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SUMMARY

Competing risk data are frequently interval-censored, that is, the exact event time is not observed but
only known to lie between two examination time points such as clinic visits. In addition to interval
censoring, another common complication is that the event type is missing for some study participants. In
this article, we propose an augmented inverse probability weighted sieve maximum likelihood estimator for
the analysis of interval-censored competing risk data in the presence of missing event types. The estimator
imposes weaker than usual missing at random assumptions by allowing for the inclusion of auxiliary
variables that are potentially associated with the probability of missingness. The proposed estimator is
shown to be doubly robust, in the sense that it is consistent even if either the model for the probability
of missingness or the model for the probability of the event type is misspecified. Extensive Monte Carlo
simulation studies show good performance of the proposed method even under a large amount of missing
event types. The method is illustrated using data from an HIV cohort study in sub-Saharan Africa, where
a significant portion of events types is missing. The proposed method can be readily implemented using
the new function ciregic_aipw in the R package intccr.
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2 J. PARK AND OTHERS

1. INTRODUCTION

Competing risks data are frequently encountered in cohort studies and clinical trials, and they refer
to the situation where study participants are at risk of multiple mutually exclusive events (Kalbfleisch
and Prentice, 2011; Putter and others, 2007; Bakoyannis and Touloumi, 2012). The competing risks
framework also includes situations where the scientific focus is on the first occurring event among multiple
endpoints (Putter and others, 2007; Bakoyannis and Touloumi, 2012). In the competing risks framework,
the cumulative incidence function (CIF) and the cause-specific hazard (CSH) function are the basic
identifiable quantities from the observed data (Kalbfleisch and Prentice, 2011; Putter and others, 2007;
Bakoyannis and Touloumi, 2012; Koller and others, 2012; Andersen and others, 2012). The CIF is the
cumulative probability of a particular event type occurring by a certain time in the presence of remaining
event types, while the CSH is the instantaneous occurrence rate of a specific event type in the presence
of the others. It is important to note that the CIF explicitly quantifies clinical prognosis and is useful
for prediction purposes (Koller and others, 2012; Bakoyannis and others, 2017). In general, methods of
traditional survival analysis based on hazard functions can be directly used for the analysis of the CSH
with competing risks by treating the competing events as right-censored observations (Kalbfleisch and
Prentice, 2011; Putter and others, 2007; Bakoyannis and Touloumi, 2012). However, given that there
is no one-to-one relationship between the CSH and the CIF, such standard methods cannot be used for
inference about the CIF and different methods are required (Fine and Gray, 1999; Putter and others,
2007; Bakoyannis and Touloumi, 2012). In addition, the sum of the CIFs for all event types is naturally
bounded above by 1 for all timepoints and all (observed) covariate patterns. This leads to the need for
special distributions for parametric analysis (Jeong and Fine, 2007), or complex constrained optimization
with nonlinear inequality constraints for a joint semiparametric analysis of the CIFs for all event types
(Bakoyannis and others, 2017). In this article, we focus on making inferences about the CIF.

A frequently encountered problem in studies with competing risks time-to-event data is interval cen-
soring (Sun, 2007). Interval censoring refers to the situation where the actual event time is not precisely
observed but is only known to lie between two observation times such as clinic visits. To address this
problem in the framework of competing risks with fully observed event types, Hudgens and others (2001)
proposed nonparametric maximum likelihood and pseudolikelihood estimators for the CIF under interval
censoring. Semiparametric analysis methodology for the CIF with interval-censored competing risks data
has been proposed by Li (2016) for the special case of the Fine–Gray proportional subdistribution hazards
model (Fine and Gray, 1999). This problem has also been addressed for more general classes of mod-
els for the CIF by Bakoyannis and others (2017), via a semiparametric B-spline-based sieve maximum
likelihood approach (Zhang and others, 2010), and Mao and others (2017), via an EM-algorithm. All
three aforementioned methods for semiparametric analysis of the CIF under interval censoring provide
semiparametrically efficient estimators of the regression coefficients. The approach by Bakoyannis and
others (2017) is now readily implemented in the R package intccr (Park and others, 2019).

Some studies with competing risks data involve missing event types, in addition to interval censoring.
This is the case for our motivating East-Africa International Epidemiologic Databases to Evaluate AIDS
(EA-IeDEA) study. One of the study aims is to evaluate potential prognostic factors for disengagement
from HIV care and death while in care (i.e. before disengagement) after antiretroviral treatment (ART)
initiation. The nature of this scientific question requires a model for the CIF. However, a significant
complication in this study is the significant death under-reporting which is common in resource-limited
settings. To address this problem, EA-IeDEA investigators have implemented a double-sampling design
where a small subset of individuals who miss their clinic visit is actively outreached in the community
and their vital status is eventually ascertained. This double-sampling design leads to a missing event type
problem since the event type for the nonoutreached individuals who miss a clinic visit is unobserved
and could be either (unreported) death or disengagement from care. Moreover, the working definition of
disengagement used by the clinical investigators within EA-IeDEA is being without a clinic visit for three
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Analysis of Interval-Censored Competing Risks Data and Missing Event Types 3

months. However, the actual time of disengagement is not precisely observed but is only known to lie within
the 3-month window without clinic visits. Therefore, the event time is interval-censored. Mitra and others
(2020) addressed the issue of parametric analysis of interval-censored competing risks data with missing
event types under a Gompertz distribution assumption for the CIFs. To the best of our knowledge, only
Do and Kim (2017) and Mao and others (2017) have considered the problem of semiparametric analysis
of the CIF with both interval-censored competing risks data and missing event types. Do and Kim (2017)
utilized Rubin’s multiple imputation (MI) to deal with missingness in the framework of the pseudovalue
approach for the CIF (Klein and Andersen, 2005). However, MI can provide biased estimates when the
imputation model is misspecified. Moreover, Rubin’s variance estimator is biased when the imputation
model is misspecified (Wang and Robins, 1998; Robins and Wang, 2000) or under uncongeniality between
the imputation and analysis models (Meng, 1994; Wang and Robins, 1998; Robins and Wang, 2000). In
the simulation results presented by Do and Kim (2017), there are cases where Rubin’s variance estimates
exhibit a relative bias close to 20%. Incorporation of auxiliary variables that are potentially associated with
the probability of missingness in the imputation model is a cause of such uncongeniality. Nevertheless,
accounting for such auxiliary variables is crucial in many settings in order to make the key MAR assumption
more plausible (Collins and others, 2001; Lu and Tsiatis, 2001; Bakoyannis and others, 2019). Mao and
others (2017) allowed for missing event types in the expectation step of their EM algorithm for interval-
censored competing risks data. However, this approach does not incorporate auxiliary variables which
may be related to the probability of a missing event type. Moreover, the computation algorithm by Mao
and others (2017) does not explicitly incorporate the nonlinear inequality constraint that the sum of the
CIFs for all event types is bounded by one. This can lead to nonconvergence problems in practice. Last but
not least, neither Do and Kim (2017) nor Mao and others (2017) approaches are readily available using
off-the-shelf software.

In this article, we address the main limitations of the currently available methods for semiparametric
analysis of the CIF with interval-censored competing risks data and missing event types under MAR.
More precisely, we propose an augmented inverse probability weighting (AIPW) approach for the class
of semiparametric odds rate transformation models for the CIF, which can incorporate auxiliary variables
potentially associated with missingness. This approach utilizes a parametric logistic model for the prob-
ability of missingness and a binary logistic or multinomial model for the probability of the event type.
Since we focus on semiparametric models, our objective function involves infinite-dimensional param-
eters. To address this issue, our objective function is maximized over B-spline sieve spaces similar to
those used in Bakoyannis and others (2017). Our methodology extends that in Bakoyannis and others
(2017) by allowing for missing event types via AIPW. We show that the proposed estimator is doubly
robust in the sense that it is consistent even when either the model for the probability of missingness or the
probability of the event type is misspecified. Moreover, we present the new function ciregic_aipw
in the R package intccr which can be used to readily implement the proposed approach in practice.
Simulation studies show that the performance of the proposed method is quite satisfactory even when the
model for the event type is misspecified, and that the naïve complete case (CC) analysis using the approach
by Bakoyannis and others (2017) can provide seriously biased estimates with missing event types. Also,
Rubin’s MI procedure for missing event types can provide biased estimates when the imputation model is
misspecified (Bakoyannis and others, 2010; Do and Kim, 2017). The proposed method is applied to the
data from the EA-IeDEA study.

2. METHODS

2.1. Data and model

Let (Ti, εi) be the pair of event time and event type of the ith individual, i = 1, . . . , n, where εi ∈
{1, 2, . . . , k} and k < ∞. Also, let Vi be the last observation time prior to the occurrence of the event,
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4 J. PARK AND OTHERS

which is equal to 0 if the event is left-censored, and Ui the first observation time after the event onset, which
is set to ∞, if the event is right-censored. Next, we define�i to be the event indicator that the ith individual
experience an event during the study period. Thus,�i = 0 implies that the ith individual is right-censored.
We further define the interval censoring indicator�(1)

i and the left censoring indicator�(2)
i , which satisfy

�i = �
(1)
i +�

(2)
i . The indicator the ith individual experiences the jth event type, j = 1, . . . , k , is defined

as �(1)
ij = �

(1)
i I (εi = j) for an interval-censored case and as �(2)

ij = �
(2)
i I (εi = j) for a left-censored

case. Also, let Zi ⊂ R
d be the vector of covariates of interest. As in the common practice of interval-

censored data analysis, we assume that the observation times are independent of (Ti, εi) conditionally on
Zi (independent interval censoring) and that their distribution does not contain the parameters of interest
(noninformative interval censoring). With fully observed event types, the observable data based on an
i.i.d. sample are X̃i = (�

(1)
i ,�(2)

i ,�(1)
i ,�(2)

i , Vi, Ui, Zi), for i = 1, . . . , n, where �(l)
i = (�

(l)
i1 , . . . ,�(l)

ik )
′,

l = 1, 2. In a situation where some event types are missing, we denote Ri the response (i.e. nonmissingness)
indicator for the event type, with Ri = 1 if�ij has been observed and Ri = 0 otherwise. Under this setup,
the observable data based on an i.i.d. sample are

Xi =
{
(�

(1)
i ,�(2)

i ,�(1)
i ,�(2)

i , Vi, Ui, Zi, Ai) if Ri = 1
(�

(1)
i ,�(2)

i , Vi, Ui, Zi, Ai) if Ri = 0

for i = 1, . . . , n, in which Ai is a vector of potential auxiliary variables that may be predictive of Ri. We
also note that �i = 0 implies Ri = 1, that is, the right-censoring status is always observed.

In this article, we impose the following MAR assumption

Pr(Ri = 1|�i = 1,�(1)
i ,�(2)

i , Vi, Ui, Zi, Ai) = Pr(Ri = 1|�i = 1, Ui, Zi, Ai), (2.1)

that is, given the observed data and the auxiliary variables, the probability of response is independent of
the incomplete event type indicators (�(1)

i ,�(2)
i ). Incorporating the auxiliary variables Ai leads to a weaker

MAR assumption (Lu and Tsiatis, 2001; Bakoyannis and others, 2019). For simplicity, we assume that
Ri depends on the event diagnosis time Ui and not the last observation time Vi prior to the occurrence of
the event. This is a plausible assumption in practice.

In this article, we study the CIF conditional on Z = z, which is defined as

Fj(t; z) = Pr(T ≤ t, ε = j|Z = z), j = 1, . . . , k .

A natural choice for the CIF is the class of semiparametric transformation models:

gj

{
Fj(t; z)

} = φj(t)+ β�
j z, j = 1, . . . , k ,

where gj is a known and increasing link function, φj is an unspecified strictly increasing function, and
βj is a vector of regression coefficients (Zeng and others, 2006; Bakoyannis and others, 2017; Mao and
others, 2017). A special subset of this class is the class of the generalized odds rate transformation models
defined as

gj

(
Fj;αj

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log
{
(1 − Fj)

−αj − 1

αj

}
if 0 < αj < ∞

log
{− log (1 − Fj)

}
if αj = 0.

(Jeong and Fine, 2007; Dabrowska and Doksum, 1988; Scharfstein and others, 1998; Bakoyannis and
others, 2017). Special cases of this class are the Fine–Gray proportional subdistribution hazards model
(Fine and Gray, 1999) when αj = 0 and the proportional odds model when αj = 1.
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Analysis of Interval-Censored Competing Risks Data and Missing Event Types 5

2.2. Semiparametric estimation

When there are no missing event types, the likelihood function can be expressed as

L(θ) ∝
n∏

i=1

[[
k∏

j=1

{
Fj(Ui; Zi, θj)− Fj(Vi; Zi, θj)

}�(1)ij

][
k∏

j=1

{
Fj(Ui; Zi, θj)

}�(2)ij

]

×
{

1 −
k∑

j=1

Fj(Vi; Zi, θj)

}1−�i
⎤
⎦,

(2.2)

where θ = (θ�
1 , θ�

2 , . . . , θ�
k )

� are the unknown parameters, where θj = (φj,β�
j )

� (Bakoyannis and others,
2017). The maximization of likelihood (2.2) can be performed over the sieve space�n = 	k

n ×Bk , where
B ⊂ R

d and

	n(γ , Nn, m) =
{
φ : φ(t; γ ) =

Nn+m∑
s=1

γsBs,m(t), γ ∈ R
Nn+m, γ1 < · · · < γNn+m

}

is the B-spline sieve space with Nn and m, respectively denoting the number of internal knots and the order
of the B-spline, γ = (γ1, . . . , γNn+m)

� is the unknown vector of the B-spline coefficients, and t ∈ [a, b].
The number of internal knots Nn is selected to satisfy Nn ≈ nν such that max1≤l≤Nn+1 |wl −wl−1| = O(n−ν),
where wl is the place of the lth knot (Bakoyannis and others, 2017). The optimal choice for ν, in order
to achieve the optimal rate of convergence of the B-spline estimator of φj, is ν = 1/(1 + 2p), where p
is the degree of smoothness of the true underlying functions φj, j = 1, . . . , k (Bakoyannis and others,
2017). The knots are placed in the percentiles of the distribution of the set of collective observation times
{Vi, Ui : i = 1, 2, . . . , n}. Note that the restriction γ1 < . . . < γNn+m imposes a monotonicity constraint
on the B-spline functions. Moreover, during the maximization the constraint

max
z

{
k∑

j=1

Fj(b; z, θj)

}
< 1

is also imposed. This is crucial since ignoring this constraint may lead to nonconvergence issues. The
estimation process can be readily implemented using the function ciregic in the R package intccr
(Park and others, 2019).

In the presence of missing event types, the likelihood function (2.2) cannot be evaluated for the missing
cases. To deal with this issue, we use an augmented inverse probability weighted method similar to the
one by Gao and Tsiatis (2005). For this, let

ρ(Oi, ξ ∗) ≡ Pr(Ri = 1|�i = 1, Ui, Zi, Ai; ξ ∗),

be the parametric response (or equivalently the missingness) model, where Oi = (Ui, Zi, Ai)
� and, ξ ∗ is

a finite-dimensional parameter. Since the model ρ may be misspecified, ξ ∗ denotes the minimizer of the
Kullback–Leibler divergence between the assumed and the true model. Similarly, define

πj(Oi,ψ∗) = Pr(εi = j|�i = 1, Ui, Zi, Ai;ψ∗), j = 1, . . . , k , (2.3)

to be the parametric model for the jth event type, whereψ∗ is a finite-dimensional parameter. Again,ψ∗ is
the minimizer of the Kullback–Leibler divergence between the assumed and the true model. The implicit
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6 J. PARK AND OTHERS

assumption in model (2.3) is that the probability of the jth event type does not depend on whether the
observation is interval-censored or left-censored, and, also, that εi is conditionally independent of the last
examination time prior to the event diagnosis time for the interval-censored cases. A natural choice of the
model πj is the binary logistic (if k = 2) or the multinomial logistic (if k > 2) model.

The first stage of the analysis involves the estimation of ξ ∗ using the observations with�i = 1, and ψ∗

based on the observations with Ri = 1 and �i = 1 (i.e. cases with an observed event type). Estimation in
both cases is conducted via (parametric) maximum likelihood to obtain the MLEs ξ̂n and ψ̂n of ξ ∗ and ψ∗,
respectively. Under the MAR assumption (2.1), the second stage of the analysis consists of maximizing
the objective function under the AIPW framework

l̃(θ ; ξ̂n, ψ̂n) = 1

n

n∑
i=1

[
k∑

j=1

�̃
(1)
ij (ξ̂n, ψ̂n) log

{
Fj(Ui; Zi, θj)− Fj(Vi; Zi, θj)

}

+
k∑

j=1

�̃
(2)
ij (ξ̂n, ψ̂n) log

{
Fj(Ui; Zi, θj)

}+ (1 −�i) log

{
1 −

k∑
j=1

Fj(Vi; Zi, θj)

}]
,

where

�̃
(l)
ij (ξ̂n, ψ̂n) = Ri

ρ(Oi; ξ̂n)
�
(l)
ij − Ri − ρ(Oi; ξ̂n)

ρ(Oi; ξ̂n)
πj(Oi; ψ̂n), l = 1, 2.

This objective function corresponds to the augmented inverse probability weighted version of the logarithm
of likelihood (2.2), multiplied by 1/n which does not affect the maximizer but is convenient for the
consistency proof. Maximization is performed over the sieve space �n under the constraints described
above for the case without missing event types. The resulting estimator is denoted as θ̂n. This approach
can be readily implemented using the function ciregic_aipw in the R package intccr. In Appendix
II of the Supplementary material available at Biostatistics online, we provide an illustrative example of
how to use the ciregic_aipw to perform the proposed AIPW methodology.

2.3. Properties of the proposed estimator

The proposed estimator possesses the double robustness property, that is, it is consistent if either ρ(Oi; ξ ∗)
or πj(Oi;ψ∗), j = 1, . . . , k , is correctly specified. Letting � denote the true (infinite-dimensional)
parameter space, consistency is proved in the L2-metric d which is defined as follows:

d(θ (1), θ(2)) =
(

k∑
j=1

∥∥∥β(1)j − β
(2)
j

∥∥∥2 +
k∑

j=1

∥∥∥φ(1)j − φ
(2)
j

∥∥∥2

	

) 1
2

,

for θ(1), θ(2) ∈ �, where ‖ · ‖ is the Euclidean norm and

∥∥∥φ(1)j − φ
(2)
j

∥∥∥2

	
= E

{
φ
(1)
j (V )− φ

(2)
j (V )

}2 + E
{
φ
(1)
j (U )− φ

(2)
j (U )

}2
.

Now, let θ0 denote the true parameter value. Theorem 2.1 ensures the double robustness of the proposed
estimator.
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Analysis of Interval-Censored Competing Risks Data and Missing Event Types 7

THEOREM 2.1 (Double robustness) Suppose that the interval censoring is independent and noninformative
conditionally on the covariates Z , the MAR assumption (2.1) is satisfied, the regularity conditions in
Appendix I of the Supplementary material available at Biostatistics online are satisfied, and Nj = O(nν),
j = 1, . . . , k , where ν satisfies 1/[2(1 + p)] < ν < 1/(2p). Then, if either ρ(Oi; ξ ∗) or πj(Oi;ψ∗),
j = 1, . . . , k , is correctly specified,

d(θ̂n, θ0)
p→ 0.

The proof of double robustness (Theorem 1) is outlined in Appendix I of the Supplementary material
available at Biostatistics online.As in the case with interval-censored competing risks data without missing
event types, we set ν = 1/(1 + 2p) (Bakoyannis and others, 2017). Using the conditions in Appendix I of
the Supplementary material available at Biostatistics online along with arguments similar to those used in
Bakoyannis and others (2017) it can be shown that the estimator β̂n is

√
n-consistent and asymptotically

normal, but may not be semiparametrically efficient. Variance estimation can be based on nonparametric
bootstrap (Cheng and Huang, 2010). If the number of observations with a nonmissing event type is random,
then the bootstrap process proceeds with drawing observations with replacement from the full dataset.
For the special case of double sampling, which leads to data missing by the study design, the number of
double-sampled (i.e. nonmissing) observations may be fixed by the study design. In this case, one needs
to resample observations with replacement separately from the groups of double-sampled and nondouble-
sampled observations. This will maintain the number of double-sampled observations fixed across the
different bootstrap datasets. In our application, a number of double-sampled individuals could not be
traced by the outreach workers. Thus, the number of successfully ascertained event types was random and
smaller than the anticipated number of double-sampled patients, requiring bootstrap resampling of the full
dataset. The function ciregic_aipw of the R package intccr has an argument to select the desired
number of bootstrap replications for variance estimation (for more details on the use of ciregic_aipw
see Appendix II of the Supplementary material available at Biostatistics online).

3. SIMULATION STUDIES

In order to evaluate the performance of the proposed estimator we conducted a series of Monte Carlo
simulation experiments. We considered two event types, ε = 1 and ε = 2, and two covariates of interest, Z1

simulated from the Bernoulli distribution with probability 0.4, and Z2 simulated from the standard normal
distribution.We also considered an auxiliary variable depending on the true event type as A = I (ε = 1)+ e,
where e ∼ N (0, 1). The competing risks data were generated under the proportional odds models:

Fj(t) = exp
{
φj(t)+ β�

j Z
}

1 + exp
{
φj(t)+ β�

j Z
} , j = 1, 2,

where exp
{
φj(t)

} = − τj
ρj

{
1 − exp(ρj t)

}
under the improper Gompertz distribution (Jeong and

Fine, 2007). Similarly to Bakoyannis and others (2017), we set (τ1, ρ1) = (0.40, −0.60) and
(τ2, ρ2) = (0.75, −0.50). The values for the regression coefficients were β0 = (β11,β12,β21,β22)

� =
(0.5, −0.3, −0.5, 0.3)�. To generate interval censoring we simulated a series of observation time points
based on the exponential distribution with a hazard parameter equal to 3. This led on average in one
clinic visit every four months. Depending on the scenario, we also set the maximum study period at 3,
1.4, and 0.85 years, leading in average right-censoring rates of 13.6%, 30%, and 45%, respectively. The
probability of nonmissingness was assumed to be logit{Pr(R = 1|O)} = ξ0 +0.5U −0.5Z1 +0.6Z2 +ξ4A.
The different values of (ξ0, ξ4)where chosen in order to evaluate the impact of the effect ξ4 of the auxiliary
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8 J. PARK AND OTHERS

variable on the performance of the different methods, while maintaining the missingness rate at 30%
(for the choices (ξ0, ξ4) = (0.90, −0.50), (0.60, −0.10), (0.60, 0.00), (0.55, 0.10), and (0.40, 0.50)), and
50% (for the choices (ξ0, ξ4) = (0.90, −0.50), (0.60, −0.10), (0.60, 0.00), (0.55, 0.10), or (0.40, 0.50)).
For each simulation scenario, we simulated 1000 data sets and considered the sample sizes n = 200
and n = 400. In this simulation study, we considered the proposed AIPW method assuming the models
logit{ρ(O, ξ)} = ξ0 + ξ1U + ξ2Z1 + ξ3Z2 + ξ4A, and logit{π1(O,ψ)} = ψ0 +ψ1U +ψ2Z1 +ψ3Z2 +ψ4A.
Note that the true modelπ1(O,ψ) has a very complicated form under the proportional odds model assumed
in this simulation study and, thus, the assumed model for π1(O,ψ) is misspecified in all cases. However,
the model ρ(O, ξ) is correctly specified in all cases. Standard error estimation was based on 100 bootstrap
replications. For comparison, we also considered the naïve CC analysis and the MI procedure by Bakoyan-
nis and others (2010) based on five imputations and under the imputation model π1(O,ψ) (defined above),
as alternative approaches to deal with missingness. In both of these approaches, we used the B-spline sieve
maximum likelihood approach by Bakoyannis and others (2017) for data with fully observed event type.
Standard error for the CC analysis was based on 100 bootstrap replications, while for the MI procedure
we used Rubin’s rules and nonparametric bootstrap for the within imputation variance estimation.

Simulation results for the case with an average right censoring rate of 13.6% and a null effect of
the auxiliary variable (ξ4 = 0) are presented in Table 1. Additional simulation results are provided in
Appendix III of the Supplementary material available at Biostatistics online. Based on the simulation
results, the naïve CC analysis provided regression parameter estimates with substantial bias as a result
of selection bias. The degree of bias was more pronounced with a larger missingness percent and in
scenarios where the effect of the auxiliary variable on the probability of missingness was nonzero. The MI
approach also provided regression coefficient estimates exhibiting nonnegligible bias, although this bias
was lower, on absolute, compared to that from the CC analysis. The bias in the MI approach is attributed to
the misspecification of the imputation model. The proposed AIPW approach provided virtually unbiased
regression parameter estimates in all cases, even though the event type model (2.3) was misspecified. This
provides numerical evidence for the double robustness of the proposed AIPW approach. For this approach,
the average of the standard error estimates are close to the corresponding Monte Carlo standard deviation
of the estimates, and the empirical coverage probabilities are close to the nominal 0.95 level. Simulation
results under a nonnull effect of the auxiliary variable (ξ4 �= 0) and higher right censoring rates (30%
and 45%) are presented in Appendix III of the Supplementary material available at Biostatistics online.
Results under these scenarios are similar, however, a higher right-censoring rate is associated with a larger
Monte Carlo standard deviation of the estimates for all methods under comparison. The average of the
baseline cumulative incidence functions based on the proposed approach, along with the corresponding true
baseline cumulative incidence functions, are presented in Figure 1 and in Figures 2 through 5 in Appendix
III of the Supplementary material available at Biostatistics online. It is evident that the proposed AIPW
estimator is virtually unbiased in all cases.

To sum up, this simulation study provided numerical evidence for the double robustness of the proposed
AIPW estimator and, also, its asymptotic normality. It also outperformed the CC and MI approaches which
provided biased estimates. Moreover, the AIPW estimator was more computationally efficient compared
to the MI approach which requires performing the analysis multiple times. With a sample size of 400
and 50% missing event type, the computation time for point estimates and standard errors based on 100
bootstrap samples was 5.96 min on average (standard deviation: 1.09 min) based on the AIPW estimator.
The corresponding figure for the MI estimator was 20.92 min (standard deviation: 2.28 min).

4. ANALYSIS OF HIV DATA

The proposedAIPW approach was used to analyze the data from the motivating EA-IeDEA study described
in the Introduction Section of this manuscript, using the ciregic_aipw function in the R package
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Analysis of Interval-Censored Competing Risks Data and Missing Event Types 9

Table 1. Simulation results regarding the regression coefficients under an average right censoring
rate of 13.6% and ξ4 = 0. CC refers to the CC analysis. MI refers to the MI method. AIPW refers
to the augmented inverse probability weighting method. MCSD refers to Monte Carlo standard
deviation. ASE refers to average standard error. ECP refers to empirical coverage probability

30% n = 200 n = 400

missing β11 β12 β21 β22 β11 β12 β21 β22

i. CC
% bias −13.554 −19.139 4.131 11.211 −16.505 −20.347 0.247 10.416
MCSD 0.336 0.172 0.325 0.164 0.244 0.119 0.238 0.113
ASE 0.352 0.171 0.342 0.165 0.242 0.117 0.235 0.113
ECP 0.960 0.924 0.965 0.938 0.930 0.912 0.946 0.934

ii. MI
% bias −6.203 −6.394 −5.206 −5.152 −8.215 −6.933 −8.771 −6.657
MCSD 0.327 0.166 0.320 0.159 0.235 0.116 0.230 0.114
ASE 0.340 0.166 0.338 0.165 0.235 0.116 0.233 0.114
ECP 0.957 0.953 0.963 0.956 0.945 0.953 0.953 0.948

iii. AIPW
% bias 0.539 0.056 1.324 1.283 −1.755 0.272 −2.261 0.690
MCSD 0.341 0.180 0.338 0.173 0.246 0.122 0.243 0.121
ASE 0.352 0.178 0.353 0.176 0.241 0.121 0.239 0.119
ECP 0.956 0.944 0.956 0.950 0.934 0.952 0.947 0.946

50% n = 200 n = 400

missing β11 β12 β21 β22 β11 β12 β21 β22

i. CC
% bias −27.864 −37.548 8.786 22.740 −29.846 −38.894 3.982 22.015
MCSD 0.400 0.201 0.394 0.193 0.288 0.140 0.283 0.130
ASE 0.434 0.204 0.420 0.195 0.292 0.137 0.280 0.132
ECP 0.961 0.916 0.964 0.937 0.930 0.851 0.944 0.924

ii. MI
% bias −11.534 −10.886 −9.436 −8.413 −12.808 −11.154 −12.888 −10.303
MCSD 0.371 0.190 0.365 0.184 0.270 0.135 0.266 0.131
ASE 0.393 0.190 0.391 0.189 0.271 0.134 0.268 0.132
ECP 0.955 0.945 0.965 0.953 0.948 0.947 0.949 0.937

iii. AIPW
% bias 2.293 0.074 4.757 3.211 −2.274 0.852 −2.242 2.058
MCSD 0.431 0.234 0.427 0.226 0.298 0.152 0.300 0.153
ASE 0.454 0.225 0.466 0.224 0.296 0.149 0.296 0.148
ECP 0.960 0.941 0.966 0.943 0.952 0.938 0.937 0.941

intccr. The goal of this analysis was to evaluate gender, age, and CD4 cell count as potential prognostic
factors for death and disengagement from care, as well as to estimate the covariate-specific cumulative
incidence function of these event types. Descriptive characteristics of the study sample are presented in
Table 2. The total sample size was 48 691 patients. In total, 2094 (4.3%) of them were observed to die
(reported deaths), while 20 477 (42.1%) patients were identified as lost to clinic. Of them, 4890 (23.9%)
were successfully traced by outreach workers and had their true vital status actively ascertained. This
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Fig. 1. Simulation results regarding the baseline cumulative incidence functions (CIF) under an average right cen-
soring rate of 13.6% and ξ4 = 0. The estimated CIFs correspond to the average of the estimated baseline CIFs from
the 1000 simulated datasets.

means that there is a large portion of missing event types among those who were classified as losses
to HIV care. We must highlight here that the double-sampling process used in the EA-IeDEA study is
initiated after a missed clinic visit. Therefore, it depends causally on both the time of the missed clinic visit
(observation time) and the time to disengagement or death (unreported). This means that double-sampling
is a collider (Pearl, 2009) of the vector of observation times U and the (unobserved) competing risks
data (T , ε). Since we do not condition on double-sampling in our likelihood, double-sampling does not
induce an association between the observation times and the competing risks data (Pearl, 2009). About
516 (10.6%) of successfully traced individuals were found to be deceased and this indicates a significant
death under-reporting problem. All deaths were interval-censored between the last clinic visit and the
death reporting time (time of double sampling for the double-sampled patients). Left-censored patients in
this study were those who did not attend their first clinic visit after ART initiation either due to an early
death or because of an early disengagement. We must note that, since double sampling occurred within
3 months from the last clinic visit, there may be unrecorded factors associated with death in this time
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Analysis of Interval-Censored Competing Risks Data and Missing Event Types 11

Table 2. Descriptive characteristics of the study sample

In HIV care
(N = 26 120)

n (%)

Loss to care
(N = 20 477)

n (%)

Death
(N = 2094)

n (%)

Gender
Female 17 511 (67.0) 13 655 (66.7) 1125 (53.7)
Male 8609 (33.0) 6822 (33.3) 969 (46.3)

Double sampling
Yes 0 (-) 4890 (23.9) 0 (-)
No 0 (-) 15 587(76.1) 0 (-)

Vital status
Dead 0 (-) 516 (10.6) 0 (-)
Alive 0 (-) 4374 (89.4) 0 (-)

Median (IQR) Median (IQR) Median (IQR)
Age (years) 37.8 (31.8–45.5) 36.3 (30.6–43.3) 38.0 (31.8–45.2)
CD4 (cells/μl) 206 (95–338) 147 (62.4–264) 80 (24–165)

interval. Although we believe that the main factor that will affect mortality after a missed clinic visit will
be the interruption of antiretroviral therapy (ART) as a result of not having ART supplies, there should
be a residual protective effect of ART within the relatively short time interval of 3 months. Hence, the
mortality elevation due to treatment interruption is expected to be small. One way to alleviate these issues
is to use a narrower time interval with no clinic visits as the working definition of disengagement, and
conduct double-sampling within this shorter period of time.

The data were analyzed using the naïve CC analysis and the proposedAIPW approach. For convenience
of interpretation, we considered the proportional odds models for both event types in these analyses. Stan-
dard error estimation in both cases was based on nonparametric bootstrap using 100 bootstrap replications.
For the AIPW approach we assumed a linear binary logistic models for the probability of nonmissingness
(i.e. of successful double sampling) and the probability of death. In both models, we considered as covari-
ates the time U , age, gender, CD4, and the number of outreach workers. Note that the latter covariate is an
auxiliary covariate which is not of scientific interest but is expected to be associated with the probability of
successful outreach/double sampling (i.e. nonmissingness). Since in this application missingness occurs
only on the subgroup of patients who were identified as lost to care (20 477 patients), the nonmissingness
and death probability logistic models were fitted using this subset of patients. Results from the CC and the
proposed AIPW analyses are listed in Table 3. Calculation of point estimates from the data set of 48 691
observations based on the AIPW approach using the ciregic_aipw function required only 1.1 min.
Calculation of both point estimates and standard errors based on 100 bootstrap samples required about
79.9 min without parallel computing and 42.2 min with parallel computing (utilizing three cores) on a
quad-core personal computer. Based on the proposed AIPW approach (Table 3), a higher CD4 count is
associated with a higher CIF of disengagement from care, while male gender and older age are associated
with a lower CIF of disengagement. Based on the naïve CC analysis using the method by Bakoyannis
and others (2017), the effect of male gender is associated with a higher CIF of disengagement (opposite
direction compared to theAIPW approach), while the effect of CD4 appears less pronounced and the effect
of age more pronounced compared to the AIPW approach. The analysis of the CIF of death revealed that
male gender, a lower CD4 cell count, and older age are prognostic of death based on the AIPW approach.
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12 J. PARK AND OTHERS

Table 3. Covariate effects on the CIF of disengagement from care and death based
on the naïve CC analysis using the approach by Bakoyannis and others (2017)
(CC) and the proposed AIPW approach (AIPW)

Outcome Covariates
CC

β̂ (p-value)
Proposed AIPW
β̂ (p-value)

Disengagement
Gender

Male versus female
0.155 (<0.001) −0.054 (<0.001)

CD4 at ART initiation
per 100 cells/μl

0.029 (<0.001) 0.227 (<0.001)

Age at ART initiation
per 10 years

−0.256 (<0.001) −0.075 (0.036)

Death
Gender

Male versus female
0.369 (<0.001) 0.186 (<0.001)

CD4 at ART initiation
per 100 cells/μl

−0.415 (<0.001) −0.293 (<0.001)

Age at ART initiation
per 10 years

0.012 (0.607) 0.153 (<0.001)

The effect of age on mortality is not significant based on the naïve CC analysis. In addition, the effects of
male gender and CD4 cell count appear more pronounced in the naïve CC analysis. The analysis results
for the CSHs are provided in Appendix IV of the Supplementary material available at Biostatistics online.

The predicted CIFs for disengagement from care and death for a 30-year-old male patient by CD4 cell
count from the naïve CC analysis using the method by Bakoyannis and others (2017) and the proposed
AIPW approach are depicted in Figure 2. The CC analysis underestimates the predicted CIFs for both
disengagement from care and death, compared to the AIPW approach. This is because the CC analysis
selectively discards events only and not right-censored observations.

5. DISCUSSION

In this article, we addressed the issue of semiparametric analysis of the CIF with interval-censored com-
peting risks data, missing event types, and potentially auxiliary covariates under a Missing at Random
(MAR) assumption. The proposed approach utilizes inverse probability weighting within the semipara-
metric B-spline-based sieve maximum likelihood estimation framework for interval-censored competing
risks data by Bakoyannis and others (2017). In this approach, we considered the general class of odds
rate transformation models. Variance estimation can be performed via the use of nonparametric bootstrap.
We showed that the proposed estimator possesses the double robustness property, that is it is consistent
even if either the model for the probability of nonmissingness or the model for the event type probability
is misspecified, but not both. The double robustness property of the proposed estimator was also justified
numerically via a series of simulation experiments. On the contrary, the naïve CC analysis and the MI
approach for missing event types provided biased estimates. The simulation studies provided also numer-
ical evidence for the asymptotic normality of the AIPW regression coefficient estimator. The proposed
method is readily applicable using the ciregic_aipw function which has been incorporated in the R
package intccr (Park and others, 2019). Importantly, this function supports parallel computing for a
considerably faster bootstrap variance estimation. In Appendix II of the Supplementary material available
at Biostatistics online of this article, we provide an illustrative example of how to use this function in
practice.
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Fig. 2. Estimated cumulative incidence function for a 30-year-old male patient based on the complete case analysis
(a) and the proposed AIPW approach (b).

The issue of semiparametric analysis of the CIF based on interval-censored competing risks data has
not received much attention in the literature. To the best of our knowledge, only Do and Kim (2017)
and Mao and others (2017) have considered this problem. Do and Kim (2017) utilized Rubin’s MI to
deal with missingness in the framework of the pseudovalue approach for the CIF (Klein and Andersen,
2005). However, Rubin’s MI can provide biased estimates when the imputation model is misspecified.
Our approach possesses the double robustness property and, thus, it is consistent even if the event type
probability model is misspecified, provided that the nonmissingness probability model is correct. Mao
and others (2017) allowed for missing event types in their EM-algorithm-based approach for interval-
censored competing risks data. This approach, unlike our AIPW method, is not readily applicable using
off-the-shelf software and, also, does not explicitly incorporate the nonlinear inequality constraint that
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14 J. PARK AND OTHERS

the sum of the CIFs for all event types is bounded by one, which can lead to nonconvergence problems.
Moreover, the proposals by Do and Kim (2017) and Mao and others (2017) cannot be used with auxiliary
variables, as discussed in Section 1, even though such covariates can be crucial for making the key MAR
assumption more plausible in practice (Collins and others, 2001; Lu and Tsiatis, 2001; Bakoyannis and
others, 2019). In contrast, our AIPW approach can easily incorporate auxiliary variables in the models
for the probability of nonmissingness and the event type probability. The use of auxiliary variables was
illustrated in the HIV data application.

The novelty of our work over that by Bakoyannis and others (2017) is that we allow for missing
event types in the framework of interval-censored competing risks data via a rigorous approach. The
method by Bakoyannis and others (2017) cannot handle missing event types, even in the absence of aux-
iliary variables Ai. This is because, in this case, missingness occurs selectively in the nonright-censored
cases only (i.e. cases with �i = 1), while all the right-censored observations are fully observed. There-
fore, a CC analysis with the method by Bakoyannis and others (2017) would selectively remove cases
with observed events (but with missing event types), and this would lead to selection bias. This was
shown in our simulation studies, where the method by Bakoyannis and others (2017) that discards the
missing event types provided seriously biased estimates. The method proposed in this article addresses
effectively this important practical problem, as shown both theoretically and numerically. Moreover,
the analysis of the motivating HIV data using the method by Bakoyannis and others (2017) (via a CC
analysis) provided substantially different conclusions compared to the proposed AIPW approach, which
highlights the practical significance of our method. From a technical standpoint, our method is different
by virtue of being a two-stage sieve pseudolikelihood approach, where the objective function depends
on the estimated parameters ξ̂n and ψ̂n. In contrast, the approach by Bakoyannis and others (2017) is a
(one-stage) regular sieve likelihood method. Our objective function is a linear combination of the inverse
probability weighted version of the likelihood function and an appropriate function of the conditional
expectation of this likelihood given the fully observed variables. This form of the objective function
was carefully derived in order to obtain a consistent estimator even if either the model for the prob-
ability of missingness or the model for the probability of the event type is misspecified. Last but not
least, we provided a new R function in the intccr package to readily implement the new method in
practice.

In conclusion, we consider the proposedAIPW sieve approach as a robust and flexible analytical method
for the analysis of the CIF based on interval-censored competing risks with missing event types. Interval
censoring and missing event types are common problems which are typically encountered in studies based
on electronic health records and can lead to biased inference, as illustrated in our simulation experiments.
The availability of the ciregic_aipw function in the R package intccr has the potential to increase
the impact of the proposed work in real-life medical research. Currently, the ciregic_aipw function
allows only two event types which is sufficient for many applications. However, we plan to extend the
function to allowing an arbitrary (finite) number of event types in the future.

6. SOFTWARE

Software in the form of R code, together with a sample input data set and complete documentation is
available at https://CRAN.R-project.org/package=intccr.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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