1 2	Sexually transmitted infections in association with area-level prostitution and drug- related arrests
3 4 5	Lauren A. Magee, Ph.D. ¹ , J. Dennis Fortenberry, MD, MS ² , Tammie Nelson, MPH ³ , Alexis Roth, Ph.D., MPH ⁴ , Janet Arno, MD ⁵ , and Sarah E. Wiehe, MD, MPH ⁶
6 7	1. Indiana University Purdue University Indianapolis, O'Neill School of Public and
8 9	Environmental Affairs, 801 W. Michigan Street, Indianapolis, IN, 46204
10 11 12	2.Indiana University School of Medicine, Department of Adolescent Medicine, 410 W. 10 th Street, Suite 1000, Indianapolis, IN, 46204
13 14 15	3. Marion County Public Health Department, 3838 N. Rural Street, Indianapolis, IN 46205
16 17 18	4. Drexel University, Dornsife School of Public Health, Nesbitt Hall, 3215 Market Street, Philadelphia, PA, 19104
19 20 21	5. Indiana University School of Medicine, Clinical Medicine, 640 Eskenazi Ave, Indianapolis, IN 46202
22 23 24	6. Indiana University School of Medicine, Department of Pediatrics, 410 W. 10 th Street, Suite 2000, Indianapolis, IN, 46204
25 26	KEYWORDS: sex work, drug-related arrests, ecological, sexually transmitted infections
27 28	Short Summary
29 30 31 32	Our study demonstrates the overlapping but distinctive ways by which communities are differentially represented in STI surveillance data: both prostitution arrests and drug-related arrests are associated with area-level STI rates.
33 34	Abstract
35	Objectives: Examine the mediators and moderators of area-level prostitution arrests
36	and sexually transmitted infections (STI) using population level data.
37	Methods: Using justice and public health STI/HIV data in Marion County (Indianapolis),
38	Indiana, over an 18-year period, we assessed the overall association of area-level

This is the author's manuscript of the work published in final edited form as:

Magee, L. A., Fortenberry, J. D., Nelson, T., Roth, A., Arno, J., & Wiehe, S. E. (2020). Sexually transmitted infections in association with area-level prostitution and drug-related arrests. *Sexually Transmitted Diseases*. <u>https://doi.org/10.1097/0LQ.00000000001345</u>

39	prostitution arrests and STI /HIV, and mediators and moderators of the relationship.
40	Point-level arrests were geocoded and aggregated by census block group.
41	Results: Results indicate a positive relationship between numbers of prostitution arrests
42	and area-level STI rates. There was a dose-response relationship between prostitution
43	arrests and STI rates when accounting for drug-related arrests. The highest quintile block
44	groups had significantly higher rates of reported chlamydia (IRR: 3.29, 95% CI: 2.82,
45	3.84), gonorrhea (IRR: 4.73, 95% CI: 3.90, 5.57), syphilis (IRR: 4.28, 95% CI: 3:47,
46	5.29), and HIV (IRR: 2.76, 95% CI: 2.24, 3.39) compared with the lowest quintile. When
47	including drug arrests, the third highest quintile block groups had lower IRR for reported
48	rates of chlamydia (IRR: 1.28, 95% CI: 1.10, 1.49) and gonorrhea (IRR: 1.28, 95%
49	CI:1.06,1.55), indicating that drug arrests mediated the prostitution arrest effect.
50	Conclusions: These findings can inform public health agencies and community-based
51	organizations that conduct outreach in these areas to expand their efforts to include harm
52	reduction and HIV/STI testing for both sex workers and individuals experiencing
53	substance use disorder. Another implication of these data is the importance of greater
54	collaboration in public health and policing efforts to address overlapping epidemics that
55	engage both health and legal intervention.
56	Abstract word count: 246
57	Manuscript Word Count: 3,272/1 Figure/3 Tables
58 59 60	Corresponding author info: Direct correspondence to Lauren A. Magee, O'Neill School of Public and Environmental Affairs, Indiana University Purdue University Indianapolis, 801 W. Michigan Street,

- 61 Indianapolis, Indiana 46202 (e-mail: <u>lamagee@iu.edu</u>)
- 62
- 63 **Conflicts of Interest:**
- 64 The authors have no conflicts of interest to disclose.
- 65

Funding: This project was funded by National Institute of Health (R21AI084060,

- 1R01AI114435) and Agency for Healthcare Research and Quality (1R01HS023318).
- 69

70 Introduction

71 Nearly 20 million new sexually transmitted infections (STIs) occur annually in the United 72 States, and they disproportionately affect the incarcerated population, female sex 73 workers, and people who use drugs (PWUD). Female sex workers are among the 74 populations most affected by STIs and HIV globally and domestically. Among female sex workers, rates of STIs range from 9 to 60 times that of the general population,¹⁻³ 75 76 similarly, as many as one in five female sex workers in the United States is HIV positive 77 (95% CI: 13.5%-21.9%).⁴ Female sex workers also commonly participate in injection and non-injection drug use.⁵ Among PWUD via injection, exchanging sex for money or drugs 78 79 within the past year increased the likelihood of STI nearly fourfold.⁶ For instance, 80 injection drug use among female sex workers increased the likelihood of an active syphilis infection by three times in two US-Mexico border cities.⁷ Injecting and using 81 82 drugs places female sex workers at elevated risk for acquiring and transmitting STIs 83 within their network, as engaging in high-risk activities such as condomless sex is more likely when actively using drugs.^{6,8,9} 84 85 Neighborhood factors associated with higher rates of STIs include high incarceration rates, economic disadvantage, and low education levels.¹⁰⁻¹⁴ Drug use and dealing are 86 associated with higher rates of STIs at the individual and neighborhood level.^{13,15} 87 88 Neighborhoods with known drug markets have highly interconnected network structures 89 which help maintain disease transmission and are also associated with selecting a highrisk sexual partner and having a current infection with a bacterial STI.¹³ Research into the 90

spatial association of neighborhood drug markets and STIs demonstrated an 11% increase
in gonorrhea in the local neighborhood and a 27% increase of gonorrhea in adjacent
neighborhoods.¹⁴ These results suggest that drug markets and their sexual networks
extend beyond the boundaries of census block groups.¹⁴ These studies, however, largely
examined only gonorrhea and other STIs may have a different association with drug
markets and neighborhoods.

97 The transmission of STIs among sexual networks is largely driven by core transmitters and key social meeting locations (e.g., drug and sex markets).¹⁶ Core transmitters 98 99 maintain disease rates within populations as they repeatedly acquire and transmit the 100 disease among their network.¹⁷ Core groups have largely been defined by the number of sex partners and network connections within core transmitters networks.^{18,19} In addition 101 102 to highly connected sexual networks, neighborhoods help explain variations in STI transmission.^{19,20} Variations in STI rates and counts have been observed across and 103 104 within cities.²¹⁻²³ Recent research examined social meeting places characterized as drug 105 markets, sex markets or a combination of drug and sex markets. Sex markets have been 106 defined as spaces where sex is exchanged for money or drugs, venues included bars, 107 street corners, parks and schools.¹⁶ Results indicate drug markets, sex markets, and 108 drug/sex markets are more likely to be frequented by core transmitters most likely to 109 transmit STIs; and these risk environments may be key drivers in STI transmission within the communities.¹⁶ Less is known about how prostitution and drug-related arrests 110 111 influence area-level STI rates. 112 Understanding how prostitution and drug-related arrests are associated with STI rates

113 may inform public health and community policing strategies. Therefore, the objectives of

this study were to assess the association of area-level sex work and STI infection and

examine mediators and moderators of this relationship. Using population-level justice

and public health STI data, this study expands prior research by including multiple STIs

and examining both prostitution and drug-related arrests over an 18-year time period.

118 Methods

- 119 Study design and population
- 120 We conducted a retrospective cohort study of area-level criminal arrest and STI

121 morbidity for chlamydia, gonorrhea, syphilis, and HIV in Marion County (Indianapolis),

122 Indiana from 2000-2018. Criminal arrest and STI morbidity data were obtained in

123 collaboration with the Indianapolis Metropolitan Police Department and Marion County

124 Public Health Department, respectively.

125 Measures

126 The primary predictor measures were area-level prostitution and drug-related arrests. We

127 obtained all arrest data from 2000 – 2018 from the Indianapolis Metropolitan Police

128 Department. The primary exposures of interest were prostitution and drug arrests

129 (n=117,770). Prostitution arrests were defined as any arrest for engaging in transactional

130 sex, and drug arrests were defined as any arrest for drug distribution, paraphernalia, and

131 drug possession. Dual arrests were categorized when an individual was arrested for both

132 prostitution and drug-related offense during the same incident. Point-level prostitution

133 and drug-related arrests were geocoded and aggregated by Census block group. Census

134 block groups were divided into quintiles by prostitution and drug-related arrests, using

the first quintile (lowest arrests) as the reference category.

136

1	2	7
1	.3	1

138 The outcome measure for this study was STI incidence rate ratios, defined as the number 139 of new chlamydia, gonorrhea, syphilis, and HIV diagnoses within Census block groups. 140 We obtained all reported chlamydia, gonorrhea, syphilis, and HIV cases (n=266,868) 141 diagnosed in Marion County from 2000-2018. When two positive tests for the same STI 142 organism occurred for an individual within 30 days of each other,²⁴⁻²⁶ only the initial 143 positive test was included to avoid double counting. We defined co-infection rates as any 144 individual with a positive test for two different STIs within 14 days of each other. 145 Census data moderating factors were aggregated at Census block group level and 146 included race/ethnicity and socioeconomic status. Census block groups were defined by 147 >75% Black and >20% Latino (top decile) and >60% living below 200% of federal 148 poverty line (top quartile). A measure was created to indicate time period (2000-2003; 149 2004-2009; 2010-2013; 2014-2018) to adjust for potential temporal trends. 150 Geocoding 151 Addresses from both STI and arrest data sources were geocoded to street location using 152 ArcGIS v10.8 and Marion County base maps. Among the STI data, 83% of residential 153 addresses (n=222,118) were successfully geocoded, geotagged, and aggregated to their 154 associated Census block group. Cases that did not geocode contained missing address 155 information, were outside Marion County, or the individual was listed as homeless. 156 A total of 98% (n=115,443) were successfully geocoded and aggregated to their 157 associated Census block group. We also geocoded arrestee residential addresses listed in 158 the arrest report and successfully geocoded 75%. The cases that did not geocode

159 contained a non-street address (e.g., Mexico, 123 Main St.), recorded refusal to provide

160 address to the arresting officer, or were listed as homeless.

161 Analysis

162 We calculated population based STI rates per 100,000 for each census block group

163 overall and by year. We performed negative binomial and zero-inflated negative binomial

164 regression models to estimate incident rate ratios (IRR) of each STI. Incidence rate ratios

165 were stratified by 4-year time periods (2000-2003, 2004-2008, 2009-2013, 2014-2018),

166 minority and ethnic composition, and poverty level of each Census block group.

167 Density maps were created using a kernel density function (KDF) of point-level data,

168 categorizing along a color gradient (red=highest concentration; blue=lowest

169 concentration). The kernel density algorithm examines each incident point and calculated

170 intensity rates based on how many incidents are clustered near the given incident point.

171 Near incidents are defined as those failing within a predetermined search radius that

172 extends out from the incident point under examination. The KDF was color-coded into

173 quintiles for prostitution arrests, drug arrests, and chlamydia rates. Gonorrhea, syphilis,

and HIV rates are presented based on chlamydia decile cutoffs.

175 **Results**

176 Yearly population rates of STIs indicate trends over the study period. Across all STIs,

177 rates were higher in the early 2000s, dropped between 2009–2012, and have since

178 increased to similar rates seen in the early 2000s (Table 1). Density maps show clusters

- 179 of prostitution and drug arrests and rates of chlamydia, gonorrhea, syphilis and HIV in
- 180 Marion County (Figure 1). Comparing the arrests density maps to the STI density maps,

181 several patterns emerge that suggest associations between prostitution and drug-related182 arrests and STI incidence rates.

183	The number of prostitution arrests within a census block group was positively correlated
184	with the IRR for all types of STI (Table 2). In an unadjusted model, the highest quintile
185	block groups (i.e., those with the highest density of prostitution arrests) had significantly
186	higher rates of reported chlamydia (IRR: 3.29, 95% CI: 2.82, 3.84), gonorrhea (IRR:
187	4.73, 95% CI: 3.90, 5.57), syphilis (IRR: 4.28, 95% CI: 3:47, 5.29), and HIV (IRR: 2.76,
188	95% CI: 2.24, 3.39) compared with the lowest quintile. When drug arrests were included
189	in the model, the third highest quintile block groups had lower IRR for reported rates of
190	chlamydia (IRR: 1.28, 95% CI: 1.10, 1.49) and gonorrhea (IRR: 1.28, 95% CI:1.06,1.55),
191	indicating that drug arrests mediated the prostitution arrest effect. The top three
192	prostitution quintiles were associated with increased rates of HIV (IRR: 1.43, 95%
193	CI:1,17,1,74; 1.55, 95% CI: 1.22,1.97; 1.48, 95% CI:1.15,1,92) but are also mediated by
194	drug arrests. Other prostitution quintiles were not associated with higher incidence rate
195	ratios for chlamydia, gonorrhea or syphilis when controlling for drug-related arrests.
196	There was evidence of moderation by area racial and ethnic composition, however,
197	differences were observed across STIs. The percentage of Black composition in a census
198	block group moderated the association between sex work and STI incidence rate ratios in
199	the third quintile census block groups for chlamydia (IRR: 1.21, 95% CI:1.05,1.41) and
200	gonorrhea (IRR: 1.23, 95% CI:1.02,1.49) when adjusting for area-level drug arrests,
201	however, the percent of Latino composition in a census block group showed no consistent
202	association.

203 The top two quintiles of dual (prostitution and drug) arrests were positively associated

204 with all STIs. IRR were stronger across all STIs for dual arrests than for prostitution and

205 drug-related arrests (IRR: chlamydia 1.80, 95% CI:1.59, 2.03, gonorrhea 2.11, 95%

206 CI:1.82, 2.45, syphilis 2.09, 95% CI:1.75, 2.49, HIV 1.85, 95% CI: 1.58, 2.16). This

207 relationship was also moderated by census block group composition for Black, Latino,

and poverty levels in the top quintile (IRR: chlamydia 1.60, 95% CI: 1.43, 1.78,

209 gonorrhea 1.92, 95% CI: 1.67, 2.21, syphilis 2.00, 95% CI: 1.66, 2.40, HIV 1.77, 95%

210 CI: 1.51, 2.09) (Table 3). We examined co-infection rates within census block groups

and differences across four time periods and results from each followed a similar pattern

212 to the results presented above (Appendix A).

213 Incidence rate ratios stratified by census block group minority concentration and poverty

showed that the top drug-related arrest quintile had consistently higher rates for all STIs

215 compared to the top prostitution arrest quintile (Appendix B). Associations between area-

216 level minority concentration and poverty and incident rate ratios of STI were strongest in

217 low minority and low poverty block groups overall. In low minority and low poverty

218 block groups, the top quintile of prostitution arrest was significantly associated with

219 higher incidence rate ratios for all STIs (IRR: chlamydia 1.42, 95% CI: 1.18, 1.72,

220 gonorrhea 1.65, 95% CI: 1.32, 2.07, syphilis 1.99, 95% CI: 1.50, 2.63, HIV 1.36, 95%

221 CI: 1.06, 1.76) compared to other population strata. In low minority and low poverty

222 census block groups, dual arrests were significantly associated with higher incidence rate

223 ratios for all STIs (IRR: chlamydia 1.84, 95% CI: 1.59, 2.13, gonorrhea 2.28, 95% CI:

224 1.89, 2.74, syphilis 2.49, 95% CI: 1.94, 3.19, HIV 2.14, 95% CI: 1.70, 2.69), compared to

single prostitution or drug-related arrest strata.

226 Discussion

227 Using population-level arrest and public health STI data, we examined prostitution and 228 drug-related arrests as they related to risk of area-level STI rates over an 18-year period. 229 STI rates were considerably higher than national rates reported by the CDC. For instance, 230 in 2018 the national rate for chlamydia was 539.9 per 100,000; whereas the Marion 231 County rate was 1,072.7 per 100,000. Marion County had the second highest syphilis rate in the United States in 2000 but dropped to the fiftieth percentile in 2018.²⁷ Our data 232 233 demonstrate the overlapping but distinctive ways by which communities are differentially 234 represented in STI surveillance data: both prostitution arrests and drug-related arrests are 235 associated with area-level STI rates. However, drug-related arrests substantially mediate 236 the relationship of prostitution arrests and STI area-level infection rates. These data 237 suggest that arrests associated with drug markets and drug use are key determinants in STI transmission.^{6,7,13,14} Since strategies for drug market policing are largely determined 238 239 at local levels, this indicates – at least from a public health perspective – that STI 240 prevention would benefit from approaches such as formal police-public health partnerships.²⁸ 241 242 Our data also showed the importance of poverty and race in moderating the relationships 243 of arrests and STI. When stratifying by the top half of dual arrests for both prostitution 244 and drug use, these, dual arrests were significantly associated with higher risk of all STIs 245 compared to single prostitution or drug arrest strata in low minority and low poverty 246 census block groups. These findings may indicate key social meeting locations are not

247 necessarily located in the most disadvantaged neighborhoods. As for other cities, core

248 STI transmitters frequented drug markets or sex markets (or both) and locations with

coexisting drug and sex markets had the highest transmission risk.¹⁶

250 Spatially, prostitution arrests were more geographically concentrated than drug-related

arrests. Prostitution and drug-related arrests, however, are correlated along the same main

transportation and commercial corridors in Marion County. Density maps of different STI

rates are highly related to one another and are consistent with local and national trends in

254 STI prevalence; the highest densities are for rates of chlamydia, followed closely by

255 gonorrhea, then syphilis and HIV.

256 We also assessed co-infection rates, residential address of arrestee, and changes over time

to determine differences in the association between prostitution and drug-related arrests

with area-level STI transmission rates. We hypothesized that co-infections would have a

stronger relationship with STI infection rates in areas with a higher prevalence of

260 prostitution and drug-related arrests; however, findings were nearly identical to single

261 STI rates, indicating that co-infections may be more driven by individual characteristics

than on the area-level environment. This is important because co-infections have

263 implications for higher risk for transmission. Early diagnosis and treatment of STIs can

significantly reduce complications that can occur if the infections progress. In fact, STI-

265 infected individuals are two to five times more likely to acquire HIV through sexual

266 contact.²⁹ Likewise, those co-infected with an STI and HIV are more likely to transmit

267 HIV during sexual contact.²⁹

268 Given that individuals arrested for prostitution and drug-related offenses may not

269 necessarily live in the neighborhood in which they are arrested, we examined both the

arrest incident address and the residential address listed in the arrest report. Findings were

nearly identical, indicating that individuals reside in the area in which they are arrested or
that they live in neighborhoods with similar STI infection rates. Lastly, we stratified
models by time periods to examine differences across time and results were consistent
across different historical intervals within the 18-year study timeframe. All of these
stratified analyses which showed consistent relationships between area-level arrests and
STI risk point to the robustness of these findings.

We did not examine access to health care, so it is unclear whether individuals and

277

communities in this study had equal access to STI testing and clinical care. Studies have
shown sex workers often lack health care due to fear of arrest, lack knowledge of testing
availability, and life distractions, such as the need to meet basic needs for food, shelter
and safety.³⁰ Furthermore, living in a disadvantaged neighborhood often limits access to
health care providers and decreases the likelihood of preventative care.³¹ A recent study
in Detroit highlighted the complexities of accessing healthcare services when intersecting
sex work, drug use, and poverty within individuals lives.³²

285 Our findings suggest that important relationships exist between STI infection and sex

work and, to a greater degree, drug-related arrests within specific communities, especially

for chlamydia, gonorrhea and HIV. This finding can inform public health agencies and

288 community-based organizations that conduct outreach in these areas to expand their

efforts to include harm reduction and HIV/STI testing for both sex workers and

290 individuals experiencing substance use disorder. Co-location of STI screening in

community courts,^{33,34} drug courts,³⁵ and syringe services programs³⁶ results in case

finding and treatment and are promising approaches for accessing hard to reach

293 populations who are vulnerable to STI. Such an effort could result in conserved resources294 and better health outcomes.

295 Another implication of these findings is the importance of greater collaboration in public 296 health and policing efforts to address overlapping epidemics that engage both health and 297 legal intervention. Police agencies could provide data to local health departments on 298 areas of high sex work and drug arrests, helping these agencies to better target their already stretched work force.²⁸ Police and public health co-response has proven 299 300 successful in crisis intervention teams, which comprise police officers and mental health professionals to assist individuals suffering from mental illness.³⁷ Other police-public 301 302 health partnerships, such as the Cardiff model, have generated new policies and placebased initiatives in violence prevention.^{28,38} 303 304 Understanding police practices and partnering with law enforcement has important 305 implications for sex workers, PWUD, and STI transmission, as certain policing practices 306 may force PWUD to avoid carrying clean syringes, inject quickly or with unsterile needles which can increase the likelihood of STI transmission.³⁹ Neighborhoods with 307 308 higher STI rates are also oftentimes the same communities with higher violent crime rates;^{40,41} which has implementations regarding police enforcement. Policing methods 309 310 such as 'hot spot' policing directs more police resources to communities with higher rates of crime;^{42,43} however, individuals may not receive STI testing or other medical services 311 they need within the criminal justice system.⁴⁴ 312

There have been advances in policing practices in recent years that seek to link

314 individuals to needed services and not into the justice system. For instance, arrest

315 diversion programs, such as Seattle's Law Enforcement Assisted Diversion program

316 diverts individuals suspected of low-level drug and prostitution charges to social, 317 medical, and legal services compared to arrest. Results indicate a reduction in future 318 arrest for individuals involved in low-level drug and prostitution activity by nearly 60 percent.⁴⁵ Such diversion programs may be an opportunity to implement STI testing 319 320 among PWUD and sex workers. Syringe service programs have been implemented by 321 many states and aim to reduce infectious disease and improve outcomes for people who 322 inject drugs. Studies suggest police support such programs; however, officer education, 323 training, and understanding legal constraints are needed when implementing such programs.46 324 325 There are several limitations of this study. First, it is an ecological study design that 326 precludes knowing whether individual-level associations in fact exist (ecological fallacy); 327 however, our findings are important for STI surveillance and directing public health 328 resources to specific communities regardless of the causal mechanisms. Second, our data 329 only includes one metropolitan area and therefore may lack generalizability to smaller or 330 larger metropolitan areas. Marion County incorporates three smaller cities with their own 331 police departments. We used arrest data from Indianapolis Metropolitan Police 332 Department, which serves over 90% of Marion County. Census block groups from the 333 three smaller cities were removed from these analyses. Third, prostitution and drug-334 related arrests do not necessarily reflect sex work and drug activity within an area. 335 Similarly, we do not know how testing was done within these communities during our 336 study timeframe. Although we had a population level of drug-related arrest, we did not 337 assess drug type, quantity, or quality, and differences may exist in regard to STI 338 transmission risk. Fourth, census block groups may not be the best indicator of area-level

339	effect and stronger effects may be observed at smaller levels of geography. Lastly, we
340	were not able to measure access to health care, possible bias in STI testing, or account for
341	community programs which may have been implemented during our study.
342	Conclusion
343	Prostitution arrests are associated with STI risk; however, this relationship is mediated by
344	drug arrests. The association between both prostitution and drug arrests and STI
345	incidence rates are strongest in low minority and low poverty communities, likely
346	indicating that high baseline STI prevalence is not moderated by levels of prostitution
347	and drug arrests. These data suggest that important relationships exist between STI risk
348	and sex work and, to a greater degree, drug arrests within communities that could better
349	inform intervention activities.

351	Refere	nces
352	1.	Jeal N, Salisbury C. A health needs assessment of street-based prostitutes:
353		cross-sectional survey. Journal of Public Health. 2004;26(2):147-151.
354	2.	Strathdee SA, Lozada R, Martinez G, et al. Social and structural factors
355		associated with HIV infection among female sex workers who inject drugs in
356		the Mexico-US border region. <i>PloS one.</i> 2011;6(4):e19048.
357	3.	Strathdee SA, Philbin MM, Semple SJ, et al. Correlates of injection drug use
358		among female sex workers in two Mexico–US border cities. <i>Drug and alcohol</i>
359		dependence. 2008;92(1-3):132-140.
360	4.	Paz-Bailey G, Noble M, Salo K, Tregear SJ. Prevalence of HIV among US female
361		sex workers: systematic review and meta-analysis. AIDS and Behavior.
362		2016;20(10):2318-2331.
363	5.	Rudolph AE, Linton S, Dyer TP, Latkin C. Individual, network, and
364		neighborhood correlates of exchange sex among female non-injection drug
365		users in Baltimore, MD (2005–2007). AIDS and Behavior. 2013;17(2):598-
366		611.
367	6.	Brookmeyer KA, Haderxhanaj LT, Hogben M, Leichliter J. Sexual risk
368		behaviors and STDs among persons who inject drugs: A national study.
369		Preventive medicine. 2019;126:105779.
370	7.	Loza O, Patterson TL, Rusch M, et al. Drug-related behaviors independently
371		associated with syphilis infection among female sex workers in two Mexico-
372		US border cities. <i>Addiction.</i> 2010;105(8):1448-1456.
373	8.	Tran BX, Mai HT, Fleming M, et al. Factors associated with substance use and
374		sexual behavior among drug users in three mountainous provinces of
375		Vietnam. International journal of environmental research and public health.
376		2018;15(9):1885.
377	9.	Conrad C, Bradley HM, Broz D, et al. Community outbreak of HIV infection
378		linked to injection drug use of oxymorphone—Indiana, 2015. <i>MMWR</i>
379		Morbidity and mortality weekly report. 2015;64(16):443.
380	10.	Cohen D, Spear S, Scribner R, Kissinger P, Mason K, Wildgen J. " Broken
381		windows" and the risk of gonorrhea. <i>American journal of public health.</i>
382		2000;90(2):230.
383	11.	Holtgrave DR, Crosby RA. Social capital, poverty, and income inequality as
384		predictors of gonorrhoea, syphilis, chlamydia and AIDS case rates in the
385		United States. <i>Sexually transmitted infections.</i> 2003;79(1):62-64.
386	12.	Thomas JC, Sampson LA. High rates of incarceration as a social force
387		associated with community rates of sexually transmitted infection. <i>The</i>
388		Journal of infectious diseases. 2005;191(Supplement_1):S55-S60.
389	13.	Jennings JM, Taylor RB, Salhi RA, Furr-Holden CDM, Ellen JM. Neighborhood
390		drug markets: a risk environment for bacterial sexually transmitted
391		infections among urban youth. <i>Social Science & Medicine</i> . 2012;74(8):1240-
392	1.4	
393	14.	Jennings JM, Woods SE, Curriero FC. The spatial and temporal association of
394		neignbornood drug markets and rates of sexually transmitted infections in an
395		urban setting. <i>Health & place.</i> 2013;23:128-137.

396	15.	Jennings JM, Taylor R, Iannacchione VG, et al. The available pool of sex
397		partners and risk for a current bacterial sexually transmitted infection.
398		Annals of epidemiology. 2010;20(7):532-538.
399	16.	Jennings JM, Polk S, Fichtenberg C, Chung S-e, Ellen JM. Social place as a
400		location of potential core transmitters—Implications for the targeted control
401		of sexually transmitted disease transmission in urban areas. Annals of
402		epidemiology. 2015;25(11):861-867.
403	17.	Ellen JM, Hessol NA, Kohn RP, Bolan GA. An investigation of geographic
404		clustering of repeat cases of gonorrhea and chlamydial infection in San
405		Francisco, 1989–1993: evidence for core groups. The Journal of infectious
406		diseases. 1997;175(6):1519-1522.
407	18.	Cunningham SD, Michaud JM, Johnson SM, Rompalo A, Ellen JM. Phase-
408		specific network differences associated with the syphilis epidemic in
409		Baltimore city, 1996–2000. Sexually transmitted diseases. 2004;31(10):611-
410		615.
411	19.	Wylie JL, Shaw S, DeRubeis E, Jolly A. A network view of the transmission of
412		sexually transmitted infections in Manitoba, Canada. Sexually transmitted
413		infections. 2010;86(Suppl 3):iii10-iii16.
414	20.	Jennings J, Glass B, Parham P, Adler N, Ellen JM. Sex partner concurrency,
415		geographic context, and adolescent sexually transmitted infections. <i>Sexually</i>
416		transmitted diseases. 2004;31(12):734-739.
417	21.	Santos CJ, Gomes B, Ribeiro AI. Mapping Geographical Patterns and High Rate
418		Areas for Sexually Transmitted Infections in Portugal: A Retrospective Study
419		Based on the National Epidemiological Surveillance System. Sexually
420		Transmitted Diseases. 2020;47(4):261-268.
421	22.	Kerani RP, Handcock MS, Handsfield HH, Holmes KK. Comparative
422		geographic concentrations of 4 sexually transmitted infections. American
423		Journal of Public Health. 2005;95(2):324-330.
424	23.	Jennings JM, Curriero FC, Celentano D, Ellen JM. Geographic identification of
425		high gonorrhea transmission areas in Baltimore, Maryland. American journal
426		of epidemiology. 2005;161(1):73-80.
427	24.	Workowski KA, Bolan GA. Sexually transmitted diseases treatment
428		guidelines, 2015. MMWR Recommendations and reports: Morbidity and
429		mortality weekly report Recommendations and reports. 2015;64(RR-03):1.
430	25.	Cha S, Newman DR, Rahman M, Peterman TA. High Rates of Repeat
431		Chlamydial Infections Among Young Women—Louisiana, 2000–2015.
432		Sexually transmitted diseases. 2019;46(1):52.
433	26.	Lazenby GB, Korte JE, Tillman S, Brown FK, Soper DE. A recommendation for
434		timing of repeat Chlamydia trachomatis test following infection and
435		treatment in pregnant and nonpregnant women. International journal of STD
436		& AIDS. 2017;28(9):902-909.
437	27.	prevention Cfdca. Sexually Transmitted Disease Surveillance 2018.
438		https://www.cdc.gov/std/stats18/default.htm. Published 2018. Accessed.
439	28.	Shepherd JP, Sumner SA. Policing and public health—strategies for
440		collaboration. <i>Jama</i> . 2017;317(15):1525-1526.

441	29.	Prevention CfDCa. Sexually Transmitted Disease Surveillance 2010. Atlanta:
442		U.S. Department of Health and Human Services;2011.
443	30.	Kurtz SP, Surratt HL, Kiley MC, Inciardi JA. Barriers to health and social
444		services for street-based sex workers. <i>Journal of health care for the poor and</i>
445		underserved. 2005;16(2):345-361.
446		
447		
448		
449		
450		
451		
452		
452		
455		
454		
455		
450		
457		
458		
459		
460		
461		
462		
463		
464		
465		
466		
467		
468		
469		
470		
471		
472		
473		
474		
475		
476		
477		
478		
479		
480		
481		
AQ2		
102		
103		
404 105		
400		
486		

487			
488	Supple	Supplement References	
489	31s.	Kirby JB, Kaneda T. Access to health care: does neighborhood residential	
490		instability matter? Journal of Health and Social Behavior. 2006;47(2):142-	
491		155.	
492	32s.	Knittel AK, Graham LF, Peterson J, Lopez W, Snow RC. Access to health care	
493		services among young people exchanging sex in Detroit. <i>Journal of Urban</i>	
494		Health. 2019;96(3):452-468.	
495	33s.	Roth A, Fortenberry JD, Van Der Pol B, et al. Court-based participatory	
496		research: collaborating with the justice system to enhance sexual health	
497		services for vulnerable women in the United States. <i>Sexual Health.</i>	
498		2012;9(5):445-452.	
499	34s.	Roth AM, Van Der Pol B, Fortenberry ID, et al. The impact of brief messages	
500		on HSV-2 screening uptake among female defendants in a court setting: A	
501		randomized controlled trial utilizing prospect theory. <i>Journal of health</i>	
502		communication. 2015:20(2):230-236.	
503	35s.	Robertson AA. St. Lawrence IS. McCluskey DL, HIV/STI risk behavior of drug	
504	000	court participants. <i>Journal of offender rehabilitation</i> . 2012:51(7):453-473.	
505	36s.	Roth AM, Goldshear IL, Martinez-Donate AP, Welles S, Chavis M, Van Der Pol	
506	000	B. Reducing missed opportunities: pairing sexually transmitted infection	
507		screening with syringe exchange services. Sexually Transmitted Diseases.	
508		2016:43(11):706-708.	
509	37s.	Compton MT. Bakeman R. Broussard B. et al. The police-based crisis	
510		intervention team (CIT) model: II. Effects on level of force and resolution.	
511		referral, and arrest. <i>Psychiatric services</i> . 2014:65(4):523-529.	
512	38s.	Shepherd IP. Emergency medicine and police collaboration to prevent	
513		community violence. Ann Emera Med. 2001:38(4):430-437.	
514	39s.	Miller CL. Firestone M. Ramos R. et al. Injecting drug users' experiences of	
515		policing practices in two Mexican–US border cities: public health	
516		perspectives. International Journal of Drug Policy. 2008:19(4):324-331.	
517	40s.	Chesson HW. Owusu-Edusei K. Leichliter IS. Aral SO. Violent crime rates as a	
518		proxy for the social determinants of sexually transmissible infection rates:	
519		the consistent state-level correlation between violent crime and reported	
520		sexually transmissible infections in the United States, 1981–2010. <i>Sexual</i>	
521		health. 2013:10(5):419-423.	
522	41s.	Marotta P. Assessing spatial relationships between rates of crime and rates of	
523	1201	gonorrhea and chlamydia in Chicago, 2012, <i>Journal of Urban Health</i> .	
524		2017:94(2):276-288	
525	42s.	Braga A. Papachristos A. Hureau D. Hot spots policing effects on crime.	
526	1201	Camphell Systematic Reviews, 2012:8(1):1-96.	
527	43s.	Braga AA, Bond BL Policing crime and disorder hot spots: A randomized	
528	1001	controlled trial. <i>Criminology</i> , 2008:46(3):577-607	
529	44s	Kulkarni SP. Baldwin S. Lightstone AS. Gelberg L. Diamant AL. Is	
530	1 101	incarceration a contributor to health disparities? Access to care of formerly	
531		incarcerated adults <i>Journal of community health</i> 2010.35(3).268-274	
551			

- 532 45s. Collins SE, Lonczak HS, Clifasefi SL. Seattle's Law Enforcement Assisted
 533 Diversion (LEAD): program effects on recidivism outcomes. *Evaluation and*534 *program planning.* 2017;64:49-56.
- 535 46s. Sightes E, Ray B, Paquet SR, Bailey K, Huynh P, Weintraut M. Police officer
 536 attitudes towards syringe services programming. *Drug and alcohol*537 *dependence.* 2019;205:107617.

538