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estimation, etc. They are playing an important role in fields 
like Robotics, Autonomous cars, Unmanned Aerial Vehicles, 
etc which often require the above-mentioned computer vision 
applications to be implemented in real-time. DNNs became 
popular when AlexNet [6] won the ImageNet Challenge, in 
2012. Since then, deep learning architectures like SqueezeNet 
[1], SqueezeNext [2], Inception [4], MobileNet [3], etc have 
replaced computer vision algorithms like the HOG or Canny’s 
algorithm. To make the architectures more accurate, they were 
made deeper by adding more layers to them. DNNs were 
implemented on different embedded systems but due to their 
large size, they were undeployable into resource- constrained 
real-time embedded devices. In general, making the DNN 
models deeper and more complex increases the model size and 
the average computation time, rendering them unsuitable for 
real-time applications. Various techniques to reduce the model 
size like Pruning [7], Deep compression [8], Architectural 
tuning were developed. The demand for computer vision 
applications in real-time embedded processors increased with 
time which led to the increased usage of the above-mentioned 
techniques to make the standard DNN architectures more 
compact and efficient. In the process of making these archi- 
tectures smaller, the accuracy is often compromised. In this 
paper, we perform the Design Space Exploration (DSE) of the 
baseline MobileNet v1 which is a standard DNN architecture 
and get a more compact and faster model called the Ultra-  
thin MobileNet without compromising on the accuracy level. 
In Section I. we introduce our research work.  In section  II, 
we discuss some prior work associated to this domain. In 
section III, we discuss the development of the new DNN model 
step-by-step . Section IV discusses the various hardware and 
software requirements for our research. Section V throws light 
on the implementation part, starting from training and testing 
the architecture from scratch to deploying it into the NXP 
i.MX RT1060 MCU and visualizing the output on the Tera
Term. Section VI depicts the experimental results we obtain
after training, testing and deploying our model. We compare
our model with other popular DNN models and also record the
time taken for the image classification application. Finally, in
Section VII, we conclude the topic by summarizing our work
and also mentioning the future scope of this research.

Abstract—Deep Neural Networks play a very significant role 
in computer vision applications like image classification, object 
recognition and detection. They have achieved great success in 
this field but the main obstacles for deploying a DNN model 
into an Autonomous Driver Assisted System (ADAS) platform 
are limited memory, constrained resources, and limited power. 
MobileNet is a very efficient and light DNN model which was 
developed mainly for embedded and computer vision applica- 
tions, but researchers still faced many constraints and challenges 
to deploy the model into resource-constrained microprocessor 
units. Design Space Exploration of such CNN models can make 
them more memory efficient and less computationally intensive. 
We have used the Design Space Exploration technique to modify 
the baseline MobileNet V1 model and develop an improved 
version of it. This paper proposes seven modifications on the 
existing baseline architecture to develop a new and more efficient 
model. We use Separable Convolution layers, the width multiplier 
hyperparamater, alter the channel depth and eliminate the layers 
with the same output shape to reduce the size of the model. We 
achieve a good overall accuracy by using the Swish activation 
function, Random Erasing technique and a choosing good opti- 
mizer. We call the new model as Ultra-thin MobileNet which has 
a much smaller size, lesser number of parameters, less average 
computation time per epoch and negligible overfitting, with a 
little higher accuracy as compared to the baseline MobileNet V1. 
Generally, when an attempt is made to make an existing model 
more compact, the accuracy decreases. But here, there is no trade 
off between the accuracy and the model size. The proposed model 
is developed with the intent to make it deployable in a real- 
time autonomous development platform with limited memory 
and power and, keeping the size of the model within 5 MB. 
It could be successfully deployed into NXP i.MX RT1060 ADAS 
platform due to its small model size of 3.9 MB. It classifies images 
of different classes in real-time, with an accuracy of more than 
90% when it is run on the above-mentioned ADAS platform. We 
have trained and tested the proposed architecture from scratch 
on the CIFAR-10 dataset. 

Index Terms—Deep Neural  Network  (DNN),  Autonomous 
Driver Assistance Systems (ADAS), Design Space Exploration 
(DSE),Depthwise Separable Convolutions, Separable Convolutions, 
Random Erasing, Swish, Ultra-thin MobileNet, Tensorflow, Keras, 
CIFAR-10, i.MX RT1060 . 

I. INTRODUCTION

In the last few years, Deep Neural Networks (DNN) has 
become a great technology for implementing computer vision 
applications like object detection, image classification, pose 
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II. PRIOR WORK
There are some deep neural networks which use depthwise 

separable convolutions and separable convolutions instead of 
the normal standard convolutions.  Some  of  the  deep  neu- 
ral networks using these convolutions  are  MobileNet  V1 
[3], MobileNet V2 [5], Enhanced Hybrid MobileNet [14] 
CondenseNet [11], ShuffleNet [8], and Xception [9]. The 
MobileNet V1 architecture utilizes the depthwise separable 
convolutions to decrease the average computation overhead to 
about one-eighth of the computation overhead incurred when 
standard convolutions are used. In a depthwise layer, each 
input channel is filtered  separately and they are followed  by 
a 1 1 pointwise convolution layer where all the outputs are 
linearly integrated. So, the process of filtering and the process 
of combining takes place in two different steps. MobileNet 
V2 [5] is an improved DNN  architecture  as  compared  to 
the MobileNet V1 [3] based on the model size. It utilizes 
bottleneck depthwise separable convolutions with residuals. It 
has got a 32 filter fully convolution layer, succeeded by 19 
residual layers. The utilization of these residual layers prevents 
data from being mutilated and also makes the model more 
compact. The Enhanced Hybrid MobileNet [14] is also an 
improvement over the existing baseline model. In this model, 
the depth multiplier [14] hyperparameter was introduced and 
the average pooling layers were substituted by Max pooling 
and Fractional max pooling layers [14] with different strides. 
Different enhanced hybrid models were generated as the stride 
values were changed. Some achieved better accuracy and some 
achieved lesser model size as compared to the MobileNet V1. 
CondenseNet [11] uses some special convolutions called the 
group convolutions [8,11] mainly to reduce the computation 
cost by dividing the input features into mutually exclusive G 
groups, and they produce their outputs, ultimately decreasing 
the overall computational cost by a factor of G. Another model, 
the ShuffleNet [8] also uses these group convolutions. Each 
unit is composed of 1 1 pointwise convolution layers, channel 
shuffle, 3 3 depthwise convolutions, and 1 1 group convolu- 
tions. The channels in a group are divided into subgroups and 
then they are fed into the next layer with different subgroups, 
which makes the input channel and output channel perfectly 
related to each other. This model has very less number of 
MFLOPS compared to many other renowned DNN models. 
The Xception [9] model makes use of depthwise separable 
convolutions with residual connections. It was an improvement 
over the Inception V3 [4, 9] architecture, showing that it could 
achieve more gains in classification performance with the same 
number of parameters as the Inception module. 

III. THE DEEP NEURAL NETWORK ULTRA-THIN
MOBILENET 

The Ultra-thin MobileNet is an enhanced MobileNet [3] 
architecture which has been developed by introducing some 
modifications on the existing baseline MobileNet V1 architec- 
ture. It is faster, more accurate and less memory intensive as 
compared to the baseline MobileNet V1 model. We propose 
some improvements to the existing baseline MobileNet V1 

TABLE I 
NETWORK ARCHITECTURE AFTER INTRODUCING IMPROVEMENT 1 

Layer / Strides Output Shape No. of Parameter 
Input layer 32, 32, 3 0 
Conv/s2 16, 16, 32 864 
Separable Conv/s1 16, 16, 32 1312 
Separable Conv/s2 8, 8, 64 2336 
Separable Conv/s1 8, 8, 128 8768 
Separable Conv/s2 4, 4, 128 17536 
Separable Conv/s1 4, 4, 256 33920 
Separable Conv/s2 2, 2, 256 67840 
Separable Conv/s1 2, 2, 512 133376 
Separable Conv/s1 2, 2, 512 133376 
Separable Conv/s1 2, 2, 512 266752 
Separable Conv/s1 2, 2, 512 266752 
Separable Conv/s1 2, 2, 512 266752 
Separable Conv/s2 1, 1, 512 266752 
Separable Conv/s1 1, 1, 1024 528896 
Global avg. pool/s1 1, 1, 1024 0 
FC and Softmax/s1 1,1,10 10250 

architecture to obtain  the  Ultra-thin  MobileNet  model  that 
is better in terms  of  size,  computation  time,  accuracy  and 
is easily deployable in resource-constrained microprocessor 
units. These are the following: 

A. Improvement 1- Replacing Depthwise Separable convolu- 
tions [3, 5, 8, 14] by Separable convolutions[9]

Depthwise separable convolution [3, 5, 8, 14] contains 
depthwise convolution layers where each input channel is fil- 
tered individually, succeeded by pointwise convolutions where 
the outputs are integrated linearly. The depthwise convolution 
and the pointwise convolution layers are defined independently 
in the MobileNet v1 [3] model, but in our model, the depthwise 
layer and the pointwise layer are combined into one layer and 
defined as Separable convolutions [9]. In the python program, 
the depthwise initializer, depthwise regularizer, depthwise con- 
straint, and pointwise initializer, pointwise regularizer, and 
pointwise constraint are defined inside the same init() function. 
There is no separate definition for the pointwise convolutions. 
The role of the separable convolutions is similar to the depth- 
wise separable convolutions, the advantage being a reduction 
in the number of layers from 28 to 14, decreased model size, 
reduced total number of parameters and very less average 
computation-time-per-epoch as compared to the MobileNet V1 
architecture. The model size is now 26.1 MB which is 13 MB 
less as compared to the baseline MobileNet V1 [3] size and 
the total number of parameters is 2.1 M which is 1.2 M less 
than the baseline MobileNet V1 [3]. The average computation 
time is 21s. TABLE I. shows the architecture after introducing 
this modification. 

B. Improvement 2- Utilizing Random Erasing data augmen- 
tation technique [13, 17]

Data augmentation techniques [17] are used to augment the 
size of  the training dataset  by creating alternative  versions 
of the images inside that dataset. In Random erasing [13] 
technique, we randomly select rectangular regions in an image 
I in a mini-batch, delete the pixels of that region and substitute 
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TABLE II 
NETWORK ARCHITECTURE AFTER INTRODUCING IMPROVEMENTS 1,2,3 

AND 4 

Layer / Strides Output Shape No. of Parameter 
Input layer 32, 32, 3 0 
Conv/s2 16, 16, 32 864 
Separable Conv/s1 16, 16, 32 1312 
Separable Conv/s2 8, 8, 64 2336 
Separable Conv/s1 8, 8, 128 8768 
Separable Conv/s2 4, 4, 128 17536 
Separable Conv/s1 4, 4, 256 33920 
Separable Conv/s2 2, 2, 256 67840 
Separable Conv/s2 1, 1, 512 133376 
Separable Conv/s1 1, 1, 728 377344 
Global avg. pool/s1 1, 1, 728 0 
FC and Softmax/s1 1,1,10 7290 

it with random values. When some portion of an item in an 
image is occluded, a model can fail to recognize the item from 
its global structure due to the absence of good generalization 
ability. This technique enhances  the generalization  ability of 
a model. In our model, the parameter values used are: 

1. Probability of erasing p = 0.5.
2. Max. erasing area ratio Sh = 0.02.
3. Min. erasing area ratio Sl = 0.4.
4. Range of Erasing aspect ratio = [0.3,3.33].
5. Erasing aspect area ratio re = 0.3.
Area of the original image = S.
Erased area = Se.
Erasing area ratio = Se 

As a result of this, the accuracy increases slightly and the
overfitting decreases to some extent. 

C. Improvement 3- Layers with similar output shape [3] are
eliminated

We make our network shallow by removing the layers with 
redundant output shapes. The layers 9 to 13 in TABLE I. 
which have the output shape of (2,2,512) are eliminated. These 
layers contribute to 41% of the total number of parameters. 
The model size is now 9.9 MB which is almost 30 MB less 
than the size of baseline MobileNet v1. 

D. Improvement 4- Changing the channel depth
We change the depth of the channel in the last separable

convolution block from 1024 to 728 [9]. The block with the 
channel depth 1024 results in about 0.5 M parameters. When 
we modify the channel depth to 728, the number of parameters 
reduces by 0.2 M, which further reduces the model size to 8 
MB. 

TABLE II. shows the resulting network after introducing 
the improvements 1, 2, 3 and 4. 

E. Improvement 5- Substituting Swish activation function [16,
19, 20] instead of ReLU [16, 19]

ReLU is a standard non-linear activation function that 
performs better than most of the other activation  functions 
for almost all the DNN models trained on any dataset. The 
baseline MobileNet v1 uses ReLU [16, 19] as the activation 

Fig. 1. Block with Separable convolution followed by Batch normalization 
and Swish activation 

TABLE III 
THE EFFECT OF USING DIFFERENT WIDTH MULTIPLIER VALUES ON THE

MODEL 

Width multiplier α Model size Accuracy Parameters 
0.75 4.8 MB 85.15% 3,76,270 
0.69 3.9 MB 84.32% 3,19,095 
0.60 3.0 MB 83.99% 2,43,167 
0.50 2.2 MB 81.86% 1,72,130 

function. If we replace it by the Swish  activation  function 
[15, 18, 19], we get a better accuracy which is 85.60%. It is a 
smooth, non-monotonic, lower bounded and upper unbounded 
activation function. It is mathematically defined as: 

x 
f (x) = x.σ(β.x) = 

1 + e−x

σ = Sigmoid function and β = Trainable parameter. When, the 
value of β = 0, Swish becomes a linear function that is f (x) = 
x . When β , Swish starts behaving like the standard ReLU 
activation function. Our model has the best accuracy when we 
set β = 1. In this case, Swish becomes the Sigmoid-weighted 
Linear Unit(SiL) [20, 23]. Fig. 1. shows the use of the Swish 
activation in our model. 

F. Improvement 6- Setting the width multiplier [3, 5, 15]
hyperparameter value

The width multiplier α [3, 5, 14] is a hyperparameter that is 
used to make a model slim uniformly at each layer. It reduces 
the number of input and output channels and makes the model 
thinner and faster. The width multiplier α should have values 
in the range 0 to 1. The total number of parameters decreases 
quadratically [3] as we reduce the value of α from 1 to 0. 
TABLE III. shows the model size, accuracy and the  number 
of parameters we get with different values of α. It is evident 
from the table that as we decrease the value of the width 
multiplier, the accuracy starts to fall and it goes below the 
baseline MobileNet V1 accuracy which is 84.30%. 

We observe, that as we reduce the value of α, the accuracy 
decreases and falls below the baseline level accuracy [3] of 
84.30%. After putting different values of α in our python 
code, we discover that when α = 0.69, we get an accuracy of 
84.32% which is a little above the baseline accuracy. We are 
keeping the value of α = 0.69 because we want to develop a 
network that has less model size and computation time than the 
baseline MobileNet with almost the same level of accuracy. In 
the process, the overfitting problem reduces to a large extent. 
We call this DNN model as the Ultra-thin MobileNet. TABLE 
IV. shows the Ultra-thin MobileNet architecture with all the



TABLE IV 
ULTRA-THIN MOBILENET

Layer / Strides Output Shape No. of Parameter 
Input layer 32, 32, 3 0 
Conv/s2 16, 16, 22 594 
Separable Conv/s1 16, 16, 22 682 
Separable Conv/s2 8, 8, 44 1166 
Separable Conv/s1 8, 8, 88 4268 
Separable Conv/s2 4, 4, 88 8536 
Separable Conv/s1 4, 4, 176 16280 
Separable Conv/s2 2, 2, 176 32560 
Separable Conv/s2 1, 1, 353 63712 
Separable Conv/s1 1, 1, 502 180383 
Global avg. pool/s1 1, 1, 502 0 
FC and Softmax/s1 1,1, 10 5030 

layers, the output shape, and parameters associated with each 
layer. 

G. Improvement 7- Choosing a good optimizer
We obtain the best accuracy by using Nadam [20] as the

optimizer. Nadam [20] combines the effect of RMSProp [21], 
Adam [12, 24] and Nesterov momentum [10, 23]. It is an 
efficient optimizer which interrupts the search in the direction 
of oscillations and speeds up the search towards the direction 
of the minima. It is better than Momentum [27] and SGD 
[25] optimizers as it does not drastically overshoot around the
minima.

IV. HARDWARE AND SOFTWARE REQUIREMENTS
(a) NVIDIA Geforce RTX 1080Ti GPU
(b) Intel i9 9th generation processor (32GB RAM)
(c) NXP i.MX RT1060 MCU
(d) Anaconda Navigator 2.0
(d) Python IDE- Spyder v3.6
(e) Keras v2.2.0
(f) Tensorflow-gpu v1.11.0
(g) Livelossplot package from PyPI
(h) MCU Xpresso SDK
(i) Microsoft Visual Studio Code IDE
(j) Tera Term

V. IMPLEMENTATION
A. Developing the DNN model

Fig. 2. MobileNet v1 baseline accuracy plot 

Fig. 3. Ultra-thin MobileNet accuracy plot 

TABLE V 
ULTRA-THIN MOBILENET V1 FEATURES 

Accuracy 84.32% 
Model size 3.9 MB 
Avg. Computation time per epoch 16s 
No. of parameters 3,19,095 

We have trained the baseline MobileNet V1 from scratch 
over the CIFAR-10 dataset in 32 batches and 1563 steps- per-
epoch for 200 epochs. The model size is 39.1 MB, the 
accuracy obtained is 84.30%, the number of parameters is 3.2 
M and the average computation time is 31s.  Fig.  2.  shows 
the accuracy plot for the baseline version. The parameters are 
saved and loaded from a checkpoint file. Then we introduce 
the above-mentioned improvements into the baseline version 
to obtain an enhanced DNN which we call as the Ultra-thin 
MobileNet. It is trained for 200 epochs  in 32  batches  and 
the accuracy and the loss updates after each epoch is viewed 
graphically using the livelossplot package. NVIDIA Geforce 
RTX 1080Ti GPU is the hardware used  for  training.  It  is 
also tested on the CIFAR-10 dataset for class prediction. Fig 
3. shows the plot of accuracy for the Ultra-thin MobileNet.
TABLE V. depicts the features of this efficient network.

B. Converting Model to TensorFlow Lite
The NXP eIQ is a machine learning software development

environment to develop machine learning applications for 
embedded processors such as i.MX RT crossover processors. 
The eIQ software includes inference engines, neural network 
compilers, and optimized libraries. TensorFlow Lite is one of 
the inference engines supported by eIQ software with high 
performance and optimized memory utilization than Tensor- 
Flow. TFLiteConverter takes an existing model in the keras 
framework and generates the TensorFlow Lite FlatBuffer file 
(.tflite). The Python API for TFLiteConverter allows custom 
objects such as activation  functions,  loss  functions,  etc  to 
be passed during the conversion process. The IDE used for 
this conversion process is Microsoft Visual Studio Code (VS 
Code). 

C. Deployment on NXP i.MX RT1060
eIQ software is delivered as middleware in the latest

MCUXpresso SDK for NXP i.MXRT 1060. The MCUXpresso 



SDK includes updated eIQ software platform and demos. 
Package contains a label image example  for  TensorFlow  
Lite, which is imported in MCUXpresso. The SDK also 
supports UART debug Console to debug the application on  
the TeraTerm serial emulator. This example runs a deep 
learning model on incoming frames from a camera for image 
classification. TensorFlow Lite FlatBuffer file (.tflite) is then 
converted into a C array header file (.h) that can be imported 
into an embedded project. This header file is then  used  to 
load  the model in the code using API call. Application is   
then built to compile the code and create an executable for 
the i.MX platform. Fig. 4. is a snapshot of the i.MX RT1060 
hardware we are using to run our model. The application is 
then debugged on the TeraTerm for output. 

VI. RESULTS
TABLE  V  shows  that  the  Ultra-thin  MobileNet  model  

is better than the baseline MobileNet  model  in  terms  of  
size, accuracy, and computation time (average time cost per 
epoch). TABLE VI compares our architecture with the other 
architectures like the MobileNet V2, Effnet [28], ShuffleNet 
2x [29], Inception V1 [4], Inception V3, Xception, etc  in 
terms of accuracy and the average computation time per 
epoch when they are trained using the CIFAR-10 dataset. The 
Ultra-thin MobileNet achieves the highest accuracy of 84.32% 
among these models. Also, it has an average  computation 
time of 16s which is better than all the other DNN models. 
TABLE VII compares our model with other  DNN  models 
like the MobileNet, MobileNet V2, Xception V1, ShuffleNet 
2x, Inception V1 and Inception V3 models in terms of the 
total number of parameters(millions) when they  are trained 
on the CIFAR-10 dataset. In this case, also, our model is 
having a fewer number of total parameters than all other DNN 
models compared to in the table. Our model has about 0.3M 
parameters which is very less than the number of parameters 
in every other DNN model. Fig. 5. demonstrates the results of 
the image classification application on the NXP i.MX RT1060 
board when the Ultra-thin MobileNet DNN model is run  on 
it. The results are visible on the TeraTerm terminal emulator. 
The CIFAR 10-dataset mainly has 10 classes of images. The 
processor recognizes these classes of images and classifies 
them into one of the 10 categories in approximately 120ms 
(average inference time). For each category, the processor 
assigns a probability value and the highest probability is 
displayed as the recognized category. For example, if we feed 
in, the image of a ship, the TeraTerm serial emulator  shows 
the inference time in milliseconds first and then shows the 
detected category as a ship with a percentage value. 

VII. CONCLUSION
We have developed a new DNN architecture called the 

Ultra-thin MobileNet by introducing some improvements to 
the baseline MobileNet architecture. To make the model 
compact, we have used Separable convolutions instead of 
Depthwise Separable Convolution layers, eliminate the layers 
with redundant output shape, change the channel depth at 

TABLE VI 
COMPARISON WITH OTHER DNNS BASED ON ACCURACY AND THE 

COMPUTATION TIME ON THE CIFAR-10 DATASET

Model Accuracy Computation time 
Ultra-thin MobileNet 84.32% 16s 
MobileNet 84.30% 31s 
MobileNet V2 73.98% 18s 
Inception V1 75.21% 63s 
Inception V3 79.76% 61s 
EffNet 80.20% 24s 
Xception 75.10% 58s 

TABLE VII 
COMPARISON WITH OTHER DNNS BASED ON THE TOTAL NUMBER OF 

PARAMETERS (MILLIONS) ON THE CIFAR-10 DATASET

Model Parameters 
Ultra-thin MobileNet 0.3 M 
MobileNet 3.2 M 
MobileNet V2 2.3 M 
Xception V1 22.8 M 
ShuffleNet 2x 5.2 M 
Inception V1 6.6 M 
Inception V3 23.6 M 

the last layer and use the width multiplier  hyperparameter 
with an optimum value of α=0.69. The value of α=0.69 is 
crucial here, as it reduces the size drastically, eradicates the 
overfitting problem, without allowing the overall accuracy of 
the model to fall below the baseline level. The interesting 
feature of this model is that when we make the model more 
compact, the accuracy of the model does not decrease due to 
the use of the Swish activation function, Random Erasing data 
augmentation method and Nadam optimizer. They play a very 
important role in maintaining the accuracy above the 84.30% 
mark which is the baseline MobileNet V1 accuracy. Generally, 
models with less depth are not very accurate as compared to 
the models with high depth. The size of the model is only 
3.9 MB which makes it deployable into resource-constrained 
real-time microprocessors. The model also has a competitive 
accuracy of 84.32% which makes it safe and reliable for real- 
time image classification applications. The model is deployed 
into the NXP i.MX RT1060 MCU for the image classification 
application. This paper  also  proposes  a  method  to  convert 
a DNN image classification model trained with the Keras 
framework into a TensorFlow Lite format model, which is 
compatible with the NXP i.MX RT crossover processors. The 
average inference time to classify an image is 120ms with the 
best  inference time being 115ms.  The quick response time of 

Fig. 4. NXP i.MX RT1060 board 



Fig. 5.   TeraTerm Output 

this model on the above-mentioned processor makes it useful 
and reliable in real-time computer vision applications for au- 
tonomous vehicles. The future scope of this research involves 
the utilization of the DSE  technique  again  and  increasing 
the accuracy of the model beyond while keeping the size of 
the model the same. The model size can be reduced further 
with the help of techniques like Deep compression, Pruning 
and Architecture tuning, but it may lead to a compromise in 
the overall accuracy. The Ultra-thin MobileNet model can be 
deployed to other efficient processors of the NXP i.MX RT 
family, NXP Bluebox 2.0, etc and developing other interesting 
computer vision applications like real-time object detection, 
object tracking, object segmentation, etc with better inference 
times. 
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