
Image Classification on NXP i.MX RT1060 using
Ultra-thin MobileNet DNN

Saurabh Ravindra Desai
Department of ECE

Debjyoti Sinha
Department of ECE

Mohamed El-Sharkawy
Department of ECE

Purdue School of Engineering and Tech. Purdue School of Engineering and Tech. Purdue School of Engineering and Tech.
Indianapolis, USA

saudesai@iu.edu
Indianapolis, USA
debsinha@iu.edu

Indianapolis, USA
melshark@iupui.edu

estimation, etc. They are playing an important role in fields
like Robotics, Autonomous cars, Unmanned Aerial Vehicles,
etc which often require the above-mentioned computer vision
applications to be implemented in real-time. DNNs became
popular when AlexNet [6] won the ImageNet Challenge, in
2012. Since then, deep learning architectures like SqueezeNet
[1], SqueezeNext [2], Inception [4], MobileNet [3], etc have
replaced computer vision algorithms like the HOG or Canny’s
algorithm. To make the architectures more accurate, they were
made deeper by adding more layers to them. DNNs were
implemented on different embedded systems but due to their
large size, they were undeployable into resource- constrained
real-time embedded devices. In general, making the DNN
models deeper and more complex increases the model size and
the average computation time, rendering them unsuitable for
real-time applications. Various techniques to reduce the model
size like Pruning [7], Deep compression [8], Architectural
tuning were developed. The demand for computer vision
applications in real-time embedded processors increased with
time which led to the increased usage of the above-mentioned
techniques to make the standard DNN architectures more
compact and efficient. In the process of making these archi-
tectures smaller, the accuracy is often compromised. In this
paper, we perform the Design Space Exploration (DSE) of the
baseline MobileNet v1 which is a standard DNN architecture
and get a more compact and faster model called the Ultra-
thin MobileNet without compromising on the accuracy level.
In Section I. we introduce our research work. In section II,
we discuss some prior work associated to this domain. In
section III, we discuss the development of the new DNN model
step-by-step . Section IV discusses the various hardware and
software requirements for our research. Section V throws light
on the implementation part, starting from training and testing
the architecture from scratch to deploying it into the NXP
i.MX RT1060 MCU and visualizing the output on the Tera
Term. Section VI depicts the experimental results we obtain
after training, testing and deploying our model. We compare
our model with other popular DNN models and also record the
time taken for the image classification application. Finally, in
Section VII, we conclude the topic by summarizing our work
and also mentioning the future scope of this research.

Abstract—Deep Neural Networks play a very significant role
in computer vision applications like image classification, object
recognition and detection. They have achieved great success in
this field but the main obstacles for deploying a DNN model
into an Autonomous Driver Assisted System (ADAS) platform
are limited memory, constrained resources, and limited power.
MobileNet is a very efficient and light DNN model which was
developed mainly for embedded and computer vision applica-
tions, but researchers still faced many constraints and challenges
to deploy the model into resource-constrained microprocessor
units. Design Space Exploration of such CNN models can make
them more memory efficient and less computationally intensive.
We have used the Design Space Exploration technique to modify
the baseline MobileNet V1 model and develop an improved
version of it. This paper proposes seven modifications on the
existing baseline architecture to develop a new and more efficient
model. We use Separable Convolution layers, the width multiplier
hyperparamater, alter the channel depth and eliminate the layers
with the same output shape to reduce the size of the model. We
achieve a good overall accuracy by using the Swish activation
function, Random Erasing technique and a choosing good opti-
mizer. We call the new model as Ultra-thin MobileNet which has
a much smaller size, lesser number of parameters, less average
computation time per epoch and negligible overfitting, with a
little higher accuracy as compared to the baseline MobileNet V1.
Generally, when an attempt is made to make an existing model
more compact, the accuracy decreases. But here, there is no trade
off between the accuracy and the model size. The proposed model
is developed with the intent to make it deployable in a real-
time autonomous development platform with limited memory
and power and, keeping the size of the model within 5 MB.
It could be successfully deployed into NXP i.MX RT1060 ADAS
platform due to its small model size of 3.9 MB. It classifies images
of different classes in real-time, with an accuracy of more than
90% when it is run on the above-mentioned ADAS platform. We
have trained and tested the proposed architecture from scratch
on the CIFAR-10 dataset.

Index Terms—Deep Neural Network (DNN), Autonomous
Driver Assistance Systems (ADAS), Design Space Exploration
(DSE),Depthwise Separable Convolutions, Separable Convolutions,
Random Erasing, Swish, Ultra-thin MobileNet, Tensorflow, Keras,
CIFAR-10, i.MX RT1060 .

I. INTRODUCTION

In the last few years, Deep Neural Networks (DNN) has
become a great technology for implementing computer vision
applications like object detection, image classification, pose

This is the author's manuscript of the article published in final edited form as:

Desai, S. R., Sinha, D., & El-Sharkawy, M. (2020). Image Classification on NXP i.MX RT1060 using Ultra-thin MobileNet DNN. 2020 10th Annual
Computing and Communication Workshop and Conference (CCWC), 0474–0480. https://doi.org/10.1109/CCWC47524.2020.9031165

https://doi.org/10.1109/CCWC47524.2020.9031165

×

× ×
×

II. PRIOR WORK
There are some deep neural networks which use depthwise

separable convolutions and separable convolutions instead of
the normal standard convolutions. Some of the deep neu-
ral networks using these convolutions are MobileNet V1
[3], MobileNet V2 [5], Enhanced Hybrid MobileNet [14]
CondenseNet [11], ShuffleNet [8], and Xception [9]. The
MobileNet V1 architecture utilizes the depthwise separable
convolutions to decrease the average computation overhead to
about one-eighth of the computation overhead incurred when
standard convolutions are used. In a depthwise layer, each
input channel is filtered separately and they are followed by
a 1 1 pointwise convolution layer where all the outputs are
linearly integrated. So, the process of filtering and the process
of combining takes place in two different steps. MobileNet
V2 [5] is an improved DNN architecture as compared to
the MobileNet V1 [3] based on the model size. It utilizes
bottleneck depthwise separable convolutions with residuals. It
has got a 32 filter fully convolution layer, succeeded by 19
residual layers. The utilization of these residual layers prevents
data from being mutilated and also makes the model more
compact. The Enhanced Hybrid MobileNet [14] is also an
improvement over the existing baseline model. In this model,
the depth multiplier [14] hyperparameter was introduced and
the average pooling layers were substituted by Max pooling
and Fractional max pooling layers [14] with different strides.
Different enhanced hybrid models were generated as the stride
values were changed. Some achieved better accuracy and some
achieved lesser model size as compared to the MobileNet V1.
CondenseNet [11] uses some special convolutions called the
group convolutions [8,11] mainly to reduce the computation
cost by dividing the input features into mutually exclusive G
groups, and they produce their outputs, ultimately decreasing
the overall computational cost by a factor of G. Another model,
the ShuffleNet [8] also uses these group convolutions. Each
unit is composed of 1 1 pointwise convolution layers, channel
shuffle, 3 3 depthwise convolutions, and 1 1 group convolu-
tions. The channels in a group are divided into subgroups and
then they are fed into the next layer with different subgroups,
which makes the input channel and output channel perfectly
related to each other. This model has very less number of
MFLOPS compared to many other renowned DNN models.
The Xception [9] model makes use of depthwise separable
convolutions with residual connections. It was an improvement
over the Inception V3 [4, 9] architecture, showing that it could
achieve more gains in classification performance with the same
number of parameters as the Inception module.

III. THE DEEP NEURAL NETWORK ULTRA-THIN
MOBILENET

The Ultra-thin MobileNet is an enhanced MobileNet [3]
architecture which has been developed by introducing some
modifications on the existing baseline MobileNet V1 architec-
ture. It is faster, more accurate and less memory intensive as
compared to the baseline MobileNet V1 model. We propose
some improvements to the existing baseline MobileNet V1

TABLE I
NETWORK ARCHITECTURE AFTER INTRODUCING IMPROVEMENT 1

Layer / Strides Output Shape No. of Parameter
Input layer 32, 32, 3 0
Conv/s2 16, 16, 32 864
Separable Conv/s1 16, 16, 32 1312
Separable Conv/s2 8, 8, 64 2336
Separable Conv/s1 8, 8, 128 8768
Separable Conv/s2 4, 4, 128 17536
Separable Conv/s1 4, 4, 256 33920
Separable Conv/s2 2, 2, 256 67840
Separable Conv/s1 2, 2, 512 133376
Separable Conv/s1 2, 2, 512 133376
Separable Conv/s1 2, 2, 512 266752
Separable Conv/s1 2, 2, 512 266752
Separable Conv/s1 2, 2, 512 266752
Separable Conv/s2 1, 1, 512 266752
Separable Conv/s1 1, 1, 1024 528896
Global avg. pool/s1 1, 1, 1024 0
FC and Softmax/s1 1,1,10 10250

architecture to obtain the Ultra-thin MobileNet model that
is better in terms of size, computation time, accuracy and
is easily deployable in resource-constrained microprocessor
units. These are the following:

A. Improvement 1- Replacing Depthwise Separable convolu-
tions [3, 5, 8, 14] by Separable convolutions[9]

Depthwise separable convolution [3, 5, 8, 14] contains
depthwise convolution layers where each input channel is fil-
tered individually, succeeded by pointwise convolutions where
the outputs are integrated linearly. The depthwise convolution
and the pointwise convolution layers are defined independently
in the MobileNet v1 [3] model, but in our model, the depthwise
layer and the pointwise layer are combined into one layer and
defined as Separable convolutions [9]. In the python program,
the depthwise initializer, depthwise regularizer, depthwise con-
straint, and pointwise initializer, pointwise regularizer, and
pointwise constraint are defined inside the same init() function.
There is no separate definition for the pointwise convolutions.
The role of the separable convolutions is similar to the depth-
wise separable convolutions, the advantage being a reduction
in the number of layers from 28 to 14, decreased model size,
reduced total number of parameters and very less average
computation-time-per-epoch as compared to the MobileNet V1
architecture. The model size is now 26.1 MB which is 13 MB
less as compared to the baseline MobileNet V1 [3] size and
the total number of parameters is 2.1 M which is 1.2 M less
than the baseline MobileNet V1 [3]. The average computation
time is 21s. TABLE I. shows the architecture after introducing
this modification.

B. Improvement 2- Utilizing Random Erasing data augmen-
tation technique [13, 17]

Data augmentation techniques [17] are used to augment the
size of the training dataset by creating alternative versions
of the images inside that dataset. In Random erasing [13]
technique, we randomly select rectangular regions in an image
I in a mini-batch, delete the pixels of that region and substitute

S

2 →

TABLE II
NETWORK ARCHITECTURE AFTER INTRODUCING IMPROVEMENTS 1,2,3

AND 4

Layer / Strides Output Shape No. of Parameter
Input layer 32, 32, 3 0
Conv/s2 16, 16, 32 864
Separable Conv/s1 16, 16, 32 1312
Separable Conv/s2 8, 8, 64 2336
Separable Conv/s1 8, 8, 128 8768
Separable Conv/s2 4, 4, 128 17536
Separable Conv/s1 4, 4, 256 33920
Separable Conv/s2 2, 2, 256 67840
Separable Conv/s2 1, 1, 512 133376
Separable Conv/s1 1, 1, 728 377344
Global avg. pool/s1 1, 1, 728 0
FC and Softmax/s1 1,1,10 7290

it with random values. When some portion of an item in an
image is occluded, a model can fail to recognize the item from
its global structure due to the absence of good generalization
ability. This technique enhances the generalization ability of
a model. In our model, the parameter values used are:

1. Probability of erasing p = 0.5.
2. Max. erasing area ratio Sh = 0.02.
3. Min. erasing area ratio Sl = 0.4.
4. Range of Erasing aspect ratio = [0.3,3.33].
5. Erasing aspect area ratio re = 0.3.
Area of the original image = S.
Erased area = Se.
Erasing area ratio = Se

As a result of this, the accuracy increases slightly and the
overfitting decreases to some extent.

C. Improvement 3- Layers with similar output shape [3] are
eliminated

We make our network shallow by removing the layers with
redundant output shapes. The layers 9 to 13 in TABLE I.
which have the output shape of (2,2,512) are eliminated. These
layers contribute to 41% of the total number of parameters.
The model size is now 9.9 MB which is almost 30 MB less
than the size of baseline MobileNet v1.

D. Improvement 4- Changing the channel depth
We change the depth of the channel in the last separable

convolution block from 1024 to 728 [9]. The block with the
channel depth 1024 results in about 0.5 M parameters. When
we modify the channel depth to 728, the number of parameters
reduces by 0.2 M, which further reduces the model size to 8
MB.

TABLE II. shows the resulting network after introducing
the improvements 1, 2, 3 and 4.

E. Improvement 5- Substituting Swish activation function [16,
19, 20] instead of ReLU [16, 19]

ReLU is a standard non-linear activation function that
performs better than most of the other activation functions
for almost all the DNN models trained on any dataset. The
baseline MobileNet v1 uses ReLU [16, 19] as the activation

Fig. 1. Block with Separable convolution followed by Batch normalization
and Swish activation

TABLE III
THE EFFECT OF USING DIFFERENT WIDTH MULTIPLIER VALUES ON THE

MODEL

Width multiplier α Model size Accuracy Parameters
0.75 4.8 MB 85.15% 3,76,270
0.69 3.9 MB 84.32% 3,19,095
0.60 3.0 MB 83.99% 2,43,167
0.50 2.2 MB 81.86% 1,72,130

function. If we replace it by the Swish activation function
[15, 18, 19], we get a better accuracy which is 85.60%. It is a
smooth, non-monotonic, lower bounded and upper unbounded
activation function. It is mathematically defined as:

x
f (x) = x.σ(β.x) =

1 + e−x

σ = Sigmoid function and β = Trainable parameter. When, the
value of β = 0, Swish becomes a linear function that is f (x) =
x . When β , Swish starts behaving like the standard ReLU
activation function. Our model has the best accuracy when we
set β = 1. In this case, Swish becomes the Sigmoid-weighted
Linear Unit(SiL) [20, 23]. Fig. 1. shows the use of the Swish
activation in our model.

F. Improvement 6- Setting the width multiplier [3, 5, 15]
hyperparameter value

The width multiplier α [3, 5, 14] is a hyperparameter that is
used to make a model slim uniformly at each layer. It reduces
the number of input and output channels and makes the model
thinner and faster. The width multiplier α should have values
in the range 0 to 1. The total number of parameters decreases
quadratically [3] as we reduce the value of α from 1 to 0.
TABLE III. shows the model size, accuracy and the number
of parameters we get with different values of α. It is evident
from the table that as we decrease the value of the width
multiplier, the accuracy starts to fall and it goes below the
baseline MobileNet V1 accuracy which is 84.30%.

We observe, that as we reduce the value of α, the accuracy
decreases and falls below the baseline level accuracy [3] of
84.30%. After putting different values of α in our python
code, we discover that when α = 0.69, we get an accuracy of
84.32% which is a little above the baseline accuracy. We are
keeping the value of α = 0.69 because we want to develop a
network that has less model size and computation time than the
baseline MobileNet with almost the same level of accuracy. In
the process, the overfitting problem reduces to a large extent.
We call this DNN model as the Ultra-thin MobileNet. TABLE
IV. shows the Ultra-thin MobileNet architecture with all the

TABLE IV
ULTRA-THIN MOBILENET

Layer / Strides Output Shape No. of Parameter
Input layer 32, 32, 3 0
Conv/s2 16, 16, 22 594
Separable Conv/s1 16, 16, 22 682
Separable Conv/s2 8, 8, 44 1166
Separable Conv/s1 8, 8, 88 4268
Separable Conv/s2 4, 4, 88 8536
Separable Conv/s1 4, 4, 176 16280
Separable Conv/s2 2, 2, 176 32560
Separable Conv/s2 1, 1, 353 63712
Separable Conv/s1 1, 1, 502 180383
Global avg. pool/s1 1, 1, 502 0
FC and Softmax/s1 1,1, 10 5030

layers, the output shape, and parameters associated with each
layer.

G. Improvement 7- Choosing a good optimizer
We obtain the best accuracy by using Nadam [20] as the

optimizer. Nadam [20] combines the effect of RMSProp [21],
Adam [12, 24] and Nesterov momentum [10, 23]. It is an
efficient optimizer which interrupts the search in the direction
of oscillations and speeds up the search towards the direction
of the minima. It is better than Momentum [27] and SGD
[25] optimizers as it does not drastically overshoot around the
minima.

IV. HARDWARE AND SOFTWARE REQUIREMENTS
(a) NVIDIA Geforce RTX 1080Ti GPU
(b) Intel i9 9th generation processor (32GB RAM)
(c) NXP i.MX RT1060 MCU
(d) Anaconda Navigator 2.0
(d) Python IDE- Spyder v3.6
(e) Keras v2.2.0
(f) Tensorflow-gpu v1.11.0
(g) Livelossplot package from PyPI
(h) MCU Xpresso SDK
(i) Microsoft Visual Studio Code IDE
(j) Tera Term

V. IMPLEMENTATION
A. Developing the DNN model

Fig. 2. MobileNet v1 baseline accuracy plot

Fig. 3. Ultra-thin MobileNet accuracy plot

TABLE V
ULTRA-THIN MOBILENET V1 FEATURES

Accuracy 84.32%
Model size 3.9 MB
Avg. Computation time per epoch 16s
No. of parameters 3,19,095

We have trained the baseline MobileNet V1 from scratch
over the CIFAR-10 dataset in 32 batches and 1563 steps- per-
epoch for 200 epochs. The model size is 39.1 MB, the
accuracy obtained is 84.30%, the number of parameters is 3.2
M and the average computation time is 31s. Fig. 2. shows
the accuracy plot for the baseline version. The parameters are
saved and loaded from a checkpoint file. Then we introduce
the above-mentioned improvements into the baseline version
to obtain an enhanced DNN which we call as the Ultra-thin
MobileNet. It is trained for 200 epochs in 32 batches and
the accuracy and the loss updates after each epoch is viewed
graphically using the livelossplot package. NVIDIA Geforce
RTX 1080Ti GPU is the hardware used for training. It is
also tested on the CIFAR-10 dataset for class prediction. Fig
3. shows the plot of accuracy for the Ultra-thin MobileNet.
TABLE V. depicts the features of this efficient network.

B. Converting Model to TensorFlow Lite
The NXP eIQ is a machine learning software development

environment to develop machine learning applications for
embedded processors such as i.MX RT crossover processors.
The eIQ software includes inference engines, neural network
compilers, and optimized libraries. TensorFlow Lite is one of
the inference engines supported by eIQ software with high
performance and optimized memory utilization than Tensor-
Flow. TFLiteConverter takes an existing model in the keras
framework and generates the TensorFlow Lite FlatBuffer file
(.tflite). The Python API for TFLiteConverter allows custom
objects such as activation functions, loss functions, etc to
be passed during the conversion process. The IDE used for
this conversion process is Microsoft Visual Studio Code (VS
Code).

C. Deployment on NXP i.MX RT1060
eIQ software is delivered as middleware in the latest

MCUXpresso SDK for NXP i.MXRT 1060. The MCUXpresso

SDK includes updated eIQ software platform and demos.
Package contains a label image example for TensorFlow
Lite, which is imported in MCUXpresso. The SDK also
supports UART debug Console to debug the application on
the TeraTerm serial emulator. This example runs a deep
learning model on incoming frames from a camera for image
classification. TensorFlow Lite FlatBuffer file (.tflite) is then
converted into a C array header file (.h) that can be imported
into an embedded project. This header file is then used to
load the model in the code using API call. Application is
then built to compile the code and create an executable for
the i.MX platform. Fig. 4. is a snapshot of the i.MX RT1060
hardware we are using to run our model. The application is
then debugged on the TeraTerm for output.

VI. RESULTS
TABLE V shows that the Ultra-thin MobileNet model

is better than the baseline MobileNet model in terms of
size, accuracy, and computation time (average time cost per
epoch). TABLE VI compares our architecture with the other
architectures like the MobileNet V2, Effnet [28], ShuffleNet
2x [29], Inception V1 [4], Inception V3, Xception, etc in
terms of accuracy and the average computation time per
epoch when they are trained using the CIFAR-10 dataset. The
Ultra-thin MobileNet achieves the highest accuracy of 84.32%
among these models. Also, it has an average computation
time of 16s which is better than all the other DNN models.
TABLE VII compares our model with other DNN models
like the MobileNet, MobileNet V2, Xception V1, ShuffleNet
2x, Inception V1 and Inception V3 models in terms of the
total number of parameters(millions) when they are trained
on the CIFAR-10 dataset. In this case, also, our model is
having a fewer number of total parameters than all other DNN
models compared to in the table. Our model has about 0.3M
parameters which is very less than the number of parameters
in every other DNN model. Fig. 5. demonstrates the results of
the image classification application on the NXP i.MX RT1060
board when the Ultra-thin MobileNet DNN model is run on
it. The results are visible on the TeraTerm terminal emulator.
The CIFAR 10-dataset mainly has 10 classes of images. The
processor recognizes these classes of images and classifies
them into one of the 10 categories in approximately 120ms
(average inference time). For each category, the processor
assigns a probability value and the highest probability is
displayed as the recognized category. For example, if we feed
in, the image of a ship, the TeraTerm serial emulator shows
the inference time in milliseconds first and then shows the
detected category as a ship with a percentage value.

VII. CONCLUSION
We have developed a new DNN architecture called the

Ultra-thin MobileNet by introducing some improvements to
the baseline MobileNet architecture. To make the model
compact, we have used Separable convolutions instead of
Depthwise Separable Convolution layers, eliminate the layers
with redundant output shape, change the channel depth at

TABLE VI
COMPARISON WITH OTHER DNNS BASED ON ACCURACY AND THE

COMPUTATION TIME ON THE CIFAR-10 DATASET

Model Accuracy Computation time
Ultra-thin MobileNet 84.32% 16s
MobileNet 84.30% 31s
MobileNet V2 73.98% 18s
Inception V1 75.21% 63s
Inception V3 79.76% 61s
EffNet 80.20% 24s
Xception 75.10% 58s

TABLE VII
COMPARISON WITH OTHER DNNS BASED ON THE TOTAL NUMBER OF

PARAMETERS (MILLIONS) ON THE CIFAR-10 DATASET

Model Parameters
Ultra-thin MobileNet 0.3 M
MobileNet 3.2 M
MobileNet V2 2.3 M
Xception V1 22.8 M
ShuffleNet 2x 5.2 M
Inception V1 6.6 M
Inception V3 23.6 M

the last layer and use the width multiplier hyperparameter
with an optimum value of α=0.69. The value of α=0.69 is
crucial here, as it reduces the size drastically, eradicates the
overfitting problem, without allowing the overall accuracy of
the model to fall below the baseline level. The interesting
feature of this model is that when we make the model more
compact, the accuracy of the model does not decrease due to
the use of the Swish activation function, Random Erasing data
augmentation method and Nadam optimizer. They play a very
important role in maintaining the accuracy above the 84.30%
mark which is the baseline MobileNet V1 accuracy. Generally,
models with less depth are not very accurate as compared to
the models with high depth. The size of the model is only
3.9 MB which makes it deployable into resource-constrained
real-time microprocessors. The model also has a competitive
accuracy of 84.32% which makes it safe and reliable for real-
time image classification applications. The model is deployed
into the NXP i.MX RT1060 MCU for the image classification
application. This paper also proposes a method to convert
a DNN image classification model trained with the Keras
framework into a TensorFlow Lite format model, which is
compatible with the NXP i.MX RT crossover processors. The
average inference time to classify an image is 120ms with the
best inference time being 115ms. The quick response time of

Fig. 4. NXP i.MX RT1060 board

Fig. 5. TeraTerm Output

this model on the above-mentioned processor makes it useful
and reliable in real-time computer vision applications for au-
tonomous vehicles. The future scope of this research involves
the utilization of the DSE technique again and increasing
the accuracy of the model beyond while keeping the size of
the model the same. The model size can be reduced further
with the help of techniques like Deep compression, Pruning
and Architecture tuning, but it may lead to a compromise in
the overall accuracy. The Ultra-thin MobileNet model can be
deployed to other efficient processors of the NXP i.MX RT
family, NXP Bluebox 2.0, etc and developing other interesting
computer vision applications like real-time object detection,
object tracking, object segmentation, etc with better inference
times.

ACKNOWLEDGMENT

The authors would like thank NXP semiconductors and the
IoT collaboratory under Purdue School of Engineering and
Technology, IUPUI for supporting this research work.

REFERENCES

[1] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. and
Keutzer, K., (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and 0.5MB model size. arXiv preprint arXiv:1602.07360

[2] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue,
Peter Jin, Sicheng Zhao, Kurt Keutzer, (2018). SqueezeNext: Hardware-
Aware Neural Network Design. arXiv preprint arXiv: 1803.10615

[3] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam (2017).
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv preprint arXiv:1704.04861

[4] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew
Rabinovich (2014). Going Deeper with Convolutions. arXiv preprint-
arXiv:1409.4842

[5] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
Liang-Chieh Chen (2019). MobileNetV2: Inverted Residuals and Linear
Bottlenecks. arXiv preprint arXiv: 1801.04381v4

[6] Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan
Westberg, Paheding Sidike, Mst Shamima Nasrin, Brian C Van Esesn,
Abdul A S. Awwal, Vijayan K. Asari (2018). The History Began from
AlexNet: A Comprehensive Survey on Deep Learning

[7] Ji Lin, Yongming Rao, Jiwen Lu, Jie Zhou (2017). Runtime Neural
Pruning. 31st Conference on Neural Information Processing Systems,
Long Beach, CA, USA.

[8] Xiangyu Zhang, Xinyu Zhou, Mengxiao LinJian, Sun. ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile. arXiv
preprint arXiv:1707.01083v2, 2017

[9] Francois Chollet (2017). Xception: Deep Learning with DepthwiseSep-
arable Convolutions. arXiv preprint arXiv: 1610.02357

[10] Ilya Sutskever, James Martens, George Dahl, Georey Hinton (2013).
On the importance of initialization and momentum in deep learn-
ing.http://proceedings.mlr.press/v28/sutskever13.pdf

[11] Gao Huang, Shichen Liu, Laurens van der Maaten. CondenseNet: An
Efficient DenseNet using Learned Group Convolutions. arXiv preprint
arXiv: 1711.09224, 2017

[12] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014

[13] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, Yi Yang
(2017).Random Erasing Data Augmentation. arXiv preprint arXiv:
1708.04896

[14] Hong-Yen Chen and Chung-Yen Su. An Enhanced Hybrid MobileNet.
arXiv preprint arXiv: 1712.04698

[15] Prajit Ramachandran, Barret Zoph, Quoc V. Le (2017).Searching for
Activation Functions. arXiv preprint arXiv: 1710.05941

[16] Abien Fred M. Agarap (2019). Deep Learning using Rectified Linear
Units (ReLU). arXiv preprint arXiv: 1803.08375v2

[17] Barret Zoph, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon
Shlens, Quoc V (2019). Le. Learning Data Augmentation. arXiv preprint
arXiv: 1906.11172

[18] Steffen Eger, Paul Youssef, Iryna Gurevych (2019). Is it Time to Swish?
Comparing Deep Learning Activation Functions Across NLP tasks.
arXiv preprint arXiv: 1901.02671

[19] Chigozie Enyinna Nwankpa, Winifred Ijomah, Anthony Gachagan, and
Stephen Marshall (2018). Activation Functions: Comparison of Trends
in Practice and Research for Deep Learning. arXiv preprint arXiv:
1811.03378v1

[20] Timothy Dozat (2016). INCORPORATING NESTEROV MOMENTU-
MINTO ADAM. Workshop track - ICLR 2016.

[21] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradientby a
running average of its recent magnitude. COURSERA: Neural Networks
for Machine Learning, 4(2), 2012.

[22] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-Weighted Linear
Units for Neural Network Function Approximation in Reinforcement
Learning. arXiv preprint arXiv: 1702.03118, 2017

[23] Aleksandar Botev, Guy Lever, David Barber (2016). Nesterovs Acceler-
ated Gradient and Momentum as approximations to Regularised Update
Descent. arXiv preprint arXiv: 1607.01981

[24] Timothy Dozat (2016). INCORPORATING NESTEROV MOMENTUM
INTO ADAM. Workshop track - ICLR 2016.

[25] Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, Vahid Tarokh.
SGD CONVERGES TO GLOBAL MINIMUM IN DEEP LEARN-

INGVIA STAR-CONVEXPATH. arXiv preprint arXiv :1901.00451,
2019

[26] Song Han, Huizi Mao, William J. Dally (2015). Deep Compression:
Compressing Deep Neural Network with Pruning, Trained Quantization
and Huffman Coding- ICLR 2015

[27] Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. ICML’13
Proceedings of the 30th International Conference on International Con-
ference on Machine Learning.

[28] Ido Freeman, Lutz Roese-Koerne, Anton Kummert. EffNet: AN EF-
FICIENT STRUCTURE FOR CONVOLUTIONAL NEURAL NET-
WORKS. arXiv preprint arXiv: 1801.06434, 2018

[29] Xiangyu Zhang, Xinyu Zhou, Mengxiao LinJian, Sun. ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile. arXiv
preprint arXiv:1707.01083v2, 2017

