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Abstract
Frequently, clinical trials and observational studies involve complex event
history data with multiple events. When the observations are independent,
the analysis of such studies can be based on standard methods for multistate
models. However, the independence assumption is often violated, such as
in multicenter studies, which makes standard methods improper. This work
addresses the issue of nonparametric estimation and two-sample testing for the
population-averaged transition and state occupation probabilities under general
multistate models with cluster-correlated, right-censored, and/or left-truncated
observations. The proposed methods do not impose assumptions regarding the
within-cluster dependence, allow for informative cluster size, and are applicable
to both Markov and non-Markov processes. Using empirical process theory,
the estimators are shown to be uniformly consistent and to converge weakly to
tight Gaussian processes. Closed-form variance estimators are derived, rigorous
methodology for the calculation of simultaneous confidence bands is proposed,
and the asymptotic properties of the nonparametric tests are established. Fur-
thermore, I provide theoretical arguments for the validity of the nonparametric
cluster bootstrap, which can be readily implemented in practice regardless of
how complex the underlying multistate model is. Simulation studies show that
the performance of the proposed methods is good, and that methods that ignore
the within-cluster dependence can lead to invalid inferences. Finally, the meth-
ods are illustrated using data from a multicenter randomized controlled trial.
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1 INTRODUCTION

Frequently, clinical trials and observational studies involve
complex multistate event histories. An example is can-
cer clinical trials where patient event histories typically
involve three or more clinical states, such as “cancer-free,”
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“cancer,” and “death.” Another example is observational
studies on coronavirus disease 2019 (COVID-19) progres-
sion. In such studies, patients may be hospitalized, then
placed to an intensive care unit, on a ventilator, be
discharged from the hospital, or die. With independent
observations, nonparametric estimation of the transition
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probabilities for such multistate processes can be per-
formed using the Aalen-Johansen estimator (Aalen and
Johansen, 1978). Calculation of confidence bands and
nonparametric two-sample tests can be performed using
the approaches by Bluhmki et al. (2018) and Bakoyannis
(2020), respectively.
The independent observations assumption is often vio-

lated in medical research. This is typical in multicenter
studies, where the events of individuals within the same
center are expected to be associated. Such a multicenter
study was the European Organization for Research and
Treatment of Cancer (EORTC) trial 10854, which evalu-
ated the effectiveness of the combination of surgery with
polychemotherapy compared to surgery alone as a treat-
ment for early breast cancer, and involved 15 hospitals
(ie, centers/clusters). Another example is studies involv-
ing multiple family members. For example, in a study
of COVID-19 progression, members of the same fam-
ily are expected to have correlated outcomes. When the
observations exhibit within-cluster dependence, the tradi-
tional Greenwood standard error estimators for the tran-
sition probabilities, the simultaneous confidence bands
by Bluhmki et al. (2018), and the nonparametric tests by
Bakoyannis (2020) are not valid.
Several parametric methods have been proposed for

the analysis of multistate models based on clustered
observations (Cook et al., 2004; Li and Zhang, 2015;
Yiu et al., 2018). However, these methods impose strong
parametric assumptions about the underlying multi-
state processes that are expected to be violated in prac-
tice. Chen and Zhou (2013) proposed a semiparamet-
ric random-effects approach for cluster-specific infer-
ence about nonhomogeneous Markov processes. This
approach, which also allows for nonignorable missing-
ness, utilizes a Monte Carlo Expectation Maximization
(MCEM) algorithm. Recently, O’Keeffe et al. (2018) pro-
posed a nonparametric approach for cluster-specific infer-
ence based on correlated observations from a general
multistate model. This approach, similar to the Chen
and Zhou (2013) method, accounts for the within-cluster
dependence by incorporating random effects. Estimation
in this case relies on numerical integration. There are no
other nonparametric approaches for clustered multistate
data that utilize random effects that I am aware of. The
current semiparametric and nonparametric proposals for
clustered observations that utilize random effects (Chen
and Zhou, 2013; O’Keeffe et al., 2018) have several limita-
tions. First, they impose strong parametric assumptions on
the random effects. Also, these random effects introduce
only a restrictive positive within-cluster association. Sec-
ond, they tend to be computationally intensive, whichmay
restrict their use with larger data sets. Third, they do not
establish the asymptotic properties of the proposed esti-

mators for the transition probabilities. Moreover, they do
not provide methodology for confidence bands and non-
parametric hypothesis testing. Fourth, they donot consider
the case of informative cluster size (ICS), where there is
an association between cluster size and observed events.
Finally, in many applications, population-averaged infer-
ence is more scientifically relevant than cluster-specific
inference. This is the case with the EORTC trial 10854.
To our knowledge, only Lan et al. (2017) proposed a
method for nonparametric population-averaged inference
about state occupation probabilities in general multistate
models, allowing for ICS. However, this approach is for
current status data and not the usual right-censored or left-
truncated multistate data. Moreover, the asymptotic prop-
erties of this method have not been established, and there
is no methodology for confidence bands and nonparamet-
ric tests.
To the best of my knowledge, the issue of nonparamet-

ric population-averaged inference for event probabilities
in general multistate models with cluster-correlated,
right-censored, and/or left-truncated observations has not
been addressed so far. In this work, I address this issue by
proposing rigorous estimators and methodology for stan-
dard error estimation, simultaneous confidence bands,
and nonparametric two-sample Kolmogorov-Smirnov–
type tests. The asymptotic properties of the proposed
methods are rigorously established using modern empir-
ical process theory and closed-form variance estimators
are provided. In addition, I establish the validity of the
nonparametric cluster bootstrap and show how it can
be used for the calculation of simultaneous confidence
bands and 𝑃-values. This is particularly useful in practice,
since it provides a convenient way to conduct inference
using off-the-shelf software. The proposed methods do not
impose restrictive parametric assumptions or assumptions
regarding the within-cluster dependence. I additionally
allow for ICS and nonhomogeneous processes that are
non-Markov. Simulation studies show that the methods
perform well and that standard methods for independent
observations provide severely under-estimated standard
errors and confidence bands with a poor coverage rate.
Finally, the methods are illustrated using data from the
multicenter EORTC trial 10854.

2 NONPARAMETRIC ESTIMATION

2.1 Nonhomogeneous Markov processes

Consider a Markov multistate process {𝑋(𝑡) ∶ 𝑡 ∈ [0, 𝜏]},
for some 𝜏 < ∞, with a finite set of states  = {1, … , 𝑘}
and a subset  ⊂  that includes the possible absorb-
ing states (eg, death). For situations without absorbing
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states set  = ∅. The Markov assumption will be
relaxed later in Section 2.6. Let �̌�ℎ𝑗(𝑡) be the number
of direct transitions from state ℎ to state 𝑗, for ℎ ≠ 𝑗,
which occurred by time 𝑡 (in the absence of right
censoring and left truncation). Also, let �̌�ℎ(𝑡) be the
at-risk process for state ℎ, with �̌�ℎ(𝑡) = 1 if the process
is at state ℎ just before time 𝑡, and �̌�ℎ(𝑡) = 0 otherwise.
A key quantity of interest is the transition probability
which is defined as �̃�0,ℎ𝑗(𝑠, 𝑡) = Pr(𝑋(𝑡) = 𝑗|𝑋(𝑠) =
ℎ,𝑠−) = Pr(𝑋(𝑡) = 𝑗|𝑋(𝑠) = ℎ), ℎ, 𝑗 ∈  , 0 ≤ 𝑠 < 𝑡 ≤ 𝜏,
where 𝑠− = 𝜎⟨{�̌�ℎ𝑗(𝑢) ∶ 0 ≤ 𝑢 < 𝑠, ℎ ≠ 𝑗}⟩ is the event
history prior to time 𝑠. The subindex 0 is used to indi-
cate the true (unknown) parameter value. Note that
the conditional independence from the prior history
𝑠− above is the Markov assumption. Another key
quantity is the cumulative transition intensity which is
defined as �̃�0,ℎ𝑗(𝑡) = ∫

𝑡

0

𝑑𝐸�̌�ℎ𝑗(𝑢)

𝐸�̌�ℎ(𝑢)
, ℎ ≠ 𝑗, 𝑡 ∈ [0, 𝜏], with

�̃�0,ℎℎ(𝑡) = −
∑
𝑗≠ℎ �̃�0,ℎ𝑗(𝑡), by the Kolmogorov forward

equation (Aalen et al., 2008). The 𝑘 × 𝑘 matrix �̃�0(𝑠, 𝑡),
0 ≤ 𝑠 < 𝑡 ≤ 𝜏, of transition probabilities can be defined
based on the 𝑘 × 𝑘 matrix �̃�0(𝑡) of cumulative transition
intensities as �̃�0(𝑠, 𝑡) = �(𝑠,𝑡]{𝐈𝑘 + 𝑑�̃�0(𝑢)}, where� is the
product integral and 𝐈𝑘 is the 𝑘 × 𝑘 identitymatrix. Finally,
the state occupation probability is defined as �̃�0,𝑗(𝑡) =
Pr(𝑋(𝑡) = 𝑗) =

∑
ℎ∈ 𝑐 �̃�0,ℎ(0)�̃�0,ℎ𝑗(0, 𝑡), 𝑗 ∈  , 𝑡 ∈ [0, 𝜏].

2.2 Clustered observations

Suppose that a study involves 𝑛 clusters of observa-
tions of the Markov process {𝑋(𝑡) ∶ 𝑡 ∈ [0, 𝜏]}, with 𝑀𝑖
observations in the 𝑖th cluster. The observable data are
the possibly right-censored and/or left-truncated count-
ing processes {𝑁𝑖𝑚,ℎ𝑗(𝑡) ∶ ℎ ≠ 𝑗, 𝑡 ∈ [0, 𝜏]} and at-risk pro-
cesses {𝑌𝑖𝑚,ℎ(𝑡) ∶ ℎ ∈  𝑐, 𝑡 ∈ [0, 𝜏]}, for 𝑖 = 1, … , 𝑛 and
𝑚 = 1,… ,𝑀𝑖 . The process 𝑁𝑖𝑚,ℎ𝑗(𝑡) represents the num-
ber of observed direct transitions from state ℎ to state
𝑗, ℎ ≠ 𝑗, in [0, 𝑡] (which occurred after the left trunca-
tion time and prior to the right censoring time), for the
𝑚th observation in the 𝑖th cluster. The process 𝑌𝑖𝑚,ℎ(𝑡)
is equal to 1 if the 𝑚th observation in the 𝑖th cluster
is at state ℎ and under observation just before time 𝑡,
and 𝑌𝑖𝑚,ℎ(𝑡) = 0 otherwise. The corresponding complete
(ie, not right-censored and not left-truncated) counter-
parts are denoted as �̌�𝑖𝑚,ℎ𝑗(𝑡) and �̌�𝑖𝑚,ℎ(𝑡). The processes
{
∑𝑀𝑖
𝑚=1

𝑁𝑖𝑚,ℎ𝑗(𝑡) ∶ ℎ ≠ 𝑗, 𝑡 ∈ [0, 𝜏]} and {
∑𝑀𝑖
𝑚=1

𝑌𝑖𝑚,ℎ(𝑡) ∶

ℎ ∈  𝑐, 𝑡 ∈ [0, 𝜏]} are assumed i.i.d. across clusters. How-
ever, an arbitrary within-cluster dependence for the indi-
vidual observations is allowed. In this article, it is assumed
that the cluster sizes𝑀𝑖 , 𝑖 = 1, … , 𝑛 are either constant or
i.i.d. random positive integers. Furthermore, for the lat-
ter case, the counting and at-risk processes are allowed

to depend on cluster size𝑀𝑖 (informative or nonignorable
cluster size). For the sake of generality,𝑀𝑖 is treated as ran-
dom and informative in this article. However, the methods
presented here are trivially applicable to simpler situations
where cluster size𝑀𝑖 is either noninformative or fixed. The
right censoring and left truncation times are assumed to be
independent of bothmultistate process of interest and clus-
ter size 𝑀𝑖 . Also, the main i.i.d. observations assumption
implies that, marginally, censoring and truncations times
are i.i.d. across clusters. However, between-cluster hetero-
geneity (eg, different hospitals canhave different censoring
distributions, conditionally on some hospital-specific ran-
domeffect) and an arbitrarywithin-cluster dependence are
allowed for censoring and truncation.
When cluster size is random and informative, there

are typically two populations of interest (Seaman et al.,
2014). The first one is the population of all cluster mem-
bers (ACM), eg, the population of all teeth in dental stud-
ies or the population of all patients in multicenter stud-
ies. Larger clusters are overrepresented in this popula-
tion. The second is the population of typical cluster mem-
bers (TCM). This population is formed by selecting one
representative member from each cluster (eg, a typical
tooth from each patient in dental studies or a typical
patient from each center in multicenter studies). Thus,
each cluster is equally represented in this population. The
population-averaged state occupation probabilities over
the ACM population are defined, similar to marginal gen-
eralized linear models (Seaman et al., 2014), as 𝑃0,𝑗(𝑡) =
𝐸{𝑀1𝐼(𝑋1𝑚(𝑡)=𝑗)}

𝐸𝑀1
, 𝑗 ∈  , 𝑡 ∈ [0, 𝜏], for a randomly selected

cluster member 𝑚. These can be seen as weighted aver-
ages where larger clusters have a larger influence on
these probabilities. The population-averaged state occupa-
tion probabilities over the TCM population are defined as
𝑃′
0,𝑗
(𝑡) = 𝐸𝐼(𝑋1𝑚(𝑡) = 𝑗), 𝑗 ∈  , for a randomly selected

cluster member 𝑚. In this case, all clusters contribute
a single (randomly selected) member and, therefore, all
clusters have the same weight on the resulting proba-
bilities. The two versions of population-averaged tran-
sition probabilities can be defined similarly. This leads
to the population-averaged cumulative transition inten-
sities 𝐴0,ℎ𝑗(𝑡) = ∫

𝑡

0

𝑑𝐸{𝑀1�̌�1𝑚,ℎ𝑗(𝑢)}

𝐸{𝑀1�̌�1𝑚,ℎ(𝑢)}
, ℎ ≠ 𝑗, with 𝐴0,ℎℎ(𝑡) =

−
∑
𝑗≠ℎ 𝐴0,ℎ𝑗(𝑡), and 𝐴

′
0,ℎ𝑗
(𝑡) = ∫

𝑡

0

𝑑𝐸�̌�1𝑚,ℎ𝑗(𝑢)

𝐸�̌�1𝑚,ℎ(𝑢)
, ℎ ≠ 𝑗, with

𝐴′
0,ℎℎ
(𝑡) = −

∑
𝑗≠ℎ 𝐴

′
0,ℎ𝑗
(𝑡). Based on the corresponding

matrices 𝐀0(𝑡) and 𝐀′0(𝑡), the population-averaged transi-
tion probability matrices can be expressed as the product
integrals (by the Kolmogorov forward equations)𝐏0(𝑠, 𝑡) =
�(𝑠,𝑡]{𝐈𝑘 + 𝑑𝐀0(𝑢)} and 𝐏

′
0(𝑠, 𝑡) = �(𝑠,𝑡]{𝐈𝑘 + 𝑑𝐀

′
0(𝑢)}, 0 ≤

𝑠 ≤ 𝑡 ≤ 𝜏. If cluster size is either noninformative or con-
stant then 𝐏0 = 𝐏′0 and 𝑃0,𝑗 = 𝑃

′
0,𝑗
, for 𝑗 ∈  . However,

if cluster size is informative, it is expected that 𝐏0 ≠ 𝐏′0
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and 𝑃0,𝑗 ≠ 𝑃′0,𝑗 , 𝑗 ∈  . If the probability of a particular
event over the ACM population is higher (lower) than the
probability of that event over the TCMpopulation, then the
proportion of this event is larger (smaller) in larger clus-
ters. This is because a population-averaged probability over
the ACM population is dominated by larger clusters under
ICS. Depending on the setting, the difference between
the two probabilities may be attributed to systematic dif-
ferences in important individuals’ characteristics between
larger and smaller clusters of observations. For example, in
multicenter studies, patients with more advanced disease,
and thus more prone to poor health outcomes, may tend
to choose (or be advised to attend) larger clinics. When
clusters are health care facilities or providers, another
reason for the difference between the two population-
averaged probabilities may be systematic differences in
the performance of facilities or providers with more
patients.
In the EORTC 10854 trial, the population-averaged prob-

abilities of cancer and death over the ACM population
provide information about the effectiveness of the com-
bined intervention on a typical patient from the population
of all patients. In these probabilities, hospitals with more
patients are naturally overweighted as they account for a
larger portion of patients in the population. On the other
hand, the population-averaged probabilities over the TCM
population provide information about the effectiveness of
the combined intervention on a typical patient from a typ-
ical hospital setting. These probabilities weight each hospi-
tal equally and, thus, they are not dominated by hospitals
withmore patients, whichmay have different performance
and/or patient characteristics compared to those with less
patients. Thus, they provide information about effective-
ness on a typical patient from an average performing
hospital.

2.3 Estimation of transition
probabilities

To nonparametrically estimate the population-averaged
transition probability matrices 𝐏0 and 𝐏′0, we first esti-
mate the population-averaged cumulative transition
intensity matrices 𝐀0 and 𝐀′0, and then utilize the rela-
tionships 𝐏0(𝑠, 𝑡) = �(𝑠,𝑡]{𝐈𝑘 + 𝑑𝐀0(𝑢)} and 𝐏′0(𝑠, 𝑡) =

�(𝑠,𝑡]{𝐈𝑘 + 𝑑𝐀′0(𝑢)}, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝜏. Let 𝑁𝑖⋅,ℎ𝑗(𝑡) ≡∑𝑀𝑖
𝑚=1

𝑁𝑖𝑚,ℎ𝑗(𝑡), for ℎ ≠ 𝑗, and 𝑌𝑖⋅,ℎ(𝑡) ≡
∑𝑀𝑖
𝑚=1

𝑌𝑖𝑚,ℎ(𝑡),
for ℎ ∈  𝑐. In Web Appendix B.2, it is shown that
𝐴0,ℎ𝑗(𝑡) = ∫

𝑡

0

𝑑𝐸𝑁1⋅,ℎ𝑗(𝑢)

𝐸𝑌1⋅,ℎ(𝑢)
, ℎ ≠ 𝑗. Therefore, a natural esti-

mator of 𝐴0,ℎ𝑗(𝑡) is �̂�𝑛,ℎ𝑗(𝑡) = ∫
𝑡

0

𝑑{
∑𝑛
𝑖=1 𝑁𝑖⋅,ℎ𝑗(𝑢)}∑𝑛
𝑖=1 𝑌𝑖⋅,ℎ(𝑢)

, ℎ ≠ 𝑗,

𝑡 ∈ [0, 𝜏]. Similar arguments lead to the conclusion that

𝐴′
0,ℎ𝑗
(𝑡) = ∫

𝑡

0

𝑑𝐸{𝑀−1
𝑖
𝑁𝑖⋅,ℎ𝑗(𝑢)}

𝐸{𝑀−1
𝑖
𝑌𝑖⋅,ℎ(𝑢)}

, ℎ ≠ 𝑗, and thus a natural

nonparametric estimator of 𝐴′
0,ℎ𝑗
(𝑡) is �̂�′

𝑛,ℎ𝑗
(𝑡) =

∫
𝑡

0

𝑑{
∑𝑛
𝑖=1 𝑀

−1
𝑖
𝑁𝑖⋅,ℎ𝑗(𝑢)}∑𝑛

𝑖=1 𝑀
−1
𝑖
𝑌𝑖⋅,ℎ(𝑢)

, ℎ ≠ 𝑗, 𝑡 ∈ [0, 𝜏]. Then, the pro-

posed plug-in estimators of 𝐏0 and 𝐏′0 are �̂�𝑛(𝑠, 𝑡) =
�(𝑠,𝑡]{𝐈𝑘 + 𝑑�̂�𝑛(𝑢)} and �̂�′𝑛(𝑠, 𝑡) = �(𝑠,𝑡]{𝐈𝑘 + 𝑑�̂�

′
𝑛(𝑢)},

where �̂�𝑛(𝑡) and �̂�′𝑛(𝑡) are the 𝑘 × 𝑘 matrices with
off-diagonal elements �̂�𝑛,ℎ𝑗(𝑡) and �̂�′𝑛,ℎ𝑗(𝑡), and diag-
onal elements −

∑
𝑗≠ℎ �̂�𝑛,ℎ𝑗(𝑡) and −

∑
𝑗≠ℎ �̂�

′
𝑛,ℎ𝑗
(𝑡),

ℎ = 1,… , 𝑘, respectively. In the special case with fixed
cluster size, �̂�𝑛 = �̂�′𝑛. The estimator �̂�𝑛 can be seen as the
working independence Aalen-Johansen estimator. We call
�̂�′𝑛 the weighted by cluster size working independence
Aalen-Johansen estimator. The following theorem states
the uniform consistency of �̂�𝑛 and �̂�′𝑛.

Theorem 1. Suppose that conditions C1 to C5 in Web
Appendix B.1 hold and define the norm ‖𝐀‖ = sup𝑙

∑
𝑟
|𝑎𝑙𝑟|

for some matrix 𝐀 = [𝑎𝑙𝑟]. Then, for any 𝑠 ∈ [0, 𝜏], as
𝑛 → ∞

sup
𝑡∈[𝑠,𝜏]

‖‖‖�̂�𝑛(𝑠, 𝑡) − 𝐏0(𝑠, 𝑡)
‖‖‖
𝑎𝑠∗
→ 0 and

sup
𝑡∈[𝑠,𝜏]

‖‖‖�̂�
′
𝑛(𝑠, 𝑡) − 𝐏

′
0(𝑠, 𝑡)

‖‖‖
𝑎𝑠∗
→ 0.

The proof of Theorem 1 can be found in Web Appendix
B.2. Note that, even though the standard Aalen-Johansen
estimator is consistent for𝐏0, the usual standard error esti-
mators are invalid with clustered data as they ignore the
within-cluster dependence.
Next, the asymptotic distributions of the estima-

tors are studied. Let 𝛾𝑖ℎ𝑗(𝑠, 𝑡) and 𝛾′
𝑖ℎ𝑗
(𝑠, 𝑡) denote

the influence functions of the estimators �̂�𝑛,ℎ𝑗(𝑠, 𝑡)
and �̂�′

𝑛,ℎ𝑗
(𝑠, 𝑡), 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝜏, respectively. Explicit for-

mulas for the influence functions are provided in
Web Appendix A. Next, define the estimated process
�̂�𝑛,ℎ𝑗(𝑠, ⋅) = 𝑛

−1∕2∑𝑛

𝑖=1
�̂�𝑖ℎ𝑗(𝑠, ⋅)𝜉𝑖 , for ℎ ∈  𝑐 and 𝑗 ∈  ,

where 𝜉𝑖 , 𝑖 = 1, … , 𝑛, are i.i.d. standard normal random
variables, and �̂�𝑖ℎ𝑗(𝑠, ⋅) is the estimated version of 𝛾𝑖ℎ𝑗(𝑠, ⋅)
(see Web Appendix A for details). Similarly, define the
estimated process �̂�′

𝑛,ℎ𝑗
(𝑠, ⋅) = 𝑛−1∕2

∑𝑛

𝑖=1
�̂�′
𝑖ℎ𝑗
(𝑠, ⋅)𝜉𝑖 , for

ℎ ∈  𝑐 and 𝑗 ∈  . These estimated processes will be used
for the calculation of simultaneous confidence bands. An
alternative method for inference is the nonparametric
cluster bootstrap. Calculation of a bootstrap version of �̂�𝑛
and �̂�′𝑛, denoted by �̂�∗𝑛 and �̂�′∗𝑛 , respectively, can be easily
performed by randomly sampling 𝑛 clusters with replace-
ment from the original data set, and then calculating
the proposed estimators based on the resulting bootstrap
data set.
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Theorem 2. Suppose that conditions C1 to C6 in Web
Appendix B.1 hold. Then, for any ℎ ∈  𝑐, 𝑗 ∈  , and 𝑠 ∈
[0, 𝜏),

(i)
√
𝑛{�̂�𝑛,ℎ𝑗(𝑠, 𝑡) − 𝑃0,ℎ𝑗(𝑠, 𝑡)} = 𝑛

−1∕2∑𝑛

𝑖=1
𝛾𝑖ℎ𝑗(𝑠, 𝑡) +

𝑜𝑝(1) and
√
𝑛{�̂�′

𝑛,ℎ𝑗
(𝑠, 𝑡) − 𝑃′

0,ℎ𝑗
(𝑠, 𝑡)} =

𝑛−1∕2
∑𝑛

𝑖=1
𝛾′
𝑖ℎ𝑗
(𝑠, 𝑡) + 𝑜𝑝(1), 𝑡 ∈ [𝑠, 𝜏]. Moreover,

the classes of functions {𝛾𝑖ℎ𝑗(𝑠, 𝑡) ∶ 𝑡 ∈ [𝑠, 𝜏]} and
{𝛾′
𝑖ℎ𝑗
(𝑠, 𝑡) ∶ 𝑡 ∈ [𝑠, 𝜏]} are 𝑃-Donsker;

(ii) �̂�ℎ𝑗(𝑠, ⋅) ⇝ 𝔾ℎ𝑗(𝑠, ⋅) and
√
𝑛{�̂�∗

𝑛,ℎ𝑗
(𝑠, ⋅) −

�̂�𝑛,ℎ𝑗(𝑠, ⋅)} ⇝ 𝔾ℎ𝑗(𝑠, ⋅) in 𝐷[𝑠, 𝜏], conditionally on
the observed data, where 𝔾ℎ𝑗(𝑠, ⋅) is the limiting
process of

√
𝑛{�̂�𝑛,ℎ𝑗(𝑠, ⋅) − 𝑃0,ℎ𝑗(𝑠, ⋅)};

(iii) �̂�′
ℎ𝑗
(𝑠, ⋅) ⇝ 𝔾′

ℎ𝑗
(𝑠, ⋅) and

√
𝑛{�̂�′∗

𝑛,ℎ𝑗
(𝑠, ⋅) −

�̂�′
𝑛,ℎ𝑗
(𝑠, ⋅)} ⇝ 𝔾′

ℎ𝑗
(𝑠, ⋅) in 𝐷[𝑠, 𝜏], conditionally on

the observed data, where 𝔾′
ℎ𝑗
(𝑠, ⋅) is the limiting

process of
√
𝑛{�̂�′

𝑛,ℎ𝑗
(𝑠, ⋅) − 𝑃′

0,ℎ𝑗
(𝑠, ⋅)}.

The proof of Theorem 2 can be found in Web
Appendix B.3. In Web Appendix B.5, condition C6 is
relaxed. By Theorem 2,

√
𝑛{�̂�𝑛,ℎ𝑗(𝑠, ⋅) − 𝑃0,ℎ𝑗(𝑠, ⋅)} and√

𝑛{�̂�𝑛,ℎ𝑗(𝑠, ⋅) − 𝑃0,ℎ𝑗(𝑠, ⋅)} converge weakly to the mean-
zero Gaussian processes 𝔾ℎ𝑗(𝑠, ⋅) and 𝔾′ℎ𝑗(𝑠, ⋅), respec-
tively. The covariance functions of 𝔾ℎ𝑗(𝑠, ⋅) and 𝔾′ℎ𝑗(𝑠, ⋅)
at the time points 𝑡1 and 𝑡2 are 𝐸{𝛾1ℎ𝑗(𝑠, 𝑡1)𝛾1ℎ𝑗(𝑠, 𝑡2)} and
𝐸{𝛾′

1ℎ𝑗
(𝑠, 𝑡1)𝛾

′
1ℎ𝑗
(𝑠, 𝑡2)}. These covariance functions can be

consistently estimated by 𝑛−1
∑𝑛

𝑖=1
�̂�𝑖ℎ𝑗(𝑠, 𝑡1)�̂�𝑖ℎ𝑗(𝑠, 𝑡2) and

𝑛−1
∑𝑛

𝑖=1
�̂�′
𝑖ℎ𝑗
(𝑠, 𝑡1)�̂�

′
𝑖ℎ𝑗
(𝑠, 𝑡2), respectively. Theorem 2 also

implies that the asymptotic distributions of the estima-
tors can be easily approximated by generating realizations
of the processes �̂�ℎ𝑗(𝑠, ⋅) and �̂�′ℎ𝑗(𝑠, ⋅) (through simulat-
ing a large number of sets of standard normal variates
{𝜉𝑖}

𝑛
𝑖=1
) or by cluster bootstrap realizations

√
𝑛{�̂�∗

𝑛,ℎ𝑗
(𝑠, ⋅) −

�̂�𝑛,ℎ𝑗(𝑠, ⋅)} and
√
𝑛{�̂�′∗

𝑛,ℎ𝑗
(𝑠, ⋅) − �̂�′

𝑛,ℎ𝑗
(𝑠, ⋅)}.

These results can be used for the calculation of point-
wise confidence intervals and simultaneous confidence
bands. For these procedures consider a differentiable
transformation 𝑔, such as 𝑔(𝑥) = log{− log(𝑥)}, to ensure
that the limits of the confidence interval and the confi-
dence band lie in the interval (0,1). For the calculation
of confidence bands for 𝑃0,ℎ𝑗(𝑠, ⋅), ℎ ∈  𝑐, 𝑗 ∈  , and
𝑠 ∈ [0, 𝜏), it is useful to consider a weight function �̂�ℎ𝑗(𝑠, 𝑡)
that converges uniformly (in probability) to a bounded
nonnegative function on an interval [𝑡1, 𝑡2] ⊂ [𝑠, 𝜏]. A
choice is �̂�ℎ𝑗(𝑠, 𝑡) = {1 + 𝑛−1

∑𝑛

𝑖=1 �̂�1ℎ𝑗(𝑠, 𝑡)
2}−1, where,

as argued above, 𝑛−1
∑𝑛

𝑖=1
�̂�1ℎ𝑗(𝑠, ⋅)

2 is consistent for the
true asymptotic variance of

√
𝑛{�̂�𝑛,ℎ𝑗(𝑠, ⋅) − 𝑃0,ℎ𝑗(𝑠, ⋅)}.

By Theorem 2, the functional delta method, and
the continuous mapping theorem it follows that

sup𝑡∈[𝑡1,𝑡2] |
√
𝑛�̂�ℎ𝑗(𝑠, 𝑡){𝑔(�̂�𝑛,ℎ𝑗(𝑠, 𝑡)) − 𝑔(𝑃0,ℎ𝑗(𝑠, 𝑡))}|

and sup𝑡∈[𝑡1,𝑡2] |�̂�ℎ𝑗(𝑠, 𝑡)�̇�(�̂�𝑛,ℎ𝑗(𝑠, 𝑡))
√
𝑛{�̂�𝑛,ℎ𝑗(𝑠, 𝑡)) −

𝑃0,ℎ𝑗(𝑠, 𝑡)}|, have the same asymptotic distribution.
The 1 − 𝛼 percentile of this distribution, denoted
by 𝑐𝛼, can be estimated as the sample percentile
𝑐𝛼 of a large number of simulation realizations of
the process sup𝑡∈[𝑡1,𝑡2] |�̂�ℎ𝑗(𝑠, 𝑡)�̇�(�̂�𝑛,ℎ𝑗(𝑠, 𝑡))�̂�ℎ𝑗(𝑠, 𝑡)|.
Alternatively, one can use cluster bootstrap realiza-
tions sup𝑡∈[𝑡1,𝑡2] |�̂�ℎ𝑗(𝑠, 𝑡)�̇�(�̂�𝑛,ℎ𝑗(𝑠, 𝑡))

√
𝑛{�̂�∗

𝑛,ℎ𝑗
(𝑠, 𝑡) −

�̂�𝑛,ℎ𝑗(𝑠, 𝑡)}|. Based on this 𝑐𝛼, a 1 − 𝛼 simul-
taneous confidence band can be calculated as
𝑔−1{𝑔(�̂�𝑛,ℎ𝑗(𝑠, 𝑡)) ±

𝑐𝛼√
𝑛�̂�ℎ𝑗(𝑠,𝑡)

}, 𝑡 ∈ [𝑡1, 𝑡2]. In general,

simultaneous confidence bands can be unstable toward
the earlier or later times of the observation interval (Nair,
1984). To avoid this issue in practice it is suggested to
restrict the domain of the confidence band to a set with
limits the 10th and 90th or the 5th and 95th percentile of
the distribution of transition times from state ℎ to state
𝑗. Calculation of confidence bands for 𝑃′

0,ℎ𝑗
(𝑠, ⋅) can be

performed similarly.

2.4 Estimation of state occupation
probabilities

Natural estimators of the state occupation probabili-

ties 𝑃0,𝑗(𝑡) and 𝑃′0,𝑗(𝑡) are �̂�𝑛,𝑗(𝑡) =
∑
ℎ∈ 𝑐 {

∑𝑛
𝑖=1 𝑌𝑖⋅,ℎ(0+)

�̂�𝑛
∑𝑛
𝑖=1 𝑀𝑖

}

�̂�𝑛,ℎ𝑗(0, 𝑡), 𝑗 ∈  , where �̂�𝑛 = 𝑛
−1∑𝑛

𝑖=1 𝑀
−1
𝑖

∑
ℎ∈ 𝑐

𝑌𝑖⋅,ℎ(0+), and �̂�′𝑛,𝑗(𝑡) =
∑
ℎ∈ 𝑐 {

∑𝑛
𝑖=1 𝑀

−1
𝑖
𝑌𝑖⋅,ℎ(0+)

𝑛�̂�𝑛
} �̂�′
𝑛,ℎ𝑗
(0, 𝑡),

𝑗 ∈  . In these estimators, �̂�𝑛 is a consistent estimator of
the probability of being under observation at time 𝑡 = 0,
denoted as 𝜋0. Here, it is also assumed that 𝜋0 > 0. In
the absence of left truncation �̂�𝑛 = 𝜋0 = 1. In the special
case with fixed cluster size, �̂�𝑛,𝑗 = �̂�′𝑛,𝑗 , 𝑗 ∈  . Based on
Theorem 1, it can be easily shown that �̂�𝑛,𝑗(𝑡) and �̂�′𝑛,𝑗(𝑡)
are uniformly consistent.
In light of Theorem 2, the state occupation proba-

bility estimators are asymptotically linear of the form√
𝑛{�̂�𝑛,𝑗(𝑡) − 𝑃0,𝑗(𝑡)} =

1√
𝑛

∑𝑛

𝑖=1
𝜓𝑖𝑗(𝑡) + 𝑜𝑝(1), 𝑗 ∈  , 𝑡 ∈

[0, 𝜏] and
√
𝑛{�̂�′

𝑛,𝑗
(𝑡) − 𝑃′

0,𝑗
(𝑡)} =

1√
𝑛

∑𝑛

𝑖=1
𝜓′
𝑖𝑗
(𝑡) + 𝑜𝑝(1),

𝑗 ∈  , 𝑡 ∈ [0, 𝜏], where the influence functions 𝜓𝑖𝑗(𝑡) and
𝜓′
𝑖𝑗
(𝑡) are provided in Web Appendix A. It follows that,√
𝑛(�̂�𝑛,𝑗 − 𝑃0,𝑗) and

√
𝑛(�̂�′

𝑛,𝑗
− 𝑃′

0,𝑗
) converge weakly to

zero-mean Gaussian processes, with covariance functions
𝐸{𝜓𝑖𝑗(𝑡1)𝜓𝑖𝑗(𝑡2)} and 𝐸{𝜓′𝑖𝑗(𝑡1)𝜓

′
𝑖𝑗
(𝑡2)}, for 𝑡1, 𝑡2 ∈ [0, 𝜏].

As with the case of transition probabilities, the estimated
influence functions can be used to consistently estimate
these covariance functions. Moreover, the estimated
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processes 𝑛−1∕2
∑𝑛

𝑖=1
�̂�𝑖𝑗(⋅)𝜉𝑖 and 𝑛−1∕2

∑𝑛

𝑖=1
�̂�′
𝑖𝑗
(⋅)𝜉𝑖

and the cluster bootstrap processes
√
𝑛(�̂�∗

𝑛,𝑗
− �̂�𝑛,𝑗) and√

𝑛(�̂�′∗
𝑛,𝑗
− �̂�′

𝑛,𝑗
) can be used to calculate confidence bands,

as described for the transition probabilities.

2.5 Two-sample
Kolmogorov-Smirnov–type tests

In many settings, the scientific interest is on comparing
the transition probabilities for a particular transition, or
the state occupation probabilities for a particular state,
between two groups, say groups 1 and 2. For example, con-
sider a multicenter randomized controlled trial where the
goal is to assess whether the probability of cancer relapse
differs between those receiving an experimental treatment
and those receiving a control treatment. Depending on
what is themost relevant population-averaged quantity for
the given context, the null hypothesis in terms of the tran-
sition probability is either 𝐻0 ∶ 𝑃0,1ℎ𝑗(𝑠, ⋅) = 𝑃0,2ℎ𝑗(𝑠, ⋅) or
𝐻0 ∶ 𝑃

′
0,1ℎ𝑗

(𝑠, ⋅) = 𝑃′
0,2ℎ𝑗

(𝑠, ⋅), for some 𝑠 ∈ [0, 𝜏). In terms
of the state occupation probability, the null hypothesis
is either 𝐻0 ∶ 𝑃0,1𝑗 = 𝑃0,2𝑗 or 𝐻0 ∶ 𝑃′0,1𝑗 = 𝑃

′
0,2𝑗

. Let 𝑀1𝑖
and 𝑀2𝑖 be the number of observations from the 𝑖th clus-
ter, which belong to groups 1 and 2, respectively, with
𝑀1𝑖 + 𝑀2𝑖 = 𝑀𝑖 , 𝑖 = 1, … , 𝑛. Here, the situation where
min(𝑀1𝑖,𝑀2𝑖) > 0 is considered, that is each cluster con-
tains at least one observation from both groups. Finally,
let 𝑁𝑖𝑝𝑚,ℎ𝑗(𝑡), ℎ ≠ 𝑗, and 𝑌𝑖𝑝𝑚,ℎ(𝑡), ℎ ∈  𝑐 be the count-
ing and at-risk processes for the𝑚th observation in the𝑝th
group in the 𝑖th cluster.
Based on this setup, define the estimators of the point-

wise between-group difference of the transition probabil-
ities as Δ̂𝑛,ℎ𝑗(𝑠, 𝑡) = {�̂�𝑛,1ℎ𝑗(𝑠, 𝑡) − �̂�𝑛,2ℎ𝑗(𝑠, 𝑡)}, 𝑡 ∈ [𝑠, 𝜏],
where �̂�𝑛,𝑝ℎ𝑗 , 𝑝 = 1, 2, is the estimator of 𝑃0,𝑝ℎ𝑗 from
the 𝑝th group and Δ̂′

𝑛,ℎ𝑗
(𝑠, 𝑡) = {�̂�′

𝑛,1ℎ𝑗
(𝑠, 𝑡) − �̂�′

𝑛,2ℎ𝑗
(𝑠, 𝑡)},

𝑡 ∈ [𝑠, 𝜏], where �̂�′
𝑛,𝑝ℎ𝑗

, 𝑝 = 1, 2, is the estimator of 𝑃′
0,𝑝ℎ𝑗

from the 𝑝th group, for some 𝑠 ∈ [0, 𝜏). Similarly, define
the differences between the population-averaged state
occupation probabilities as Δ̂𝑛,𝑗(𝑡) = {�̂�𝑛,1𝑗(𝑡) − �̂�𝑛,2𝑗(𝑡)},
𝑡 ∈ [0, 𝜏], where �̂�𝑛,𝑝𝑗 , 𝑝 = 1, 2, is the estimator of 𝑃0,𝑝𝑗
from the 𝑝th group, and Δ̂′

𝑛,𝑗
(𝑡) = {�̂�′

𝑛,1𝑗
(𝑡) − �̂�′

𝑛,2𝑗
(𝑡)},

𝑡 ∈ [0, 𝜏], where �̂�′
𝑛,𝑝𝑗

, 𝑝 = 1, 2, is the estimator of
𝑃′
0,𝑝𝑗

from the 𝑝th group. The corresponding non-
parametric cluster bootstrap realizations of the above
differences are denoted by Δ̂∗

𝑛,ℎ𝑗
(𝑠, 𝑡), Δ̂′∗

𝑛,ℎ𝑗
(𝑠, 𝑡), Δ̂∗

𝑛,𝑗
(𝑡),

and Δ̂′∗
𝑛,𝑗
(𝑡). It is important to note that these non-

parametric cluster bootstrap realizations are generated
by randomly sampling 𝑛 clusters with replacement,
as described in Sections 2.3. Based on these dif-
ferences, define the Kolmogorov-Smirnov–type test

statistics 𝐾𝑛,ℎ𝑗(𝑠) = sup𝑡∈[𝑠,𝜏] |�̂�ℎ𝑗(𝑡)Δ̂𝑛,ℎ𝑗(𝑠, 𝑡)|, for some
appropriate weight function �̂�ℎ𝑗(𝑡) and some 𝑠 ∈ [0, 𝜏),
and 𝐾𝑛,𝑗 = sup𝑡∈[0,𝜏] |�̂�𝑗(𝑡)Δ̂𝑛,𝑗(𝑡)|. The corresponding
tests for Δ̂′

𝑛,ℎ𝑗
(𝑠, 𝑡) and Δ̂′

𝑛,𝑗
(𝑡), denoted by 𝐾′

𝑛,ℎ𝑗
(𝑠) and

𝐾′
𝑛,𝑗
, are defined in the same manner. The weights

�̂�ℎ𝑗(𝑡), �̂�′
ℎ𝑗
(𝑡), �̂�𝑗(𝑡), and �̂�′

𝑗
(𝑡) are assumed to be

uniformly consistent (in probability) for the nonneg-
ative and uniformly bounded fixed functions 𝑊ℎ𝑗(𝑡),
𝑊′
ℎ𝑗
(𝑡), 𝑊𝑗(𝑡), and 𝑊′

𝑗
(𝑡). The importance of the weight

functions lies on the fact that they can restrict the com-
parison interval to a set of times where both groups
under comparison have nonzero observations at risk
for the transition of interest. An example of such a
weight function is �̂�ℎ𝑗(𝑡) = 𝐼[

∏
𝑙∈𝐿(ℎ,𝑗) �̄�1,𝑙(𝑡)�̄�2,𝑙(𝑡) > 0],

where 𝐿(ℎ, 𝑗) = {𝑑 ∈  ∶ 𝑑 is a transient state that
can be visited during the transition ℎ → 𝑗} and
�̄�𝑝,ℎ(𝑡) = 𝑛

−1
𝑝

∑𝑛𝑝
𝑖=1
𝑌𝑝𝑖⋅,ℎ(𝑡), for the group 𝑝 = 1, 2, with

𝑌𝑝𝑖⋅,ℎ(𝑡) denoting the sum of the at-risk process for state ℎ
in the 𝑖th cluster and the 𝑝th group. Similarly, this type of
weight can be defined for the state occupation probabilities
as �̂�𝑗(𝑡) = 𝐼[

∏
𝑙∈∪ℎ∈ 𝑐 𝐿(ℎ,𝑗)

�̄�1,𝑙(𝑡)�̄�2,𝑙(𝑡) > 0]. Theweights
�̂�′
ℎ𝑗
(𝑡) and �̂�′

𝑗
(𝑡) are defined similarly. The weight func-

tions can also be used to assign less weight to observation
times with a smaller number of observations, where the
estimated difference tends to be unstable. An example

of such weight functions is �̂�ℎ𝑗(𝑡) =
∏
𝑙∈𝐿(ℎ,𝑗) �̄�1,𝑙(𝑡)�̄�2,𝑙(𝑡)∑
𝑙∈𝐿(ℎ,𝑗){�̄�1,𝑙(𝑡)+�̄�2,𝑙(𝑡)}

and �̂�𝑗(𝑡) =
∏
𝑙∈∪ℎ∈ 𝑐 𝐿(ℎ,𝑗)

�̄�1,𝑙(𝑡)�̄�2,𝑙(𝑡)
∑
𝑙∈∪ℎ∈ 𝑐 𝐿(ℎ,𝑗)

{�̄�1,𝑙(𝑡)+�̄�2,𝑙(𝑡)}
. The corresponding

weights �̂�′
ℎ𝑗
(𝑡) and �̂�′

𝑗
(𝑡) can be similarly defined by

replacing �̄�𝑝,ℎ(𝑡)with 𝑛−1𝑝
∑𝑛𝑝
𝑖=1
𝑀−1
𝑝𝑖
𝑌𝑝𝑖⋅,ℎ(𝑡), for the group

𝑝 = 1, 2. In practice, the use of this latter type of weight
functions is suggested. The calculation of P-values can be
based on nonparametric cluster bootstrap or the influence
functions for the group-specific estimators �̂�𝑛,𝑝ℎ𝑗(𝑠, 𝑡)
and �̂�𝑛,𝑝𝑗(𝑡), 𝑝 = 1, 2. These influence functions, denoted
by 𝛾𝑝,𝑖ℎ𝑗(𝑠, 𝑡) and 𝜓𝑝,𝑖𝑗(𝑡), respectively, are provided in
Web Appendix A. Now, define the estimated processes
�̂�𝑛,ℎ𝑗(𝑠, 𝑡) = �̂�ℎ𝑗(𝑡)𝑛

−1∕2∑𝑛

𝑖=1{�̂�1,𝑖ℎ𝑗(𝑠, 𝑡) − �̂�2,𝑖ℎ𝑗(𝑠, 𝑡)}𝜉𝑖 ,
𝑡 ∈ [𝑠, 𝜏], for some 𝑠 ∈ [0, 𝜏), where 𝜉𝑖 , are independent
standard normal variables and the influence functions
are estimated as described in Web Appendix A, and
�̂�𝑛,𝑗(𝑡) = �̂�𝑗(𝑡)𝑛

−1∕2∑𝑛

𝑖=1
{�̂�1,𝑖𝑗(𝑡) − �̂�2,𝑖𝑗(𝑡)}𝜉𝑖 , 𝑡 ∈ [0, 𝜏].

Similarly, one can define the estimated processes �̂�𝑛,ℎ𝑗(𝑠, 𝑡)
and �̂�′

𝑛,𝑗
(𝑡) which correspond to the tests for Δ̂′

𝑛,ℎ𝑗
(𝑠, 𝑡)

and Δ̂′
𝑛,𝑗
(𝑡).

Theorem 3. Suppose that conditions C1, C2, C3′, C4′,
C5, and C6′ in Web Appendix B.1 hold. Then, under
the null hypothesis and for any ℎ ∈  𝑐, 𝑗 ∈  , and
𝑠 ∈ [0, 𝜏),
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(i)
√
𝑛�̂�ℎ𝑗(⋅)Δ̂𝑛,ℎ𝑗(𝑠, ⋅) ⇝ ℤℎ𝑗(𝑠, ⋅) in 𝐷[𝑠, 𝜏], where

ℤℎ𝑗(𝑠, ⋅) is a tight zero-mean Gaussian process with
covariance function 𝑊ℎ𝑗(𝑡1)𝑊ℎ𝑗(𝑡2)𝐸[{𝛾1,1ℎ𝑗(𝑠, 𝑡1) −

𝛾2,1ℎ𝑗(𝑠, 𝑡1)}{𝛾1,1ℎ𝑗(𝑠, 𝑡2) − 𝛾2,1ℎ𝑗(𝑠, 𝑡2)}], for
𝑡1, 𝑡2 ∈ [𝑠, 𝜏]. Moreover, �̂�𝑛,ℎ𝑗(𝑠, ⋅) ⇝ ℤℎ𝑗(𝑠, ⋅) and√
𝑛�̂�ℎ𝑗(⋅){Δ̂

∗
𝑛,ℎ𝑗
(𝑠, ⋅) − Δ̂𝑛,ℎ𝑗(𝑠, ⋅)} ⇝ ℤℎ𝑗(𝑠, ⋅) in

𝐷[𝑠, 𝜏], conditionally on the observed data.
(ii)

√
𝑛�̂�ℎ𝑗Δ̂𝑛,𝑗 ⇝ ℤ𝑗 in 𝐷[0, 𝜏], where ℤ𝑗 is a tight

zero-mean Gaussian process with covariance function
𝑊𝑗(𝑡1)𝑊𝑗(𝑡2)𝐸[{𝜓1,1𝑗(𝑠, 𝑡1) − 𝜓2,1𝑗(𝑠, 𝑡1)}{𝜓1,1𝑗(𝑠, 𝑡2) −

𝜓2,1𝑗(𝑠, 𝑡2)}], for 𝑡1, 𝑡2 ∈ [𝑠, 𝜏]. Moreover, �̂�𝑛,𝑗 ⇝ ℤ𝑗
and

√
𝑛�̂�𝑗(Δ̂

∗
𝑛,𝑗
− Δ̂𝑛,𝑗) ⇝ ℤ𝑗 in𝐷[0, 𝜏], conditionally

on the observed data.

The proof of Theorem 3 can be found in Web Appendix
B.4. There, it is also shown that the tests are consis-
tent against any fixed alternative hypothesis. A relax-
ation of condition C6′ is considered in Web Appendix
B.5. It can be easily shown that a similar version
of Theorem 3 holds for the differences Δ̂′

ℎ,ℎ𝑗
(𝑠, ⋅) and

Δ̂′
ℎ,𝑗
. Based on Theorem 3 and the continuous map-

ping theorem it follows that, under the null hypothe-

sis,
√
𝑛𝐾𝑛,ℎ𝑗(𝑠)

𝑑
→ sup𝑡∈[𝑠,𝜏] |ℤℎ𝑗(𝑠, 𝑡)|, for any 𝑠 ∈ [0, 𝜏),

and
√
𝑛𝐾𝑛,𝑗

𝑑
→ sup𝑡∈[0,𝜏] |ℤ𝑗(𝑡)|. These asymptotic null

distributions are complicated to use in practice for the
calculation of 𝑃-values. However, by Theorem 3, one
can simulate realizations from these null distributions
by simulating a sufficiently large number of sets {𝜉𝑖}𝑛𝑖=1
of standard normal variables and then calculating sam-
ples from these null distributions as sup𝑡∈[𝑠,𝜏] |�̂�𝑛,ℎ𝑗(𝑠, 𝑡)|
and sup𝑡∈[0,𝜏] |�̂�𝑛,𝑗(𝑡)|. Alternatively, one can use a suf-
ficiently large number of nonparametric cluster boot-
straps Δ̂∗

𝑛,ℎ𝑗
(𝑠, 𝑡), 𝑡 ∈ [𝑠, 𝜏], and Δ̂∗

𝑛,𝑗
(𝑡), 𝑡 ∈ [0, 𝜏] and, then,

calculate realizations from the asymptotic null distribu-
tions as

√
𝑛 sup𝑡∈[𝑠,𝜏] |�̂�ℎ𝑗(𝑡){Δ̂∗𝑛,ℎ𝑗(𝑠, 𝑡) − Δ̂𝑛,ℎ𝑗(𝑠, 𝑡)}| and√

𝑛 sup𝑡∈[0,𝜏] |�̂�𝑗(𝑡){Δ̂∗𝑛,𝑗(𝑡) − Δ̂𝑛,𝑗(𝑡)}|. The 𝑃-value can
then be estimated as the proportion of these simulation
realizations, which are greater than or equal to the actual
value of the test statistic based on the observed data.

2.6 Non-Markov processes

When the multistate process 𝑋(𝑡) is non-Markov, the tran-
sition probabilities and transition intensities depend on
the prior event history 𝑡− . In this case, the population-
averaged transition intensities defined in Section 2.2 are
the partly conditional transition intensities, which are
not conditional on the prior history 𝑡− . Such marginal
intensities have been argued to be meaningful quantities
even for non-Markov processes because they describe the

marginal (ie, unconditional on the prior history) behav-
ior of the process (Datta and Satten, 2001; Glidden, 2002).
With independent observations from a non-Markov pro-
cess, Datta and Satten (2001) showed that the Nelson-
Aalen estimator of the cumulative transition intensities
and the Aalen-Johansen estimator of the state occupa-
tion probabilities are consistent for the corresponding
marginal quantities. Using the same arguments to those
presented by Datta and Satten (2001) it can be shown
that, with clustered observations from a non-Markov pro-
cess, the proposed estimators of the (marginal) population-
averaged cumulative transition intensities and state occu-
pation probabilities are consistent. Similarly, as in the
case with independent observations (Titman, 2015), the
proposed estimators �̂�𝑛(0, 𝑡) and �̂�′𝑛(0, 𝑡) are consistent
for the population-averaged 𝐏0(0, 𝑡) and 𝐏′0(0, 𝑡) under
right censoring, even for non-Markov processes. In the
presence of left truncation, consistent estimation requires
calculating �̂�𝑛(0, 𝑡) and �̂�′𝑛(0, 𝑡) using only the subset
of individuals who were under observation at 𝑡 = 0.
However, for 𝑠 > 0, the proposed estimators �̂�𝑛(𝑠, 𝑡) and
�̂�′𝑛(𝑠, 𝑡) are not consistent in general for non-Markov pro-
cesses, as in the case with independent observations (Tit-
man, 2015). In such cases, following the idea of land-
marking by Putter and Spitoni (2018), I propose esti-
mating 𝑃0,ℎ𝑗(𝑠, 𝑡) and 𝑃′0,ℎ𝑗(𝑠, 𝑡), for 𝑗 ∈  and 𝑡 ∈ [𝑠, 𝜏],
via the proposed estimators but using only individu-
als who were at the transient state ℎ at time 𝑠. More
precisely, I propose using the modified counting and
at-risk processes �̃�𝑖𝑚,𝑙𝑗(𝑡; ℎ, 𝑠) = 𝑁𝑖𝑚,𝑙𝑗(𝑡)𝑌𝑖𝑚,ℎ(𝑠+), 𝑙 ≠ 𝑗,
and �̃�𝑖𝑚,𝑙(𝑡; ℎ, 𝑠) = 𝑌𝑖𝑚,𝑙(𝑡)𝑌𝑖𝑚,ℎ(𝑠+), 𝑙 ∈  𝑐, instead of the
original 𝑁𝑖𝑚,𝑙𝑗(𝑡) and 𝑌𝑖𝑚,𝑙(𝑡), when estimating 𝑃0,ℎ𝑗(𝑠, 𝑡)
and 𝑃′

0,ℎ𝑗
(𝑠, 𝑡), 𝑗 ∈  . These landmark estimators can be

shown to be consistent using the same arguments to those
used in Putter and Spitoni (2018). Inference with non-
Markov processes can be performed as indicated in The-
orems 2 and 3, with the exception that the influence func-
tions for the landmark versions of �̂�𝑛,ℎ𝑗(𝑠, 𝑡) and �̂�′𝑛,ℎ𝑗(𝑠, 𝑡)
involve the modified processes �̃�𝑖𝑚,𝑙𝑗(𝑡; ℎ, 𝑠), 𝑙 ≠ 𝑗, and
�̃�𝑖𝑚,𝑙(𝑡; ℎ, 𝑠), 𝑙 ∈  𝑐. A remark on using Theorems 2 and
3 for inference with non-Markov processes is provided in
Web Appendix B.6.

3 SIMULATION STUDIES

To evaluate the small-sample performance of the proposed
methods I conducted a series of simulation experiments
under a non-Markov illness-death model with states  =
{1, 2, 3} and absorbing state  = {3}, in a study with ICS.
These experiments focused on the population-averaged
probabilities 𝑃0,2(𝑡), 𝑃′0,2(𝑡), 𝑃0,12(0.5, 𝑡), and 𝑃

′
0,12(0.5, 𝑡).

Note that, for the illness-death model where state 1
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F IGURE 1 Overall population-averaged state occupation probabilities of the three states (black lines) over the population of all hospital
patients in the multicenter EORTC trial 10854, along with the 95% simultaneous confidence bands (gray areas)

(healthy) is the unique initial state, 𝑃0,2(𝑡) = 𝑃0,12(0, 𝑡)
and 𝑃′0,2(𝑡) = 𝑃

′
0,12(0, 𝑡). Scenarios with 𝑛 = 20, 40, 80 clus-

ters were considered. These sample sizes are considered
small or relatively small. The cluster sizes 𝑀𝑖 , 𝑖 = 1, … , 𝑛,
were simulated from either of the discrete uniform dis-
tributions  (5, 15) and  (10, 30), producing scenarios
with 5 to 15 and 10 to 30 observations per cluster, respec-
tively. To simulate non-Markov illness-death processes,
which are correlated within clusters, cluster-specific frail-
ties 𝑣𝑖 , 𝑖 = 1, … , 𝑛, were simulated from the Gamma distri-
bution with shape and scale parameters equal to 1. Con-
ditionally on the frailty values 𝑣𝑖 and the cluster sizes 𝑚𝑖 ,
the non-Markov illness-death processes were simulated
based on the cumulative transition intensities𝐴0,12(𝑡; 𝑣𝑖) =
[0.25 + 0.25 × 𝐼{𝑚𝑖 ≤ 𝐸(𝑀1)}]𝑣𝑖𝑡, 𝐴0,23(𝑡; 𝑣𝑖) = 0.5𝑣𝑖𝑡, and
𝐴0,13(𝑡; 𝑣𝑖) = 0.25𝑣𝑖𝑡, 𝑖 = 1, … , 𝑛. Note that the dependence
of 𝐴0,12(𝑡; 𝑣𝑖) on cluster size produced data with ICS. The
resulting population-averaged probabilities of interest are
depicted in Figure 1 in Web Appendix D. In this simula-
tion study, two scenarios regarding right censoring and left
truncationwere considered; the first involved right censor-
ing only while the second considered both right censoring
and left truncation. In both scenarios, independent right
censoring times were simulated from the uniform distri-
bution 𝑈(0, 3). In the first scenario, the simulation set-
tings led on average to 57.5% right-censored observations
(a), 24.4% observations at the illness state (b) (45.9% of
those arrived later at the death state), and 18.1% at the
death state (c) without a prior visit to the illness state. In
the second scenario, left truncation times were indepen-

dently simulated from the beta distribution Beta(1,2). For
the simulations evaluating the estimators of 𝑃0,12(0.5, 𝑡)
and 𝑃′0,12(0.5, 𝑡), this data generation scheme led on aver-
age to 67% of the individuals being under observation and
at state 1 at time 𝑠 = 0.5. For simulations evaluating state
occupation probability estimators, left truncation timewas
set to 0 with a probability equal to 2/3. This is because
estimation of 𝑃0,2(𝑡) and 𝑃′0,2(𝑡) for non-Markov processes
under left truncation, involves only individuals who were
under observation at time 𝑡 = 0 (see Section 2.6). There-
fore, in both cases, around 33% of the observations were
excluded from the analysis due to left truncation. Under
this setup, a two-arm multicenter randomized controlled
trial was also simulated with a 1:1 arm allocation ratio
within clusters. To simulate data under the alternative
hypothesis, the cumulative intensity𝐴0,𝑝12(𝑡; 𝑣𝑖) = [0.25 +
0.5 × 𝐼(𝑝 = 2) + 0.25 × 𝐼{𝑚𝑖 ≤ 𝐸(𝑀1)}]𝑣𝑖𝑡, 𝑝 = 1, 2, was
assumed depending on the treatment arm 𝑝. Estimation of
the transition probabilities was performed using the land-
mark version of the proposed estimators as described in
Section 2.6. Simultaneous confidence bands and 𝑃-values
from the Kolmogorov-Smirnov–type tests were based on
1000 simulated sets {𝜉𝑖}𝑛𝑖=1 of standard normal variates or
1000 nonparametric cluster bootstrap realizations. More-
over, as described in Section 2.3, the range of the confi-
dence bands was restricted for each data set to the 10th and
90th percentile of the distribution of transition times from
state 1 to state 2. We also present simulation results for the
one-sample case under the working-independence Aalen-
Johansen estimator using the usual Greenwood standard
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TABLE 1 Simulation results for the analysis of 𝑃0,2(𝜏0.4) and 𝑃′0,2(𝜏0.4), where 𝜏0.4 is the 40th percentile of the follow-up time, based on
the standard approach which ignores the within-cluster dependence (naïve) and the proposed method with (i) the influence function-based
variance estimator (IF) and (ii) the nonparametric cluster bootstrap (CB)

𝑷𝟎,𝟐(𝝉𝟎.𝟒) 𝑷′
𝟎,𝟐
(𝝉𝟎.𝟒)

𝒏 𝑭𝑴 Method Biasa MCSDa ASEa CP Biasa MCSDa ASEa CP
20  [5, 15] Naïve 0.006 3.229 2.625 0.890 −1.022 3.226 2.623 0.859

IF 0.006 3.229 3.018 0.927 −0.063 3.517 3.311 0.926
CB 0.006 3.229 3.040 0.928 −0.063 3.517 3.316 0.923

 [10, 30] Naïve 0.069 2.559 1.857 0.842 −0.928 2.558 1.855 0.816
IF 0.069 2.559 2.483 0.939 0.077 2.787 2.702 0.940
CB 0.069 2.559 2.494 0.935 0.077 2.787 2.698 0.939

40  [5, 15] Naïve 0.105 2.204 1.866 0.909 −0.939 2.199 1.863 0.866
IF 0.105 2.204 2.196 0.944 0.080 2.403 2.411 0.948
CB 0.105 2.204 2.198 0.943 0.080 2.403 2.407 0.947

 [10, 30] Naïve 0.006 1.811 1.312 0.846 −1.003 1.808 1.310 0.779
IF 0.006 1.811 1.782 0.945 −0.012 1.940 1.941 0.946
CB 0.006 1.811 1.786 0.944 −0.012 1.940 1.940 0.945

80  [5, 15] Naïve −0.037 1.557 1.314 0.903 −1.083 1.551 1.312 0.820
IF −0.037 1.557 1.557 0.942 −0.055 1.699 1.715 0.940
CB −0.037 1.557 1.556 0.942 −0.055 1.699 1.711 0.940

 [10, 30] Naïve 0.044 1.287 0.929 0.844 −0.962 1.286 0.928 0.732
IF 0.044 1.287 1.271 0.945 0.025 1.399 1.382 0.944
CB 0.044 1.287 1.273 0.944 0.025 1.399 1.382 0.946

Abbreviations: ASE, average estimated standard error; CP, coverage probability; 𝐹𝑀 , discrete uniform distribution of the cluster size; MCSD,Monte Carlo standard
deviation of the estimates; 𝑛, number of clusters.
Note. Results under right censoring.
aIndicates ×102.

error estimates and a wild bootstrap approach for confi-
dence bands that ignores the within-cluster dependence.
Pointwise simulation results for the state occupation

probability estimators under right censoring are presented
in Tables 1 and 2. Ignoring the within-cluster dependence
was associated with underestimated standard errors and
poor coverage probabilities of the 95% confidence inter-
vals. Also, theworking independenceAalen-Johansen esti-
mator of 𝑃′0,2(𝑡) exhibited a small bias as a result of the
ICS (relative bias around −7%). The proposed estimators
of 𝑃0,2(𝑡) and 𝑃′0,2(𝑡)were both virtually unbiased, the stan-
dard error estimates based on the influence functions and
the nonparametric cluster bootstrap were both close to
the Monte Carlo standard deviation (MCSD) of the esti-
mates, and the corresponding 95% pointwise confidence
intervalswere close to the nominal level, except for the case
with a very small number of clusters (𝑛=20) and only 5 to
15 individuals per cluster. It is important to note that the
weighted by cluster size working independence estimator
�̂�′𝑛,2(𝑡) exhibited a larger MCSD compared to the work-
ing independence estimator �̂�𝑛,2(𝑡) (variance ratio range:
1.15 to 1.21), as a result of the additional variability of the
weights.

Simulation results regarding the coverage probabilities
of the 95% simultaneous confidence bands are presented
in Table 3. The wild bootstrap approach for confidence
band calculation that ignores the within-cluster depen-
dence exhibited poor coverage rates in all cases. This
phenomenon was more pronounced for the population-
averaged state occupation probability 𝑃′0,2(⋅) over the TCM
population, and is attributed to the bias of the working
independenceAalen-Johansen estimator in addition to the
variability underestimation. On the contrary, the coverage
probabilities of the proposed approaches were close to the
nominal level, except for the case with only 20 clusters and
5 to 15 observations per cluster, where the coverage rate
was somewhat lower. Finally, simulation results about the
empirical rejection rates of the proposed tests are presented
in Table 4. Under 𝐻0, the type I error rate of the tests was
close to the nominal level 𝛼 = 0.05 in all cases. Under 𝐻1,
the empirical power was increasing with sample size and
this provides numerical evidence for the consistency of the
proposed tests.
Simulation results regarding the estimators of the

population-averaged transition probabilities 𝑃0,12(0.5, 𝑡)
and 𝑃′0,12(0.5, 𝑡) under right censoring are presented in
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TABLE 2 Simulation results for the analysis of 𝑃0,2(𝜏0.6) and 𝑃′0,2(𝜏0.6), where 𝜏0.6 is the 60th percentile of the follow-up time, based on
the standard approach that ignores the within-cluster dependence (naïve) and the proposed method with (i) the influence function–based
variance estimator (IF) and (ii) the nonparametric cluster bootstrap (CB)

𝑷𝟎,𝟐(𝝉𝟎.𝟔) 𝑷′
𝟎,𝟐
(𝝉𝟎.𝟔)

𝒏 𝑭𝑴 Method Biasa MCSDa ASEa CP Biasa MCSDa ASEa CP
20  [5, 15] Naïve 0.160 3.657 3.040 0.904 −0.939 3.656 3.033 0.888

IF 0.160 3.657 3.348 0.921 0.077 3.963 3.651 0.924
CB 0.160 3.657 3.378 0.916 0.077 3.963 3.663 0.920

 [10, 30] Naïve 0.116 2.731 2.146 0.869 −0.940 2.740 2.140 0.854
IF 0.116 2.731 2.679 0.935 0.078 2.978 2.899 0.935
CB 0.116 2.731 2.693 0.940 0.078 2.978 2.899 0.933

40  [5, 15] Naïve 0.015 2.360 2.143 0.935 −1.060 2.364 2.140 0.896
IF 0.015 2.360 2.399 0.955 0.027 2.592 2.635 0.953
CB 0.015 2.360 2.407 0.957 0.027 2.592 2.636 0.953

 [10, 30] Naïve 0.035 1.956 1.513 0.866 −1.020 1.943 1.509 0.818
IF 0.035 1.956 1.915 0.936 −0.011 2.100 2.075 0.937
CB 0.035 1.956 1.919 0.941 −0.011 2.100 2.075 0.936

80  [5, 15] Naïve −0.063 1.745 1.513 0.913 −1.152 1.738 1.510 0.845
IF −0.063 1.745 1.714 0.943 −0.084 1.894 1.885 0.949
CB −0.063 1.745 1.716 0.945 −0.084 1.894 1.885 0.948

 [10, 30] Naïve 0.076 1.436 1.073 0.856 −0.972 1.433 1.070 0.775
IF 0.076 1.436 1.369 0.939 0.045 1.543 1.487 0.942
CB 0.076 1.436 1.372 0.940 0.045 1.543 1.488 0.945

Abbreviations: ASE, average estimated standard error; CP, coverage probability; 𝑛, number of clusters; 𝐹𝑀 , discrete uniform distribution of the cluster size; MCSD:
Monte Carlo standard deviation of the estimates.
Note. Results under right censoring.
aIndicates ×102.

TABLE 3 Simulation results regarding the coverage
probabilities of the 95% simultaneous confidence bands for 𝑃0,2(⋅)
and 𝑃′0,2(⋅) based on the standard method that ignores the
within-cluster dependence (naïve) and the proposed method with
(i) the estimated processes �̂�𝑛,2 and �̂�′𝑛,2 (IF) and (ii) the
nonparametric cluster bootstrap (CB)

𝑷𝟎,𝟐(⋅) 𝑷′
𝟎,𝟐
(⋅)

𝒏 𝑭𝑴 Naïve IF CB Naïve IF CB
20  [5, 15] 0.856 0.922 0.930 0.826 0.917 0.911

 [10, 30] 0.798 0.944 0.952 0.771 0.946 0.938
40  [5, 15] 0.892 0.948 0.951 0.849 0.945 0.940

 [10, 30] 0.802 0.941 0.942 0.750 0.945 0.946
80  [5, 15] 0.878 0.945 0.943 0.788 0.940 0.942

 [10, 30] 0.820 0.941 0.944 0.689 0.945 0.940

Abbreviations: 𝐹𝑀 : discrete uniform distribution of the cluster size; 𝑛, number
of clusters.
Note. Results under right censoring.

Web Appendix D.1. Results under both right censoring and
left truncation are presented inWebAppendix D.2. Finally,
simulation experiments evaluating the proposed methods
under a larger cluster size variability (cluster size range: 5

to 200) and a very small number of clusters (𝑛 = 15 and
20), are presented in Web Appendix D.3. In all cases, the
naïve methods performed poorly. However, this poor per-
formance was less pronounced under both right censor-
ing and left truncation as a result of the fact that, in this
case, there were fewer observations per cluster, which led
to a less pronounced intracluster dependence issue. The
performance of the proposed methods was satisfactory in
all cases, with the exception of somewhat lower coverage
probabilities (reaching 91% in a few cases)with a very small
number of clusters.

4 DATA EXAMPLE

The proposed methods are illustrated using data from
the EORTC trial 10854 (Van der Hage et al., 2001). In
total, 2792 early breast cancer patients from 15 hospitals
(clusters) were recruited in this trial. Of them, 1398 (50.1%)
were randomly assigned to the group receiving the combi-
nation therapy approach. In this multicenter trial, cluster
sizes ranged from 6 to 902 patients. The trial involved
only 𝑛 = 15 clusters and thus the analysis based on the
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TABLE 4 Simulation results regarding the empirical type I error (𝐻0) and the empirical power (𝐻1) of the proposed two-sample
Kolmogorov-Smirnov–type tests for 𝐻0 ∶ 𝑃0,12(⋅) = 𝑃0,22(⋅) and𝐻0 ∶ 𝑃′0,12(⋅) = 𝑃

′
0,22(⋅) at the 𝛼 = 0.05 level

𝑷𝟎,𝒑𝟐(⋅), 𝒑 = 𝟏, 𝟐 𝑷′
𝟎,𝒑𝟐
(⋅), 𝒑 = 𝟏, 𝟐

𝑯𝟎 𝑯𝟏 𝑯𝟎 𝑯𝟏
𝒏 𝑭𝑴 IF CB IF CB IF CB IF CB
20  [5, 15] 0.045 0.042 0.352 0.339 0.049 0.050 0.331 0.337

 [10, 30] 0.040 0.039 0.634 0.625 0.044 0.040 0.598 0.601
40  [5, 15] 0.044 0.041 0.666 0.659 0.037 0.039 0.612 0.603

 [10, 30] 0.048 0.046 0.905 0.906 0.044 0.046 0.874 0.873
80  [5, 15] 0.048 0.046 0.916 0.917 0.049 0.047 0.870 0.864

 [10, 30] 0.053 0.053 0.995 0.994 0.059 0.055 0.991 0.990

Abbreviations: 𝐹𝑀 , distribution of the cluster size; 𝑛: number of clusters.
Note. Significance levels were calculated based on either the estimated processes �̂�𝑛,2 and �̂�′𝑛,2 (IF) or the nonparametric cluster bootstrap (CB). Results under
right censoring.

proposed large sample inference methods may provide
biased results. In this analysis we assumed that the data
from the different hospitals are i.i.d. However, the number
of patients in one hospital might be correlated with the
number of patients in another hospital. This could lead to
biased variance estimation and incorrect P-values. After
surgery, 1146 (41.0%) patients experienced locoregional
relapse, distant metastasis, or secondary cancer, and 810
(29.0%) died throughout the follow-up period. Among
the deceased patients, 710 (87.7%) died after having
experienced a locoregional relapse, distant metastasis,
or secondary cancer, while the remaining 100 deceased
patients died without prior evidence for these events. The
patient event history in this trial can be described by an
illness-death model with the states “cancer-free” (state
1), “cancer” (state 2), and “death” (state 3). Through-
out the follow-up period, 1546 (55.4%) patients were
right-censored while being in the “cancer-free” state and
436 (15.6%) were right-censored while being in the “can-
cer” state. There was no left truncation in this data set. In
this analysis, the focus was on the between-arm compar-
ison of the population-averaged state occupation proba-
bilities of cancer 𝑃0,12(𝑡) and 𝑃′0,12(𝑡) (for the population
undergoing surgery only), and 𝑃0,22(𝑡) and 𝑃′0,22(𝑡) (for the
population receiving the combination of surgery plus poly-
chemotherapy). The overall state occupation probability
estimates for the three states over the population of all hos-
pital patients along with the associated 95% simultaneous
confidence bands are presented in Figure 1. These confi-
dence bands were calculated based on 1000 nonparametric
cluster bootstrap realizations. Figure 1 provides significant
information about the natural history of early breast
cancer patients undergoing surgery. The corresponding
probabilities for the population of typical hospital patients
were approximately the same, with the exception that the
probability of cancer was slightly lower in this case (data
not shown). The arm-specific state occupation probabil-

ities of cancer for both population of all hospital patients
and population of typical hospital patients are presented in
Figure 2. To compare these population-averaged probabil-
ities between arms, the proposed Kolmogorov-Smirnov–
type test was used based on 1000 nonparametric cluster
bootstrap realizations. The tests for both versions of
population-averaged probabilities were not statistically
significant at the level 𝛼 = 0.05 and, therefore, the null
hypothesis that the population-averaged probabilities of
cancer do not differ between arms cannot be rejected.
Among those in the surgery only group, the estimated
population-averaged probability of cancer over the popu-
lation of typical hospital patients was lower compared to
that for the population of all hospital patients (Figure 2).
This indicates that larger hospitals had more cancer
events among patients with surgery only, which may be
attributed to the fact that patients with more advanced
disease choose (or are advised to attend) larger hospitals.
To evaluate this difference, the modified Kolmogorov-
Smirnov–type test described in Web Appendix C was
used. The result of this test was statistically significant
(𝑃-value = .046), which provides evidence for ICS in this
group. The corresponding test for the group of patients
receiving the combination therapy approach was not
statistically significant (𝑃-value = .416).

5 DISCUSSION

This work addressed the issue of nonparametric
population-averaged inference for multistate models
with right-censored and/or left-truncated clustered
observations. The estimators for the transition and state
occupation probabilities were shown to be uniformly con-
sistent and asymptotically normal with explicit formulas
for the corresponding covariance functions. Additionally,
rigorous methodology for the calculation of simultaneous
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F IGURE 2 Population-averaged state occupation probabilities of cancer (locoregional relapse, distant metastasis, or secondary cancer)
over the population of all hospital patients (A) and the population of typical hospital patients (B) for the two arms in the multicenter EORTC
trial 10854, along with the 𝑃-values from the Kolmogorov-Smirnov–type test

confidence bands and a class of Kolmogorov-Smirnov–
type tests were proposed. Inference can be performed
using either the explicit formulas for the influence
functions of the estimators or the nonparametric cluster
bootstrap. The latter is particularly useful in practice since
it can be used for inference using off-the-shelf software.
In this work, I did not impose restrictive distributional
assumptions or assumptions regarding the within-cluster
dependence. Moreover, I allowed for ICS and nonho-
mogeneous multistate processes which are non-Markov.
Simulation results indicated that the performance of the
proposed methods is satisfactory even for non-Markov
processes and under ICS. On the contrary, ignoring the
within-cluster dependence leads to invalid inference.
The proposed nonparametric estimators of the transi-

tion probability matrix and the influence function-based
methodology for the calculation of simultaneous confi-
dence bands are extensions of the Aalen-Johansen esti-
mator (Aalen and Johansen, 1978; Andersen et al., 2012)
and the wild bootstrap approach for independent data by
Bluhmki et al. (2018) to the cluster-correlated data set-
ting. However, these extensions were not trivial given that
I allowed for random and ICS. Moreover, I established
the asymptotic properties of the proposed methods using
empirical process theory instead of martingale theory that
was used for the aforementionedmethods for independent

data (Andersen et al., 2012; Bluhmki et al., 2018). I also
considered the nonparametric cluster bootstrap by Field
and Welsh (2007). These authors dealt with the case of a
simple linear random-interceptmodel. Even though I used
the cluster bootstrap algorithm of Field and Welsh (2007)
for the one-sample problem, I proved its consistency for
the more complicated nonparametric estimators in The-
orem 2. Moreover, for the two-sample problem, the non-
parametric cluster bootstrap approach proposed here is
slightly different because the weight �̂�ℎ𝑗(𝑡) is being kept
fixed (at its estimated value based on the original data set)
across the bootstrap samples, since its variability does not
affect the asymptotic null distributions of the test statistics.
It has to be noted that the proposed methods provide

large sample inference, as do the typical methods for mul-
tistate models. Large sample in the clustered data setting
means large number of clusters. Following general recom-
mendations for the central limit theorem, it is suggested to
use the proposed methods with at least 30 clusters. How-
ever, the extensive simulation studies presented in this arti-
cle provide some numerical evidence for the satisfactory
performance of the proposed methods, and their superior-
ity over the naïve methods that ignore the within-cluster
dependence, even with 20 clusters.
I can see two useful extensions of the proposed frame-

work. First, developing an estimation approach for semi-
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parametric regression on the state occupation probabilities
would be crucial in practice for the estimation of risk factor
effects. This could be achieved by extending the inverse
probability of censoring weighting approach by Scheike
and Zhang (2007) to the clustered data setting. Second,
relaxing the i.i.d. assumption across clusters imposed in
this article is important from both theoretical and applied
perspective. One situation where this assumption is vio-
lated is when there is a dependence between cluster sizes
or counting processes fromdifferent clusters. Away to deal
with this issue is to introduce weak dependence (such as
mixing conditions) or long-range dependence assumptions
over space or time for the clusters, and use appropriate cen-
tral limit theorems for such dependent data (Dehling et al.,
2002) to establish the asymptotic distributions of the esti-
mators.
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