑

j∈J

(−1)1+Pos(j,J)si,jλir(J\{j})+k + (smaller terms)
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We now construct the Macaulay matrix M associated to the QJ ’s in bi-degree (1, 1),
which is the matrix whose columns are labelled by the monomials λirT sorted in decreasing
order w.r.t. ≺, whose rows correspond to the polynomials QJ , and whose entry in row QJ

and column λirT is the coefficient of the monomial λirT in the polynomial QJ .
Let I = {j2 < · · · < jw+1} ⊂ {1..n − k} of size w. Consider the submatrix of the

Macaulay matrix formed by the rows Q{1}∪I , . . . , Q{j1}∪I , . . . , Q{j2−1}∪I . It has the shape

MI =




. . . λ1rI+k . . . λNrI+k . . .

Q{1}∪I 0 s1,1 . . . sN,1 . . .

Q{j1}∪I 0 s1,j1 sN,j1 . . .

Q{j2−1}∪I 0 s1,j2−1 sN,j2−1 . . .


 =

(
0 S{1..j2−1},∗ . . .

)
.

We assume from now on that Assumption 1 is satisfied, say the first n − k − w rows
of S =

(
sT1 . . . sTN

)
are linearly independent. This implies that, up to a permutation

of the si’s, there exist an invertible lower triangular matrix L ∈ F
(n−k−w)×(n−k−w)
qm and an

uppertriangular matrix U ∈ F
(n−k−w)×N
qm such that all the entries of U on its main diagonal

are ones, and that LS{1..n−k−w},∗ = U . Then we have

L{1..j2−1},{1..j2−1}MI =
(
0 U {1..j2−1},∗ . . .

)

=




. . . λ1rI+k . . . λj2−1rI+k . . .

0 1 . . . u1,j2−1 . . .

0 0
. . . uj1,j2−1 . . .

0 0 0 1 . . .




After applying those operations on all blocks, we have new equations Q̃{j1}∪I with leading
monomials λj1rI+k for all 1 ≤ j1 < j2. Finally, any equation QJ has been transformed into
an equation Q̃J with leading monomial λmin(J)r(J\{min(J)})+k, and they are all different, so
that the equations are linearly independent.

G..3 Proof of Theorem 2.

We first determine the number of linearly independent polynomials among the polynomials
λjQ̃J . As the leading term of Q̃J is λmin(J)rJ\{min(J)})+k, the relations between the polyno-

mials can only come from the pairs (λjQ̃{i}∪I , λiQ̃{j}∪I) for all I ⊂ {1..n−k} of size w and

all 1 ≤ i < j < min(I). If we order the polynomials λiQ̃{i}∪I such that

λiQ̃J ≺ λi′Q̃J ′ iff

{
J ≺lex J ′ or

J = J ′ and i > i′

where J = {j1 < · · · < jw+1} ≺lex J ′ iff jt = j′t ∀t > l and jl < j′l.

Then it is clear that when we compute a row echelon form (without row pivoting) on the
Macaulay matrix in bi-degree (2, 1) for those polynomials in decreasing order, the only
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rows that can reduce to zero are the rows corresponding to the polynomials λiQ̃{j}∪I with

I ⊂ {1..n − k} of size w and 1 ≤ i < j < min(I). There are
∑n−k−w+1

j2=1

(
j2−1
2

)(
n−k−j2
w−1

)
=(

n−k
w+2

)
such polynomials.

On the other hand, the following Lemma 3 provides the same number of linearly inde-
pendent relations between those polynomials, which shows that the vector space 〈λjQ̃J :
1 ≤ j ≤ N, J ⊂ {1..n − k},#J = w + 1〉Fqm

is generated by the {λjQ̃J : min(J) ≤ j ≤
N, J ⊂ {1..n− k},#J = w + 1} that are linearly independent (they have distinct leading
terms).

To conclude the proof of Theorem 2 for any b ≥ 1, it is readily seen that among the
polynomials λα1

1 · · ·λαN

N Q̃{j1}∪I for
∑

i αi = b− 1, j1 < min(I), the ones with
∑j1−1

i=1 αi 6= 0

reduce to zero (they are some multiple of a λiQ̃J with i < min(J) that reduces to zero),
and the other polynomials have distinct leading terms

LT(λ
αj1

j1
· · ·λαN

N Q̃{j1}∪I) = λ
αj1

j1
· · ·λαN

N LT(Q̃{j1}∪I) = λ
αj1+1

j1
· · ·λαN

N rI+k,

The total number of such polynomials is:

n−k−w+1∑

j2=2

(
n− k − j2

w − 1

)

︸ ︷︷ ︸
number of sets I
withmin(I)=j2

j2−1∑

j1=1

(
N − j1 + 1 + b− 2

b− 1

)

︸ ︷︷ ︸
number of monomials in
λj1

,...,λN of degree b−1.

We are just left with the last lemma and its proof.

Lemma 3. The following
(
n−k
w+2

)
relations

∣∣∣∣
(

∆H∑N
i=1 λisi

)∣∣∣∣
∗,K

= 0 ∀K ⊂ {1..n− k},#K = w + 2,

are relations between the λjQJ ’s (hence the λjQ̃J ’s), and under Assumption 1 they are
linearly independent.

Proof. Those minors are zero because the first and the last rows of the matrix are equal.
There are

(
n−k
w+2

)
of them. Laplace expansion along the last row gives, with K = {k1 <

k2 < · · · < kw+2}:

N∑

i=1

λi

w+2∑

u=1

(−1)w+usi,kuQK\{ku} =

w+2∑

u=1

((−1)w+u
N∑

i=1

λisi,ku)QK\{ku}

which corresponds to a syzygy

GK =




0︸︷︷︸
J 6⊂K

, (−1)w+u
N∑

i=1

si,kλi

︸ ︷︷ ︸
K\J={k}




J⊂{1..n−k},#J=w+1

(10)
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If we order the (QJ)J by decreasing lex ordering (QJ ≺lex QJ ′ if J ≺lex J ′), then the first
non-zero position of the syzygy GK is the coefficient of the largest QK\{ku}, which is QK1

with K1 = K \ {k1}. The coefficient is:

(−1)w+1
N∑

i=1

si,k1λi = (−1)w+1
(
s1,k1 . . . sN,k1

) (
λ1 . . . λN

)T
.

This syzygie GK shares the same leading position QK1
with exactly the syzygies G{j}∪K1

for 1 ≤ j < k1. If Assumption 1 is satisfied, then the coefficient in position QK1
of

(L{1..k1},{1..k1})
−1




G{1}∪K1

...
G{k1−1}∪K1

GK




is

(−1)w+1



1 . . . u1,k1 . . .

. . .
... . . .

0 1 . . .







λ1
...
λN




This shows that the syzygies G{j}∪K1 , for 1 ≤ j ≤ k1 are linearly independent.

G..4 Particular case q = 2.

Note that Theorem 1 and Theorem 2 are true regardless of the value of b compared to q,
and regardless of the value of q. However, in Section 4.2, we want to find the solutions of the
system over F2, which can be obtained by considering all polynomials over F2m modulo the
so-called field equations3 λ2

i − λi. In this section, we want to count the number of linearly
independent rows in the Macaulay matrix where all monomials are reduced modulo the
field equations.

It is clear that the
(
n−k
w+1

)
equations QJ in bi-degree (1, 1) are unchanged when reduced

by the field equations (they only involve squarefree variables), so that they remain linearly
independent over F2m modulo the field equations. For higher degree, things are different.
In particular, there are drops in the leading monomials, and the leading monomial of the
polynomial

λj1Q̃{j1,j2,...,jw+1}

after reduction of the Macaulay matrix is λj1λj2r{j1,j3,...,jw+1} (instead of λ2
j1r{j2,j3,...} for

q > 2).

3We do not need the field equations for the rT ’s, as they only appear in degree 1.
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It is clear that for J = {j1 < · · · < jw+1}, the polynomials

λδ1
i1
· · ·λ

δb−1

ib−1
QJ , j1 < i1 < · · · < ib−1, δi ∈ {0, 1}

are linearly independent, as their leading term modulo the field equation is

LT(λδ1
i1
· · ·λ

δb−1

ib−1
Q̃J) = λj1λ

δ1
i1
· · ·λ

δb−1

ib−1
r{j2,...,jw+1}.

Experimentally, we have found that the leading monomial of λj1 · · ·λjb−1
QJ becomes λj1 · · ·λjbrJ\{jb}

after reduction, and moreover the polynomials

λj1 · · ·λjd−1
λid . . . λib−d

QJ with j1 < · · · < jw+1, id < · · · < ib−d, jd−1 < id < jd

reduce to zero. This gives, for b ≤ w + 1,

N F2

b =

b∑

d=1

n−k∑

jd=1

(
jd − 1

d− 1

)

︸ ︷︷ ︸
number of sets
{j1<···<jd−1}
in {1..jd−1}

(
n− k − jd

w + 1− d

)

︸ ︷︷ ︸
number of sets
{jd+1<···<jw+1}
in {jd+1..n−k}

(
N − jd

b− d

)

︸ ︷︷ ︸
number of sets
{id<···<ib−1}
in {jd+1..N}

H Number of low weight codewords in a random Fq-

linear code.

This section contains the proof of Proposition 1 which provides formulae for the number of
words of weight ≤ r in C′ and, a fortiori, in Caug. Recall that XC′,w is the random variable
which counts the number of codewords of weight w in C′.

H..1 Proof of Proposition 1.

Let D be the [r × n,N ]q-matrix code generated by the right factors Ri, where ei :=
(β1, . . . , βm)CRi for i ∈ {1..N}. We assume that D is a random Fq-linear code (see the
end of Section 2.1). The matrix C has rank exactly equal to r, so that XC′,w = XD,w for
all w ≤ r. For c ∈ F

r×n
q , we denote by 1c∈D the random variable equal to 1 if c ∈ D and 0

otherwise, so that XD,w =
∑

ω(c)=w. 1c∈D. By linearity of expectation, one obtains:

E[XD,w] =
∑

ω(c)=w.

E[1c∈C] =
∑

ω(c)=w.

P(c ∈ D).

The probability that c ∈ D is the one to satisfy r×n−N independent parity-check equations
of the form 〈h, c〉 = 0, hence P(c ∈ D) = 1

qr×n−N . The result follows by summing over all
the codewords of weight w. For the variance, we start by computing the quantity

E
[
X2

D,w

]
=

∑

ω(c1)=w.

∑

ω(c2)=w.

E[1c1∈D1c2∈D],
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and by definition we have E[1c1∈D1c2∈D] = P(c1 ∈ D, c2 ∈ D). The code D being Fq-linear,
the events c1 ∈ D and c2 ∈ D are not independent when c2 ∈ 〈c1〉Fq

. In this case, one has

Pc2∈〈c1〉Fq
(c1 ∈ D, c2 ∈ D) = P(c1 ∈ D) =

1

qr×n−N
.

Therefore:

E
[
X2

D,w

]
=

∑

ω(c1)=w

∑

c2∈〈c1〉Fq
ω(c2)=w

1

qr×n−N
+

∑

ω(c1)=w

∑

c2 /∈〈c1〉Fq
ω(c2)=w

(
1

qr×n−N

)2

= Sw,r,n(q − 1)
1

qr×n−N
+ Sw,r,n (Sw,r,n − (q − 1))

(
1

qr×n−N

)2

= E[XD,w]
2 + Sw,r,n × (q − 1)×

(
1

qr×n−N
−

(
1

qr×n−N

)2
)
,

hence the formula for the variance.
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