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ABSTRACT 

The present work describes an optimization process based on the ε-constraint method to find an optimum 

design to maximize the critical buckling load and minimize the structural weight of an angle grid plate. A 

comprehensive geometrical model is considered including all geometrical design variables of the grid. In 

order to achieve a precise and effective approximation of the buckling load, an artificial neural network 

(ANN) is employed. Training data for ANN is obtained by the Mindlin plate theory as well as the Ritz 

method. The ANN is combined with genetic algorithms (GA) to find optimized design variables for the 

angle grid structure. The results provide a wide range of geometrical data for designers to choose the 

maximum buckling load at the minimum structural weight. 

Keywords: Artificial Neural Networks, Angle Grid Structure, Buckling Load, Genetic Algorithm, Multi-

Objective Optimization, ε-constraint approach 

1. Introduction

Grid (which is also called lattice) structures are broadly utilized in various structures as an 

independent member or for stiffening plates and shells. Owing to efficient weight and considerable 

stiffness, these structures are among the first choices in weight-sensitive applications namely, 

aviation, automotive, and marine industries. Several known grid patterns are exist, such as, angle 

grid, isogrid, and orthogrid which can be used for appropriate loading and weight conditions. With 

increasing importance of low weight structures, conventional materials gradually are substituted 

with composite materials. Due to their economical fabrication process, and resistance to ambient 

conditions, fiber reinforced composites have employed as a proper option to manufacture grid 

structures. Up to now, many research projects are carried out on modeling, manufacturing, and 

optimization of the grid and grid-stiffened structures.  

In multiple previous works, researchers attempted to introduce new classes of grid structures to 

achieve an improved mechanical responses. These attempts yield to several new structures with 

specific characteristics namely laminated grids, interlocked grids and curved-ribs grid [1-5]. The 

majority of studies have paid attention to optimize the composite grid-stiffened or ring-stiffened 

plates and shells, considering the weight as the primary objective function. Therefore, geometrical 

parameters and stacking sequences are generally considered as the design variables for performing 

the optimization process. The second objective functions are mostly stability, free vibration 

frequency and structural failure probability [6-21]. Depending on several parameters such as 

number of variables, solution method, and used theories, an optimization problem may take a long 
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time. Many researchers employed ANN as a fitting tool to provide a reasonable and applicable 

proximate results. Generally, due to simplicity and accuracy, GA is the most desirable optimization 

method in the literature. Combination of GA and ANN has led to a fast and reliable solutions [22-

26]. 

Despite the plentiful investigations on optimization of grid plates, to date no published study 

considers entire geometrical design variables to find an optimal design for angle grid structures. 

The current work presents a bi-objective optimization process based on ε-constraint method to 

simultaneously achieve the maximum critical buckling load at the minimum possible weight of 

composite angle grid plates. Accordingly, a comprehensive geometrical model of angle grid 

structures is modeled where the design variables include thickness, width, spaces between and 

angles of each group of the ribs. The objective functions of the problem are the maximum critical 

buckling load of the structure and minimizing its weight. To obtain the buckling load of the 

structure the Ritz method along with Mindlin or first-order shear deformation plate theory (FSDT) 

is applied. Eight design variables, two objective functions and also the first-order theory cause a 

large amount of calculations and an extremely time-consuming optimization procedure. Therefore, 

an ANN is trained by analytical data and used to approximate the results with maximum accuracy 

and minimum possible time. To find the optimum design among the all possible alternatives the 

GA is combined with ANN. Since multi-objective optimizations lead to a set of solutions, Pareto-

frontier curve is depicted to illustrate entire potential designs of the structure.  

2. Problem Definition

a. The angle grid structure

Consider a square angle grid plate of side “a” as illustrated in Fig. 1. Defined plate is assumed to 

be simply supported along four sides and subjected to a uni-axial compression force. Angle grid 

structures are composed from two groups of parallel ribs. It is assumed, the thickness, t, width, b, 

number, n, and orientation, Ψ, of each group are potentially can be different from the other one. 

The ribs are rectangular-shaped cross-section. As is depicted in Fig. 1, the first and second group 

of ribs are shown by green and blue colors, respectively. d1 and d2 imply the ribs spacing which is 

directly related to n1 and n2 values, respectively. 

Fig. 1 2D Geometrical schematic of the defined angle grid structure. The first and second group of ribs are shown 

by green and blue colors, respectively (left). 3D view of the angle grid structure (right) 
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Table 1 shows the domain and other characteristics of each geometrical variable. Both groups of 

ribs have similar variation domains. However, the orientation angle of first group, Ψ₁, is considered 

to change from 0 to 90 degrees related to the X-axis while Ψ₂ can select any integer value between 

90 and 180 degrees. 

It is assumed that T300/5208 Carbon-Epoxy composite is employed to manufacture the angle grid 

structure. The elastic properties of the applied material are: E₁ = 162 × 109 Pa, E₂ = 14.9 × 10⁹ 

Pa, ν₁₂ = 0.283, G₁₂ = 5.7 × 10⁹ Pa, G₁₃ = 5.7 × 10⁹ Pa, G₂₃ = 5.4×10⁹ Pa, and ρ = 1583 kg/m3 

[27]. Where E₁ and E₂ are the composite modulus in fiber and transverse to the fiber direction, 

respectively. G₁₂, ν₁₂ and ρ are shear modulus, Poisson’s ratio and density of the employed 

composite material, respectively. G₁₃ and G₂₃ are the out-of-plane shear modulus of the composite. 

It is also presumed that the ribs are produced by uni-directional fibers along their length. 

Table 1 Domains and characteristics of the variables shown in Fig. 1 

Variable Ribs Description Symbol Minimum Value Maximum Value 

x₁ 

F
ir

st
 

g
ro

u
p
 number of ribs n₁ 2 9 

x₂ ribs width b₁ 12.5 mm 20 mm 

x₃ ribs thickness t₁ 7.5 mm 15 mm 

x₄ ribs angle Ψ₁ 0º 90º 

x₅ 

S
ec

o
n

d
 

g
ro

u
p
 number of ribs n₂ 2 9 

x₆ ribs width b₂ 12.5 mm 20 mm 

x₇ ribs thickness t₂ 7.5 mm 15 mm 

x₈ ribs angle Ψ₂ 90º 180º 

b. Constitutive Equations

The Mindlin theory or FSDT is utilized to obtain the buckling load of the angle grid structure. 

According to Mindlin theory, the displacement fields for the given plate is presented in the 

following form: 

u, v, w=u0(x, y)+zφ
x
(x, y), v0(x, y)+zφ

y
(x, y),w(x, y) (1) 

In which u, v and w are the displacements along with x, y and z axes. The subscript “0” signifies 

the mid-plane deflections. The φy and φx show rotation angles of transverse normal axis in the mid-

plane surface in x and y axes, respectively. Like a composite ply, a grid plate has the directional 

properties that is engendered due to the ribs’ position and geometries. In this way, the resultant 

forces, N and Q, and moments, M, for a symmetrical orthotropic thick plate is written as: 

[

Nx

Ny

Nxy

Q
yz

Q
xz]

=

[

A11 A12 A16 0 0

A12 A22 A26 0 0

A16 A26 A66 0 0

0 0 0 A44 A45

0 0 0 A45 A55] [

u0,x

v0,y

u0,y
+v0,x

φ
y
+w,y

φ
x
+w,x ]

(2) 

[

Mx

My

Mxy

]= [

D11 D12 D16

D12 D22 D26

D16 D26 D66

] [

φ
x,x

φ
y,y

φ
x,y

+φ
y,x

] (3) 

Where [A] and [D] matrices are the extensional and bending stiffness matrices respectively and is 

obtained using the method that is presented by Nemeth [28]. The matrices’ elements are a function 

of material and geometrical properties such as orientation and cross-section of the ribs. 
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The Ritz approach is utilized for achieving the critical buckling loads of the plate. Hence, the total 

potential energy is obtained as below: 

π=U-V (4) 

In which V is loss in the potential energy and U is the strain energy [29, 30]. 

For a simply supported plate, three trigonometric series can be considered for defining w(x, y), 

φx(x, y), φy(x, y) in Eq. (1) which satisfy the geometrical boundary conditions of w, x and y. They 

can be expressed as the following set of equations [31]:  

w.(x,y), φ
x
(x,y), φ

y
(x,y)=∑∑[Wmn sin (X) sin (Y), Pmn cos (X) sin (Y) , Tmn sin (X) cos (Y)]

N

n=1

M

m=1

(5) 

Where the Wmn, Pmn, and Tmn are the constants and X, Y for a square plate of side “a” are: 

X=
mπ

a
x, Y=

nπ

a
y (6) 

Performing a minimization process of the π in Eq. (4) respecting to the Wmn, Pmn and Tmn 

coefficients, produces an eigenvalue problem as below: 

([K]-λ[KG])d̃=0̃ (7) 

Where [KG] and [K] are the geometric and elastic stiffness matrices of the angle grid plate. d̃ is the 

vector of coefficients (Wmn, Pmn, and Tmn) that can be expressed as [30]: 

d̃= {

Wmn

Pmn

Tmn

} (8) 

Calculating the λ from Eq. (7), leads to the buckling load values. 

3. Artificial Neural Networks

Artificial Neural Network (ANN) is among the best tools utilized in machine learning. It is 

engendered according biological nervous systems and works based on training-testing method. 

ANN is composed of several components namely, input, hidden, and output layers, neurons, and 

connections. In an ANN multitude associated processing elements, neurons, collaborating to solve 

a problem. In this way, the network gathers data from previous solved problems to establish an 

arrangement of neurons that comprehend solving a new examined problem. This method is widely 

employed to simulate complicated functions with multiple inputs and several outputs which causes 

a considerable reduction in solving time.  

In this study, a Multi-Layers Perceptron (MLP) network with three layers, two hidden and one 

output layers, are defined (Fig. 2). The training is performed by the Bayesian Regularization (BR) 

backpropagation training function. In the training procedure, minimization of Mean Square Error 

(MSE) between the outputs and targets of the training set is considered as the criterion to evaluate 

the network performance. 
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Fig. 2 The neural networks structure. x₁-x₈ are the design variables. b₁-b₃ are biased values. O₁ is the output which 

is the buckling load in this study. 

The architecture of the ANN employed including the number of neurons and transfer functions of 

each layer are described in Table 2. A MATLAB code is prepared with association its neural 

networks toolbox to implement ANN procedure. 

Table 2 The architecture of ANN 

First Hidden Layer Second Hidden Layer Output Layer 
Training 

samples 

Testing 

samples 

Validating 

samples 

neurons Transfer fn. neurons Transfer fn. neurons Transfer fn. 

70% 15% 15% 
11 

Logarithmic 

sigmoid 
11 

Tangent 

sigmoid 
1 Linear 

4. Multi-Objective Optimization

a. Optimization formulation

In contrary with single-objective optimization problems, generally, there is no unique solution for 

multi-objective optimization due to a trade-off among the objectives. Therefore, results of these 

problems are typically presented by a Pareto-frontier curve, which is a set of optimal solutions 

[32]. 

In the current study, the multi-objective optimization of an angle grid plate is implemented. The 

objective functions are the total weight and the critical buckling load of the structure. Eight 

geometrical parameters are considered as design variables namely, thickness, width, number and 

angle of each group of ribs (see Table 1).  

The ε-constraint approach is employed to achieve the optimal interaction between minimum 

weight and maximum critical buckling load of the structure. In this method, only one of the defined 

objectives is optimized, fn(x), and the rest of the objectives, fk(x), is imposed to the problem as the 

constraints [33]. Consequently, a multi-objective problem converts to a single-objective 

optimization with one or more new constraints. Using ε-constraint method, the optimization 

problem is solved for any given upper bound of ε to find fn(x). In this way, the Pareto-frontier 

curve can be drawn to illustrate the optimal design space. For K number of objectives the method 

can be expressed as below: 

f
k
(x) ≤ εk,  k=1,…,K;  k ≠ n (9) 

Where εk is an upper limit for objective function fk(x) and x represents a vector of inputs. 
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In the present work, the critical axial buckling load is considered as the main objective function 

and the structure’s weight is applied as the ε-constraint. Increasing the ε value gradually and 

resolve the optimization problem leads to a maximum buckling load for each weight step and 

subsequently the optimal design space is generated. Therefore the optimization problem is 

formulated as follows: 

Maximize 

Subjected to 
f
n
(x)=Ncr(x1, x2, ⋯, x8)

{

f
k
(x)=W(x1, x2, ⋯, x8) ≤ εk ; Wmin≤ εk ≤Wmax; k≠n;

    2 ≤ x1,x5 ≤ 9
12.5 mm ≤ x2,x6 ≤ 20 mm

  7.5 mm ≤ x3,x7 ≤ 15 mm

0°≤ x4 ≤ 90°

90° ≤ x8 ≤ 180°

(10) 

In which Ncr is the critical buckling load objective function. W is the weight function, Wmin and 

Wmax are the minimum and maximum feasible weights, respectively. 

b. Genetic algorithm

GA is a searching approach to identify the superior members of a generation and transfer to the 

later one. Moreover, genetic algorithm is a proper method for discrete optimization problems [9]. 

Genetic algorithm has been chosen to search the feasible objectives space. In fact, for every upper 

limit of weight, εk, GA searches among possible design variable domains to find an optimal 

solution for Ncr(x).  

As illustrated in Table 1, the eight geometrical parameters are considered as the design variables. 

The selected variables are completely independent and can change in their defined domains. 

Weight of the angle grid is taken as the problem constraints. The critical buckling load is the fitness 

function. In addition, a penalty value is deducted from the objective function to penalize infeasible 

solutions for weakening their fitness values. Therefore, the objective function in Eq. (10) can be 

reformed to the following fitness function: 

fit
n
(x)=f

n
(x)-δkCk=Ncr(x1, x2, ⋯, x8)-δkCk {

δk=1, if  f
k
(x) is violated

δk=0, for any other cases 
(11) 

Where Ck implies the penalty coefficient constant. 

In a chromosome, the all design variables of the angle grid, (x₁…x₈), are encoded as a binary form. 

The first population for genetic algorithm process is randomly produced. Three genetic operators 

namely, selection, crossover, and mutation are employed to procreate the new population 

(offspring) from the current population (parents).  

For selection operator, Tournament and Elitist mechanisms are utilized for generating the 20% of 

the next generation. The mutation operator is employed to replace a random gen from an arbitrary 

chromosomes from 1 to 0 or vice versa to expand the diversity of generations. The crossover 

operator is applied to interchange and integrate genes between two chromosomes. Due to the long 

chromosome string with vast amount of information about the design variables a six-point 

crossover is used to reproduce 75% of the children from a pair of random parents.  

To perform the optimization process a MATLAB subroutine has been written for GA and 

combined with corresponding code for ANN. 
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Since the maximum fitness amounts were not specified, the GA was implemented several times 

with various number of generations and populations to find the optimum values. Evaluating the 

convergence of the GA, an optimum number of generations is considered as the completion 

criterion. In the Appendix, Fig. A1 depicts the changes of the maximum critical load in various 

generations for several random weight steps. Evidently, after about one hundred generations, the 

GA is converged to the desired value. Table 3 illustrates the GA tuned parameters.  

Table 3  The GA parameters 

Number of Population 250 

Selection 20% 

Crossover 75% 

Mutation 5% 

Completion 150 generations 

5. Results and Discussion 

The relation between the both objective functions is shown in Fig. 3. The critical buckling loads 

are normalized with respect to the maximum achieved load and it is represented as, Ñcr. Two areas 

are specified in the figure. First one is the feasible objectives space, which illustrates all the 

possible solutions for the design space. In this area, every point has a special input vector and two 

objective values, weight and buckling. The GA is searched this area to find the prominent members 

of the input vectors to have the maximum critical buckling load at the minimum given weight. 

Among the all solutions, Pareto-frontier curve shows the optimal solutions for the optimization 

problem. Each point of this curve defines a design variables vector, (x₁…x₈), which in its turn has 

the maximum critical buckling load for a given weight. According to the application and design 

priorities, each point of the curve can be a solution for the multi-objective optimization problem.  

 
Fig. 3 Feasible objectives space for all input vectors, (x₁…x₈) and Pareto-frontier curve 

As can be seen in Fig. 3, the Pareto-frontier follows a linear trend. However, linearity does not 

mean that increasing the weight causes the optimized buckling load. Many points in the feasible 

objectives space have high weight with low critical buckling load.  

Seven arbitrary points are specified on the Pareto-frontier curve with red color and a number. The 

input vectors of these cases are extracted and depicted in Table 4. Under the design variables, the 

0
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domain of each parameter is also mentioned. On the right hand of the table weight, approximate 

and analytical buckling load and their discrepancy values are listed. As Table 4 shows, 

approximate results are in acceptable agreement with analytical results.  

Table 4 Input vectors and the value of objective functions for seven specified cases in Fig. 3 
Variables

→ x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ 
W (kg) 

Ñcr Ñcr 
Err. % 

Cases↓ (2-9) (12.5-20) (7.5-15) (0-90) (2-9) (12.5-20) (7.5-15) (90-180) (ANN) (FSDT) 

1 2 12.5 11 48 2 12.5 7.5 136 0.212 0.016 0.017 1.057 

2 4 12.5 15 44 3 18 15 150 1.362 0.204 0.216 5.268 

3 9 12.5 15 48 3 19.5 15 137 2.812 0.360 0.351 2.620 

4 8 12.5 15 45 9 13 15 169 4.162 0.537 0.514 4.479 

5 9 13 11 48 9 16 15 129 5.262 0.678 0.646 4.996 

6 9 18 15 48 9 16.5 15 135 6.462 0.838 0.810 3.357 

7 9 20 15 45 9 20 15 135 7.810 1.000 1.002 0.203 

Considering Table 4 illustrates, both the 4th and 5th cases have 8 and 9 ribs in each stiffeners group 

as well as minimum width. This shows, comparing to enlarging the width of the ribs, increasing 

their numbers has more positive effects on the buckling load.  

Fig. 4 represents the scatter plot of the design variables versus the normalized buckling load, Ñcr, 

for all points on the Pareto-frontier curve. 

Evaluating the thickness of the ribs (x₃, x₇) in Fig. 4 (a and b) and Table 4, demonstrates nearly all 

cases take the maximum feasible value in the domain. It can be concluded, the thickness of the 

ribs is a crucial parameter for achieving maximum buckling load in a given weight and the 

structures sacrifice other design variables to increase its thickness as much as possible.  

As shown in Fig. 4 (c and d) as well as Table 4 the width of the ribs (x₂, x₆) are diverse among the 

optimum cases. However, b₁ varies less than b₂. Therefore, it can be considered that the b₁ is less 

important than b₂ since, for low amounts of Ñcr, the GA generally selects minimum values of b₁ to 

keep the weight down while increasing b₂ and the number of ribs n₁ and n₂. This shows the width 

of the ribs is the most convenient variable that can be changed to find the optimum weight and 

first buckling load of the angle grid structure.  

Similar to width of the ribs, number of ribs in each group is variant for the different buckling load 

values (see Fig. 4 (e and f)). However, more attention shows that 9 number of the ribs are more 

frequent than others. This can be figured out that more number of ribs even with lower weight and 

width causes higher buckling load for the angle grid plate. Furthermore, as shown in the plots, n₂ 

after Ñcr=0.4, generally reaches to its maximum feasible value, while the width of the 

corresponding ribs rarely have its upper bound values in this limit. 

As can be seen in Fig. 4 (g and h), similar to the thickness values, the ribs orientations, Ψ₁ and Ψ₂, 

generally take a value in the range (45º±3º) and (135º±3º), respectively. This means the optimum 

condition of the ribs happens when they are perpendicular to each other. If two groups of ribs are 

placed in an orthogonal situation related to one another, the angle grid turns to an Orthogrid 

structure. It can be inferred that an orthogrid plat which is wholly rotated about 45 degrees can be 

substituted by an angle grid with different orientations for each ribs.  
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Fig. 4 Scatter plot of the design variables versus normalized critical buckling load for all points on the Pareto-

frontier curve in Fig. 3 

Fig. 5 illustrates the total cross-section area of the first and second groups of the ribs versus 

normalized critical buckling load. The total areas are obtained as follows: 

A1, A2=(n
1
×t1×b1),( n2×t2×b2) (12) 

As can be seen in Fig. 5, typically increasing the cross-section areas the buckling load increases. 

Moreover, the points are more inclined to A₂ axis which it proves previous inference about the role 

of second groups of ribs which was Increasing the A₂ values has more influence on the critical 

buckling load.  

Considering the variations of the design variables versus first buckling load it can be concluded 

that the maximum buckling load values normally happen when the ribs’ thicknesses are in upper 

bound of their domain and the ribs’ orientations, Ψ₁ and Ψ₂, have a value in the range (45º±3º) and 

(135º±3º), respectively. This means an Orthogrid plate with constant thickness and a 45º rotation 

respect to the X-axis can be substituted by an angle grid. 
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Furthermore, results show the number of ribs and the ribs’ width are generally varied to find the 

optimum buckling load at a given weight. Between former variables, b₁ and b₂ show more 

flexibility to change among different optimum solutions.   

Fig. 5 The total cross-section areas of the first and second groups of the ribs A₁, A₂ versus normalized critical 

buckling load Ñcr or all points on the Pareto-frontier curve in Fig. 3 

6. Conclusion

In the current research, the Multi-objective optimization of an angle grid plate is implemented 

considering two objective functions, maximum critical buckling load, and minimum weight. Eight 

design variables including, thickness, width and orientation of the ribs, along as the number of ribs 

are taken into account. Mindlin plate theory and Ritz method is employed to calculate the first 

buckling load of the plate. An artificial neural network is used to simulate the solving process and 

reduce the solving time. Utilizing the GA method along with ε-constraint approach, the maximum 

critical buckling load for each given weight is obtained and Pareto-frontier curve is drawn. 

Results demonstrate the ribs’ thickness and orientations tend to reach determined values during 

optimization process. In contrary, the ribs’ width and also the number of ribs vary among the 

optimum solutions. Furthermore, the values of rib’s orientation signify the best performance 

happens when they are perpendicular to each other and both are in the middle of their domains. 

Moreover, results describe almost all optimum points on the Pareto-frontier curve have the 

maximum thickness which expresses the importance of the thickness related to the other design 

variables. 
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Appendix 

Fig. 1A The critical buckling load changes in various generations for three random weight steps 
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