
HAL Id: hal-03182122
https://hal.archives-ouvertes.fr/hal-03182122

Submitted on 26 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Streaming Hypergraph Partitioning Algorithms on
Limited Memory Environments

Fatih Taşyaran, Berkay Demireller, Kamer Kaya, Bora Uçar

To cite this version:
Fatih Taşyaran, Berkay Demireller, Kamer Kaya, Bora Uçar. Streaming Hypergraph Partitioning
Algorithms on Limited Memory Environments. HPCS 2020 - International Conference on High Per-
formance Computing & Simulation, Mar 2021, Virtual online, Spain. pp.1-8. �hal-03182122�

https://hal.archives-ouvertes.fr/hal-03182122
https://hal.archives-ouvertes.fr

1

Streaming Hypergraph Partitioning Algorithms on
Limited Memory Environments
Fatih Taşyaran∗, Berkay Demireller∗, Kamer Kaya∗, and Bora Uçar†

∗Computer Science and Engineering, Sabancı University, İstanbul, Turkey
{fatihtasyaran, bdemireller, kaya}@sabanciuniv.edu

†CNRS and LIP (UMR5668 Univ. de Lyon, ENS Lyon, Inria, UCBL 1), France
bora.ucar@ens-lyon.fr

Abstract—Many well-known, real-world problems involve
dynamic, interrelated data items. Hypergraphs are powerful
combinatorial structures that are frequently used to model such
data. Many of today’s data-centric have streaming data; new
items arrive continuously, and the data grow over time. With
paradigms such as Internet of Things and Edge Computing,
such applications become more natural and more practical.
In this work, we assume a streaming model where the data
items and their relations are modeled as a hypergraph, which
is generated at the edge. This hypergraph is then partitioned,
and the parts are sent to remote nodes via an algorithm
running on a memory-restricted device, such as a single board
computer. Such a partitioning is usually performed by taking a
connectivity metric into account to minimize the communication
cost of later analyses that will be performed in a distributed
fashion. Although there are many offline tools that can partition
static hypergraphs effectively, algorithms for the streaming
settings are rare. We analyze a well-known algorithm from the
literature and significantly improve its run time by altering
its inner data structure. On a medium-scale hypergraph, the
new algorithm reduces the run time from 17800 seconds to 10
seconds. We then propose sketch- and hash-based algorithms,
as well as ones that can leverage extra memory to store a small
portion of the data to enable the refinement of partitioning
when possible. We experimentally analyze the performance of
these algorithms and report their run times, connectivity metric
scores, and memory uses on a high-end server and four different
single-board computer architectures.

Keywords: Hypergraph partitioning, streaming hypergraphs,
single-board computers.

I. INTRODUCTION

Real-world data can be complex, multi-model and multi-
dimensional with irregular relations among the data items.
Most of the models such as column- or row-oriented tabular
representation fail in capturing the essence of knowledge
contained in such data. Hypergraphs, which are generalizations
of graphs, are highly flexible and appropriate for modeling
and analysing such data. Therefore, they are used in various
areas: DNA sequencing [1], scientific computing [2], VLSI
design [3], citation recommendation [4], finding semantic sim-
ilarities between documents [5], finding descriptor similarities
between images [6], and classification [7].

Distributed graph and hypergraph stores became popular in
today’s applications. A good partitioning of the data among
the compute nodes in a distributed framework is necessary to
reduce the communication in the upstream applications. With

the increasing popularity of data-centric paradigms such as
Internet of Things and Edge Computing, the data that is fed
to these stores started to have a streaming fashion. In this
work, we assume that the data is generated/processed at the
edge of a network and partitioned on a memory-restricted
device, such as a single-board computer (SBC). There are
popular algorithms to partition streaming graphs [8], [9],
[10], and two recent benchmarks to evaluate the performance
of such algorithms [11], [12]. Although hypergraphs have a
more expressive power capability, and there are fine-tuned,
optimized, offline hypergraph partitioning tools, e.g., [13],
[14], [15], [3], the hypergraph partitioning problem in the
streaming setting is not addressed thoroughly.

Hypergraphs generalize graphs. In a graph, the edges rep-
resent pairwise connections, whereas in a hypergraph hyper-
edges (or nets for short) represent multi-way connections. That
is, a net connects more than two vertices. In a streaming set-
ting, this difference makes the hypergraph partitioning problem
much harder than the graph partitioning problem. For graph
partitioning, when a vertex appears with its edges, the endpoint
vertex IDs are implicit; hence, just the part information of the
vertices is sufficient to judiciously decide on the part of the
vertex at hand. However, in a hypergraph, a vertex appears
with its nets and the neighbor vertices are not implicit. Hence,
one needs to keep track of the connectivity among the nets and
the parts to effectively assign the current vertex to a part.

We assume a streaming setting where the vertices of a
hypergraph appear in some order along with the id’s of their
nets. The contribution of the study is three-fold:

• We take one of the existing and popular algorithms from
the literature [16] and make it significantly faster by mod-
ifying its inner data structure used to store the part-to-net
connectivity.

• We propose techniques to refine the existing partitioning at
hand with the help of some extra memory to store some
portion of the hypergraph.

• We propose and experiment with various algorithms and
benchmark their run times, memory requirements, and par-
titioning quality on a high-end server and multiple SBCs.

The rest of the paper is organized as follows. Section II
presents the notation and background on streaming hyper-
graph partitioning. The proposed algorithms are presented in
Section III. The related work is summarized in Section IV.

2

Section V presents the experiments, and Section VI concludes
the paper.

II. NOTATION AND BACKGROUND

A hypergraph H = (V,N) consists of a set V of vertices
and a set N of nets. A net n ∈ N contains a set of vertices,
where the vertices in n are called its pins. The size of n ∈ N is
the number its pins, and the degree of v ∈ V is the number of
nets containing v. The notation pins[n] and nets[v] represent
the pin set of a net n, and the set of nets containing a vertex
v, respectively. We assume unit weighted vertices and nets.

A K-way partition of a hypergraph H, which is denoted as
Π={V1,V2, . . . ,VK}, is a vertex partition where
• parts are pairwise disjoint, i.e., Vk ∩ V` = ∅ for all 1 ≤
k < ` ≤ K,

• each part Vk is a nonempty subset of V , i.e., Vk ⊆ V and
Vk 6= ∅ for 1 ≤ k ≤ K,

• the union of K parts is equal to V , i.e.,
⋃K

k=1 Vk =V .
In the streaming setting, the vertices in V appear one after

another. The elements of the stream are pairs (v, nets[v]). For
each stream element, v will be partitioned, i.e., the part vector
entry part[v] will be set by the partitioning algorithm. In
the strict streaming setting, each stream element (v, nets[v])
is forgotten after part[v] is decided. Besides, none of the
partitioning decisions can be revoked. In a more flexible
streaming setting, a buffer with a capacity B is reserved to
store some of the net sets. These vertices can then be re-
processed and re-partitioned. In this setting, the cost of storing
(v, nets[v]) in the buffer is |nets[v]|.

At any time point of the partitioning, the partition must be
kept balanced by limiting the difference between the number
of vertices in the most loaded and the least loaded parts. Let s
be the slack denoting this difference. We say that the partition
is balanced if and only if

abs(|Vi| − |Vj |) ≤ s for all 1 ≤ i < j ≤ K , (1)

where abs(x) is the absolute value of x. For a K-way partition
Π, a net that has at least one pin (vertex) in a part is said to
connect that part. The number of parts connected by a net n
is called its connectivity and denoted as λn. A net n is said to
be uncut (internal) if it connects only one part (i.e., λn = 1),
and cut (external), otherwise (i.e., λn > 1). Given a partition
Π, if a vertex is in the pin set of at least one cut net, it is
called a boundary vertex.

We use parts[n] to denote the set of parts net n is
connected to. Let Λ(n, p) = |pins[n] ∩ Vp| be the number
of pins of net n in part p. Hence, Λ(n, p) > 0 if and only
if p ∈ parts[n]. There are various metrics to measure the
quality of a partitioning in terms of the connectivity of the
nets [17]. The one which is widely used in the literature and
shown to accurately model the total communication volume
of many data-processing kernels is called the connectivity-1
metric. This cutsize metric is defined as:

χ(Π) =
∑
n∈N

(λn − 1) . (2)

In this metric, each cut net n contributes (λn − 1) to the cut
size. The hypergraph partitioning problem can be defined as
the task of finding a balanced partition Π with K parts such
that χ(Π) is minimized. This problem is NP-hard even in the
offline setting [17].

III. PARTITIONING STREAMING HYPERGRAPHS

In describing the algorithms, we assume that the stream
elements come from a hypergraph H, where a vertex of H is
revealed with its nets. We use the notation |H| to denote the
number of pins in this hypergraph while analyzing algorithms.

The simplest partitioning algorithm one can use in the
streaming setting is random partitioning, RANDOM, which
assigns the vertex in a stream element to a random part,
while keeping the partitioning always balanced as shown
in Algorithm 1. In the algorithm, p is the candidate part,
pmin is the part ID having the least number of vertices, and
rand(1,K) chooses a random integer in between [1,K].
When the difference between the number of vertices is equal
to s, v cannot be assigned to p since this decision makes the
partitioning unbalanced.

Algorithm 1: RANDOM

Input: K, s
Output: part[·]
for all (v, nets[v]) in streaming order do

p← rand(1,K)
while |Vp| − |Vpmin

| = s do
p← rand(1,K)

part[v]← p
if p = pmin then

Update pmin

return part

A. Min-Max Partitioning

MINMAX is a well-known approach proposed for
streaming hypergraph partitioning [16]. The approach, whose
pseudocode is given in Algorithm 2, keeps track of net con-
nectivity, i.e., which net is connected to which part, by keeping
a net set p2n[i] for each 1 ≤ i ≤ K. Each streaming vertex
v is assigned to the part p with the largest intersection set
p2n[p] ∩ nets[v] that does not violate the balance constraint.
After setting part[v] to p, there will not be an additional
cost for each net in p2n[p] ∩ nets[v]. Hence, the maximum
intersection cardinality is a good greedy decision. The
downside of this approach is that there is no way of knowing
if any of v’s nets are connected to a part i without checking
p2n[i]. This approach requires many unnecessary checks since
all parts need to be considered even if most of them are not
connected to the vertex. This problem is exacerbated when
K is large, which is the case for many real-life applications.
Overall, even when the cost of the intersection computation
is O(1) per net, the algorithm takes O(K × |H|). This is not
acceptable, since K can be in the order of thousands, and
|H| can be huge for streaming, massive-scale hypergraphs.

3

Algorithm 2: MINMAX

Input: K, s
Output: part[·]
for i from 1 to K do

p2n[i]← ∅
for all (v, nets[v]) in streaming order do

saved← −1
for i from 1 to K do

if |Vi| − |Vpmin
| < s then

if |p2n[i] ∩ nets[v]| > saved then
saved← |p2n[i] ∩ nets[v]|
p← i

part[v]← p
p2n[p]← p2n[p] ∪ nets[v]
if p = pmin then

Update pmin

return part

Algorithm 3: MINMAX-N2P

Input: K, s
Output: part[·]
save[·]← an array of size K
mark[·]← an array of size K with all −1s
pids[·]← an array of size K
indx[·]← an array of size K
for all (v, nets[v]) in streaming order do

active← 0
for n ∈ nets[v] do

if n appears for the first time then
n2p[n]← ∅

for i ∈ n2p[n] do
if mark[i] 6= v then

mark[i]← v
active← active+ 1
pids[active]← i
save[active]← 1
indx[i]← active

else
save[indx[i]]← save[indx[i]] + 1

saved← −1
for j from 1 to active do

i← pids[j]
if |Vi| − |Vpmin | < s then

if save[j] > saved then
saved← save[j]
p← i

part[v]← p
for n ∈ nets[v] do n2p[n]← n2p[n] ∪ {p} ;
if p = pmin then Update pmin ;

return part

B. Using Net-to-Part Information and Finding Active Parts

We observe that the performance problem in Algorithm 2
arises, because the connectivity among the nets and the
parts is stored from the parts’ perspective. However, if this
information had been organized from the perspective of the
nets it would be possible to identify the active parts that are
connected to at least one net of the current vertex v at hand.
Algorithm 3 describes the pseudocode of this approach. For
an efficient computation, it uses four auxiliary arrays, save,
mark, pids, and indx. Each of these arrays is of size K.
However, they are only initialized once, and no expensive
reset operation with complexity Θ(K) is performed after a
vertex is processed. Thanks to these arrays, when a part is
first identified to be connected to one of the nets in nets[v],
it is marked to save a single net and placed into the active
part array. Once it is placed, the next access to the same part
(but for a different net) will only increase the savings of this
part. Both these operations can be performed in constant time
and no loop over all the parts is required.

MINMAX as proposed in [16], and as described in Algo-
rithm 2, has been used in the literature to benchmark novel
algorithms for scalable hypergraph partitioning [18], [19].
For instance, it is reported that a hypergraph with 0.43M
vertices and 180M pins is partitioned into K = 128 parts
in around 1000 seconds [18]. On the other hand, the variant
in Algorithm 3 can partition a hypergraph with 1.1M vertices
and 228M pins into K = 2048 parts in around 200 seconds.

Considering that K is at most in the order of tens of
thousands, the extra memory due to the four additional
arrays is not prohibitive. On the other hand, both MINMAX
and MINMAX-N2P use approximately the same amount of
memory to store the connectivity information. That is the total
number of entries in n2p[·] and p2n[·] arrays are the same,
and exactly n more than the (connectivity - 1) metric given
in Eq. 2. This being said, MINMAX-N2P uses slightly more
memory since unlike K, |N | is not known beforehand in the
streaming setting, and a dynamic data structure with more
overhead is required to organize the connectivity as in n2p.

C. MINMAX Variants Using Less Memory

Depending on the hypergraph and the number of parts, the
memory requirements of the two previous approaches can be
too large. For streaming data, there is no upper limit, which is
obviously a problem for SBCs. In this subsection, we propose
variants of MINMAX that can use a fixed amount of memory.

1) MINMAX-L`: As explained above, the total memory
spent for n2p grows as long as the data is streaming. To avoid
this, while working similar to Algorithm 3, MINMAX-L`
restricts the maximum length of each n2p[·] to `. When a
new part p is being added to a n2p[n] for a net n ∈ N ,
if |n2p[n]| = `, a random part id from n2p[n] is chosen
and replaced with p. Although the connectivity information
is only kept in a lossy fashion, we expect it to guide the
partitioning decisions for sufficiently large ` values.

2) MINMAX-BF: Bloom filters (BF) are memory-efficient
and probabilistic data structures used to answer set member-
ship queries [20]. Compared to the traditional data structures

4

Algorithm 4: MINMAX-L`
Input: K, s, `
Output: part[·]
· · · same as Algorithm 3
for all (v, nets[v]) in streaming order do
· · · same as Algorithm 3
for n ∈ nets[v] do

if |n2p[n]| < ` then
n2p[n]← n2p[n] ∪ {p}

else if p /∈ n2p then
idx← rand(1, `)
n2p[idx]← p

if p = pmin then
Update pmin

return part

such as arrays, sets, or hash tables used for the same task, a
BF occupies much less space while allowing false positives.
If the item is a member of the set, BF always returns true. If
the item is not in the set, BF most likely answers correctly
but can also return a false positive.

A Bloom Filter, which employs an m-bit sequence, uses
k hash functions to find the indices of bits and sets them to
1 to mark the existence of a new. To answer a query for an
item x, it simply checks the corresponding k hash functions
on x, and answers positively if each of the corresponding bits
is 1. An important parameter for a BF is its false positive
probability. Assuming the hash functions are independent of
each other, when n items are inserted into a BF, kn bits
are altered. Hence, the probability of a bit staying zero is
(1− 1/m)

kn ≈ e−kn/m, and the false-positive probability can
be computed as

(
1− e−kn/m

)k
.

The BF variant of MINMAX is similar to Algorithm 2.
However, instead of p2n, it leverages a Bloom Filter BF to
store connectivity tuples (n, p) which means that the net n
has a pin at part p. For a given (v, nets[v]), it goes over
all the parts, and for each net in nets[v], it queries the
corresponding tuple within the BF. Then it chooses the part
with the most number of positive answers. The pseudocode
of this approach is given in Algorithm 5. As in MINMAX-L`,
using a BF limits and fixes the amount of memory that will
be used to store the connectivity among the nets and the parts.

3) MINMAX-MH: An approach fundamentally different
from MINMAX-L` and MINMAX-BF is to completely discard
the connectivity information and try to cluster similar vertices
with similar nets[·] sets into the same parts. A natural tool for
this task is hashing. We use a MinHash-based approach [21],
MINMAX-MH, to find the part id for a given vertex. For
implementation, we use k hash functions in the form of
hi(x) = aix + bi mod q where 1 ≤ i ≤ k, q is a prime
number, ai and bi are random integers chosen from [0, q) per
hash function. Given (v, nets[v]), this approach first computes
(α1, α2, . . . , αk) where αi = minn∈nets[v]{hi(n)}. Then the

Algorithm 5: MINMAX-BF
Input: K, s, m
Output: part[·]
BF← ∅ (creates an m-bit, all zero sequence)
for all (v, nets[v]) in streaming order do

saved← −1
for i from 1 to K do

if |Vi| − |Vpmin
| < s then

savedi ← 0
for n ∈ nets[v] do

if BF.query((n, i)) then
savedi ← savedi + 1

if savedv > saved then
saved← savedi
p← i

part[v]← p
for n ∈ nets[v] do

BF.insert((n, p))

if p = pmin then
Update pmin

return part

part id for v is computed as

p =

(
k∏

i=1

αi

)
mod K.

If v cannot be assigned to p due to the balance constraint, the
approach tries the next part in the natural order, (p+1 mod K)
until a suitable part is found.

It is intuitive to think that vertices with similar net sets
will end up with closer hash values which will result in
assigning them in the same part. The fact that there is no need
for additional memory to keep net-part connectivity unlike
the previous algorithms makes this approach suitable for low
memory environments.

D. Buffering and Refining

Revoking the partitioning decisions is impossible for the
strict streaming setting. This is so as the net sets are forgotten
after the corresponding vertex is put to a part. We can
overcome this by using an additional buffer to keep the nets[·]
sets. With such a buffer, one can revisit the buffered vertices
and reassign them to a different part if such a reassignment
improves the cutsize. A high-level description of this approach
is given in Algorithm 6.

Algorithm 6 works along the same lines of MINMAX-N2P.
In addition to finding the part id for a vertex v, after v is pro-
cessed it can be chosen to be inserted to the buffer BUF. Once
the buffer is full, the algorithm goes over all the vertices in the
buffer passes times. For each vertex u, first the leaveGain
of u is computed which is the change in the (connectivity - 1)
metric when u is removed from part[u]. Then if u is decided
to be movable, it is removed from part[u]. A new part p is
then found and u is moved to p. We desgined three strategies,

5

Algorithm 6: MINMAX-N2P-REF

Input: K, s, B, passes
Output: part[·]
· · · same as Algorithm 3
BUF← ∅ (an empty buffer that can store B pins)
for all (v, nets[v]) in streaming order do
· · · same as Algorithm 3
if isBufferable(v) then

BUF.insert(v)
if BUF.isFull() then

for i from 1 to passes do
for u ∈ BUF do

Compute leaveGain for u
if isMoveable(u) then

Remove u from part[u]
Find the best part p for u
part[u]← p
for n ∈ nets[u] do

n2p[n]← n2p[n] ∪ {p}
if p = pmin then

Update pmin

BUF← ∅

return part

namely REF, REF RLX and REF RLX SV, for MINMAX-
N2P-REF, which differ on how they behave for the functions
isBufferable(·) and isMoveable(·):
• The first strategy REF buffers every vertex but finds a new

best part p if and only if the corresponding leaveGain > 0.
That is it only modifies part when it is probable to reduce
the connectivity - 1 metric. Hence, it is a restricted strategy
while exploring the search space.

• The second strategy REF RLX buffers every vertex and
finds a new best part p for all the vertices in BUF. Hence,
compared to the previous one it is a relaxed strategy.

• The third strategy REF RLX SV only buffers the vertices
with small net sets and finds a new best part p for all the
vertices in BUF. It aims to reduce the overhead of refining
while keeping its gains still on the table.
To compute leaveGain, one also needs to keep track of

the number of pins of each net residing at each part. This
almost doubles the memory requirement of the refinement
heuristics compared to MINMAX, since for every connectivity
entry stored in n2p , an additional positive integer is required.
That is the original entry shows that “net n is connected to part
p”, and the additional entry required for refinement shows that
“net n has k pins in part p”. The refinement-based algorithms
require this information since when k = 1, they can detect a
gain on the connectivity.

IV. RELATED WORK

There exist excellent offline hypergraph partitioners in the
literature such as PaToH [14] and HMetis [3]. Recently, more
tools are developed focusing on different aspects and using
different approaches. Deveci et al. [15] focus on handling
multiple communication metrics at once, Mayer et al. [18]

focus on the speed, and Schlag et al. [22] focus more on the
quality by using a more advanced refinement mechanism.

Faraj et al. [23] have recently proposed a streaming graph
partitioning algorithm which yields high quality partitioning
on streaming graphs utilizing buffering model. Jafari et al. [24]
have proposed a fast parallel algorithm which processes the
given graph in batches.

The streaming setting has not been analyzed thoroughly on
hypergraphs except the work by Alisarth et al. [16] which pro-
poses the original MINMAX algorithm at once. We improved
this algorithm significantly by altering its inner data structure
used to store the part-to-net connectivity. Furthermore, we
proposed techniques to refine the existing partitioning at hand
with the help of some extra memory.

TABLE I: Hypergraphs used for the experiments.

Matrix Size Pins Max. Deg Avg. Deg Deg. Var.

coPapersDBLP 0.5M 30.5M 3.2K 56.41 66.23
hollywood2009 1.1M 227.8M 11.4K 99.91 271.69
soc-LiveJournal1 4.8M 68.9M 13.9K 14.23 42.30
com-Orkut 3.0M 234.3M 33.3K 76.28 153.92
uk-2005 39.4M 936.3M 1.7M 23.72 1654.56
webbase2001 118.1M 1.0B 816.1K 8.63 141.79

V. EXPERIMENTAL RESULTS

We tested the proposed algorithms on hypergraphs created
from six matrices downloaded from the SuiteSparse Matrix
Collection (https://sparse.tamu.edu/). For each n × n matrix,
we create a column-net hypergraph H = (V,N) where the
vertices (nets) in V (in N) correspond to the rows (columns)
of the matrix. The properties of the resulting hypergraphs
are given in Table I. Moreover, we tested the algorithms
on a cutting-edge server and multiple SBCs. Since the vari-
ants studied in this work have different time, memory, and
quality tradeoff characteristics, we used a set of single-board
computers to observe their performance. These SBCs have
different number of cores and different amounts of memory.
The specifications of these architectures are as follows:
• Server: Intel Xeon Gold 6140, 2.30GHz, 256GB RAM,

gcc 5.4.0, Ubuntu 16.04.6.
• LattePanda: Intel Atom x5-Z8350, 1.44GHz, 4096MB

DDR3L @ 1066 MHz RAM, gcc 5.4.0, Ubuntu 16.04.2
• Pi: Broadcom BCM2837, 1.2GHz, 1024MB LPDDR2 @

400 MHz RAM, gcc 6.3.0, Raspbian 9
• Odroid: ARM Cortex-A15, 2GHz and Cortex-A7

@1.3GHz, 2048MB LPDDR3 @ 933 MHz, 2048MB
LPDDR3 @ 933 MHz, gcc 7.5.0, Ubuntu 18.04.1

We implemented algorithms in C++ and compiled on each
device separately with the gcc version available in each
SBC. For each hypergraph, we created three random streams
with different vertex orderings. Although it is an offline
partitioner and is not suitable for the streaming setting, we
used PaToH v3.3 [14] to evaluate the quality and performance
of the streaming algorithms. As balance constraint, we used
a dynamic value s in Eq. 1 computed by using a constant
allowed imbalance ratio β = 0.1, for which values in the
range 5%-10% are common in the partitioning literature. That
is, while processing the rth stream element, the allowed slack

6

is set to s = max(1, β × (r/K)). This translates to obtaining
balance by settign the slack s to β times the average part
weight at any time during partitioning.

TABLE II: Comparison of the proposed streaming hypergraph
partitioning algorithms and the state-of-the-art on the Server and
coPapersDBLP.

Parts

256 Algorithm Run Time(sec) Cut(×106) Memory(MB)

MINMAX 13952.12 1.731 18.60

MINMAX-N2P 7.40 1.731 36.78

MINMAX-L3 2.20 2.543 15.00

MINMAX-L5 2.60 1.913 25.41

MINMAX-BF(4) 496.90 3.280 2.64

MINMAX-BF(16) 1479.19 3.273 2.54

MINMAX-MH(4) 1.49 11.214 0.18

MINMAX-MH(16) 5.37 13.464 0.19

RANDOM 0.04 23.817 0.00

2048 Algorithm Run Time(sec) Cut(×106) Memory(MB)

MINMAX 17823.45 3.096 28.65

MINMAX-N2P 10.64 3.096 44.10

MINMAX-L3 2.61 5.217 15.00

MINMAX-L5 3.25 4.168 25.10

MINMAX-BF(4) 3664.48 4.508 2.59

MINMAX-BF(16) 11882.30 4.655 2.57

MINMAX-MH(4) 1.51 15.134 0.12

MINMAX-MH(16) 5.38 18.101 0.15

RANDOM 0.07 28.992 0.00

Table II reports the run times, cut, and memory us-
age of the proposed MINMAX variants on the hypergraph
CoPapersDBLP. The first two rows show the effective-
ness of the modification on MINMAX. The modified version
MINMAX-N2P is ≈ 1700x faster on this hypergraph while
using 16–18MB more memory. This is due to the reduced
number of unnecessary operations on unrelated parts while
computing the part savings. The MINMAX-L3 and MINMAX-
L5 variants obtain partitions comparable to MINMAX in terms
of quality (i.e., with respect to connectivity-1) while using less
memory.

For MINMAX-BF and MINMAX-MH, we use 4 and 16
hash functions, and for the former, we use 20M bits. Although
being fast, the partitioning quality of the MinHash variant is
half of the RANDOM. On the contrary, the Bloom Filter variant
seems to work well with a comparable partitioning quality.
However, it is slow since when BF is used instead of n2P, one
needs to go over all the parts to compute their savings. Still,
it is very promising in terms of memory/quality trade-off and
enables a scenario in which a device with a small memory is
used in partitioning on a network edge.

Figure 1 compares MINMAX-N2P’s performance to those
of a hypothetical streaming tool based on PaToH. That is
the hypergraphs are partitioned by PaToH (with SPEED and
DEFAULT configurations) and the run times, cuts (connectiv-
ities), and memory requirements are normalized with respect
to those of MINMAX-N2P for hypergraphs coPapersDBLP,
holywood2009, socLiveJournal1, com-Orkut, and
uk2005. The experiments show that on these hypergraphs,

the DEFAULT configuration can be 10–30% better in terms
of partitioning quality. However, it can also be more than 100×
slower (see the run time ratio bar for SocLiveJournal1).
Furthermore, PaToH uses 12–18× more memory compared to
MINMAX-N2P. Note that PaToH, or any other offline parti-
tioner, is not suitable for the streaming setting. The results are
only given to demonstrate that there is room for improvement
on MinMax-n2p especially in terms of partitioning quality.
This in turn justifies the attempts for refining the partitioning
throughout streaming.

TABLE III: Effect of the number of passes on refinement algo-
rithms; the results are averaged for K = 256 and K = 2048.
The experiments are executed on the Server. All of the values
are normalized with respect to those of MINMAX on the same
experiment.

Run Time Cut

Matrix Buf. Passes R RR RRS R RR RRS

2 2.8 4.5 2.1 0.84 0.82 0.87
4 3.8 6.6 2.8 0.83 0.81 0.87coPapers 0.15
8 6.0 10.8 4.2 0.83 0.79 0.86

2 4.0 4.4 3.8 0.97 0.96 0.97
4 5.8 6.4 5.6 0.97 0.95 0.96hollywood 0.15
8 9.6 10.2 8.8 0.96 0.95 0.97

2 3.8 3.8 3.4 0.96 0.94 0.95
4 5.5 5.7 4.9 0.96 0.94 0.94soc-Live 0.15
8 9.0 9.3 7.8 0.96 0.94 0.94

To find a good value for passes in the refinement-based
algorithms, we performed 2, 4, and 8 passes over the buffered
vertices and measured the run time and partitioning quality of
REF, REF RLX, and REF RLX SV. Table III presents the
results of these experiments with a buffer capacity B = 0.15×
|H| for each hypergraph |H|. The results show that although
refinement can be useful for reducing the connectivity, its
overhead is significant. Furthermore, after 2 passes, there is
only a minor improvement on the partitioning quality. Using
passes = 4 reduces the cut size for a large number of
experiments, and therefore we use this setting in the rest of
the experiments.

Figure 2 shows the run times (in seconds), connectivity
scores (normalized with respect to MINMAX-N2P), and mem-
ory usages (in MBs) of the refinement heuristics, MINMAX-
N2P, and MINMAX-L5 on all hypergraphs in Table I. The
experiments are executed on the Server. An imbalance ratio
of 0.1 and passes = 4 are used for the experiments. As
the results show, the refinement based heuristics improve the
partitioning quality in between 5–20% depending on the hy-
pergraph. Furthermore, when the buffer size is increased, these
heuristics tend to improve the quality better. Besides, for the
two largest hypergraphs in our experiments, REF RLX SV is
much faster than the other two refinement heuristics REF and
REF RLX with a similar improvement over the partitioning
quality and the same memory requirement. Hence, it can be
a good replacement to the original MINMAX-N2P heuristic
with no refinement, if the partitioning quality has the utmost
importance.

Table IV shows the run time performance of the proposed al-
gorithms on different architectures and for K = 32, 256, 2048
and 16384. The hypergraph socLiveJournal1 is used for

7

2
1

2
2

2
3

2
4

2
5

2
6

2
7

R
u
n
 T

im
e
 R

a
ti
o

0.25

0.50

0.75

1.00

1.25

C

u
t
R

a
tio

10.0

12.5

15.0

17.5

20.0

M
e
m

o
ry

 R
a
tio

coPapersDBLP_SPEED
coPapersDBLP_DEFAULT

hollywood2009_SPEED
hollywood2009_DEFAULT

socLiveJournal1_SPEED
socLiveJournal1_DEFAULT

com-Orkut_SPEED
com-Orkut_DEFAULT

uk-2005_SPEED
uk-2005_DEFAULT

Fig. 1: Run times, cuts and memory usages of PaToH normalized with respect to those of MINMAX-N2P. The experiments are executed
on the Server.

MinMax-L5
REF_RLX_SV(0.15)

REF_RLX(0.15)
REF(0.15)

REF_RLX_SV(0.05)
REF_RLX(0.05)

REF(0.05)

MinMax-N2P

0 20 40 60
RunTime(sec)

0.8 1.0 1.2 1.4 1.6
Connectivity -1 Ratio

coPapersDBLP

0 25 50 75
Memory(MB)

MinMax-L5
REF_RLX_SV(0.15)

REF_RLX(0.15)
REF(0.15)

REF_RLX_SV(0.05)
REF_RLX(0.05)

REF(0.05)

MinMax-N2P

0 500 1000
RunTime(sec)

1.0 1.2 1.4 1.6
Connectivity -1 Ratio

hollywood2009

0 100 200 300 400
Memory(MB)

MinMax-L5-
REF_RLX_SV(0.15)

REF_RLX(0.15)
REF(0.15)

REF_RLX_SV(0.05)
REF_RLX(0.05)

REF(0.05)

MinMax-N2P-

0 100 200 300
RunTime(sec)

0.9 1.0 1.1
Connectivity -1 Ratio

socLiveJournal

0 200 400
Memory(MB)

MinMax-L5 -
REF_RLX_SV(0.15)

REF_RLX(0.15)
REF(0.15)

REF_RLX_SV(0.05)
REF_RLX(0.05)

REF(0.05)

MinMax-N2P

0 500 1000 1500 2000
RunTime(sec)

0.9 1.0 1.1 1.2
Connectivity -1 Ratio

com-Orkut

0 500 1000
Memory(MB)

MinMax-L5-
REF_RLX_SV(0.15)

REF_RLX(0.15)
REF(0.15)

REF_RLX_SV(0.05)
REF_RLX(0.05)

REF(0.05)

MinMax-N2P-

0 500 1000
RunTime(sec)

1.00 1.25 1.50
Connectivity -1 Ratio

uk-2005

0 1000 2000 3000
Memory(MB)

MinMax-L5-
REF_RLX_SV(0.15)

REF_RLX(0.15)
REF(0.15)

REF_RLX_SV(0.05)
REF_RLX(0.05)

REF(0.05)

MinMax-N2P-

0 1000 2000
RunTime(sec)

0.8 0.9 1.0 1.1
Connectivity -1 Ratio

webbase2001

0 2500 5000 7500
Memory(MB)

Fig. 2: The run times (in seconds), connectivity scores (normalized with respect to MINMAX-N2P), and memory requirements (in MBs) of
the refinement heuristics, MINMAX-N2P, and MINMAX-L5 on all hypergraphs. The experiments are executed on the Server for K = 2048.
An imbalance ratio of β = 0.1 is used for all experiments and passes = 4 is used for the refinement heuristics. In the figure, the parameter
for these heuristics shows the parameter θ to find the buffer size B = θ × |H| for each hypergraph H.

8

TABLE IV: Run times of the proposed algorithms on single
board devices and socLiveJournal1 for different K values. The
allowed imbalance is β = 0.1, and the buffer capacity B = 0.15×|H|
is used. The results on the K = 32 column are given in seconds,
and for K = 256, 2048 and 16384, the results are normalized with
respect to K = 32. That is the results in the last three columns show
the decrease in the run time when K is increased from 32 to the
corresponding value.

Parts

Device Algorithm 32 256 2048 16384

MINMAX-N2P 142.6 1.43× 2.16× 3.73×
REF 593.1 1.64× 2.93× 4.38×
REF RLX 650.0 1.50× 2.89× 4.16×
REF RLX SV 532.3 1.53× 2.89× 4.73×

Pi-1GB

MINMAX-L5 55.6 1.17× 1.30× 1.74×

MINMAX-N2P 72.4 1.32× 1.81× 2.80×
REF 335.2 1.41× 2.32× 3.62×
REF RLX 362.8 1.33× 2.27× 3.60×
REF RLX SV 287.5 1.47× 2.37× 3.92×

Odroid-2GB

MINMAX-L5 36.1 1.11× 1.19× 1.40×

MINMAX-N2P 71.5 1.34× 1.89× 2.85×
REF 308.3 1.45× 2.46× 3.73×
REF RLX 339.8 1.35× 2.43× 3.62×
REF RLX SV 264.8 1.52× 2.57× 4.05×

LattePanda-4GB

MINMAX-L5 30.4 1.11× 1.18× 1.33×

these experiments. The results are similar to the ones in the
Server. Yet additionally, the slow-down values in the last
three columns show that using much less memory, MINMAX-
L5 stays more scalable compared to other algorithms when
K is increased. Furthermore, the overhead of the refinement
heuristics degrades the scaling behavior when they are added
on top of the MINMAX-N2P. However, their negative impact
tends to decrease when an SBC with more memory is used.
This also shows the importance of streaming hypergraph
algorithms with low-memory requirements in practice.

VI. CONCLUSION AND FUTURE WORK

We focused on the streaming hypergraph partitioning prob-
lem. The problem has unique challenges compared to similar
problem of streaming graph partitioning. We significantly
improved the run time performance of a well-known streaming
algorithm and proposed several variants on top of it to reduce
the memory footprint and improve the partitioning quality. The
experiments show that there is still room for improvement
for these algorithms. As future work, we plan to devise more
advanced techniques that can overcome the trade-off among
the run time, memory requirements, and partitioning quality.

ACKNOWLEDGEMENTS

This work is funded by The Scientific and Technological
Research Council of Turkey (TÜBITAK) under the grant
number 117E249.

REFERENCES

[1] S. Venkatraman, G. Rajaram, and K. Krithivasan, “Unimodular hyper-
graph for DNA sequencing: A polynomial time algorithm,” Proceedings
of the National Academy of Sciences, India Section A: Physical Sciences,
nov 2018.

[2] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning based
decomposition for parallel sparse-matrix vector multiplication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 10, no. 7, pp.
673–693, 1999.

[3] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: applications in vlsi domain,” IEEE Transactions
on Very Large Scale Integration Systems, vol. 7, no. 1, pp. 69–79, 1999.

[4] O. Küçüktunç, K. Kaya, E. Saule, and U. V. Çatalyürek, “Fast recom-
mendation on bibliographic networks,” in 2012 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, 2012,
pp. 480–487.

[5] T. Menezes and C. Roth, “Semantic hypergraphs,” arXiv, vol. cs.IR, no.
1908.10784, 2019.

[6] K. Skiker and M. Maouene, “The representation of semantic similarities
between object concepts in the brain: a hypergraph-based model,” BMC
Neuroscience, vol. 15, no. Suppl 1, pp. P84–P84, Jul 2014.

[7] L. Sun, S. Ji, and J. Ye, “Hypergraph spectral learning for multi-
label classification,” in Proc. of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’08.
New York, NY, USA: ACM, 2008, p. 668–676.

[8] W. Zhang, Y. Chen, and D. Dai, “Akin: A streaming graph par-
titioning algorithm for distributed graph storage systems,” in 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2018, pp. 183–192.

[9] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in Proc. of the
7th ACM Int. Conf. on Web Search and Data Mining, ser. WSDM ’14.
New York, NY, USA: ACM, 2014, p. 333–342.

[10] I. Stanton and G. Kliot, “Streaming graph partitioning for large dis-
tributed graphs,” in Proc. of the 18th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, ser. KDD ’12. New York,
NY, USA: ACM, 2012, p. 1222–1230.

[11] A. Pacaci and M. T. Özsu, “Experimental analysis of streaming al-
gorithms for graph partitioning,” in Proc. of the 2019 Int. Conf. on
Management of Data, ser. SIGMOD ’19. New York, NY, USA: ACM,
2019, p. 1375–1392.

[12] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Streaming graph
partitioning: An experimental study,” Proc. VLDB Endow., vol. 11,
no. 11, p. 1590–1603, Jul. 2018.

[13] R. Andre, S. Schlag, and C. Schulz, “Memetic multilevel hypergraph
partitioning,” arXiv, vol. cs.DS, no. 1710.01968, 2017.

[14] Ü. Çatalyürek and C. Aykanat, PaToH (Partitioning Tool for Hyper-
graphs). Boston, MA: Springer US, 2011, pp. 1479–1487.

[15] M. Deveci, K. Kaya, B. Uçar, and Ümit V. Çatalyürek, “Hypergraph
partitioning for multiple communication cost metrics: Model and meth-
ods,” Journal of Parallel and Distributed Computing, vol. 77, pp. 69 –
83, 2015.

[16] D. Alistarh, J. Iglesias, and M. Vojnovic, “Streaming min-max hy-
pergraph partitioning,” in Advances in Neural Information Processing
Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 1900–1908.

[17] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout.
Chichester, U.K.: Wiley–Teubner, 1990.

[18] C. Mayer, R. Mayer, S. Bhowmik, L. Epple, and K. Rothermel, “Hype:
Massive hypergraph partitioning with neighborhood expansion,” arXiv,
vol. cs.DC, no. 1810.11319, 2018.

[19] L. Epple, “Partitioning Billionscale Hypergraphs,” Master’s thesis, In-
stitute of Parallel and Distributed Systems, University of Stuttgart,
Universitätsstraße 38 D–70569 Stuttgart, 2018.

[20] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, p. 422–426, Jul. 1970.

[21] A. Z. Broder, “On the resemblance and containment of documents,” in
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.
No.97TB100171), 1997, pp. 21–29.

[22] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and
C. Schulz, “k-way hypergraph partitioning via n-level recursive bisec-
tion,” in 18th Workshop on Algorithm Eng. and Exp., 2016, pp. 53–67.

[23] M. F. Faraj and C. Schulz, “Buffered streaming graph partitioning,”
2021, arXiv, cs.DS, 2102.09384.

[24] N. Jafari, O. Selvitopi, and C. Aykanat, “Fast shared-memory stream-
ing multilevel graph partitioning,” Journal of Parallel and Distributed
Computing, vol. 147, p. 140–151, 2021.

