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Abstract

This paper proposes nonparametric two-sample tests for the direct comparison of the probabilities 

of a particular transition between states of a continuous time non-homogeneous Markov process 

with a finite state space. The proposed tests are a linear nonparametric test, an L2-norm-based test 

and a Kolmogorov–Smirnov-type test. Significance level assessment is based on rigorous 

procedures, which are justified through the use of modern empirical process theory. Moreover, the 

L2-norm and the Kolmogorov–Smirnov-type tests are shown to be consistent for every fixed 

alternative hypothesis. The proposed tests are also extended to more complex situations such as 

cases with incompletely observed absorbing states and non-Markov processes. Simulation studies 

show that the test statistics perform well even with small sample sizes. Finally, the proposed tests 

are applied to data on the treatment of early breast cancer from the European Organization for 

Research and Treatment of Cancer (EORTC) trial 10854, under an illness-death model.
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1 Introduction

Continuous time nonhomogeneous Markov processes with a finite state space are important 

in many areas of science and particularly in medicine and public health (Tattar and Vaman, 

2014; Bakoyannis et al., 2019). Consideration of specific transitions between two states of a 

multi-state process can provide a deeper and more detailed insight about the treatment effect 

in clinical trials compared to the analysis of standard survival outcomes, such as event-free 

survival (Le-Rademacher et al., 2018). Important special cases of a Markov process are the 

univariate survival model, the competing risks model, and the Markov illness-death model 

(Andersen et al., 2012).

The stochastic behavior of a Markov process can be described by either the transition 

intensities, which represent the instantaneous rates of transition between two states, or the 

transition probabilities. The transition probabilities are also known as survival functions in 
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the framework of the univariate survival model, and as cumulative incidence functions in the 

competing risks model. It is important to note that, in general, a difference in the transition 

intensities between two groups does not necessarily imply a difference in the corresponding 

transition probabilities and vice versa. This phenomenon has been well documented for the 

special case of the competing risks model (Gray, 1988; Pepe, 1991; Putter et al., 2007; 

Bakoyannis and Touloumi, 2012). Nonparametric tests for comparing transition intensities 

between groups in general Markov multi-state processes have been well developed 

(Andersen et al., 2012). However, the issue of nonparametric comparison of transition 

probabilities in general Markov multi-state processes has not received much attention. 

Nevertheless, transition probabilities, unlike transition intensities, directly quantify clinical 

prognosis (Bakoyannis et al., 2019), which is the target of scientific interest in many 

applications.

Nonparametric estimation of the transition probabilities of a general Markov process can be 

performed using the Aalen–Johansen estimator (Aalen and Johansen, 1978). The issue of 

nonparametric comparison of transition probabilities under the univariate survival model has 

been extensively studied in the literature. For a review of these methods see Kalbfleisch and 

Prentice (2011) and Andersen et al. (2012). A number of researchers have proposed 

nonparametric tests for the comparison of transition probabilities for the special case of the 

competing risks model (Gray, 1988; Pepe and Mori, 1993; Lin, 1997). Dabrowska and Ho 

(2000) proposed a graphical procedure based on simultaneous confidence bands to test for 

differences between transition probabilities in a general Markov process. However, their 

method imposes proportional hazards assumptions for the transition intensities and, thus, it 

is not fully nonparametric. Also, this approach does not provide the actual level of statistical 

significance. Tattar and Vaman (2014) proposed two nonparametric tests for the comparison 

of the whole transition probability matrices between k groups, by comparing all the possible 

transition intensities. The first test only compares the transition probability matrices at a 

specific time point t0, while the second test is a Kolmogorov–Smirnov-type test based on the 

supremum norm. However, the tests proposed by Tattar and Vaman (2014) do not provide a 

direct comparison of the transition probability of a particular transition, which is frequently 

of scientific interest (Le-Rademacher et al., 2018). A statistically significant result with 

these tests only indicates a difference in any transition between groups. Recently, Bluhmki et 

al. (2018) proposed a wild bootstrap approach for the Aalen–Johansen estimator, which can 

be used to construct a simultaneous confidence band for the difference between the 

transition probabilities of two independent groups. This approach, which is related to a 

Kolmogorov–Smirnov-type test, can be used as a graphical two-sample comparison 

procedure at a predetermined α level. However, this approach does not provide the actual 

level of statistical significance and, also, a Kolmogorov–Smirnov-type test may not be the 

most powerful nonparametric test for every alternative hypotheses. Additionally, there is no 

rigorous justification about the consistency of this graphical hypothesis testing procedure 

against any fixed alternative hypothesis (Van der Vaart, 2000). Last but not least, the 

proposed approach is not readily adaptable to more complex situations such as cases with 

missing data.

This paper addresses the issue of direct nonparametric two-sample comparison of the 

transition probabilities of a particular transition in a general continuous-time 
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nonhomogeneous Markov process with a finite state space. For this, we propose a linear 

nonparametric test, an L2-norm-based test and a Kolmogorov–Smirnov-type test. The 

asymptotic null distributions of the tests are derived. The evaluation of the actual level of 

statistical significance is based on rigorous procedures justified through the use of modern 

empirical process theory. Moreover, the L2-norm-based and Kolmogorov–Smirnov-type tests 

are shown to be consistent against any fixed alternative hypothesis (Van der Vaart, 2000). It 

has to be noted that the linear nonparametric test can be inconsistent under some alternative 

hypotheses with crossing transition probability curves. This is because, in such cases, the 

corresponding test statistic can be equal to zero, since positive and negative differences of 

the same magnitude cancel out. In less extreme cases with crossing, the linear test is 

expected to be less powerful compared to the L2-norm-based and Kolmogorov–Smirnov-

type tests. We also propose extensions related to interesting practical problems such as cases 

with missing absorbing states (Bakoyannis et al., 2019) and non-Markov processes (Putter 

and Spitoni, 2018). The proposed tests exhibit good small sample properties as illustrated in 

our simulation experiments. Finally, the tests are applied to data on the treatment of early 

breast cancer from the European Organization for Research and Treatment of Cancer 

(EORTC) trial 10854.

Compared to the previous work by Bluhmki et al. (2018), which used counting process 

theory arguments in their derivations, we justify the properties of the proposed tests through 

the use of modern empirical process theory (Van Der Vaart and Wellner, 1996; Kosorok, 

2008). As it will be argued later in the text, the practical advantage of our derivations lies on 

the fact that our proposed tests can be straightforwardly adapted to more complex settings 

such as cases with incompletely observed absorbing states (Bakoyannis et al., 2019). This 

can be done by replacing the influence function of the standard Aalen–Johansen estimator 

with the influence function of any other well-behaved and asymptotically linear estimator of 

the transition probabilities in our proposed testing procedures. Such adaptations are not 

trivial within the framework of the graphical testing procedure proposed by Bluhmki et al. 

(2018). An important reason for this is that with more complex estimators, certain 

predictability conditions assumed by counting process and martingale theory techniques are 

violated. For such situations, empirical process theory provides a powerful alternative tool. 

Moreover, we provide two additional tests, a linear test and an L2-norm-based test, which 

may be more powerful compared to a Kolmogorov–Smirnov-type test in certain settings. 

Additionally, we argue about the consistency of our L2-norm-based and Kolmogorov–

Smirnov-type tests against any fixed alternative hypothesis. Finally, our tests provide the 

actual level of statistical significance which is useful in practical applications.

The structure of this paper is as follows. In Section 2 we introduce some notation about 

Markov processes, provide the proposed nonparametric tests, and consider extensions to 

more complex situations that are frequently met in practice. Section 3 presents a simulation 

study to evaluate the small sample performance of the proposed tests. Section 4 illustrates 

the use of the proposed tests using data from the EORTC trial 10854. Finally, Section 5 

concludes the article with some key remarks. Outlines of the asymptotic theory proofs are 

provided in the Appendix.
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2 Two-sample nonparametric tests

2.1 Nonparametric estimation of transition probabilities

The stochastic behavior of a Markov process {X(t) : t ≥ 0} with a finite state space 

ℐ = 1, …, q  can be described by the q × q transition probability matrix P0(s, t) = (P0,hj(s, 
t)) whose elements are the transition probabilities

P0, ℎj s, t = Pr X t = j X s = ℎ, ℱs−
= Pr X t = j X s = ℎ ℎ, j ∈ ℐ, 0 ≤ s < t ≤ τ,

where ℱs− = σ Nℎj u : 0 ≤ u < s, ℎ ≠ j  is the event history prior to time s, with Nhj (t) 

being the number of direct transitions from state h to state j, h ≠ j, in [0, t], 

τ = sup{t : 0
ta0 ℎj(u)du A0ℎj(t) < ∞, ℎ ≠ j}, and a0,ℎj (t) = limℎ 0 P0, ℎj(t, t + ℎ)/ℎ, ℎ ≠ j, is 

the transition intensity at time t. The conditional independence between the probability of 

X(t) and the prior history ℱs−, conditionally on X(s), is the so-called Markov assumption. 

Because Po(s, t) is a stochastic matrix we have that a0, ℎℎ(t) = − j ℎa0 ℎj(t)

The observed data from a sample of i.i.d. observations of a Markov process are the counting 

processes {Nihj (t) : h ≠ j, t ∈ [0, τ]}, i = 1, … , n, which represent the number of direct 

transitions of the ith observation from the state h to the state j by time t, and the at-risk 

processes Y iℎ t :ℎ ∈ ℐ, ∈ 0, τ  which are the indicator functions of whether the ith 

observation is at the state ℎ ∈ ℐ just before time t ∈ [0, τ]. Based on such a sample, the 

transition probability matrix of a nonhomogeneous Markov process can be estimated using 

the nonparametric Aalen–Johansen estimator (Aalen and Johansen, 1978):

Pn(s, t) =
(s t]

I dAn(u) , s, t ∈ [0, τ],

where ∏ is the product integral and Ân(t) a q×q matrix whose elements are the Nelson–

Aalen estimates of the cumulative transition intensities

An, ℎj(t) =
0

t
i 1
n dNiℎj(u)

i 1
n Y iℎ(u)

, ℎ ≠ j .

2.2 Linear nonparametric tests

First consider the two-sample problem of comparing the transition probabilities P0, ℎj
(1) (s, ⋅ )

and P0, ℎj
(2) (s, ⋅ ), s ∈ [0, τ), of two populations of interest, for a particular transition h → j, 

with ℎ, j ∈ ℐ. In many applications the starting point is being set to s = 0, but here we will 

use an arbitrary s ∈ [0, τ) for the sake of generality. Based on two independent random 

samples of n1 and n2 observations from the two populations, define the pointwise weighted 

difference
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Dℎj(s, t) = W ℎj(t) Pn1, ℎj
(1) (s, t) − Pn2, ℎj

(2) (s, t) , 0 ≤ s ≤ t ≤ τ,

where W ℎj(t) is a weight function and Pn1, ℎj
(1) (s, t) and Pn2, ℎj

(2) (s, t) are the nonparametric 

Aalen–Johansen estimates of the transition probabilities of the two populations under 

comparison. Examples of weight function choices are

W ℎj(t) = I
l L(ℎ j)

Y l
(1)(t)Y l

(2) (t) > 0 ,

and

W ℎj(t) = l L(ℎ j)Y l
(1)(t)Y l

(2)(t)

l L(ℎ j) Y l
(1)(t) Y l

(2)(t)
,

where I(·) is the indicator function, L ℎ, j = d ∈ ℐ:d is a transient state that can be visited 

during the transition h → j} and, Y ℎ
(p)(t) = np−1

i 1
(p) Y iℎ

(p)(t) p 1 2  The latter choice assigns 

more weight to times with more observations at risk. This is useful for assigning less weight 

for times with a very small number of observations, such as times close to the end of the 

study period, where the transition probability estimates can be highly unstable. A natural 

linear test for the null hypothesis H0:P0, ℎj
(1) (s, t) = P0, ℎj

(2) (s, t) for a given starting point s ∈ [0, 

τ) and all t ∈ [s, τ], or, equivalently, H0:P0, ℎj
(1) (s, ⋅ ) = P0, ℎj

(2) (s, ⋅ ) for a given starting point s 

∈ [0, τ), is the area under the weighted difference curve

Zℎj(s) = (s τ]Dℎj(s, t)dm(t),

where m is the Lebesgue measure on the Borel σ-algebra ℬ 0, τ . To establish the 

asymptotic distributions of the proposed test statistics, we assume the following conditions.

C1. The potential right censoring and left truncation are independent of the counting 

processes {Nhj(t) : h ≠ j, t ∈ [0, τ]} and noninformative about P0(s, t).

C2. n1/(n1 + n2) → λ ∈ (0,1) as min(n1, n2) → ∞.

C3. The counting processes {Nhj(t) : h ≠ j, t ∈ [0, τ]} satisfy E[Nhj(τ)]2 < ∞ for all h ≠ j.

C4. inft∈[0, τ] E[Yh(t)] > 0 for all the transient states.

C5. The cumulative transition intensities {A0,hj(t) : h ≠ j, t ∈ [0, τ]} are continuous 

functions.
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C6. The weight W ℎj(t) converges uniformly, in probability, to a nonnegative uniformly 

bounded function Whj(t) on [0, τ].

Remark 1. In some applications condition C4 may not be satisfied for some time points for 

one or more transient states ℎ ∈ ℐ. In such cases, provided that the conditions for the 

uniform consistency of the Aalen–Johansen estimator hold, one can restrict the comparison 

interval to [τ1, τ2] with 0 < τ1 < τ2 < τ, such that inft∈[τ1, τ2] E[Yh(t)] > 0 for the transient 

states, and then use nonparametric bootstrap for inference. In such cases the test statistic 

becomes

Zℎj(s) = (s τ2]Dℎj(s, t)dm(t),

for a fixed s ∈ [τ1, τ2).

Before stating the theorem about the asymptotic distribution of test statistic we define the 

functions

Milm
(p) (t) = Nilm

(p) (t) − (0 t]Y il
(p)(u)dA0, lm

(p) (u),

where Nilm
(p) (t) and Y il

(p)(t) are the counting and at-risk processes of the ith observation in the 

pth sample at time t. Also, define T to be the subset of ℐ which contains the potential 

absorbing states. For non-absorbing Markov processes T = Ø.

Theorem 1 provides the asymptotic distribution of Zℎj(s) under the null hypothesis 

H0:P0, ℎj
(1) (s, ⋅ ) = P0, ℎj

(2) (s, ⋅ ). In this work, we adopt the convention that 0 · ∞ = 0 as in 

Athreya and Lahiri (2006).

Theorem 1. Suppose that conditions C1-C6 hold. Then under the null hypothesis 

H0:P0, ℎj
(1) (s, ⋅ ) = P0, ℎj

(2) (s, ⋅ ) for some (fixed) s ∈ [0, τ),

n1n2
n1 + n2

Zℎj(s) d Gℎj(s),

where Gℎj(s) ∼ N(0, ωℎj
2 (s)) and

ωℎj
2 (s) = (1 − λ)E (s τ)W ℎj(t)γ1ℎj

(1) (s, t)dm(t)
2

+ λE (s τ)W ℎj(t)γ1ℎj
(2) (s, t)dm(t)

2
.

with
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γiℎj
(p)(s, t) =

l T m ℐ s

t
P0 ℎl

(p) (s u )P0 mj
(p) (u t)

EY1l
(p)(u)

dMilm
(p) (u), 0 ≤ s<t ≤ τ, p = 1, 2,

for i = 1, …, np

Remark 2. The functions γiℎj
(p)(s, t), p = 1, 2, in Theorem 1 are the influence functions of the 

Aalen–Johansen estimator of P0, ℎj
(p) (s, t) .

A consistent (in probability) estimator of the variance ωℎj
2 (s) is

ωℎj
2 (s) =

n2
(n1 + n2)n1 i 1

n1
(s τ]W ℎj(t)γ iℎj

(1) (s t)dm(t)
2

+
n1

(n1 + n2)n2 i 1

n2
(s τ]W ℎj(t)γ iℎj

(2) (s t)dm(t)
2
,

where γiℎj
(p)(s, t), p = 1, 2, are estimated by replacing the expectations with sample averages 

and the unknown parameters with their uniform consistent estimates. Now, Theorem 1 and 

ωℎj(s) can be used to construct a Z-test for the null hypothesis as:

Zℎj(s)

ωℎj(s)/
n1n2

n1 + n2

.

The actual significance level can then be evaluated under the standard normal distribution as 

usual.

In some applications it may not be desirable to fix the starting point s. In such cases the 

scientific interest is on comparing P0, ℎj
(1) (s, ⋅ ) and P0, ℎj

(2) (s, ⋅ ) for all s ∈ [0, τ). The null 

hypothesis in this case is H0:P0, ℎj
(1) ( ⋅ , ⋅ ) = P0, ℎj

(2) ( ⋅ , ⋅ ) or, more compactly, 

H0:P0, ℎj
(1) = P0, ℎj

(2) . The following test statistic can be used for this hypothesis testing 

problem:

Zℎj = [0 τ)Zℎj(s)dm(s) .

Theorem 2 below provides the asymptotic null distribution of the above test statistic.

Theorem 2. Suppose that conditions C1-C6 hold. Then under the null hypothesis

n1n2
n1 + n2

Zℎj
d Gℎj,
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where Gℎj ∼ N(0, ηℎj
2 ) and

ηℎj
2 = (1 − λ)E [0 τ) (s τ]W ℎj(t)γ1ℎj

(1) (s t)dm(t) dm(s)
2

+ λE

[0 τ) (s τ)W ℎj(t)γ1ℎj
(2) (s t)dm(t) dm(s)

2
.

A consistent (in probability) estimator of ηℎj
2  can be obtained by replacing the expectations 

by sample averages, λ by n1/(n1 + n2), and Whj(t) and γiℎj
(p)(s, t) by W ℎj(t) and γ iℎj

(p) (s, t), 

respectively.

2.3 L2-norm-based and Kolmogorov–Smirnov-type tests

A linear test is not the optimal choice when the two transition probability curves under 

comparison cross at one or more time points. In this section, we propose alternative tests for 

such situations. The first test is a test based on an L2 norm

Q1ℎj(s) = (s τ] Dℎj(s t) 2dm(t)
1/2

,

for any (fixed) s ∈ [0, τ), while the second test is a Kolmogorov–Smirnov-type test

Q2ℎj(s) = sup
t ∈ [s, τ]

|Dℎj(s, t) | .

The Kolmogorov–Smirnov-type test is related to the graphical hypothesis testing procedure 

proposed by Bluhmki et al. (2018). For applications where it is not desirable to fix the 

starting point s, the following test statistics can be used:

Q1ℎj = [0 τ)Q1ℎj
2 (s)dm(s)

1/2
,

and

Q2ℎj = sup
0 ≤ s < t ≤ τ

|Dℎj(s, t) | .

The asymptotic null distributions of these tests are complicated. However, significance level 

can be easily calculated numerically by proper simulation realizations from the null 

distribution of these test statistics. Theorem 3 provides the basis for an approach to properly 

simulate realizations from the null distributions of Q1ℎj(s), Q2ℎj(s), Q1ℎj, and Q2ℎj. Before 

stating Theorem 3 define the estimated functions

Bℎj(s, t) = 1 − λ 1
n1 i 1

n1
W ℎj(t)γ iℎj

(1) (s t)ξi
(1) − λ 1

n2 i 1

n2
W ℎj(t)γ iℎj

(2) (s t)ξi
(2), ℎ, j ∈ ℐ, 0 ≤ s < t ≤ τ,
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where ξi
p

i = 1

np
, p = 1, 2, are independent draws from N(0, 1).

Theorem 3. Suppose that conditions C1-C6 hold. Then, the following are true:

(i) Under the null hypothesis H0:P0, ℎj
(1) (s, · ) = P0, ℎj

(2) (s, · ), for any (fixed) s ∈ [0, τ),

n1n2
n1 + n2

Dℎj(s, · ) 1 − λG1ℎj(s, . ) − λG2ℎj(s, . ),

and, conditionally on the observed data,

Bℎj(s, . ) 1 − λG1ℎj(s, . ) − λG2ℎj(s, . ),

where G1ℎj(s, . ) and G2ℎj(s, . ) are two independent tight zero-mean Gaussian 

processes with covariance functions

σpℎj(t1, t2; s) = E[W ℎj(t1)γ1ℎj
(p) (s, t1)][W ℎj(t2)γ1ℎj

(p) (s2, t2)], p = 1, 2,

for any t1, t2 ∈ [s, τ].

(ii) Under the null hypothesis H0:P0, ℎj
(1) = P0, ℎj

(2)

n1n2
n1 + n2

Dℎj 1 − λG1ℎj − λG2ℎj,

and, conditionally on the observed data,

Bℎj 1 − λG1ℎj − λG2ℎj,

where G1ℎj and G2ℎj are two independent tight zero-mean Gaussian processes 

with covariance functions at the points v1 = (s1, t1) and v2 = (s2, t2) equal to

σpℎj(υ1, υ2) = E[W ℎj(t1)γ1ℎj
(p) (s, t1)][W ℎj(t2)γ1ℎj

(p) (s2, t2)], p = 1, 2 .

Corollary 1. By Theorem 3 and the continuous mapping theorem it follows that under the 

null hypothesis

n1n2
n1 + n2

Q1ℎj(s) d
(s τ] 1 λG1ℎj(s t) λG2ℎj(s t) 2dm(t)

1/2
,

and
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n1n2
n1 + n2

Q2ℎj(s) d sup
t ∈ [s, τ]

1 − λG1ℎj(s, t) − λG2ℎj(s, t) ,

for any fixed s ∈ [0, τ). Similarly, under the null hypothesis

n1n2
n1 + n2

Q1ℎj
d

[0 τ) (s τ] 1 λG1ℎj(s t) λG2ℎj(s t) 2dm(t) dm(s)
1/2

,

and

n1n2
n1 + n2

Q2ℎj
d sup

0 ≤ s < t ≤ τ
1 − λG1ℎj(s, t) − λG2ℎj(s, t) .

The asymptotic null distributions of the omnibus tests are quite complicated and, thus, they 

are of limited use in practical applications. However, Theorem 3 provides justification about 

a way to numerically calculate p-values through a simple simulation technique. This can be 

performed as follows. In light of Theorem 3, one can simulate from the asymptotic null 

asymptotic distributions of the tests Q1ℎj(s) and Q2ℎj(s), for a fixed s ∈ [0, τ], by simulating 

multiple versions of ξir
(1)

i = 1
n1

 and ξir
(2)

i = 1
n2

 independently from N(0,1) for r = 1, … , R, 

and then calculating a sample for the corresponding null distributions of Q1ℎj(s) and Q2ℎj(s)
as

s τ Bℎ j r(s t) 2dm(t)
1/2

, r = 1, …, R

and supt ∈ s, τ Bℎ, j, r(s, t) , r = 1, …, R, respectively, where

Bℎj, r(s, t) = 1 − λ 1
n1 i 1

n1
W ℎj(t)γ iℎj

(1) (s t)ξir
(1) − λ 1

n2 i 1

n2
W ℎj(t)γ iℎj

(2) (s t)ξi
(2), r = 1, …, R .

Generating samples from the null distributions of the test statistics Q1ℎj and Q2ℎj, given in 

Corollary 1, can be performed in a similar manner. Now, the significance level for each test 

can be calculated as the proportion of realizations from the corresponding null distribution 

that is greater than or equal to the calculated test statistic value from the observed data.

The tests Q1ℎj(s) and Q2ℎj(s), for a given s ∈ [0, τ), are consistent for every fixed alternative 

hypothesis with P0, ℎj
(1) (s, ⋅ ) ≠ P0, ℎj

(2) (s, ⋅ ). This follows from Theorem 2, the uniform 

consistency of the Aalen–Johansen estimator of the transition probabilities (Aalen and 

Johansen, 1978), condition C6, the continuity of these tests in Dℎj(s, t), and Lemma 14.15 in 

Van der Vaart (2000). The same conclusion also holds for the test statistics Q1ℎj and Q2ℎj.
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2.4 Extensions to more complex settings

Many complications that frequently occur in practice make the application of the proposed 

tests improper. An important example is the problem of incompletely observed absorbing 

states, where missingness occurs either due to the usual nonresponse or by the study design 

(Bakoyannis et al., 2019). A special case of this is the issue of missing causes of death in 

biomedical applications. In such cases, a complete case analysis, which discards cases with a 

missing cause of death, is well known to lead to biased estimates (Gao and Tsiatis, 2005; Lu 

and Liang, 2008; Bakoyannis et al., 2019). In general, more complicated cases require 

extensions of the standard Aalen–Johansen estimator, denoted by Pn, ℎj(s, t), to consistently 

estimate the transition probabilities of interest over an interval [τ1, τ2] ⊂ [0, τ]. In such 

cases, one can replace the standard Aalen–Johansen estimator with another appropriate 

estimator Pn, ℎj(s, t) in the testing procedures. Then, the linear test becomes

Zℎj(s) = (s τ2]Dℎj(s, t)dm(t),

for any (fixed) s ∈ [τ1, τ2), where

Dℎj(s, t) = W ℎj(t) Pn1, ℎj
(1) (s, t) − Pn2, ℎj

(2) (s, t) , τ1 ≤ s ≤ t ≤ τ2,

while the L2-norm based and Kolmogorov–Smirnov-type tests become

Q1ℎj(s) = (s τ2] Dℎj(s t) 2dm(t)
1/2

and

Q2ℎj(s) = sup
t ∈ [s, τ2]

|Dℎj(s, t) | .

The following conditions ensure the validity of the proposed testing procedures for the null 

hypothesis H0 : Pn1, ℎj
(1) (s, · ) = Pn2, ℎj

(2) (s, · ) in more complex settings.

D1. The estimator Pn, ℎj(s, ⋅ ) is consistent in the sense

sup
t ∈ [s, τ2]

|Pn, ℎj(s, t) − P0, ℎj(s, t) | p 0,

for any (fixed) s ∈ [τ1, τ2).

D2. The estimator Pn, ℎj(s, · ) is an asymptotically linear estimator with

Bakoyannis Page 11

J Nonparametr Stat. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



n[Pn, ℎj(s, t) − P0, ℎj(s, t)] = 1
n i 1

n
ϕiℎj(s t) + op(1),

with {ϕhj(s, t) : t ∈ [s, τ2]} being a P-Donsker class for any s ∈ [τ1, τ2].

D3. The empirical versions of the influence functions ϕiℎj(s, t) satisfy

sup
t ∈ [s, τ2]

n−1/2
i 1

n
[ϕiℎj(s t) ϕiℎj(s t)]ξi

p 0,

where ξi are independent random draws from N(0, 1).

Remark 3. Condition D2 is sufficient for establishing the weak convergence of the estimator 

Pn, ℎj(s, · ) to a tight mean-zero Gaussian process. Condition D3 along with the conditional 

multiplier central limit theorem (Van Der Vaart and Wellner, 1996; Kosorok, 2008) and 

condition D2, provide a simulation approach for the construction of simultaneous confidence 

bands (Kosorok, 2008). Therefore, conditions D1-D3 are expected to have been established 

in works extending the standard Aalen–Johansen estimator to more complex settings. This is 

the case, for example, for the nonparametric estimator of the transition probability matrix 

with incompletely observed absorbing states (Bakoyannis et al., 2019).

Hypothesis testing in more complex settings can be simply performed by replacing the 

influence functions γiℎj
(p)(s, t), p = 1, 2, of the standard Aalen–Johansen estimator with the 

influence functions ϕiℎj
(p)(s, t) of the estimator Pn, ℎj(s, t). The theorems stated below justify 

the direct use of the proposed tests in more complex situations. Before stating those 

theorems define the functions

Bℎj(s, t) = 1 − λ 1
n1 i 1

n1
W ℎj(t)ϕiℎj

(1) (s t)ξir
(1) − λ 1

n2 i 1

n2
W ℎj(t)ϕiℎj

(2) (s t)ξi
(2), ℎ, j ∈ ℐ, τ1 ≤ s < t

≤ τ2,

where ξi
(p)

i = 1
np , p = 1, 2, are independent draws from N(0, 1).

Theorem 4. Suppose that conditions C2, C6, D1 and D2 hold. Then under the null 
hypothesis

n1n2
n1 + n2

Zℎj(s) d Gℎj(s),

for any (fixed) s ∈ [τ1, τ2), where Gℎj(s) ∼ N(0, θℎj
2 (s)) and
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θℎj
2 (s) = (1 − λ)E s τ2 W ℎj(t)ϕ1ℎj

(1) (s t)dm(t)
2

+ λE s τ2 W ℎj(t)ϕ1ℎj
(2) (s t)dm(t)

2
.

The proof of Theorem 4 involves the same arguments to those used in the proof of Theorem 

1 given in the Appendix.

Theorem 5. Assume that conditions C2, C6, and D1-D3 are satisfied. Then, under the null 
hypothesis and for s ∈ [τ1, τ2)

n1n2
n1 + n2

Dℎj(s, · ) 1 − λG1ℎj(s, · ) − λG2ℎj(s, · ),

and, conditionally on the observed data,

Bℎj(s, · ) 1 − λG1ℎj(s, ⋅ ) − λG2ℎj(s, ⋅ ),

where G1ℎj(s, ⋅ ) and G2ℎj(s, ⋅ ) are two independent tight zero-mean Gaussian processes 

with covariance functions

σℎjp(t1, t2; s) = E[W ℎs(t1)ϕ1ℎj
(p) (s, t1)][W ℎj(t2)ϕ1ℎj

(p) (s, t2)], p = 1, 2 .

The proof of Theorem 5 follows from similar arguments to those used in the proof of 

Theorem 3 given in the Appendix.

2.4.1 Missing absorbing states—In many settings one can observe that a process has 

arrived at some absorbing state, but the actual absorbing state is unobserved for some study 

participants, such as in cases with missing causes of death. For such situations, Bakoyannis 

et al. (2019) proposed a nonparametric maximum pseudolikelihood estimator (NPMPLE) 

under a missing at random assumption. To review this estimator, let Δij be an indicator 

variable with Δij = 1 if the ith observation arrived at the absorbing state j ∈ ℐ, and Δij = 0 

otherwise. Also, let Ri be another indicator variable with Ri = 1 indicating that the absorbing 

state of the ith observation has been successfully observed. Finally, let πj(Oi, β0) be the 

probability that Δij = 1 given the fully observed data Oi, under a parametric model indexed 

by an unknown Euclidean parameter β0. In this setting, the cumulative transition intensities 

can be estimated using the NPMPLE:

An, ℎj(t) =
0

t
i 1
n dNiℎj(u βn)

i 1
n Y iℎ(u)

, ℎ ≠ j, j ∈ T,

where
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Niℎj(t; βn) = [RiΔij + (1 − Rij)πj(Oi, βn)]
l T

Niℎl(t),

with βn being a consistent estimator of β0. The transition probability matrix can then be 

estimated as

Pn(s, t) =
(s t]

I dAn(u) , s, t ∈ [0, τ],

where the components of the matrix An(u) are An, ℎj(u). By Theorems 1 and 2 in Bakoyannis 

et al. (2019) and calculations provided in the proof of Theorem 2 in the same source, the 

NPMPLE estimator satisfies the conditions D1-D3 above. Therefore, if the conditions in 

Bakoyannis et al. (2019) and the conditions C2 and C6 above are satisfied, two-sample 

comparison can be performed by utilizing the NPMPLE of the transition probabilities along 

with the corresponding influence functions in the proposed tests. This is justified by 

Theorems 4 and 5 above.

2.4.2 Non-Markov processes—Trivially, the Aalen–Johansen estimator Pn, ℎj(0, · ) is 

uniformly consistent for the transition probability Phj(0, ·) even under a non-Markov process 

(Datta and Satten, 2001; Titman, 2015). When the interest lies on the marginal Pr(X(t) = j|
X(s) = h), i.e. unconditionally on the prior history ℱs−, for some s > 0, under a non-Markov 

process, then the landmark Aalen–Johansen estimator is consistent for Pr(X(t) = j|X(s) = h) 

(Putter and Spitoni, 2018) under the conditions of Datta and Satten (2001) and, also, the 

assumption that Pr(X(s) = h) > 0. The landmark Aalen–Johansen estimator is essentially 

equivalent to the standard Aalen–Johansen estimator, except for the fact that only 

observations with X(s) = h are considered. This is achieved by considering the modified 

counting and at-risk processes Niℎj(t) = Niℎj(t)I(X(s) = ℎ) and Y iℎ(t) = Y iℎ(t)I(X(s) = ℎ), for 

t ≥ s. Therefore, the influence functions of the landmark Aalen–Johansen estimator are the 

same to that of the standard Aalen–Johansen estimator, with the only exception that the 

former involves the modified Niℎj(t) and Y iℎ(t) instead of the standard counting and at-risk 

processes Nihj(t) and Yih(t). Consequently, it is clear that conditions D1–D3 are satisfied if 

Pr(X(s) = h) > 0 and, also, if the conditions in Datta and Satten (2001) hold. Thus, in light of 

Theorems 4 and 5, the proposed nonparametric tests can be used with non-Markov processes 

by utilizing the landmark Aalen–Johansen estimator.

2.4.3 Comparison of state occupation probabilities—The proposed tests can be 

easily adapted for the comparison of state occupation probabilities 

Pr X t = j ≡ P0j t = ∑ℎ ∈ TcP0, ℎ 0 P0, ℎj 0, t , as these are simple linear combinations of 

the transition probabilities. The state occupation probabilities describe the marginal 

behavior, i.e. unconditional on the prior history, of the processes and are of interest in many 

applications, such as in HIV studies focusing on the event history of patients in HIV care 

(Lee et al., 2018). It is important to note that these probabilities can be consistently 
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estimated based on the Aalen–Johansen estimator of the transition probabilities even in non-

Markov processes (Datta and Satten, 2001). An obvious consistent estimator of P0,h(0) is

Pn, ℎ(0) = 1
n i 1

n
I(Xi(0) ℎ) ℎ Tc

By the continuous mapping theorem and the uniform consistency of the Aalen–Johansen 

estimator, the estimator of the state occupation probabilities 

Pn, j(t) = ℎ TcPn ℎ(0)Pn ℎj(0, t), j ∈ ℐ, t ∈ [0, τ], is uniformly consistent for P0,j(t). Also, 

it is not hard to see that, by the asymptotic linearity of the Aalen–Johansen estimator, Pn, j(t)
is an asymptotically linear estimator with

n[Pn, j(t) − P0, j(t)] = 1
n i 1

n

ℎ Tc
P0 ℎ(0)γiℎj(0 t) P0 ℎj(0 t)[I(Xi(0) ℎ) P0 ℎ(0)] op(1)

≡ 1
n i 1

n
ψij(t) + op(1) .

The class {ψj(t) : t ∈ [0, τ]} formed by the influence functions is P-Donsker. This property 

is a consequence of the Donsker property of the classes {γhj(0, t) : t ∈ [0, τ]} for all ℎ ∈ Tc

and j ∈ ℐ, as it is argued in the proof of Theorem 1 in the Appendix, the total boundedness 

of the class of fixed functions {P0,hj(0, t) : t ∈ [0, τ]} as a result of condition C5, and 

Corollary 9.32 in Kosorok (2008). Therefore, conditions D1 and D2 are satisfied. Finally, 

condition D3 is also satisfied by the fact the ψij(t), j ∈ ℐ, is a linear combination of γihj (0, 

t), ℎ ∈ Tc, the triangle inequality, and arguments similar to those used in the proof of 

Theorem 3 in the Appendix. Consequently, Theorems 4 and 5 provide a rigorous 

justification about the use of the proposed tests for comparing state occupation probabilities 

based on the aforementioned estimator.

3 Simulation studies

To evaluate the finite sample performance of the proposed test statistics, we conducted a 

simulation study. We considered a Markov process with 2 transient states {1, 2} and 1 

absorbing state {3}, under the illness-death model without recovery (Andersen et al., 2012). 

This model is illustrated in Figure 1. In this simulation study, we focused on the null 

hypothesis H0:P0, 12
(1) (0, · ) = P0, 12

(2) (0, · ). Initially, we independently generated the times from 

state 1 to states 2 and 3 by assuming the cumulative transition intensities A0, 12
(p) (t) = α1pt, for 

p = 1, 2, and A0, 13
(1) (t) = A0, 13

(2) (t) = t/2. For observations that first arrived at the transient state 

2, we generated the time from state 2 to the absorbing state 3, assuming a cumulative 

transition intensity A0, 23
(p) (t) = α2pt, p = 1, 2. Under this set-up the transition probability of 

interest was
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P0, 12
(p) (s, t) =

α1p[eα2p(s − t) − e(α1p + 0.5)(s − t)]
α1p − α2p + 0.5 , p = 1, 2 .

Different scenarios were considered according to the parameter values α1 = (α11, α21) and 

α2 = (α12, α22). In simulation scenarios 1 to 4 we simulated data under the null hypothesis 

with α1 = α2 ≡ α. This common parameter was set to (1, 0.5), (1.4, 0.75), (1.2, 0.25), and 

(0.6, 0.25) under scenarios 1, 2, 3, and 4, respectively. In simulation scenarios 5 to 8 we 

simulated data under the alternative hypothesis. In these cases, the parameter α1 was set to 

(0.6, 0.25), (0.6, 0.25), (1, 0.5), and (0.8, 0.25) for scenarios 5, 6, 7, and 8, respectively. The 

corresponding figures for the parameter α2 were (0.9, 0.25), (1.2, 0.25), (1.4, 0.75), and (1.4, 

0.75). Right censoring times were independently simulated from Exp(0.25). Different 

sample sizes np, p = 1, 2, of the two groups were also considered. 2000 datasets were 

simulated for each scenario, and the L2 distance test and Kolmogorov–Smirnov-type test 

were calculated using 1000 independent simulations of ξi
(1)

i = 1
n1

 and ξi
(2)

i = 1
n2

 from N(0, 

1). Finally, we considered the weight function

W 12(t) = l 1
2

Y l
(1)(t)Y l

(2)(t)

l 1
2

[Y l
(1)(t) Y l

(2)(t)]
,

in all cases. We also provide simulation results based on the weight function 

W 12(t) = I[ l 1
2

Y l
(1)(t)Y l

(2)(t) > 0] in the Supplemental Online Material.

Simulation results regarding the empirical type I error rates are presented in Tables 1 and 2, 

respectively. Under these scenarios, the empirical type I errors rates for all tests were close 

to the nominal α levels, even in situations with small sample sizes. Thus, these results 

provide numerical evidence for the validity of the proposed hypothesis testing procedures 

under H0. Simulation results regarding the empirical power levels under alternative 

hypotheses with non-crossing transition probabilities are presented in Table 3. Under these 

scenarios, the empirical power levels increased with sample size and, also, with a more 

pronounced difference between the two groups, as expected. These results provide numerical 

evidence for the consistency of the proposed tests with non-crossing transition probabilities. 

The linear test exhibited more power compared to the Kolmogorov–Smirnov-type test in 

such cases. Simulation results regarding the empirical power levels under alternative 

hypotheses with crossing transition probabilities are presented in Table 4. These scenarios 

illustrate numerically that the linear test can exhibit substantially lower power levels 

compared to the omnibus tests, for alternative hypotheses with crossing transition 

probability curves. The empirical power of the tests increased with sample size and with a 

more pronounced difference between the two groups.

Simulation results based on the weight function W 12(t) = I[ l 1
2

Y l
(1)(t)Y l

(2)(t) > 0] are 

provided in the Supplemental Online Material. These results are similar to those presented 
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here. However, with the latter weight choice, the Kolmogorov–Smirnov-type test appears to 

exhibit higher power levels for scenarios with non-crossing transition probability curves. 

Moreover, the L2-norm-based test appears to be the most powerful test in scenarios with 

crossing transition probability curves, particularly under a smaller difference between the 

two groups.

4 Data analysis

In this section we analyze the data on treatment of early breast cancer from the European 

Organization for Research and Treatment of Cancer (EORTC) trial 10854. This randomized 

clinical trial was conducted to evaluate whether the combination of surgery with 

polychemotherapy is beneficial to early breast cancer patients compared to surgery alone. 

The original analysis of this clinical trial was presented in Van der Hage et al. (2001).

In this trial, 1395 patients where randomly assigned to the surgery group and 1398 to the 

surgery plus polychemotherapy group. The data set contains information about the time to 

cancer relapse or death. Therefore, an illness-death model is a natural choice for this data 

set. It is important to note that the transition probability to relapse, which was not analyzed 

in the original analysis of this trial, is a non-monotonic function of time as patients can move 

to the “death” state after relapse. Thus, standard survival and competing risks analysis 

methods are not applicable for this transition probability. Here, we focus on this probability 

which can be interpreted as the probability of being alive and in relapse. The estimated 

transition probabilities of relapse in the two intervention groups are presented in Figure 2. 

Based on Figure 2, the probability of being alive and in relapse was lower in the group that 

received polychemotherapy during surgery. To perform hypothesis testing here we 

considered the weight function W 12(t) = l 1
2

Y l
(1)(t)Y l

(2)(t)/{ l 1
2

[Y l
(1)(t) Y l

(2)(t)]}. For 

the L2-norm-based and Kolmogorov–Smirnov-type tests we considered 1000 standard 

normal simulation realizations. The p-value from the linear test was 0.001, while the p-

values from the L2-norm-based and Kolmogorov–Smirnov-type tests were both equal to 

0.002. These results provide evidence for the superiority of the surgery plus 

polychemotherapy combination with respect to the transition probability of relapse, in early 

breast cancer patients.

5 Concluding remarks

This paper addressed the issue of direct nonparametric two-sample comparison of transition 

probabilities P0,hj(s, ·), for some (fixed) s ∈ [0, τ), for a particular transition h → j in a 

continuous time nonhomogeneous Markov process with a finite state space. The proposed 

tests were a linear nonparametric test, an L2-norm-based test and a Kolmogorov–Smirnov-

type test. Rigorous approaches to evaluate the significance level grounded on modern 

empirical process theory were provided. Moreover, the L2-norm-based and Kolmogorov–

Smirnov-type tests were argued to be consistent against any fixed alternative hypothesis. 

Additionally, we proposed versions of the tests for the null hypothesis 

H0:P0, ℎj
(1) ( · , · ) = P0, ℎj

(2) ( · , · ), that is for all s ∈ [0, τ) and t ∈ [s, τ]. We also considered 

extensions of the tests to more complex situations such as cases with missing absorbing 
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states (Bakoyannis et al., 2019) and non-Markov processes (Putter and Spitoni, 2018). The 

simulation study provided numerical evidence for the validity of the proposed testing 

procedures, which exhibited good performance even with small sample sizes. Finally, a data 

analysis of a clinical trial on early breast cancer illustrated the utility of the proposed tests in 

practice.

The importance of the weight function Whj(t) in the proposed test statistics lies on the fact 

that it essentially restricts the comparison time interval to a time interval where the risk set 

sizes are non-zero for both groups under comparison. Moreover, a weight function can be 

used to assign less weight to time points with less observations at risk, where the estimated 

transition probabilities can be unstable.

It has to be noted that the linear nonparametric test can be inconsistent under some 

alternative hypotheses with crossing transition probability curves. This is because, in such 

cases, the true area under the weighted difference curve can be equal to zero, since positive 

and negative differences of the same magnitude cancel out. In less extreme cases with 

crossing, the linear test is expected to be less powerful compared to the L2-norm-based and 

Kolmogorov–Smirnov-type tests. This phenomenon was illustrated numerically in our 

simulation studies.

The issue of nonparametric comparison of transition probabilities in general 

nonhomogeneous Markov processes has received little attention in the literature. To the best 

of our knowledge, the only fully nonparametric approach for comparing the transition 

probabilities for a particular transition in general nonhomogeneous Markov processes is a 

graphical procedure proposed by Bluhmki et al. (2018). This proposal is based on the 

construction of a simultaneous confidence band for the difference between the transition 

probabilities of two groups. This approach relies on the same statistic as our Kolmogorov–

Smirnov-type test, that is the supremum of the absolute weighted difference between the 

Aalen–Johansen estimators of the two groups, and thus it involves the same sampling 

distribution. Estimation of the 1 − α percentile of the corresponding asymptotic null 

distribution is achieved through a resampling procedure which is similar to ours. As 

Bluhmki et al. (2018) state “The confidence band for the difference can also be viewed as a 

Kolmogorov–Smirnov-type asymptotic level α test”. Thus, evaluating whether a (1 − α)% 

confidence band for the difference of the two transition probabilities by Bluhmki et al. 

(2018) does not fully include the line y = 0, is equivalent to assessing whether p-value<α 
based our Kolmogorov–Smirnov-type test, under the same weight function. However, the 

graphical approach by Bluhmki et al. (2018) does not provide the exact level of statistical 

significance and, also, our linear and L2-norm tests can be more powerful compared to the 

Kolmogorov–Smirnov-type test in certain settings, as shown in the simulation studies. More 

importantly, the justification of this approach was based on counting process theory 

arguments and not on modern empirical process theory. A consequence of that is that this 

approach cannot be directly adapted to more complex settings that are frequently occur in 

practice, such as cases with missing absorbing states. An important reason for this is that 

with more complex estimators, certain predictability conditions assumed by counting 

process and martingale theory techniques are violated. On the contrary, our proposed 

methods can be trivially adapted to many other complex settings, provided that appropriate 
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estimators, in the sense of conditions D1–D3, of the transition probabilities exist. Such 

adaptations can be theoretically justified using the Theorems 4 and 5 provided in our 

manuscript. Such extensions, which are useful in many applications, include the situation 

with missing absorbing states and the case of nonparametric two-sample comparison of state 

occupation probabilities, presented in subsections 2.4.1 and 2.4.3, respectively.

An important future task from a practical standpoint is the implementation of the proposed 

tests in standard statistical software, such as R, for general use. While calculations for the 

proposed tests of H0:P0, ℎj
(1) (s, · ) = P0, ℎj

(2) (s, · ), for some (fixed) s ∈ [0, τ), can be fast, the 

tests of H0:P0, ℎj
(1) ( · , · ) = P0, ℎj

(2) ( · , · ) are quite computationally intensive, particularly with 

larger sample sizes. This is because they require calculating the influence functions for all 

the combinations of times s and t, with s < t, evaluated at the observed transition times. For 

this case, efficient code implementation along with parallel computing would be useful in 

practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A: Outlines of proofs

Outlines of the proofs of Theorems 1 and 2 are provided below. The proofs of Theorems 3 

and 4 follow from similar arguments and, therefore, are omitted. The proofs rely on 

empirical process theory techniques (Van Der Vaart and Wellner, 1996; Kosorok, 2008). 

Before providing the proofs it is useful to introduce some notation. First, let O be the sample 

space, and O an arbitrary sample point in O. Now, define ℙnf = 1
n i 1

n f(Oi), for some 

measurable function f:O ℝ. Also, define Pf = ∫OfdP  to be the expectation of f under the 

probability measure P on the measurable space O, A , where A is a σ-algebra on O. For 

simplicity, but without loss of generality, we set the starting point s = 0 in the following 

proofs. It has to be noted that conditions C1 and C3–C5 imply the uniform consistency of 

the standard Aalen–Johansen estimator. This can be shown using similar arguments to those 

used in the proof of Theorem 1 in Bakoyannis et al. (2019). In what follows, C will denote a 

universal constant that may vary from place to place. Before providing the proofs of 

Theorems 1 and 2, we state and prove two useful lemmas.
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Lemma 1. Let h(t) be a fixed and uniformly bounded function on [0, τ] and N(t) be an 
arbitrary counting process with P[N(τ)]2 < ∞. Then, the class of functions

ℱ1 = s
t
ℎ(u)dN(u) s [0 τ] t [s τ]

is P-Donsker.

Proof. Let ‖ℎ‖Q, 2 = ( |ℎ |2dQ)1/2
 for any probability measure Q. Now, for any probability 

measure Q and any s1, s2 ∈ [0, τ], t1 ∈ [s1, τ], and t2 ∈ [s2, τ] it follows that

s1
t1ℎ(u)dN(u) s2

t2ℎ(u)dN(u) Q, 2 ≤ t1
t2ℎ(u)dN(u) Q, 2 + s1

s2ℎ(u)dN(u) Q, 2 ≤ C(‖N(t2) − N(t1
)‖Q, 2 + ‖N(s2) − N(s1)‖Q, 2) .

By Lemma 22.4 in Kosorok (2008), it follows that the class Φ1 = {N(t) : t ∈ [0, τ]} has a 

bounded uniform entropy integral (BUEI) with envelope 2N(τ), and is also pointwise 

measurable (PM). This implies that, for any s ∈ [0, τ] and t ∈ [s, τ] there exist an sj ∈ [0, τ], 

j = 1, …, N(ϵ2‖ N(τ)‖Q,2, Φ1, L2(Q)), and a ti ∈ [s, τ], i = 1, …, N(ϵ2‖N(τ)‖Q,2, Φ1, L2(Q)), 

such that ‖N(s) − N(sj)‖Q,2 < ϵ2‖N(τ)‖Q,2 and ‖N(t) − N(ti)‖Q,2 < ϵ2‖N(τ)‖Q,2, for any ϵ > 0 

and any finitely discrete probability measure Q. Therefore, for any member of ℱ1, there 

exist a s
tiℎ(u)dN(u), for i, j = 1, … , N(ϵ, Φ1, L2(Q)), such that

s
t
ℎ(u)dN(u) sj

tiℎ(u)dN(u) Q, 2 ≤ ϵ4C N(τ) Q, 2,

for any ϵ > 0 and any finitely discrete probability measure Q. Consequently, by the 

minimality of the covering number it follows that for any ϵ > 0 and any finitely discrete 

probability measure Q, we have that

N(ϵ4C N(τ) Q, 2, ℱ1, L2(Q)) ≤ [N(ϵ2 N(τ) Q, 2, Φ1, L2(Q))]2,

which yields a BUEI for ℱ1 with envelope 4CN(τ). Using similar arguments to those used in 

the example of page 142 of Kosorok (2008), it can be shown that the class ℱ1 is also PM. 

Therefore, by Theorem 2.5.2 in Van Der Vaart and Wellner (1996), the class ℱ1 is P-

Donsker. □

Lemma 2. Let h(t) be a fixed and uniformly bounded function, Y(t) be an arbitrary at-risk 
process, and A(t) a continuous cumulative transition intensity function on [0, τ]. Then, the 
class of functions

ℱ2 = s
t
ℎ(u)Y (u)dA(u) : s ∈ [0, τ], t ∈ [s, τ]
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is P-Donsker.

Proof. It is not hard to show that for any probability measure Q and any s1, s2 ∈ [0, τ], t1 ∈ 
[s1, τ], and t2 ∈ [s2, τ] it follows that

s1
t1ℎ(u)Y (u)dA(u) s2

t2ℎ(u)Y (u)dA(u) Q, 2 ≤ C( |A(t2) − A(t1) | + |A(s2) − A(s1) | ) .

Now, the class of fixed functions Φ2 = {A(t) : t ∈ [0, τ]} is a compact subset of ℝ as it 

consists of continuous functions defined on the compact set [0, τ]. Therefore, this class of 

fixed functions can be covered by C(1/ϵ) ϵ-balls and, thus, N(ϵ, Φ2, | · |) ≤ C(1/ϵ). 

Consequently, for any s ∈ [0, τ] and t ∈ [s, τ] there exist an sj ∈ [0, τ], j = 1, … , N (ϵ, Φ2, | · 

|), and a ti £ [s, τ], i = 1, … , N(ϵ, Φ2, | · |), such that |A(s) − A(sj)| < ϵ and |A(t) − A(tj)| < ϵ, 

for any ϵ > 0 and any finitely discrete probability measure Q. Therefore, for any member of 

ℱ2, there exist a sj
tiℎ(u)dN(u), for i, j = 1, … , N(ϵ, Φ2, | · |), such that

s
t
ℎ(u)Y (u)dA(u) − sj

tiℎ(u)Y (u)dA(u) Q, 2 ≤ 2C ϵ .

for any ϵ > 0 and any finitely discrete probability measure Q. Consequently, by the 

minimality of the covering number it follows that for any ϵ > 0 and any finitely discrete 

probability measure Q, we have that

N(ϵ2C, ℱ1, L2(Q)) ≤ C 1
ϵ

2
,

which yields a BUEI for ℱ2. Finally, similar arguments to those used in the proof of Lemma 

1 lead to the conclusion that the class ℱ2 is P-Donsker. □

A.1 Proof of Theorem 1

Theorem 1 relies on the asymptotic linearity of the estimators Pnp, ℎj
(p) , p = 1, 2. This can be 

established by first utilizing the asymptotic linearity of the Nelson–Aalen estimators of the 

cumulative transition intensities and then by applying the functional delta method (Van der 

Vaart, 2000). The steps to achieve this utilize conditions C1 and C3–C5 and arguments 

similar to those used in the proof of Theorem 2 of Bakoyannis et al. (2019). After this 

analysis it can be shown that

np[Pnp, ℎj
(p) (s, t) − P0, ℎj

(p) (s, t)] = npℙnpγℎj
(p)(s, t) + op(1), p = 1, 2, ℎ, j ∈ ℐ,

for 0 ≤ s ≤ t ≤ τ, where
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γiℎj
(p)(s, t) =

l T m ℐ s

t P0 ℎl
(p) (s u )P0 mj

(p) (u t)
PY 1l

(p)(u)
dMilm

(p)(u)

=
l T m ℐ s

t P0 ℎl
(p) (s u )P0 mj

(p) (u t)
PY l

(p)(u)
dNilm

(p)(u)
s

t P0 ℎl
(p) (s u )P0 mj

(p) (u t)
PY l

(p)(u)
Y il

(p)(u)A0 lm
(p) , p = 1, 2 .

(1)

The first integral in the brackets in the right side of (1) forms a P-Donsker class of functions 

indexed by s ∈ [0, τ] and t ∈ [s, τ], as a consequence of Lemma 1 and conditions C3 and C4. 

The second integral in the bracket in (1) also forms a P-Donsker class indexed by s ∈ [0, τ] 

and t ∈ [s, τ], by Lemma 2 and conditions C4 and C5. Therefore, the class

ℱ3 = γℎj
(p)(s, t) : s ∈ [0, τ], t ∈ [s, τ], p = 1, 2

is P-Donsker by Corollary 9.32 in Kosorok (2008), as it is formed by the union of the classes 

γℎj
(1)(s, t) : s ∈ [0, τ], t ∈ [s, τ]  and γℎj

(2)(s, t) : s ∈ [0, τ], t ∈ [s, τ]  which consist of finite sums 

of functions that belong to P-Donsker classes. This implies that the Aalen–Johansen 

estimator converges weakly to a tight zero mean Gaussian process. Next, by condition C6 

and the weak convergence of the Aalen–Johansen estimator it follows that

sup
t ∈ [s, τ]

W ℎj t − W ℎj t
n1n2

n1 + n2
Pn1, ℎj

1 s, t − Pn2, ℎj
2 s, t = op 1 Op(1) = op(1),

for any (fixed) s ∈ [0, τ). Now, it is not hard to see that under the null hypothesis and by 

condition C2, the asymptotic linearity of the transition probability estimators, and the 

continuous mapping theorem:

n1n2
n1 + n2

Zℎj(s) = 1 − λ n1ℙn1 (s τ]W ℎj(t)γℎj
(1)(s t)dm(t)

− λ n1ℙn2 (s τ]W ℎj(t)γℎj
(2)(s t)dm(t) + op(1) .

(2)

for any (fixed) s ∈ [0, τ). By the Donsker property of the class ℱ3 and Lemma 15.10 in 

Kosorok (2008), it follows that the classes { s
tW ℎj(u)γℎj

(p)(s u)dm(u) i [s τ]}, p = 1, 2, are 

P-Donsker for any fixed s ∈ [0, τ). This implies that for t = τ,

npℙnp (s τ]W ℎj(u)γℎj
(p)(s u)dm(u) p 1 2

is asymptotically normally distributed with variance

P (s τ]W ℎj(t)γℎj
(p)(s t)dm(t)

2
, p = 1, 2 .
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Finally, the statement of Theorem 1 follows from the independence between the two terms in 

the right side of (2), as a consequence of the fact that the two samples are independent.

A.2 Proof of Theorem 2

First, the estimators Pℎj
(p) (s, t), p = 1, 2, are consistent uniformly in s ∈ [0, τ] and t ∈ [s, τ] by 

a continuity result for the Duhamel equation (Andersen et al., 2012) and the continuous 

mapping theorem (Kosorok, 2008). Next, by condition C6 and the weak convergence of the 

Aalen–Johansen estimator, as a consequence of its asymptotic linearity and the Donsker 

property of the class ℱ3, it follows that

sup
0 ≤ s ≤ t ≤ τ

W ℎj t − W ℎj t
n1n2

n1 + n2
Pn1, ℎj

1 s, t − Pn2, ℎj
2 s, t = op 1 Op(1) = op(1) .

Similarly to the proof of Theorem 2, under the null hypothesis and due to the asymptotic 

linearity of the transition probability estimators, and the continuous mapping theorem, it 

follows that

n1n2
n1 + n2

Zℎj = 1 − λ n1ℙn1 [0 τ) s τW ℎj(t)γℎj
(1)(s t)dm(t) dm(s)

− λ n2ℙn2 [0 τ) (s τ]W ℎj(t)γℎj
(2)(s t)dm(t) dm(s) + op(1) .

(3)

By the Donsker property of the class ℱ3 and Lemma 15.10 in Kosorok (2008), it follows 

that the classes { [s τ) (u τ]W ℎj(t)γℎj
(p)(u t)dm(t) dm(u) s [0 τ]}, p = 1, 2, are P-Donsker. 

Thus, for s = 0,

npℙnp [0 τ) (u τ]W ℎj(t)γℎj
(p)(u t)dm(t) dm(u) p 1 2

is asymptotically normally distributed with variance

P 0 τ s τ W ℎj t γℎj
p s t dm t dm s

2
, p = 1, 2 .

Now, the statement of Theorem 2 follows from (3) and the independence of the two samples.

A.3 Proof of Theorem 3

As it was argued in the proof of Theorem 1

sup
t ∈ s, τ

W ℎj t − W ℎj t
n1n2

n1 + n2
Pn1, ℎj

1 s, t − Pn2, ℎj
2 s, t = op 1 ,
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for any (fixed) s ∈ [0, τ]. Due to the asymptotic linearity of the transition probability 

estimators Pnp, ℎj
(p) (s, t), for p = 1, 2, as argued in the proof of Theorem 1, along with condition 

C2, it follows that

n1n2
n1 + n2

Dℎj s, t = 1 − λ n1ℙn1W ℎj t γiℎj
1 s, t − λ n2ℙn2W ℎj t γiℎj

2 s, t + op 1 .

Now, by the Donsker property of the class ℱ3 and condition C6, it follows that 

W ℎj(t)γℎj
(p)(s, t) : p = 1, 2, t ∈ [s, τ] , is a P-Donsker class for any (fixed) s ∈ [0, τ). Therefore, 

by the independence between the two samples, it follows that

n1n2
n1 + n2

Dℎj s, ⋅ 1 − λG1ℎj s, . − λG2ℎj s, ⋅ ,

where G1ℎj s, ⋅  and G2ℎj s, ⋅  are two independent tight zero-mean Gaussian processes 

with covariance functions

σpℎj(t1, t2; s) = P[W ℎs(t1)γℎj
(p)(s, t1)][W ℎj(t2)γℎj

(p)(s, t2)], p = 1, 2 .

Now, define

Bℎj(s, t) = 1 − λ n1ℙn1W ℎj(t)γiℎj
(1)(s, t)ξir

(1) − λ n2ℙn2W ℎj(t)γℎj
(2)(s, t)ξ(2),

where ξ(p), p = 1, 2, are independent random draws from N(0,1). By the Donsker property of 

the class W ℎj(t)γℎj
(p)(s, t) : p = 1, 2, t ∈ [s, τ] , for ℎ, j ∈ ℐ and any (fixed) s ∈ [0, τ), and the 

conditional multiplier central limit theorem (Van Der Vaart and Wellner, 1996) it follows 

that

npℙnpW ℎj( ⋅ )γℎj
(p)(s, ⋅ )ξ(p) Gpℎj(s, ⋅ ),

conditionally on the observed data. Therefore

Bℎj(s, ⋅ ) 1 − λG1ℎj(s, ⋅ ) − λG2ℎj(s, ⋅ ),

for any (fixed) s ∈ [0, τ), conditionally on the observed data. Now it remains to argue that 

supt ∈ [s, τ] |Bℎj(t) − Bℎj(t) | = op(1), for any fixed s ∈ [0, τ), unconditionally on the observed 

data. By the triangle inequality it follows that
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sup
t ∈ s, τ

Bℎj s, t − Bℎj s, t ≤ 1 − λ sup
t ∈ s, τ

n1ℙn1 W ℎj t γℎj
1 s, t − W ℎj t γℎj

1 0, t ξ 1

+ λ sup
t ∈ s, τ

n2ℙn2 W ℎj t γℎj
2 s, t − W ℎj t γℎj

2 s, t ξ 2 ,

for any (fixed) s ∈ [0, τ). By similar calculations to those in the proof of Theorem 2 in 

Bakoyannis et al. (2019) and conditions C1-C6 it follows that both normed terms in right 

side the above inequality are op(1). This concludes the proof of part (i) of Theorem 3.

The first statement of part (ii) of Theorem 3 follows from condition C6, the fact that under 

the null hypothesis

sup
0 ≤ s ≤ t ≤ τ

W ℎj t − W ℎj t
n1n2

n1 + n2
Pn1, ℎj

1 s, t − Pn2, ℎj
2 s, t = op 1 ,

as it was argued in the proof of Theorem 2, and the Donsker property of the class ℱ3. The 

second statement of part (ii) of Theorem 3 follows from the uniform consistency of the 

estimators Pℎj
(p)(s, t), p = 1, 2 in s ∈ [0, τ] and t ∈ [s, τ] as it was argued in the proof of 

Theorem 2, and arguments similar to those used for the proof of part (i) of Theorem 3.
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Figure 1: 
Illness-death model without recovery assumed in the simulation study.
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Figure 2: 
Transition probabilities of being alive in relapse by intervention group in the EORTC Trial 

10854.
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Table 1:

Simulation results about empirical type I error rates for the linear test (Linear), the L2-norm-based test (L2), 

and the Kolmogorov–Smirnov-type test (KS) for testing H0:P0, 12
(1) (0, ⋅ ) = P0, 12

(2) (0, ⋅ ), under simulation 

scenarios 1 and 2.

Note: The weight function was W 12(t) = l 1
2

Y l
(1)(t)Y l

(2)(t)/{ l 1
2

[Y l
(1)(t)Y l

(2)(t)]} .

J Nonparametr Stat. Author manuscript; available in PMC 2021 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bakoyannis Page 30

Table 2:

Simulation results about empirical type I error rates for the linear test (Linear), the L2-norm-based test (L2), 

and the Kolmogorov–Smirnov-type test (KS) for testing H0:P0, 12
(1) (0, ⋅ ) = P0, 12

(2) (0, ⋅ ), under simulation 

scenarios 3 and 4.

Note: The weight function was W 12(t) = l 1
2

Y l
(1)(t)Y l

(2)(t)/{ l 1
2

[Y l
(1)(t)Y l

(2)(t)]} .
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Table 3:

Simulation results about empirical power levels for the linear test (Linear), the L2-norm-based test (L2), and 

the Kolmogorov–Smirnov-type test (KS) for testing H0:P0, 12
(1) (0, ⋅ ) = P0, 12

(2) (0, ⋅ ) under simulation scenarios 5 

and 6.

Note: The weight function was W 12(t) = l 1
2

Y l
(1)(t)Y l

(2)(t)/{ l 1
2

[Y l
(1)(t)Y l

(2)(t)]} .
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Table 4:

Simulation results about empirical power levels for the linear test (Linear), the L2-norm-based test (L2), and 

the Kolmogorov–Smirnov-type test (KS) for testing H0:P0, 12
(1) (0, ⋅ ) = P0, 12

(2) (0, ⋅ ) under simulation scenarios 7 

and 8. The weight function was W 12(t) = l 1
2

Y l
(1)(t)Y l

(2)(t)/{ l 1
2

[Y l
(1)(t)Y l

(2)(t)]} .
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