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A sophisticate form of scientific realism claims that one’s epistemic commitment should go on those 
elements of our mature and robust theories which actually play a truly active role in explaining the 
world. This thesis is supposed to meet the challenge of the pessimistic meta-induction according to 
which, since theories in the past have been regularly superseded by other theories and this is likely to 
happen to ours, no realist commitment on current science can be rationally justified. At a first glimpse, 
the pessimistic meta-induction appears as unquestionable: theories of the past have certainly been 
replaced by other theories. However, the realist retorts that one does not need to accept theories as an 
undifferentiated package: “It is enough to show that the theoretical laws and mechanisms which 
generated the successes of past theories have been retained in our current scientific image” (Psillos 
1999, 103). It is those still valid and useful parts of the past theories that capture something of the 
external reality. 
 
It is clear that this realist program requires a substantial support from history of science. Take, for 
instance, the concept of “mature theory”. According to Anjan Chakravartty, “a mature theory is one that 
has survived for a significant period of time and has been rigorously tested, perhaps belonging to a 
discipline whose theories typically make novel predictions” (Chakravartty 2007, 27-28). Only concrete 
historical analysis can tell us whether the survival period of a theory was significant and whether the 
tests it passed were rigorous. Analogously, concepts such as “success” or the distinction between idle 
and effective elements of a theory, both mentioned in Psillos’ quote above, become meaningful only in 
historical perspective. However, the integration of philosophical and historical research is a notorious 
bone of contention. On the one hand, narratives driven by the necessity of tracing a sequence of 
successes seem simply bad historiography. On the other, a philosophical program based on historical 
cases is always exposed to the accusation of descriptivism.  
 
In this paper, I claim that history can significantly help the cause of scientific realism by investigating the 
strategies used by scientists to “stabilize” their theory, i.e., to produce what philosophers call a mature 
and successful theory. These strategies include, but are not limited to, the interrelation of a theory with 
other, already stable, portions of science, the use of more and more severe testing procedures, the 
generalization and simplification of the formal structure of the theory, and the improvement of the 
symbolic notation. The common denominator of these strategies is to improve the control on the theory 
and to distinguish artifacts from genuine information on the world. In this way, the process of theory 
stabilization produces theoretical claims and scientific practices on which it is rational to place a realist 
commitment. More importantly, this philosophical perspective can also produce novel and interesting 
historical narratives. I explore some of these strategies in a concrete historical case, that is the 
development of perturbation theory in the 18th century and the early treatments of the problem of 
stability of the solar system. My argument relies on two main points. 
 
First, contrary to the common wisdom, stability was not a object of scientific research from the very 
beginning, but it emerged as a scientific problem only when perturbation theory reached a level of 
sophistication that allowed mathematicians to solve it. For Newton, Leibniz, and Euler, the stability of a 
solar system is no physical and mathematical question. Instead, it is mentioned only as part of a more 
general theological discourse hinging on the nature of God and the place of man in nature. There is no 
definition of what gravitational stability means, there is no attempt to lay down conditions of solutions, 
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and, in the physical astronomy of the first half of the 18th century, the stability of the solar system is 
oftentimes taken for granted. Rather than with global stability, mathematicians since Newton were 
concerned with more practical local stability issues, i.e., the secular inequalities of the Moon (secular 
acceleration and precession of the apsides) and of the Jupiter-Saturn system. 
 
However, in the early 1770s, Lagrange, partly supported by Laplace, undertook a program of 
stabilization of perturbation theory. The methods used by Euler in the late 1740s were too erratic and 
prone to produce artifacts, such as the strange secular terms. Lagrange wanted to polish perturbation 
theory of all its imperfections and turn it into a reliable tool for physical astronomy. It was by developing 
the mathematical practices of perturbation theory that Lagrange, in 1782, eventually posed, and solved, 
the general problem of the stability of the solar system. His results were extended shortly afterwards by 
Laplace to the treatment of the two remaining anomalies (the lunar acceleration and the motion of 
Jupiter and Saturn; the precession of the apsides had been solved by Clairaut in 1749). 
 
Second, in stabilizing perturbation theory, Lagrange and Laplace adopted a variety of strategies. 
Lagrange’s approach focused on generalizing the theory and thus making it less dependent on 
procedures tailored for specific problems. His use of the integrals of motion or the so-called Lagrange 
coordinates are clear examples of this approach. Further, he tried to simplify the formal manipulation of 
the equations of motion by introducing the perturbing function. Most of these strategies could be 
regarded as ways of improving the 'robustness' of the theory. On his part, Laplace concentrated on 
applying perturbation theory to the anomalies of Jupiter and Saturn and the Moon. His way to stabilize 
the theory was to test it in concrete cases and to develop techniques to find in a faster and more 
reliable way the sizable terms generating the inequalities. I argue that these methods aimed at making 
perturbation theory more 'mature' and 'successful'. More importantly, both sets of strategies produced 
enduring results: the Lagrange coordinates, the perturbing function, the role of resonance in stability, to 
mention only a few examples, are still part of modern perturbation theory. 
 


