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a b s t r a c t 

We consider flows of an incompressible Navier–Stokes fluid in a tubular domain with Navier’s slip boundary condition imposed on the impermeable wall. We focus 
on several implementational issues associated with this type of boundary conditions within the framework of the standard Taylor-Hood mixed finite element method 
and present the computational results for flows in a tubular domain of finite length with one inlet and one outlet. In particular, we present the details regarding 
variants of the Nitsche method concerning the incorporation of the impermeability condition on the wall. We also find that the manner in which the normal to 
the boundary is numerically implemented influences the nature of the computational results. As a benchmark, we set up steady flows in a tube of finite length and 
compare the computational results with the analytical solutions. Finally, we identify various quantities of interest, such as the dissipation, wall shear stress, vorticity, 
pressure drop, and provide their precise mathematical definitions. We document how well these quantities are computationally approximated in the case of the 
benchmark. 

Although the geometry of the benchmark is simple, the correct computational results require careful selection of numerical methods and surprisingly non-trivial 
computational resources. Our goal is to test, using the setting with a known analytical solution, a robust computational tool that would be suitable for computations 
on real complex geometries that have relevance to problems in engineering and medicine. The model parameters in our computations are chosen based on flows in 
large arteries. 
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. Introduction 

Most fluids that can be described by the Navier–Stokes model are
ssumed to meet the no-slip boundary condition, that is adherence of
he fluid to the boundary, in flows that take place in pipes, channels,
nd other simple domains when the flow is reasonably slow. The ap-
lication of this particular boundary condition is attributed to Stokes
ho is supposed to have advocated its use. It is not really clear that
tokes believed in its general validity. He even had doubts concerning
ts accuracy in pipes and channels, as he remarked “Du Buat found by

xperiment that when the mean velocity of water flowing through a pipe is

ess than about one inch in a second, the water near the inner surface of the

ipe is at rest. If these experiments may be trusted, the conditions to be sat-
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sfied in the case of small velocities are those which first occurred to me,... ”
he above comment is hardly a rousing endorsement as Stokes seems to
old the opinion that the no-slip boundary condition is only appropriate
or reasonably slow flows. Moreover, Stokes (1845) also remarks “I have

aid that when the velocity is not very small the tangential force called into

ction by the sliding of water over the inner surface of a pipe varies nearly

s the square of the velocity ”, stating quite clearly that slip is taking place
t the boundary when the flows are not sufficiently slow. 

Boundary conditions reflect the mutual interaction between the fluid
owing inside the tube and the material the boundary is made of. For
xample, for flows in blood vessels, one should take into account the
roperties of blood as well as of the inner part of the vessel wall; the
roper boundary condition should describe mutual interaction between
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Fig. 1. Computational domain and the parts of the boundary. 
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t  
hese materials. This is definitely a formidable task. For materials such
s blood (which is a complex mixture of plasma 1 , red and white blood
ells, platelets, lipo-proteins, and a variety of complex ions) and blood
essel (which has a very complex layered structure) it is far from clear
hat the no-slip boundary condition ought to hold, see ( Rajagopal and
ajagopal, 2020 ) for more details. 

Experiments concerning the flow of blood in capillaries by Bennett
1967) and Bugliarello and Hayden (1963) report the slipping of red
lood cells that come into contact with the boundary. In Nubar (1967) ,
ubar (1971) , Misra and Shit (2007) , the possible connection of slippage
n the wall and shear rate dependent blood viscosity measured in the
heometer is suggested. The above flows are reasonably slow flows and
ven in such flows certain components of blood seem to be slipping at
he boundary. Casting further doubt concerning the appropriateness of
he no-slip boundary condition is the fact that the flow of blood can be
urbulent at some locations in the cardiovascular system and far from
he slowness presumed by Stokes when the no-slip boundary condition
s experimentally observed. Thus, it would be worthwhile to study the
ow of a material like blood by assuming the slip boundary condition. 

Numerous types of boundary conditions that go beyond the no-slip
oundary condition were proposed by the early pioneers in the field
f fluid dynamics ( de Coulomb, 1800; Du Buat, 1786; Girard, 1813;
avier, 1823; de Prony, 1804 ), and Poisson (1831) . See ( Neto et al.,
005 ) for a more recent overview of experimental studies on boundary
lip measurements. 

In this study, we focus on Navier’s slip boundary condition (proposed
y Navier, 1823 in agreement with molecular arguments) characterized
y the parameter 𝜃 and involving, as the limiting cases, no-slip bound-
ry condition at one end ( 𝜃 = 1 ) and (perfect) slip boundary condition
n the other end ( 𝜃 = 0 ). This extended class of boundary conditions,
aking into account the slipping mechanisms of various degree, repre-
ents the most commonly used boundary conditions imposed on the
mpermeable parts of the boundary of the flow domain. Interestingly,
t was shown (see ( Hron et al., 2008 )) that for both plane and three-
imensional Poiseuille flow varying the slip parameter 𝜃 can influence
he flow more markedly than the change of the constitutive equation for
he fluid. 

We consider flows of an incompressible Navier–Stokes fluid in a spe-
ial three-dimensional domain, namely a tubular domain of finite length
ith one inlet and one outlet together with the above described class of

lip boundary conditions imposed on the impermeable wall. The reason
or choosing this special geometrical setup is twofold. First, knowing the
nalytical solutions for steady flows subject to different slippage at the
all of cylinder, we are able to set a benchmark that can serve as a basic

est for various numerical methods and their implementations. Second,
his geometrical setting can be viewed as a very simplified, yet reason-
ble approximation of flows in a large vessels, applicable for instance
hen investigating/assessing flow through aortic valve (native or its re-
lacement), or a pathologically narrowed segment of large artery (e.g.
oarctation of aorta or pulmonary artery stenosis). 

Next, we present energetic considerations that might provide support
or the choice of boundary conditions that we enforce at a rigid bound-
ry and at the outlet and provide the function spaces in which the weak
ormulations of the problem is formulated. These formulations differ de-
ending on how the incompressibility constraint and the impermeability
ondition are incorporated. In particular, we present the details regard-
ng variants of the Nitsche method ( Nitsche, 1971 ) concerning (in this
tudy) the incorporation of the impermeability condition on the wall.
e provide a literature overview concerning the Nitsche method at the

nd of Section 3 . 
Then, we focus on several issues associated with the implementation

f this type of boundary conditions within the framework of the stan-
1 Plasma is oftentimes described by a Navier–Stokes fluid while flowing in 
arge blood vessels. 

r  

u  

(
Ω  

2 
ard Taylor-Hood finite elements. We discuss how the manner in which
he normal to the boundary is numerically implemented influences the
ature of the computational results. We also identify various quantities
f interest, such as the dissipation, pressure drop, vorticity, wall shear
tress, and provide their precise mathematical definitions. The objective
s to document how well these quantities are computationally approxi-
ated in the case of the proposed benchmark. 

We would like to emphasize that although the geometry of the bench-
ark is simple, the correct computational results require a careful selec-

ion of numerical methods and non-trivial computational resources. Our
oal is to test, using the setting with a known analytical solution, a ro-
ust computational tool that would be suitable for computations on real
omplex geometries that have relevance to problems in engineering and
edicine. The model parameters in our computations are chosen based

n flows in large arteries; this corresponds to flows at Reynolds number
f approximately 1050. 

The structure of the paper is the following. In Section 2.1 , we formu-
ate the problem describing unsteady flows of incompressible Navier–
tokes fluid in three-dimensional tube with Navier’s slip boundary con-
ition on the impermeable wall, a given velocity at the inlet and special
oundary conditions at the outlet that takes into account the given nor-
al stress (i.e. the pressure) as well as the control (boundedness) of the

nergy of the whole system. The energy considerations also lead to the
hoice of the function spaces in which we state the weak formulation
f the problem. In Section 3 , we take a slightly different viewpoint with
egard to the weak formulation of the problem and we discuss two vari-
nts of the Nitsche method that are used to numerically incorporate, in
 weak sense, the impermeability condition. Section 4 provides a brief
escription of the numerical discretization of weak formulations con-
ected with the Nitsche method. The emphasis is devoted to the way in
hich the normal vector is implemented. In Section 5 , the benchmark
ith known analytical solution under the simplifying assumption of the

imple shear flow is formulated. We also define two forms of mechanical
issipation of the system and present its connection to the kinetic energy
nd the pressure drop along the length of the tube. Pressure drop is often
sed in lieu of the dissipation rate in cases where the real dissipation is
nknown. This is clarified in Section 5.2 . Section 6 brings together all
he results connected with our numerical approach and computational
ools and compares them with the analytical (benchmark) solution. We
lso compare the efficiency of the variants of the Nitsche method. The
oncluding Section 7 summarizes the main results that have been estab-
ished. 

. Definition of the problem and energy consideration 

.1. Formulation of the initial-boundary-value problem 

We consider the flow of an incompressible Navier–Stokes fluid over
ime interval 𝑇 , in a three-dimensional tube of the finite length rep-
esenting a bounded, open and connected set Ω ⊂ 𝐑 

3 , see Fig. 1 . The
nsteady flows of such fluids described in terms of the velocity 𝐯 =
 𝑣 1 , 𝑣 2 , 𝑣 3 ) ∶ (0 , 𝑇 ) × Ω → 𝐑 

3 and the mean normal stress − 𝑝 ∶ (0 , 𝑇 ) ×
→ 𝐑 ( 𝑝 being usually called the pressure) are then governed by the
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ollowing set of equations: 

iv 𝐯 = 0 in (0 , 𝑇 ) × Ω, (1) 

∗ 
𝜕𝐯 
𝜕𝑡 

+ 𝜌∗ ( ∇ 

𝐯 ) 𝐯 = div 𝕋 in (0 , 𝑇 ) × Ω, (2) 

 = − 𝑝 𝕀 + 𝜇∗ 
(
∇ 

𝐯 + ∇ 

𝐯 𝑇 
)

in (0 , 𝑇 ) × Ω, (3) 

here 𝕋 is the Cauchy stress and 𝜌∗ > 0 , 𝜇∗ > 0 are given constants: the
ensity and the dynamic viscosity. We also use the notation 

 ( ∇ 

𝐯 ) 𝐯 ] 𝑖 = 

3 ∑
𝑘 =1 

𝜕𝑣 𝑖 

𝜕𝑥 𝑘 
𝑣 𝑘 = 

3 ∑
𝑘 =1 

𝜕 

𝜕𝑥 𝑘 
( 𝑣 𝑘 𝑣 𝑖 ) =∶ [ div ( 𝐯 ⊗ 𝐯 ) ] , 𝑖 = 1 , 2 , 3 , 

here the incompressibility constraint (1) has been incorporated. Fur-
hermore, for any matrix 𝔸 , the symbol 𝔸 

𝑇 denotes its transpose. 
The boundary 𝜕Ω of the tubular domain Ω consists of three non-

verlapping parts Γin , Γout and Γwall and we impose the following initial
nd boundary conditions involving three given functions: 𝐯 0 ∶ Ω → 𝐑 

3 ,

 in : [0 , 𝑇 ] × Γin → 𝐑 

3 and 𝑃 : [0 , 𝑇 ] → 𝐑 : 

 (0 , ⋅) = 𝐯 0 in Ω, (4) 

 = 𝐯 in on (0 , 𝑇 ) × Γin , (5) 

 𝐧 = − 𝑃 ( 𝑡 ) 𝐧 + 

1 
2 
𝜌∗ ( 𝐯 ⋅ 𝐧 ) − 𝐯 on (0 , 𝑇 ) × Γout , (6) 

 ⋅ 𝐧 = 0 and 𝜃𝐯 𝜏 + 𝛾∗ (1 − 𝜃) ( 𝕋 𝐧 ) 𝜏 = 𝟎 on (0 , 𝑇 ) × Γwall . (7) 

ere 𝜃 ∈ [ 0 , 1 ] , 𝛾∗ ∈ (0 , ∞) and 𝐧 is a unit normal vector at the boundary.
urthermore, for 𝑥 ∈ 𝐑 we set 𝑥 + ∶= max {0 , 𝑥 } and 𝑥 − ∶= min {0 , 𝑥 } , i.e.
 = 𝑥 + + 𝑥 − , and for an arbitrary vector 𝐳, 𝐳 𝐧 ∶= ( 𝐳 ⋅ 𝐧 ) 𝐧 is the normal
omponent of 𝐳 and 𝐳 𝜏 ∶= 𝐳 − 𝐳 𝐧 is the projection of 𝐳 to the tangent
lane. 

Note that instead of (6) we could impose the condition 

 𝜏 = 𝟎 and 𝕋 𝐧 ⋅ 𝐧 = − 𝑃 ( 𝑡 ) + 

1 
2 
𝜌∗ ( 𝐯 ⋅ 𝐧 ) 2 − on (0 , 𝑇 ) × Γout . (8) 

y taking the scalar product of (6) with 𝐧 , we observe that (6) and
8) give the identical description in the normal direction. On the other
and, by projecting (6) into the tangent plane, we obtain 1 2 𝜌∗ ( 𝐯 ⋅ 𝐧 ) − 𝐯 𝜏 =
 𝕋 𝐧 ) 𝜏 , which is different than the first condition in (8) . The condition
8) is more appropriate to the situations where the velocity field at the
utflow is unidirectional (which is, in fact, the case of the analytical
olution used in Section 5). Although the boundary conditions (8) are
ifferent than those stated in (6) , in the few computational tests made
o far we have not observed any significant difference. This is why the
onditions (8) are not discussed anymore below and we consider merely
6) at Γout in what follows. 

The boundary conditions (6),(7) and the function spaces for the weak
ormulation are in keeping with basic energy estimates that can be es-
ablished for the problem (1) –(7) , see below. We wish to remark that
he presence of the term 

1 
2 𝜌∗ ( 𝐯 ⋅ 𝐧 ) − 𝐯 in the outflow boundary condition

6) seems to be essential not only for obtaining the energy estimates
see below) but also for the robustness and stability of the numerical
ethods. 

.2. Energy balance and energy estimates 

For clarity, we proceed in two steps. First, we simplify the setting by
ssuming that 

 in = 𝟎 . (9)

 general inflow function will be considered later. 
To obtain the energy identity, assuming (9) , we form the scalar prod-

ct of (2) with 𝐯 , use (1) and arrive at 

𝜕 

𝜕𝑡 

( 

𝜌∗ 
|𝐯 |2 
2 

) 

+ div 
( 

𝜌∗ 
|𝐯 |2 
2 

𝐯 − 𝕋 𝐯 
) 

+ 𝕋 ⋅ 𝔻 ( 𝐯 ) = 0 , (10) 
3 
here 𝔻 ( 𝐯 ) is the symmetric part of the velocity gradient defined as
1 
2 

(
∇ 

𝐯 + ∇ 

𝐯 𝑇 
)
. Then we integrate this equation over Ω, apply the Gauss

heorem, use the impermeability condition on Γwall and the homoge-
eous Dirichlet condition on Γin and conclude that 

d 
d 𝑡 ∫Ω 𝜌∗ 

|𝐯 |2 
2 

d 𝑥 + ∫Ω 𝕋 ⋅ 𝔻 ( 𝐯 ) d 𝑥 + ∫Γout 𝜌∗ 
|𝐯 |2 
2 

𝐯 ⋅ 𝐧 d 𝑆 

+ ∫Γwall ∪Γout − 𝕋 𝐯 ⋅ 𝐧 d 𝑆 = 0 . (11) 

ue to the symmetry of 𝕋 , we have 𝕋 𝐯 ⋅ 𝐧 = 𝕋 𝐧 ⋅ 𝐯 , and by decomposing
he vectors 𝕋 𝐧 and 𝐯 into their normal component and projection into
he tangent plane and using the impermeability condition on Γwall we
onclude from (11) that 

d 
d 𝑡 ∫Ω 𝜌∗ 

|𝐯 |2 
2 

d 𝑥 + ∫Ω 𝕋 ⋅ 𝔻 ( 𝐯 ) d 𝑥 + ∫Γwall − ( 𝕋 𝐧 ) 𝜏 ⋅ 𝐯 𝜏 d 𝑆 

+ ∫Γout 𝜌∗ 
|𝐯 |2 
2 

( 𝐯 ⋅ 𝐧 ) + d 𝑆 = ∫Γout 
( 

𝕋 𝐧 ⋅ 𝐯 − 𝜌∗ 
|𝐯 |2 
2 

( 𝐯 ⋅ 𝐧 ) − 
) 

d 𝑆. (12) 

his structure is consistent with the boundary conditions (6) and (7) to
e considered in this study. Taking into account the incompressibility
ondition (1), (12) can be expressed as (see Braack and Mucha, 2014 ) 

d 
d 𝑡 ∫Ω 𝜌∗ 

|𝐯 |2 
2 

d 𝑥 + ∫Ω 𝕋 ⋅ 𝔻 ( 𝐯 ) d 𝑥 + ∫Γwall − ( 𝕋 𝐧 ) 𝜏 ⋅ 𝐯 𝜏 d 𝑆 

+ ∫Γout 𝜌∗ 
|𝐯 |2 
2 

( 𝐯 ⋅ 𝐧 ) + d 𝑆 

= − ∫Γout 𝑃 ( 𝑡 ) 𝐯 ⋅ 𝐧 d 𝑆 = − 𝑃 ( 𝑡 ) ∫𝜕Ω 𝐯 ⋅ 𝐧 d 𝑆 = − 𝑃 ( 𝑡 ) ∫Ω div 𝐯 d 𝑥 = 0 . 

(13) 

s the fluid is incompressible there is an indeterminate part to the stress
hat is spherical. Setting − 𝑝 ∶= 

1 
3 ( 𝕋 11 + 𝕋 22 + 𝕋 33 ) , i.e. the mean normal

tress, we have 𝕋 = − 𝑝 𝕀 + 𝕋 𝑑 , where 𝕋 𝑑 ∶= 𝕋 − 

1 
3 ( 𝕋 11 + 𝕋 22 + 𝕋 33 ) 𝕀 . Ne-

lecting, for simplicity, the last (non-negative) term on the left-hand
ide of (13) and applying the integration w.r.t. time over (0 , 𝑡 ) , 𝑡 ∈ (0 , 𝑇 ] ,
e get 

Ω
𝜌∗ 

|𝐯 ( 𝑡, 𝑥 ) |2 
2 

d 𝑥 + ∫
𝑡 

0 ∫Ω 𝕋 𝑑 ⋅ 𝔻 ( 𝐯 ) d 𝑥 d 𝜏 + ∫
𝑡 

0 ∫Γwall − ( 𝕋 𝐧 ) 𝜏 ⋅ 𝐯 𝜏 d 𝑆 d 𝜏

≤ ∫Ω 𝜌∗ 
|𝐯 0 ( 𝑥 ) |2 

2 
d 𝑥. (14) 

he above equation states that the total kinetic energy at time 𝑡 and the
um of the dissipated energy due to internal friction in the fluid consid-
red over (0 , 𝑡 ) × Ω and the dissipated energy due to friction caused by
nteraction of the fluid with the inner part of the boundary is controlled
bounded) by the initial kinetic energy. In order to be consistent with
he second law of thermodynamics, the total dissipated energy has to be
on-negative. This is for example automatically fulfilled by requiring
hat 

𝕋 𝑑 = 2 𝜇∗ 𝔻 ( 𝐯 ) on (0 , 𝑇 ) × Ω, (15) 

 ( 𝕋 𝐧 ) 𝜏 = 

1 
�̃�∗ 

𝐯 𝜏 on (0 , 𝑇 ) × Γwall , (16) 

here 𝜇∗ and ̃𝛾∗ are positive constants representing the dynamic viscos-
ty and the friction coefficient, respectively. We note that Eqs. (15) and
16) are constitutive relations and are linear. In order to incorporate a
arameter that measures the various degrees of slippage and includes
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div , bc 
lso no-slip ( 𝐯 𝜏 = 𝟎 ) and (perfect) slip ( ( 𝕋 𝐧 ) 𝜏 = 𝟎 ) boundary conditions
e introduce the equation 

𝐯 𝜏 + 𝛾∗ (1 − 𝜃) ( 𝕋 𝐧 ) 𝜏 = 𝟎 on (0 , 𝑇 ) × Γwall , (17) 

here 0 ≤ 𝜃 ≤ 1 instead of (16) . To conclude, upon inserting (15) and
17) into (14) , we obtain the following energy inequality for 𝜃 ∈ (0 , 1) : 

Ω
𝜌∗ 

|𝐯 ( 𝑡, 𝑥 ) |2 
2 

d 𝑥 + 2 𝜇∗ ∫
𝑡 

0 ∫Ω |𝔻 ( 𝐯 ) |2 d 𝑥 d 𝜏
+ 

𝜃

𝛾∗ (1 − 𝜃) ∫
𝑡 

0 ∫Γwall |𝐯 𝜏 |2 d 𝑆 d 𝜏 ≤ ∫Ω 𝜌∗ 
|𝐯 0 ( 𝑥 ) |2 

2 
d 𝑥. (18) 

or 𝜃 = 0 or 𝜃 = 1 the energy inequality takes a simpler form, namely 

Ω
𝜌∗ 

|𝐯 ( 𝑡, 𝑥 ) |2 
2 

d 𝑥 + 2 𝜇∗ ∫
𝑡 

0 ∫Ω |𝔻 ( 𝐯 ) |2 d 𝑥 d 𝜏 ≤ ∫Ω 𝜌∗ 
|𝐯 0 ( 𝑥 ) |2 

2 
d 𝑥. (19)

Next, we consider the complete formulation (1) –(7) , i.e. with general
nflow velocity 𝐯 in . We assume the existence of an extension 𝐯 ∗ in of 𝐯 in , i.e.

e require that there exists a continuous function 𝐯 ∗ in ∶ (0 , 𝑇 ) × Ω → 𝐑 

3 ,

being the closure of Ω, such that 

iv 𝐯 ∗ in = 0 in (0 , 𝑇 ) × Ω, 

𝐯 ∗ in = 𝐯 in on Γin , 
𝐯 ∗ in ⋅ 𝐧 = 0 on Γwall , 

𝐯 ∗ in = 𝟎 on Γout , 

𝜕𝐯 ∗ in 
𝜕𝑡 

∈ 𝐿 

2 ((0 , 𝑇 ) × Ω) 3 and ∇ 𝐯 ∗ in ∈ 𝐿 

∞((0 , 𝑇 ) × Ω) 3×3 . 

(20) 

o obtain the energy equality, we modify the above procedure and form
he scalar product of (2) with 𝐯 − 𝐯 ∗ in . Doing so, we obtain 

𝜕 

𝜕𝑡 

( 

𝜌∗ 
|𝐯 − 𝐯 ∗ in |2 

2 

) 

+ div 

( 

𝜌∗ 
|𝐯 − 𝐯 ∗ in |2 

2 
𝐯 
) 

− div 
(
𝕋 ( 𝐯 − 𝐯 ∗ in ) 

)
+ 𝕋 ⋅ 𝔻 ( 𝐯 − 𝐯 ∗ in ) 

= − 𝜌∗ 
𝜕𝐯 ∗ in 
𝜕𝑡 

⋅ ( 𝐯 − 𝐯 ∗ in ) − 𝜌∗ 𝑣 𝑘 
𝜕𝐯 ∗ in 
𝜕𝑥 𝑘 

⋅ ( 𝐯 − 𝐯 ∗ in ) 

= − 𝜌∗ 
𝜕𝐯 ∗ in 
𝜕𝑡 

⋅ ( 𝐯 − 𝐯 ∗ in ) − 𝜌∗ ( 𝐯 − 𝐯 ∗ in ) ⊗ ( 𝐯 − 𝐯 ∗ in ) ⋅ ∇ 𝐯 ∗ in 
− 𝜌∗ (( 𝐯 − 𝐯 ∗ in ) ⊗ 𝐯 ∗ in ) ⋅ ∇ 𝐯 ∗ in 

= − 𝜌∗ 
𝜕𝐯 ∗ in 
𝜕𝑡 

⋅ ( 𝐯 − 𝐯 ∗ in ) − 𝜌∗ ( 𝐯 − 𝐯 ∗ in ) ⊗ ( 𝐯 − 𝐯 ∗ in ) ⋅ ∇ 𝐯 ∗ in 
+ 𝜌∗ ( 𝐯 ∗ in ⊗ 𝐯 ∗ in ) ⋅ 𝔻 ( 𝐯 − 𝐯 ∗ in ) − div 

(
𝜌∗ ( 𝐯 ∗ in ⋅ ( 𝐯 − 𝐯 ∗ in )) 𝐯 

∗ 
in 
)
. (21) 

hen we integrate this equation over Ω and use Gauss’s theorem. Using
lso the properties of 𝐯 ∗ in given in (20) , we obtain 

d 
d 𝑡 ∫Ω 𝜌∗ 

|𝐯 − 𝐯 ∗ in |2 
2 

d 𝑥 + ∫Ω 𝕋 ⋅ 𝔻 ( 𝐯 − 𝐯 ∗ in ) d 𝑥 + ∫Γwall − ( 𝕋 𝐧 ) 𝜏 ⋅ ( 𝐯 𝜏 − ( 𝐯 ∗ in ) 𝜏 ) d 𝑆

+ ∫Γout 𝜌∗ 
|𝐯 |2 
2 

( 𝐯 ⋅ 𝐧 ) + d 𝑆 

= − ∫Ω 𝜌∗ 
𝜕𝐯 ∗ in 
𝜕𝑡 

⋅ ( 𝐯 − 𝐯 ∗ in ) d 𝑥 − ∫Ω 𝜌∗ ( 𝐯 − 𝐯 ∗ in ) ⊗ ( 𝐯 − 𝐯 ∗ in ) ⋅ ∇ 𝐯 ∗ in d 𝑥 

+ ∫Ω 𝜌∗ ( 𝐯 ∗ in ⊗ 𝐯 ∗ in ) ⋅ 𝔻 ( 𝐯 − 𝐯 ∗ in ) d 𝑥 − 𝑃 ( 𝑡 ) ∫Γout 𝐯 ⋅ 𝐧 d 𝑆 . (22

pon inserting the constitutive equations (15) and (17) (noticing that
he boundary integral on Γwall vanishes for 𝜃 = 0 and 𝜃 = 1 prior to in-
erting) and neglecting the last (non-negative) term on the right-hand
ide of (22) we arrive at 

d 
d 𝑡 ∫Ω 𝜌∗ 

|𝐯 − 𝐯 ∗ in |2 
2 

d 𝑥 + 2 𝜇∗ ∫Ω |𝔻 ( 𝐯 − 𝐯 ∗ in ) |2 d 𝑥 
+ 

𝜃

𝛾∗ (1 − 𝜃) 

{ 

∫Γwall |𝐯 𝜏 |2 d 𝑆 − ∫Γwall 𝐯 𝜏 ⋅ ( 𝐯 
∗ 
in ) 𝜏 d 𝑆 

} 

≤ − ∫ 𝜌∗ ( 𝐯 − 𝐯 ∗ in ) ⊗ ( 𝐯 − 𝐯 ∗ in ) ⋅ ∇ 𝐯 ∗ in d 𝑥 + ∫ 𝜌∗ ( 𝐯 ∗ in ⊗ 𝐯 ∗ in ) ⋅ 𝔻 ( 𝐯 − 𝐯 ∗ in ) d 𝑥 

Ω Ω

4 
− ∫Ω 𝜌∗ 
𝜕𝐯 ∗ in 
𝜕𝑡 

⋅ ( 𝐯 − 𝐯 ∗ in ) d 𝑥 + 𝑃 ( 𝑡 ) ∫Γin 𝐯 ⋅ 𝐧 d 𝑆 

− 2 𝜇∗ ∫Ω 𝔻 ( 𝐯 ∗ in ) ⋅ 𝔻 ( 𝐯 − 𝐯 ∗ in ) d 𝑥, (23) 

here the last term has been added to the left-hand side. Next, inte-
rating (23) w.r.t. time and using the standard notation for the norms
n the Lebesgue spaces ( 𝐿 

𝑝 (Ω) , ‖ ⋅ ‖𝑝 ) for 1 ≤ 𝑝 ≤ ∞, and using also the
tandard Cauchy–Schwartz, Young and Hölder inequalities, we obtain 

1 
2 
𝜌∗ ‖( 𝐯 − 𝐯 ∗ in )( 𝑡, ⋅) ‖2 2 + 2 𝜇∗ ∫

𝑡 

0 
‖𝔻 ( 𝐯 − 𝐯 ∗ in ) ‖2 2 d 𝑠 

+ 

𝜃

𝛾∗ (1 − 𝜃) ∫
𝑡 

0 ∫Γwall |𝐯 𝜏 |2 d 𝑆 d 𝑠 

≤ 

1 
2 
𝜌∗ ‖𝐯 0 − 𝐯 ∗ in (0 , ⋅) ‖2 2 + 

3 𝜇∗ 
2 ∫

𝑡 

0 
‖𝔻 ( 𝐯 − 𝐯 ∗ in ) ‖2 2 d 𝑠 

+ 𝐶( 𝐯 ∗ in ) 𝜌∗ ∫
𝑡 

0 
‖𝐯 − 𝐯 ∗ in ‖2 2 d 𝑠 + 𝑃 ( 𝑡 ) ∫

𝑡 

0 ∫Γin 𝐯 in ⋅ 𝐧 d 𝑆 d 𝑠 

+ 

1 
2 

𝜃

𝛾∗ (1 − 𝜃) ∫
𝑡 

0 ∫Γwall ( |𝐯 𝜏 |2 + |( 𝐯 ∗ in ) 𝜏 |2 ) d 𝑆 d 𝑠 + 𝐶( 𝐯 ∗ in ) , (24) 

here the constant 𝐶( 𝐯 ∗ in ) depends on 𝜌∗ , 𝜇∗ , ∫ 𝑇 

0 
‖‖‖‖ 𝜕𝐯 ∗ in 

𝜕𝑡 

‖‖‖‖2 2 d 𝑠,
𝑇 

0 ‖𝔻 ( 𝐯 ∗ in ) ‖2 2 d 𝑠 and sup 𝑡 ∈(0 ,𝑇 ) ‖∇ 𝐯 ∗ in ‖∞ and is finite due to the as-
umptions on 𝐯 ∗ in stated in (20) . 

Finally, moving the second term from the right-hand side to the left
nd applying the Gronwall lemma we conclude that 

∗ sup 
𝑡 ∈[0 ,𝑇 ] 

‖( 𝐯 − 𝐯 ∗ in )( 𝑡, ⋅) ‖2 2 + 𝜇∗ ∫
𝑇 

0 
‖𝔻 ( 𝐯 − 𝐯 ∗ in ) ‖2 2 d 𝑡 

+ 

𝜃

𝛾∗ (1 − 𝜃) ∫
𝑇 

0 ∫Γwall |𝐯 𝜏 |2 d 𝑆 d 𝑡 

≤ 𝐶 

(
𝑇 , ‖𝐯 0 − 𝐯 ∗ in (0 , ⋅) ‖2 2 , 𝐶( 𝐯 ∗ in ) 

)
< ∞. (25) 

.3. Definition of weak solution to the problem (1) –(7) 

Let 

 

1 , 2 
div , bc ∶= 

{
𝜙𝜙𝜙 ∈ 𝑊 

1 , 2 (Ω) 3 ; div 𝜙𝜙𝜙 = 0 , 𝜙𝜙𝜙 = 𝟎 on Γin , 𝜙𝜙𝜙 ⋅ 𝐧 = 0 on Γwall 
}
. 

otivated by the above energy estimates, by the concept of Leray-Hopf
eak solution for the Navier–Stokes equations with no-slip boundary

onditions, and by the results concerning the 𝐿 

𝑝 -maximal regularity for
he evolutionary Stokes system, we say that a couple ( 𝐯 , 𝑝 ) is a weak

olution to (1) –(7) provided that 

𝐯 − 𝐯 ∗ in ∈ 𝐿 

2 (0 , 𝑇 ; 𝑊 

1 , 2 
div , bc ) ∩ 𝐶 𝑤𝑒𝑎𝑘 ([0 , 𝑇 ]; 𝐿 

2 (Ω) 3 ) , 

𝜕𝐯 
𝜕𝑡 

∈ 𝐿 

5∕4 (0 , 𝑇 ; 𝐿 

5∕4 (Ω)) , 
(26) 

𝑝 ∈ 𝐿 

5∕4 (0 , 𝑇 ; 𝑊 

1 , 5∕4 (Ω)) , 

lim 

 →0+ 
‖𝐯 ( 𝑡, ⋅) − 𝐯 0 ‖2 → 0 , 

nd 

Ω
𝜌∗ 

𝜕𝐯 
𝜕𝑡 

⋅𝜙𝜙𝜙 d 𝑥 + ∫Ω 𝜌∗ (∇ 𝐯 ) 𝐯 ⋅𝜙𝜙𝜙 d 𝑥 + 2 𝜇∗ ∫Ω 𝔻 ( 𝐯 ) ⋅ 𝔻 ( 𝜙𝜙𝜙) d 𝑥 

+ 

𝜃

𝛾∗ (1 − 𝜃) ∫Γwall 𝐯 𝜏 ⋅𝜙𝜙𝜙𝛕 d 𝑆 

= − 𝑃 ( 𝑡 ) ∫Γout 𝜙𝜙𝜙 ⋅ 𝐧 d 𝑆 + ∫Γout 
𝜌∗ 
2 
( 𝐯 ⋅ 𝐧 ) − 𝐯 ⋅𝜙𝜙𝜙 d 𝑆 

valid for all 𝜙𝜙𝜙 ∈ 𝑊 

1 , 2 and a.a. 𝑡 ∈ (0 , 𝑇 ) . (27) 
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lternatively, instead of (27) , one can consider 

Ω
𝜌∗ 

𝜕𝐯 
𝜕𝑡 

⋅𝜙𝜙𝜙 d 𝑥 − ∫Ω 𝜌∗ ( 𝐯 ⊗ 𝐯 ) ⋅ ∇ 𝜙𝜙𝜙 d 𝑥 + 2 𝜇∗ ∫Ω 𝔻 ( 𝐯 ) ⋅ 𝔻 ( 𝜙𝜙𝜙) d 𝑥 

+ 

𝜃

𝛾∗ (1 − 𝜃) ∫Γwall 𝐯 𝜏 ⋅𝜙𝜙𝜙𝛕 d 𝑆 + ∫Γout 𝜌∗ ( 𝐯 ⋅ 𝐧 ) 𝐯 ⋅𝜙𝜙𝜙 d 𝑆 

= − 𝑃 ( 𝑡 ) ∫Γout 𝜙𝜙𝜙 ⋅ 𝐧 d 𝑆 + ∫Γout 
𝜌∗ 
2 
( 𝐯 ⋅ 𝐧 ) − 𝐯 ⋅𝜙𝜙𝜙 d 𝑆 

valid for all 𝜙𝜙𝜙 ∈ 𝑊 

1 , 2 
div , bc and a.a. 𝑡 ∈ (0 , 𝑇 ) . (28) 

. The Nitsche method 

In this section we modify the weak formulation (27) so that the in-
ompressibility constraint (1) and the impermeability condition (7) 1 on
he wall are treated in a manner suitable for numerical implementation.
hus, the function space 𝑊 

1 , 2 
div , bc introduced in the previous section is

odified in such a way that it takes into account only the inflow bound-
ry condition, i.e. instead of using 𝑊 

1 , 2 
div , bc the velocity 𝐯 is now sought

n the space 𝑉 such that 

 ∶= { 𝐯 ∈ 𝑊 

1 , 2 (Ω) 3 , 𝐯 = 𝟎 on Γin } . (29)

Then we proceed as follows. First, the incompressibility constraint
1) is multiplied by the test function 𝑞 ∈ 𝐿 

2 (Ω) and integrated over Ω.
hen, the balance of linear momentum (2) is multiplied by the test func-
ion 𝜙𝜙𝜙 ∈ 𝑉 integrated over Ω followed by the integration by parts with
espect to the term involving − div 𝕋 . Next, the impermeability condi-
ion written with respect to the form − 𝐯 𝐯 𝐯 𝐧 = 𝟎 on Γwall is multiplied by
he test function 𝜓 

𝜓 𝜓 ∈ 𝐿 

2 (Γwall ) 3 and integrated over Γwall . Finally, we
um the established identities and obtain 

Ω

(
𝜌∗ 

𝜕𝐯 
𝜕𝑡 

+ 𝜌∗ ( ∇ 

𝐯 ) 𝐯 
)
⋅𝜙𝜙𝜙 d 𝑥 + ∫Ω 𝕋 ( 𝐯 , 𝑝 ) ⋅ ∇ 𝜙𝜙𝜙 d 𝑥 + ∫Ω( div 𝐯 ) 𝑞 d 𝑥 

+ ∫Γwall 
𝜃

𝛾∗ (1 − 𝜃) 
𝐯 𝜏 ⋅𝜙𝜙𝜙𝜏 d 𝑆 − ∫Γwall ( 𝕋 ( 𝐯 , 𝑝 ) 𝐧 ) 𝐧 ⋅𝜙𝜙𝜙𝐧 d 𝑆 − ∫Γwall 𝐯 𝐧 ⋅𝜓 

𝜓 𝜓 d 𝑆 

− ∫Γout 
(
− 𝑃 ( 𝑡 ) 𝐧 + 

1 
2 
𝜌∗ ( 𝐯 ⋅ 𝐧 ) − 𝐯 

)
⋅𝜙𝜙𝜙 d 𝑆 = 0 

for all ( 𝑞, 𝜙𝜙𝜙, 𝜓 

𝜓 𝜓 ) ∈ ( 𝐿 

2 (Ω) × 𝑉 × 𝐿 

2 (Γwall ) 3 ) , (30) 

here we use the notation 𝕋 ( 𝜙𝜙𝜙, 𝑞) ∶= − 𝑞𝕀 + 2 𝜇𝔻 ( 𝜙𝜙𝜙) and where we also
sed the observation that 

𝜕Ω
𝕋 𝐧 ⋅𝜙𝜙𝜙 d 𝑆 = ∫Γout 

(
− 𝑃 ( 𝑡 ) 𝐧 + 

1 
2 
𝜌∗ ( 𝐯 ⋅ 𝐧 ) − 𝐯 

)
⋅𝜙𝜙𝜙 d 𝑆 

− ∫Γwall 
𝜃

𝛾∗ (1 − 𝜃) 
𝐯 𝜏 ⋅𝜙𝜙𝜙𝜏 d 𝑆 + ∫Γwall ( 𝕋 𝐧 ) 𝐧 ⋅𝜙𝜙𝜙𝐧 d 𝑆. (31) 

he formulation (30) requires special test functions 𝜓 

𝜓 𝜓 defined on the
oundary Γwall which one needs to enlarge the problem. It is tempting
o replace this new test function by a combination of 𝑞 and 𝜙𝜙𝜙, which is
ossible as 𝜓 

𝜓 𝜓 acts on 𝐯 which is already the unknown. 
Inspired by the structure of the last two terms in the middle line

f (30) we use the test function 𝜓 

𝜓 𝜓 = ( 𝕋 ( 𝜙𝜙𝜙, 𝑞) 𝐧 ) 𝐧 and obtain the original
itsche method. Nitsche (1971) showed that such a formulation is not

table, but when one adds the stabilization term 

𝛽

ℎ ∫Γwall 𝐯 𝐧 ⋅𝜙𝜙𝜙𝐧 d 𝑆, 𝛽 > 0 (32)

he weak form becomes stable for sufficiently large parameter 𝛽 > 0 . The
ocal size of mesh edge is denoted by ℎ . Since the extra term − ∫Γwall 𝐯 𝐧 ⋅
 𝕋 ( 𝜙𝜙𝜙, 𝑞) 𝐧 ) 𝐧 d 𝑆 has the same sign as the term − ∫Γwall ( 𝕋 ( 𝐯 , 𝑝 ) 𝐧 ) 𝐧 ⋅𝜙𝜙𝜙𝐧 d 𝑆,
his method is called the symmetric Nitsche method . The weak formulation
o our problem using the symmetric Nitsche method then reads: 
5 
Find ( 𝐯 − 𝐯 ∗ in , 𝑝 ) ∈ 𝐿 

∞(0 , 𝑇 ; 𝐿 

2 (Ω) 3 ) ∩ 𝐿 

2 (0 , 𝑇 ; 𝑉 ) × 𝐿 

5∕4 (0 , 𝑇 ; 𝐿 

2 (Ω)) 

such that ∫Ω
(
𝜌∗ 

𝜕𝐯 
𝜕𝑡 

+ 𝜌∗ ( ∇ 

𝐯 ) 𝐯 
)
⋅𝜙𝜙𝜙 d 𝑥 + 2 𝜇∗ ∫Ω 𝔻 ( 𝐯 ) ⋅ 𝔻 ( 𝜙𝜙𝜙) d 𝑥 

− ∫Ω 𝑝 ( div 𝜙𝜙𝜙) d 𝑥 + ∫Ω( div 𝐯 ) 𝑞 d 𝑥 − ∫Γout 
(
− 𝑃 ( 𝑡 ) 𝐧 + 

1 
2 
𝜌∗ ( 𝐯 ⋅ 𝐧 ) − 𝐯 

)
⋅𝜙𝜙𝜙 d 𝑆 

+ ∫Γwall 
𝜃

𝛾∗ (1 − 𝜃) 
𝐯 𝜏 ⋅𝜙𝜙𝜙𝜏 d 𝑆 − ∫Γwall ( 𝕋 ( 𝐯 , 𝑝 ) 𝐧 ) 𝐧 ⋅𝜙𝜙𝜙𝐧 d 𝑆 

− ∫Γwall 𝐯 𝐧 ⋅ ( 𝕋 ( 𝜙𝜙𝜙, 𝑞) 𝐧 ) 𝐧 d 𝑆 + 

𝛽

ℎ ∫Γwall 𝐯 𝐧 ⋅𝜙𝜙𝜙𝐧 d 𝑆 = 0 

for all ( 𝝓, 𝑞) ∈ 𝑉 × 𝐿 

2 (Ω) and a.a. 𝑡 > 0 . (33) 

The main disadvantage of adding stabilization (32) is that the pa-
ameter 𝛽 is problem-dependent and it has to be manually adjusted.
ater, Burman (2012) showed that the original Nitsche method can be
mproved (in the sense of dropping 𝛽) by changing the sign in front of
he boundary integral 

Γwall 
𝐯 𝐧 ⋅ ( 𝕋 ( 𝜙𝜙𝜙, 𝑞) 𝐧 ) 𝐧 d 𝑆, (34)

hich corresponds to taking 𝜓 

𝜓 𝜓 = −( 𝕋 ( 𝜙𝜙𝜙, 𝑞) 𝐧 ) 𝐧 in (31) . This method is
alled the non-symmetric Nitsche method and its weak formulation reads: 

Find ( 𝐯 − 𝐯 ∗ in , 𝑝 ) ∈ 𝐿 

∞(0 , 𝑇 ; 𝐿 

2 (Ω) 3 ) ∩ 𝐿 

2 (0 , 𝑇 ; 𝑉 ) × 𝐿 

5∕4 (0 , 𝑇 ; 𝐿 

2 (Ω)) 

such that ∫Ω
(
𝜌∗ 

𝜕𝐯 
𝜕𝑡 

+ 𝜌∗ ( ∇ 

𝐯 ) 𝐯 
)
⋅𝜙𝜙𝜙 d 𝑥 + 2 𝜇∗ ∫Ω 𝔻 ( 𝐯 ) ⋅ 𝔻 ( 𝜙𝜙𝜙) d 𝑥 

− ∫Ω 𝑝 ( div 𝜙𝜙𝜙) d 𝑥 + ∫Ω( div 𝐯 ) 𝑞 d 𝑥 + ∫Γwall 
𝜃

𝛾∗ (1 − 𝜃) 
𝐯 𝜏 ⋅𝜙𝜙𝜙𝜏 d 𝑆 

− ∫Γwall ( 𝕋 ( 𝐯 , 𝑝 ) 𝐧 ) 𝐧 ⋅𝜙𝜙𝜙𝐧 d 𝑆 + ∫Γwall 𝐯 𝐧 ⋅ ( 𝕋 ( 𝜙𝜙𝜙, 𝑞) 𝐧 ) 𝐧 d 𝑆 

− ∫Γout 
(
− 𝑃 ( 𝑡 ) 𝐧 + 

1 
2 
𝜌∗ ( 𝐯 ⋅ 𝐧 ) − 𝐯 

)
⋅𝜙𝜙𝜙 d 𝑆 = 0 

for all ( 𝝓, 𝑞) ∈ 𝑉 × 𝐿 

2 (Ω) and a.a. 𝑡 > 0 . (35) 

n our computational results presented below we use both formulations
33) and (35) . 

We conclude this section with a brief literature overview regarding
he Nitsche method. A finite element approximation of incompressible
avier–Stokes equations with slip on the boundary condition is investi-
ated in Verfürth (1986, 1991) . These papers provide the relation of the
tokes flow with slip on the boundary to the well known Babu š ka para-
ox for boundary supported shell plate, (see. Babu š ka, 1959; Rieder,
974 ), where a discrete problem with piece-wise linear boundary ap-
roximation converges to a solution that is different from the contin-
ous one. As observed in Verfürth (1986) the shell problem studied
y Babu š ka is in fact equivalent to a stream function formulation of
tokes flow with slip on the boundary. To work around this problem
hey show that mixed formulation with the Lagrange multiplier method
o impose the slip boundary condition for Navier–Stokes equations is
table and converges to the desired solution. In Dione et al. (2013) ;
rquiza et al. (2014) , a comparison of penalty method, Lagrange multi-
lier method and several variants of the Nitsche method to impose slip
oundary condition on curved boundary in 2D is presented with obser-
ation that some variants do not exhibit convergence predicted by the
heory. Juntunen and Stenberg (2009) derived stability and error esti-
ates for the symmetric Nitsche method applied to a Poisson equation



R. Chabiniok, J. Hron, A. Jarolímová et al. Applications in Engineering Science 6 (2021) 100038 

Fig. 2. Two different implementations of the 
normal vector 𝐧 ℎ on the boundary 𝜕Ωℎ : Piece- 
wise constant facet normals 𝐧 𝑓 

ℎ 
(left) vs. contin- 

uous vertex normals 𝐧 𝑣 
ℎ 

(right). 

Table 1 

The values of the constant parameters used in calculation. 

Symbol Name Value Unit 

𝜌∗ The density 1050 kg m −3 

𝜇∗ The dynamic viscosity 3.896 ×10 −3 Pa . s = kg.m 

−1 s −1 

𝑅 The radius of the cylinder 12 ×10 −3 m 

𝐿 The length of the cylinder 44 ×10 −3 m 

𝛽∗ The characteristic length 12 ×10 −3 m 

𝛾∗ The first slip parameter 
𝛽∗ 
𝜇∗ 

3.08 m 2 . s . kg −1 

𝜃 The second slip parameter 0.0–1.0 –

𝑉 The mean inlet velocity 0.65 m . s −1 
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a  
ith Dirichlet boundary data. In Layton (1999) it is proposed that weak
mposition of no-slip boundary condition is superior to strongly enforced
onditions and in Becker et al. (2015) the Nitsche method is used to ap-
ly general boundary conditions for Euler and Navier–Stokes equations.
inally, Mekhlouf et al. (2017) presents comparison of the symmetric
nd non-symmetric Nitsche methods for enforcing Dirichlet conditions
n a weak sense for several simple 2D flow problem. 

. The finite element discretization 

To solve numerically the variants (33) and (35) we discretize the sys-
ems by Taylor-Hood finite elements 𝑃 2 ∕ 𝑃 1 in space ( Boffi et al., 2013;

ieners, 2003 ). For the finite element discretization the FEniCS library
 Alnæs et al., 2015 ) is used. Since the given parameters in Table 1 re-
uire a sufficiently fine mesh to obtain stable solution, we add the stan-
ard SUPG stabilization ( Boffi et al., 2013 ) to obtain approximate solu-
ion on coarse meshes. For the time discretization we use simple implicit
uler method and perform the iteration process until a steady state solu-
ion is reached, see TSPSEUDO in PETSc ( Abhyankar et al., 2018; Balay
t al., 2020 ). 

.1. The importance of definition of discrete boundary normal vector 

It is clear that the discrete implementation of such a method can
epend on the choice of boundary discretization and the definition of
ormal and tangent vectors to the boundary can influence the computed
uantities. See Sime and Wilson (2020) , Engelman et al. (1982) , Stokes
nd Carey (2011) for similar discussion. 

To give an interested reader a warning regarding this issue we give
ne striking example below. Before, we need to fix some notation. We
pproximate our smooth domain Ω by a piece-wise linear (planar) poly-
edral domain with boundary Ωℎ . The corresponding discrete normal
ector 𝐧 𝑓 

ℎ 
is denoted as facet normal, see Fig. 2 , and its piece-wise con-

tant function on the surface mesh 𝜕Ωℎ . It is the normal provided by the
sed FEniCS numerical library as 

 

𝑓 

ℎ 
= FacetNormal(mesh) . 

e can also introduce a vertex normal by taking the normal vector in
ertices, i.e. 𝐧 𝑣 

ℎ 
. This can be constructed in several ways, see for ex-

mple ( Dione et al., 2013 ). We chose to define a vertex normal as a
6 
 2 -projection of 𝐧 𝑓 
ℎ 

to space of continuous piece-wise linear functions
n 𝜕Ωℎ , see again Fig. 2 . This is realized by computing the 𝐿 2 projection
s 

 

𝑣 
ℎ 
= arg min 

𝐧∈𝑁 

||𝐧 − 𝐧 𝑓 
ℎ 
||2 2 , where 𝑁 = { 𝐧 ∈𝐶( 𝜕Ωℎ ) , 𝐧 |𝑇 ∈𝑃 1 ( 𝑇 ) ∀𝑇 ∈𝜕Ωℎ } . 

inally, in the case of the straight pipe we can use the radial vector
caled to unit length as an analytic normal to the surface, this variant is
enoted by 𝐧 𝑎 

ℎ 
, that means 

 

𝑎 
ℎ 
= ( 𝑥, 𝑦, 0)∕ |( 𝑥, 𝑦, 0) |. 
There are some additional possibilities with regard to defining

he boundary normal, for example using the distance function 𝑑( 𝑥 ) =
istance ( 𝑥, 𝜕Ωℎ ) to the boundary 𝜕Ωℎ , we have ‖∇ 

𝑑‖ = 1 . This might
e a priori known or can be obtained by solving the Eikonal equation,
r its regularized version. Then the normal vector could be obtained as
 

𝑑 
ℎ 
= ∇ 

𝑑, however, in our simple situation, this performs almost iden-
ically to the vertex normal 𝐧 𝑣 

ℎ 
and this is why we do not report any

esults for this approach here. 
Now we return to the promised example. Let us consider a simple

alculation of Poiseuille flow with full slip boundary condition. The an-
lytical solution for this problem is trivial: a constant pressure and a
onstant velocity field 𝐯 𝑎 = (0 , 0 , 𝑣 𝑧 ) . Fig. 3 shows the numerical results
or different choices of normal vector. The left panel shows the numer-
cal result if we use the radial vector 𝐧 𝑎 

ℎ 
as the normal vector. Then we

ecover the continuous solution. However if we use the normal 𝐧 𝑓 
ℎ 

cor-
esponding to the facets of the computational domain Ωℎ , shown in the
iddle panel, the approximation of the velocity field becomes very bad

 ≈ 40% error). On the other hand taking the vertex based normal 𝐧 𝑣 
ℎ 

re-
uces the error to about 4% , which is shown in the right panel. Yet this
s a very simple problem. 

. Description of benchmark 

The problem presented in Section 2.1 will be now studied in the
egime of steady flows in the cylindrical domain shown in Fig. 1 . It
eans that for given 𝐯 in ∶ Γin → 𝐑 

3 and 𝑃 ∈ 𝐑 we study the following
roblem: to find ( 𝐯 , 𝑝 ) ∶ Ω → 𝐑 

3 × 𝐑 satisfying 

div 𝐯 = 0 in Ω, (36) 

∗ ( ∇ 

𝐯 ) 𝐯 = div 𝕋 with 𝕋 = − 𝑝 𝕀 + 𝜇∗ 
(
∇ 

𝐯 + ∇ 

𝐯 𝑇 
)

in Ω, (37) 

𝐯 = 𝐯 in on Γin , (38) 

𝕋 𝐧 = − 𝑃 𝐧 + 

1 
2 
𝜌∗ ( 𝐯 ⋅ 𝐧 ) − 𝐯 on Γout , (39) 

𝐯 ⋅ 𝐧 = 0 and 𝜃𝐯 𝜏 + 𝛾∗ (1 − 𝜃) ( 𝕋 𝐧 ) 𝜏 = 𝟎 on Γwall . (40) 

n the rest of this section, we proceed as follows. First, in Section 5.1 ,
tarting from the assumption that the cylinder is infinite, the flow is
teady and takes the form of a simple shear flow, we derive the an-
lytical solution for steady flows of the Navier–Stokes fluid satisfying
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Fig. 3. Full slip flow on a very coarse mesh (with 5650 degrees of freedom). The analytical solution is 𝐯 𝑎 = (0 , 0 , 𝑣 𝑧 ) . The 3 discrete solutions correspond to the 
symmetric Nitsche method with 3 different normal vectors – analytic, facet and vertex normals ( 𝐧 𝑎 

ℎ 
, 𝐧 𝑓 

ℎ 
, 𝐧 𝑣 

ℎ 
). The color shows the relative error between the discrete 

solution and the analytical one, i.e. |𝐯 ℎ − 𝐯 𝑎 ||𝐯 𝑎 | . 

Fig. 4. Cylinder dimensions. 

t  

t  

a  

m  

d  

f  

o

5

 

𝑧  

s

𝐯

T  

E

𝑝

𝜇

H  

a

𝐺

w  

s

𝑝

N
f  

t

𝑉

i  

s  

p

𝜔

𝜔

T

𝜔

w  

w

(

F

𝜋

𝜃

T

𝐶

𝐶

𝐺

2 One can alternatively use the cylindrical coordinates and solve (43) , 
see Hron et al. (2008) or Womersley (1955) . 
he boundary condition (40) on Γwall . This solution will serve both as
he inflow boundary condition 𝐯 in in the problem (1) –(7) but also as
 benchmark used for testing the numerical methods and their imple-
entations. Then, we will define the dissipation, vorticity and pressure
rop in Section 5.2 and compute their values for the analytical solution
ound in Section 5.1 . The description of the benchmark and the values
f parameters are provided in Section 5.3 . 

.1. Steady flow in the cylinder 

For a steady flow in a cylinder with radius 𝑅 located along the
 − axis, see Fig. 4 , one can look for the velocity in the form of simple
hear flow, i.e., 

 = (0 , 0 , 𝜔 ( 𝑥, 𝑦 )) . (41) 

hen, the incompressibility constraint (36) is fulfilled and the system of
qs. (37) simplifies to 

 = − 𝐺𝑧 + 𝐶, (42) 

∗ 

( 

𝜕 2 𝜔 

𝜕𝑥 2 
+ 

𝜕 2 𝜔 

𝜕𝑦 2 

) 

= − 𝐺. (43) 

ere, 𝐺 has the meaning of the pressure gradient and can be specified
s 

 = 

𝑝 𝑖𝑛 − 𝑝 𝑜𝑢𝑡 

𝐿 

> 0 (44) 

here 𝑝 𝑖𝑛 and 𝑝 𝑜𝑢𝑡 are defined as the pressure average over two cross
ections Γin and Γout , i.e., 

 𝑖𝑛 = 

1 |Γin | ∫Γin 𝑝 d 𝑆 and 𝑝 𝑜𝑢𝑡 = 

1 |Γout | ∫Γout 𝑝 d 𝑆. (45) 

ote that from (42) it follows that 𝑝 𝑖𝑛 = − 

1 
2 𝐺𝐿 + 𝐶 and 𝑝 𝑜𝑢𝑡 = 

1 
2 𝐺𝐿 + 𝐶

or the cross-sections Γ and Γ located at 𝑧 = ∓ 𝐿 ∕2 . Denoting further
in out 

7 
he mean inflow velocity as 

 = 

1 |Γin | ∫Γin 𝜔 ( 𝑥, 𝑦 ) d 𝑆, (46) 

t is well known that the analytical solutions for the limit cases of no-
lip ( 𝜃 = 1 ) and of full-slip ( 𝜃 = 0 ) take the parabolic or constant velocity
rofiles, i.e., 

 ( 𝑥, 𝑦 ) = 

2 𝑉 ( 𝑅 

2 − ( 𝑥 2 + 𝑦 2 )) 
𝑅 

2 for 𝜃 = 1 , (47) 

 ( 𝑥, 𝑦 ) = 𝑉 for 𝜃 = 0 . (48) 

herefore, for 𝜃 ∈ (0 , 1) , we can use the ansatz 2 

 ( 𝑥, 𝑦 ) = 𝑉 
(
𝐶 1 (1 − 𝜃) + 𝐶 2 𝜃( 𝑅 

2 − ( 𝑥 2 + 𝑦 2 )) 
)

(49) 

ith general parameters 𝐶 1 , 𝐶 2 that may depend on 𝜃. With this ansatz,
e obtain 

𝜕𝜔 

𝜕𝑥 
= −2 𝑥𝑉 𝐶 2 𝜃, 

𝜕 𝜔 

𝜕 𝑦 
= −2 𝑦𝑉 𝐶 2 𝜃, 

𝜕 2 𝜔 

𝜕 𝑥 2 
= 

𝜕 2 𝜔 

𝜕 𝑦 2 
= −2 𝑉 𝐶 2 𝜃 in Ω, 

(50) 

𝕋 𝐧 = 

⎛ ⎜ ⎜ ⎝ 
− 𝑝 0 −2 𝜇∗ 𝑉 𝐶 2 𝜃𝑥 

0 − 𝑝 −2 𝜇∗ 𝑉 𝐶 2 𝜃𝑦 

−2 𝜇∗ 𝑉 𝐶 2 𝜃𝑥 −2 𝜇∗ 𝑉 𝐶 2 𝜃𝑦 − 𝑝 

⎞ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎝ 
𝑥 

𝑅 
𝑦 

𝑅 

0 

⎞ ⎟ ⎟ ⎠ , 
 𝕋 𝐧 ) 𝜏 = 

⎛ ⎜ ⎜ ⎝ 
0 
0 

−2 𝜇∗ 𝑉 𝐶 2 𝜃𝑅 

⎞ ⎟ ⎟ ⎠ on Γwall . (51) 

rom (46) and (40) 2 we get the following restrictions: 

𝑅 

2 𝑉 = ∫
2 𝜋

𝜑 =0 ∫
𝑅 

𝑟 =0 
𝑉 
(
𝐶 1 (1 − 𝜃) + 𝐶 2 𝜃( 𝑅 

2 − 𝑟 2 ) 
)
𝑟 d 𝑟 d 𝜑, (52) 

𝑉 𝐶 1 (1 − 𝜃) = 2 𝛾∗ (1 − 𝜃) 𝜇∗ 𝑉 𝐶 2 𝜃𝑅. (53) 

his leads to 

 1 = 

4 𝛾∗ 𝜇∗ 𝑅 

𝑅 

[
4 𝛾∗ 𝜇∗ (1 − 𝜃) + 𝜃𝑅 

] , (54) 

 2 = 

2 
𝑅 

[
4 𝛾∗ 𝜇∗ (1 − 𝜃) + 𝜃𝑅 

] , (55) 

 = 

8 𝜇∗ 𝑉 𝜃
𝑅 

[
4 𝛾∗ 𝜇∗ (1 − 𝜃) + 𝜃𝑅 

] . (56) 
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Table 2 

Convergence of relative errors with mesh refinement - Naviers slip 𝜃 = 0 . 5 , non-symmetric Nitsche, analytic normal. DOFs: number of degrees of freedom; EOC: 
estimated order of convergence; ΞΩ: bulk dissipation; ΞΓ: wall dissipation; 𝑝 drop : pressure difference between inlet and outlet. 

DOFS 
‖𝐯 𝑎 − 𝐯 ℎ ‖𝐿 2 ‖𝐯 𝑎 ‖𝐿 2 EOC 

‖𝐩 𝑎 − 𝐩 ℎ ‖𝐿 2 ‖𝐩 𝑎 ‖𝐿 2 EOC ΞΩ ΞΓ flux p drop 

5 650 3.08 ×10 −4 − 4.31 ×10 −2 − 7.12 ×10 −2 2.05 ×10 −2 3.58 ×10 −3 6.15 ×10 −2 

39 098 2.10 ×10 −4 0.55 1.28 ×10 −2 1.75 1.79 ×10 −2 6.70 ×10 −3 1.27 ×10 −3 1.73 ×10 −2 

290 000 5.79 ×10 −5 1.86 2.26 ×10 −3 2.50 4.39 ×10 −3 1.64 ×10 −3 4.09 ×10 −4 2.23 ×10 −3 

2 232 28 1.78 ×10 −5 1.70 7.74 ×10 −4 1.55 1.16 ×10 −3 4.02 ×10 −4 1.32 ×10 −4 6.52 ×10 −4 

Table 3 

Convergence of relative errors with mesh refinement – Navier’s slip 𝜃 = 0 . 5 , non-symmetric Nitsche, facet normal. 

DOFS 
‖𝐯 𝑎 − 𝐯 ℎ ‖𝐿 2 ‖𝐯 𝑎 ‖𝐿 2 EOC 

‖𝐩 𝑎 − 𝐩 ℎ ‖𝐿 2 ‖𝐩 𝑎 ‖𝐿 2 EOC ΞΩ ΞΓ flux p drop 

5 650 1.63 ×10 −2 − 6.07 ×10 0 − 1.28 ×10 −1 5.10 ×10 −2 1.03 ×10 −4 3.00 ×10 0 

39 098 7.46 ×10 −3 1.13 1.67 ×10 0 1.86 1.48 ×10 −1 2.55 ×10 −2 2.58 ×10 −3 6.09 ×10 −1 

290 000 2.35 ×10 −3 1.67 4.18 ×10 −1 2.00 6.08 ×10 −2 1.14 ×10 −2 7.02 ×10 −5 1.33 ×10 −1 

2 232 028 6.98 ×10 −4 1.75 1.09 ×10 −1 1.94 2.11 ×10 −2 4.04 ×10 −3 6.52 ×10 −1 3.67 ×10 −2 

Table 4 

Convergence of relative errors with mesh refinement – Navier’s slip 𝜃 = 0 . 5 , non-symmetric Nitsche, vertex normal. 

DOFS 
‖𝐯 𝑎 − 𝐯 ℎ ‖𝐿 2 ‖𝐯 𝑎 ‖𝐿 2 EOC 

‖𝐩 𝑎 − 𝐩 ℎ ‖𝐿 2 ‖𝐩 𝑎 ‖𝐿 2 EOC ΞΩ ΞΓ flux p drop 

5 650 1.62 ×10 −2 − 5.34 ×10 0 − 7.25 ×10 −2 3.67 ×10 −2 2.57 ×10 −2 3.77 ×10 0 

39 098 7.21 ×10 −3 1.17 1.69 ×10 0 1.66 1.21 ×10 −1 1.72 ×10 −2 5.73 ×10 −3 5.92 ×10 −1 

290 000 2.30 ×10 −3 1.65 4.20 ×10 −1 2.01 5.07 ×10 −2 8.75 ×10 −3 4.06 ×10 −4 1.29 ×10 −1 

2 232 028 6.89 ×10 −4 1.74 1.08 ×10 −1 1.96 1.73 ×10 −2 3.18 ×10 −3 7.13 ×10 −5 3.75 ×10 −2 
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onsequently, 

 ( 𝑥, 𝑦 ) = 𝑉 
4 𝛾∗ 𝜇∗ 𝑅 (1 − 𝜃) + 2 𝜃( 𝑅 

2 − ( 𝑥 2 + 𝑦 2 )) 
𝑅 

[
4 𝛾∗ 𝜇∗ (1 − 𝜃) + 𝜃𝑅 

] , (57) 

r, using 𝛽∗ = 𝛾∗ 𝜇∗ , 

 ( 𝑥, 𝑦 ) = 𝑉 
4 𝛽∗ 𝑅 (1 − 𝜃) + 2 𝜃( 𝑅 

2 − ( 𝑥 2 + 𝑦 2 )) 
𝑅 

[
4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

] . (58) 

.2. Dissipation 

To obtain the formula for the total dissipation in the case of the
volutionary problem described by (1) –(7) , we start with the energy
dentity, see (10) , and integrate it over Ω. Using the Gauss theorem, the
orm of 𝕋 and the fact that 𝐯 ⋅ 𝐧 = 0 on Γwall we obtain 

d 
dt ∫Ω

( 

𝜌∗ 
|𝐯 |2 
2 

) 

dx + ∫Ω 2 𝜇∗ |𝔻 ( 𝐯 ) |2 dx + ∫Γin ∪Γout 𝜌∗ 
|𝐯 |2 
2 

( 𝐯 ⋅ 𝐧 ) dS 

− ∫𝜕Ω 𝕋 𝐯 ⋅ 𝐧 d 𝑆 = 0 . (59) 

ue to symmetry of 𝕋 and the boundary conditions, the last term leads
o 

 ∫𝜕Ω 𝕋 𝐧 ⋅ 𝐯 d 𝑆 

= ∫Γin 𝑝 ( 𝐯 in ⋅ 𝐧 ) d 𝑆 + ∫Γout 𝑃 ( 𝑡 )( 𝐯 ⋅ 𝐧 ) d 𝑆 − ∫Γin 2 𝜇∗ 𝔻 ( 𝐯 ) ⋅ 𝐧 d 𝑆 

− ∫Γout 𝜌∗ 
|𝐯 |2 
2 

( 𝐯 ⋅ 𝐧 ) − d 𝑆 − ∫Γwall 
( 

( 𝕋 𝐧 ) 𝑛 + ( 𝕋 𝐧 ) 𝜏
) 

⋅
(
𝐯 𝑛 + 𝐯 𝜏

)
d 𝑆 

= ∫Γin ( 𝑝 − 𝑃 ( 𝑡 ))( 𝐯 in ⋅ 𝐧 ) d 𝑆 − ∫Γin 2 𝜇∗ 𝔻 ( 𝐯 ) ⋅ 𝐧 d 𝑆 

− ∫Γout 𝜌∗ 
|𝐯 |2 
2 

( 𝐯 ⋅ 𝐧 ) − d 𝑆 + 

𝜃

𝛾∗ (1 − 𝜃) ∫Γwall 𝐯 𝜏 ⋅ 𝐯 𝜏 d 𝑆, (60) 

here we used the fact that ∫Γout ( 𝐯 ⋅ 𝐧 ) = − ∫Γin ( 𝐯 in ⋅ 𝐧 ) , which follows
rom div 𝐯 = 0 , the Gauss theorem and the impermeability condition on
8 
he wall. Combining (59) and (60) we obtain 

d 
d 𝑡 
𝐸 k ( 𝑡 ) + ΞΩ( 𝑡 ) + 𝐽 𝑝 ( 𝑡 ) + ΞΓ( 𝑡 ) + 𝐽 d , in ( 𝑡 ) + 𝐽 k, in ( 𝑡 ) + 𝐽 k, out ( 𝑡 ) = 0 , (61) 

here 

 k ( 𝑡 ) : = ∫Ω 𝜌∗ 
|𝐯 |2 
2 

d 𝑥 ≥ 0 , (62) 

Ω( 𝑡 ) : = ∫Ω 2 𝜇∗ |𝔻 ( 𝐯 ) |2 d 𝑥 ≥ 0 , (63) 

Γ( 𝑡 ) : = 

𝜃

𝛾∗ (1 − 𝜃) ∫Γwall |𝐯 𝜏 |2 d 𝑆 ≥ 0 , (64) 

 d , in ( 𝑡 ) : = − ∫Γin 2 𝜇∗ 𝔻 ( 𝐯 ) 𝐧 ⋅ 𝐯 in d 𝑆, (65) 

 𝑝 ( 𝑡 ) : = ∫Γin ( 𝑝 − 𝑃 ( 𝑡 )) 𝐯 in ⋅ 𝐧 d 𝑆 ≤ 0 , (66) 

 k, in ( 𝑡 ) : = ∫Γin 𝜌∗ 
|𝐯 in |2 
2 

(
𝐯 in ⋅ 𝐧 

)
d 𝑆 ≤ 0 , (67) 

 k, out ( 𝑡 ) : = ∫Γout 𝜌∗ 
|𝐯 |2 
2 

( 𝐯 ⋅ 𝐧 ) + d 𝑆 ≥ 0 . (68) 

he quantities ΞΩ and ΞΓ represent bulk and wall dissipation, respec-
ively, and 𝐽 𝑝 ( 𝑡 ) is the flux corresponding to the pressure drop. The quan-
ity 𝐽 d , in is the flux over the inlet coming from the diffusion term, while
 k, in , 𝐽 k, out are the fluxes over the inlet and outlet generated by the con-
ective term. 

Finally, we look at the simplification of the identity (61) and the
orresponding quantities in the case of the analytical solution for steady
imple shear flows derived in the previous subsection. We first observe
hat d 

d 𝑡 𝐸 k = 0 . Moreover, as 𝐯 = 𝐯 in = (0 , 0 , 𝜔 ) where 𝜔 = 𝜔 ( 𝑥, 𝑦 ) ≥ 0 we
bserve that 𝐽 k, in + 𝐽 k, out = 0 . Also, as the velocity satisfies (41) in the
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Table 5 

Convergence of relative errors with mesh refinement – Navier’s slip 𝜃 = 0 . 5 , symmetric Nitsche, analytic normal. 

DOFS 
‖𝐯 𝑎 − 𝐯 ℎ ‖𝐿 2 ‖𝐯 𝑎 ‖𝐿 2 EOC 

‖𝐩 𝑎 − 𝐩 ℎ ‖𝐿 2 ‖𝐩 𝑎 ‖𝐿 2 EOC ΞΩ ΞΓ flux 𝑝 drop 

5 650 1.43 ×10 −3 − 3.76 ×10 −1 − 6.44 ×10 −2 1.65 ×10 −2 9.17 ×10 −4 4.26 ×10 −1 

39 098 3.75 ×10 −4 1.93 6.72 ×10 −2 2.48 1.58 ×10 −2 5.81 ×10 −3 2.47 ×10 −4 8.06 ×10 −2 

290 000 7.56 ×10 −5 2.31 9.68 ×10 −3 2.80 3.90 ×10 −3 1.47 ×10 −3 3.98 ×10 −5 1.07 ×10 −2 

2 232 028 1.95 ×10 −5 1.95 2.00 ×10 −3 2.27 1.07 ×10 −3 3.73 ×10 −4 6.29 ×10 −6 1.65 ×10 −3 

Table 6 

Convergence of relative errors with mesh refinement – Navier’s slip 𝜃 = 0 . 5 , symmetric Nitsche, facet normal. 

DOFS 
‖𝐯 𝑎 − 𝐯 ℎ ‖𝐿 2 ‖𝐯 𝑎 ‖𝐿 2 EOC 

‖𝐩 𝑎 − 𝐩 ℎ ‖𝐿 2 ‖𝐩 𝑎 ‖𝐿 2 EOC ΞΩ ΞΓ flux 𝑝 drop 

5 650 1.09 ×10 −1 − 3.13 ×10 1 − 7.24 ×10 0 4.47 ×10 −1 1.45 ×10 −2 3.39 ×10 1 

39 098 9.18 ×10 −2 0.25 2.01 ×10 1 0.64 8.95 ×10 0 4.84 ×10 −1 3.60 ×10 −3 2.04 ×10 1 

290 000 4.68 ×10 −2 0.97 9.06 ×10 0 1.15 4.86 ×10 0 3.23 ×10 −1 1.28 ×10 −3 8.98 ×10 0 

2 232 028 2.15 ×10 −2 1.12 3.95 ×10 0 1.20 2.04 ×10 0 1.75 ×10 −1 4.04 ×10 −4 3.86 ×10 0 

Table 7 

Convergence of relative errors with mesh refinement – Navier’s slip 𝜃 = 0 . 5 , symmetric Nitsche, vertex normal. 

DOFS 
‖𝐯 𝑎 − 𝐯 ℎ ‖𝐿 2 ‖𝐯 𝑎 ‖𝐿 2 EOC 

‖𝐩 𝑎 − 𝐩 ℎ ‖𝐿 2 ‖𝐩 𝑎 ‖𝐿 2 EOC ΞΩ ΞΓ flux 𝑝 drop 

5 650 5.97 ×10 −3 − 2.78 ×10 0 − 9.12 ×10 −2 3.05 ×10 −2 2.44 ×10 −3 1.21 ×10 0 

39 098 6.32 ×10 −3 − 0.08 1.54 ×10 0 0.85 8.42 ×10 −2 4.57 ×10 −3 2.04 ×10 −3 1.03 ×10 0 

290 000 1.70 ×10 −3 1.89 4.30 ×10 −1 1.84 2.93 ×10 −2 2.02 ×10 −4 5.33 ×10 −4 2.28 ×10 −1 

2 232 028 4.51 ×10 −4 1.91 1.07 ×10 −1 2.01 8.06 ×10 −3 2.10 ×10 −4 1.23 ×10 −4 3.72 ×10 −2 

Table 8 

Relative errors | 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − 𝑐 𝑜𝑚𝑝𝑢𝑡𝑒𝑑 
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 

| between analytic and computed variables for two meshes (c0 = coarse, c1 = fine) for non-symmetric Nitsche method. If analytic value 

= 0, the value of computed results is shown. 

𝜃 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ΞΩ[J/s] 

c0 0.00 135.65 19.55 26.59 21.75 16.18 11.38 7.43 4.21 1.52 1.25 

c1 0.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

ΞΓ[J/s] 

c0 0.00 5.98 5.99 6.00 6.02 6.05 6.11 6.22 6.47 7.17 0.00 

c1 0.00 0.06 0.06 0.06 0.06 0.05 0.05 0.04 0.03 0.00 0.00 

Ξ[J/s] 

c0 0.00 9.48 4.48 2.85 2.05 1.61 1.34 1.19 1.13 1.15 1.25 

c1 0.00 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.03 0.03 0.04 
1 |Ω| ‖rot 𝐯 ‖1 [1/s] 

c0 2.92 11.16 22.14 15.98 10.55 6.92 4.40 2.56 1.17 0.08 1.03 

c1 0.00 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.34 

𝐽 𝑝 [J/s] 

c0 -0.00 8.20 19.54 27.01 28.98 28.22 25.41 20.45 12.59 0.23 19.95 

c1 0.00 0.11 0.11 0.11 0.11 0.11 0.10 0.09 0.07 0.03 0.88 

𝑝 drop [mmHg] 

c0 0.00 8.22 19.53 27.00 28.97 28.21 25.40 20.45 12.59 0.24 19.95 

c1 -0.00 0.10 0.10 0.10 0.10 0.10 0.09 0.08 0.06 0.03 0.88 
1 |Γwall | ‖( 𝕋𝐧 ) 𝜏‖1 , Γwall 

[ Pa ] 
c0 0.03 35.93 2.88 2.76 3.52 2.78 1.34 0.33 1.83 3.13 5.25 

c1 0.00 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.01 0.01 

w  

o

Ξ

F

|

|

a  

s

Ξ

Ξ

hole domain, we get 𝐽 d , in = 0 . Finally, 𝑝 = 𝑝 𝑖𝑛 = 

1 
2 𝐺𝐿 + 𝐶 = 𝐺𝐿 + 𝑃 ( 𝑡 )

n Γin . Therefore, (61) simplifies to 

Ω + ΞΓ + 𝐽 𝑝 = 0 ⇒ Ξ ∶= ΞΩ + ΞΓ = − 𝐽 𝑝 . (69) 

urthermore, 

𝔻 ( 𝐯 ) |2 = 

8 𝑉 2 𝜃2 ( 𝑥 2 + 𝑦 2 ) 

𝑅 

2 
[
4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

]2 in Ω, (70) 

𝐯 𝜏 |2 = 

16 𝑉 2 𝛽2 ∗ (1 − 𝜃) 2 [
4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

]2 on Γwall , (71) 
9 
nd we get the following explicit formula for the dissipation and pres-
ure drop, namely 

Ω[ J∕s ] = 2 𝜇∗ ∫
𝐿 

𝑧 =0 ∫
2 𝜋

𝜑 =0 ∫
𝑅 

𝑟 =0 

8 𝜃2 𝑉 2 𝑟 2 

𝑅 

2 [4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 ] 2 
𝑟 d 𝑟 d 𝜑 d 𝑧 

= 

8 𝜋𝜃2 𝑉 2 𝑅 

2 𝐿𝜇∗ 
[4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 ] 2 

, (72) 

Γ[ J∕s ] = 

𝜃

𝛾∗ (1 − 𝜃) ∫
𝐿 

𝑧 =0 ∫
2 𝜋

𝜑 =0 

16 𝑉 2 𝛽2 ∗ (1 − 𝜃) 2 [
4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

]2 𝑅 d 𝜑 d 𝑧 

= 

32 𝑉 2 𝜇2 
∗ 𝛾∗ 𝜋𝑅𝐿𝜃(1 − 𝜃) [

4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

]2 , (73) 



R. Chabiniok, J. Hron, A. Jarolímová et al. Applications in Engineering Science 6 (2021) 100038 

Fig. 5. Convergence comparison, Navier’s slip with 𝜃 = 0 . 5 - different normals: 

Fig. 6. Convergence comparison, Navier’s slip with 𝜃 = 0 . 5 - different normals: 

Ξ

𝐽

𝑝

M

‖

[ J∕s ] = ΞΩ + ΞΓ = 

8 𝜋𝜃𝑉 2 𝑅𝐿𝜇∗ [
4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

] , (74) 

 𝑝 [ J∕s ] = 𝐺𝐿 ∫Γin 𝐯 ⋅ 𝐧 d 𝑆 = − 𝐺𝐿𝜋𝑅 

2 𝑉 , (75) 

 drop [ Pa ] = 𝑝 𝑖𝑛 − 𝑝 𝑜𝑢𝑡 = 𝐺𝐿 = 

8 𝜃𝑉 𝐿𝜇∗ 
𝑅 

[
4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

] . (76) 
10 
oreover, we define the 𝐿 

1 -norm of the vorticity by 

rot 𝐯 ‖1 [m 

3 ∕s] = ∫Ω
|||||
( 

𝜕𝜔 

𝜕𝑦 
, − 

𝜕𝜔 

𝜕𝑥 
, 0 
) ||||| d 𝑥 = 

8 𝑉 𝜃|Ω|
3 
[
4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

]
= 

8 𝜋𝑅 

2 𝐿𝑉 𝜃

3 
[
4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

] (77) 
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Fig. 7. Comparison of the analytical and computed dissipations ΞΩ, ΞΓ, Ξ, pressure drop 𝑝 drop , pressure flux 𝐽 𝑝 and 𝐿 

1 norm of vorticity divided by volume and 𝐿 

1 

norm of wall shear stress divided by wall area for tubular geometry compared to the analytical solution with benchmark parameters defined in Section 5.3 . 
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nd the 𝐿 

1 -norm of the wall shear stress by 

( 𝕋 𝐧 ) 𝜏‖1 , Γwall [ Pa . m 

2 ] = ∫Γwall |( 𝕋 𝐧 ) 𝜏 | d 𝑆 = 

4 𝜇∗ 𝑉 𝜃|Γwall |[
4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

]
= 

8 𝜋𝜇∗ 𝑉 𝜃𝑅𝐿 [
4 𝛽∗ (1 − 𝜃) + 𝜃𝑅 

] . (78) 

.3. Benchmark parameters 

The geometrical and flow parameters were chosen to be as close as
ossible to those for blood flow in the aortic root or a segment of tho-
acic aorta (motivated by the assessment of clinical significance of a
11 
tenosed aortic valve). The geometry considered is that of a 12 mm ra-
ius (24 mm diameter) cylinder. This is consistent with typical aortic di-
ensions. The geometrical data together with the density, the dynamic

iscosity and the inflow velocity were taken from Š vihlová et al. (2017) .
or geometrical data see also Madukauwa-David et al. (2018) . 

There are two slip parameters prescribed on the wall, 𝛾∗ and 𝜃, and
hey are related to each other, see (40) . We use the parameter 𝛽∗ = 𝛾∗ 𝜇∗ 
s a characteristic length of the geometry, specified as radius of the inlet
 . The values of the constants and their units are shown in Table 1 . These
alues result in the Reynolds number 𝑅𝑒 = 

𝑉 𝑅𝜌∗ 
2 𝜇∗ 

= 1051 . Two prescribed

unctions are 𝐯 in : = (0 , 0 , 𝜔 ( 𝑥, 𝑦 )) with 𝜔 ( 𝑥, 𝑦 ) given by (58) and the outlet
ressure function 𝑃 = 0 . 
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Fig. 8. Comparison of the analytical and computed dissipations ΞΩ, ΞΓ, Ξ, pressure drop 𝑝 drop , pressure flux 𝐽 𝑝 , 𝐿 

1 norm of vorticity divided by volume and 𝐿 

1 norm 

of wall shear stress divided by wall area with regard to the parameter 𝜃 for different 𝛾∗ . These two parameters are related to each other through (7) . 
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. Results 

Next we can look at the numerical results for the model described
n Section 2.1 as compared to the analytical solutions derived in
ection 5.2 . This gives us the opportunity to asses several aspects of the
iscretization method. First of all, the mesh convergence can be com-
ared for the symmetric Nitsche formulation with different penalization
arameters 𝛽 and the non-symmetric Nitsche formulation. Then, with a
elected formulation we compare the quantities of interest for the full
cale of boundary conditions from full slip ( 𝜃 = 0 . 0 ) to no slip ( 𝜃 = 1 . 0 ).

.1. Symmetric vs. non-symmetric Nitsche formulation 

Tables 2 –7 summarize the behavior of the discrete solution with re-
pect to the mesh refinement. The computations were carried out on the
equence of 4 regularly refined meshes. Fig. 5 collects the convergence
ehavior for relative errors of velocity 𝐯 and pressure 𝑝 in 𝐿 

2 norms

s 
‖𝐯 𝑎 − 𝐯 ℎ ‖𝐿 2 ‖𝐯 𝑎 ‖𝐿 2 and 

‖𝐩 𝑎 − 𝐩 ℎ ‖𝐿 2 ‖𝐩 𝑎 ‖𝐿 2 . Each graph compares the behavior of the
rror for the 3 variants of discrete normal vectors. It is clear that the 

12 
nalytic normal gives the most accurate solution, however this is avail-
ble only in special cases and can not be used in a general geometry.
ehavior for the two other normals now depends on the variant of the
itsche method used. The non-symmetric Nitsche method gives almost

he same results for both normals – facet based and vertex based. In the
ase of symmetric Nitsche method the vertex based normal gives errors
omparable with the non-symmetric method but the facet based normal
esults in much larger errors and if the penalty parameter is not chosen
orrectly it seems to converge at a lower rate of convergence. 

Fig. 6 portrays the same comparison for the dissipation. Here the
bservation is similar – namely that the combination of the symmetric
itsche method with the facet based normal leads to much larger errors
nd slower convergence compared to all the other combinations. We
ote that the selection of the value for the penalty parameter 𝛽 was
iven by the fact that for smaller values the convergence is not achieved,
robably due to lesser stability, and for higher penalty parameter the
esulting accuracy degrades. 

The final observation is that the results for the non-symmetric vari-
nt of the Nitsche method are not sensitive to the choice of the normal
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ector, the only significant difference is in the wall impermeability sat-
sfaction, see the column “flux ” in Tables 4 and 3 , where the facet based
ormal results in a significantly better enforcement of the impermeabil-
ty boundary condition on Γwall . On the other hand, the results for the
ymmetric variant of the Nitsche method exhibit significant dependence
n the choice of normal and choice of the penalty parameter. 

To summarize the observations: 

1. The non-symmetric Nitsche method (with 𝛽 = 0 ) is comparable to
the symmetric Nitsche method with carefully selected penalty pa-
rameter. 

2. The influence of normal selection on the results is much smaller for
the non-symmetric Nitsche method than for the symmetric one. 

3. Facet normal 𝐧 𝑓 
ℎ 

leads to better conservation properties (as observed
in Engelman et al., 1982 ). However, the derived quantities (dissipa-
tion, pressure) are more accurate with vertex normal 𝐧 𝑣 

ℎ 
. 

.2. The results for hemodynamic quantities 

Based on previous observations we present the results only for the
on-symmetric Nitsche method since this method proved to be more
obust and more precise. We focus on the hemodynamic quantities in-
roduced in Section 5.2 . 

First, we compare the values for these parameters on two different
eshes for 11 slip parameters 𝜃, 𝜃 = 0 , 0 . 1 , 0 . 2 , … , 1 . Coarser mesh de-
oted by c0 has 181,715 tetrahedra and mean edge length of 0.82 mm
esulting in 925,365 degrees of freedom after finite element discretiza-
ion. Finer mesh denoted by c1 has 245,571 tetrahedra, 1,206,092 de-
rees of freedom and mean edge length 0.72 mm. The relative errors be-
ween the computed and analytical solutions are summarized in Table 8 .

Graphs of the dissipations ΞΩ, ΞΓ, pressure drop flux 𝐽 𝑝 and vorticity
omputed on finer mesh depending on the slip parameter 𝜃 are shown in
ig. 7 . The computed cases for 11 different 𝜃 are displayed as red dots.
he blue line represents the analytical solution. We observe very good
t for all parameters as the relative error is less than 0.4 % , see Table 8 .
or the dissipation quantities, the errors are less than 0.07 % . 

Finally, the graphs of the selected hemodynamic quantities (namely
issipation, pressure difference, vorticity and wall shear stress) depend-
ng on the parameter 𝜃 are shown for different 𝛾∗ in Fig. 8 . Recall that
oth 𝛾∗ and 𝜃 are connected to each other through (7) . In the litera-
ure, they are sometimes replaced by one parameter 𝐾 = − 

𝛾∗ (1− 𝜃) 
𝜃

, where
 = 0 for 𝜃 = 1 and 𝐾 → ∞ for 𝜃 = 0 . Fig. 8 demonstrates the importance
f the proper choice of the 𝛾∗ . 

. Conclusion 

The main purpose of this study was to provide a benchmark for three-
imensional flows of the Navier–Stokes fluid subject to slip on a part of
he boundary that can be used for any computational code developed for
olving such problems to verify its validity and correctness in a relatively
imple test. The benchmark is based on analytical solutions for flows in
 tube (Poiseuille flow) subject to slip boundary conditions on the wall.
he benchmark is used to check not only velocity/pressure solution but
lso global quantities such as dissipation, pressure drop, wall shear stress
nd vorticity. 

We have also provided a novel viewpoint on the Nitsche method used
o numerically incorporate the impermeability condition into the weak
ormulation. We presented two variants of the method: the symmetric
nd non-symmetric one. It turns out that the non-symmetric version per-
orms in a better way without the need for the stabilization term. 

We also wish to point out how important the choice of the method
sed for approximating the normal vector is with regard to obtaining the
olution. In some cases, even for a simple problem, the simplest choice
f the facet normal leads to very high approximation error. 

In parallel with the formulation of the benchmark, we have devel-
ped a robust solver that proved capable of solving the benchmark prob-
13 
em on hand, and can be employed for solving more complex cardiovas-
ular problems while using more realistic geometry and velocity data. 
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