
Abstract—CNN has gained great success in many
applications but the major design hurdles for deploying CNN
on driver assistance systems or ADAS are limited computation,
memory resource, and power budget. Recently, there has been
greater exploration into small DNN architectures, such as
SqueezeNet and SqueezeNext architectures. In this paper, the
proposed Shallow SqueezeNext architecture for driver
assistance systems achieves better model size with a good model
accuracy and speed in comparison to baseline SqueezeNet and
SqueezeNext architectures. The proposed architecture is
compact, efficient and flexible in terms of model size and
accuracy with minimum tradeoffs and less penalty. The
proposed Shallow SqueezeNext uses SqueezeNext architecture
as its motivation and foundation. The proposed architecture is
developed with intention for implementation or deployment on
a real-time autonomous system platform and to keep the model
size less than 5 MB. Due to its extremely small model size,
0.370 MB with a competitive model accuracy of 82.44 %,
decent both training and testing model speed of 7 seconds, it
can be successfully deployed on ADAS, driver assistance
systems or a real time autonomous system platform such as
BlueBox2.0 by NXP. The proposed Shallow SqueezeNext
architecture is trained and tested from scratch on CIFAR-10
dataset for developing a dataset specific trained model.

Index Terms—Autonomous Driver Assistance Systems (ADAS),
Shallow SqueezeNext architecture, Convolution Neural Networks
(CNN), Deep Neural Networks (DNN), SqueezeNext, SqueezeNet,
Design space exploration (DSE), CIFAR-10, Pytorch.

I. INTRODUCTION

In many real world applications such as ADAS, robotics,
self-driving cars, and augmented reality, the recognition tasks
are needed to be carried out in a timely fashion on a
computationally limited platform. The general trend has been
to make the DNN architectures deeper in order to achieve
higher accuracy [13, 15, 16, 29]. However, these advances to
improve accuracy are not necessarily making networks more
efficient with respect to model size and speed. They have
been used successfully in object recognition, object detection
[17, 22], object segmentation [16], face recognition, pose
estimation, style transferring, natural language processing,
and many more applications. DNN-based methods demand
much more computations and memory resources compared
with traditional methods. Recently, CNN achieved an
astonishing benchmark accuracy of 99% with GPipe:
efficient training of giant neural networks using pipeline
parallelism. DNNs have been shown in recent years to
outperform other machine learning methods in a wide range
of applications such as ADAS, intelligent cameras
surveillance and monitoring, autonomous car, drones, and

robots. Many papers on small networks focus only on model
size but do not consider speed. As such, the majority of
research in DNN has largely focused on designing deeper
and more complex deep neural network architectures for
improved accuracy. The increased demand for machine
learning applications in embedded devices caused an
increase in the amount of research exploration on the design
of smaller, more efficient DNN architectures. They can both
infer and train faster, as well as transfer faster onto
embedded devices. The approach to design smaller and
shallow DNN architectures is to take a principled approach
and employ architectural design strategies to achieve more
efficient DNN macro architectures. An exemplary case of
what can be achieved using such an approach is SqueezeNet
[1] and also, smaller DNN architectures as SquishedNets and
SqueezeNext. This paper proposes an efficient network
architecture in order to a build very small, efficient DNN
model that is the proposed Shallow SqueezeNext
architecture. Specifically, this paper makes the following key
contributions, small model size and better model accuracy
results are shown for the proposed Shallow SqueezeNext
architecture. The rest of the paper is organized as follows. In
section 2, a background on SqueezeNet and SqueezeNext
architectures are reviewed. Consequently, section 3 describes
the proposed Shallow SqueezeNext architecture. Section 4,
explains the hardware and software used for training and
testing the proposed architecture from scratch on CIFAR-10
dataset. After that, in section 5, focus is laid on the results,
tables and s shown. Finally, section 6 mentions the
conclusions and discussions of the paper.

II. BACKGROUND

A. SqueezeNet

SqueezeNet [1] is the state-of-the-art CNN model which
only uses 3x3 and 1x1 convolutional kernels. Using 1x1
filters reduces depth, hence, it reduces the computation of
the 3x3 filters. It achieves the same accuracy as AlexNet
does for ImageNet with 50x fewer parameters which make it
suitable for the embedded systems. The distinct feature of
SqueezeNet is a lack of fully connected layers. SqueezeNet
uses an average pooling layer to calculate classification
scores using small convolution kernels instead of using a
fully connected layer which have immensely reduced
computation and memory demand. This feature makes
SqueezeNet best suited for the embedded platform with three
key design strategies employed: (1) decrease the number of

Shallow SqueezeNext: An Efficient & Shallow DNN
Jayan Kant Duggal and Mohamed El-Sharkawy

Electrical and Computer Engineering
IoT Collaboratory, Purdue School of Engineering and Technology, IUPUI

jaydugga@iu.edu, melshark@iupui.edu

This is the author's manuscript of the article published in final edited form as:

Duggal, J. K., & El-Sharkawy, M. (2019). Shallow SqueezeNext: An Efficient Shallow DNN. 2019 IEEE International Conference on
Vehicular Electronics and Safety (ICVES), 1–6. https://doi.org/10.1109/ICVES.2019.8906416

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/395674857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICVES.2019.8906416

3x3 filters, (2) decrease the number of input channels to 3x3
filters, and (3) downsample late in the network. This macro
architecture is composed of fire modules that possess an
incredibly small model size. Then, SqueezeNet v1.1 is
introduced, where the number of filters as well as the filter
sizes are further reduced, resulting in 2.4x less computation
than the original SqueezeNet without sacrificing model
accuracy. Inspired by the incredibly small macro architecture
of SqueezeNet, insights are gained from this and some
modifications are made in the proposed architecture. The
SqueezeNet architecture is shown on the left side of Fig. 1.

Fig. 1: Illustration of SqueezeNet’s fire module (left) and
SqueezeNext’s bottleneck module (right).

B. SqueezeNext Architecture

SqueezeNext[2] uses SqueezeNet architecture as a baseline
architecture. It consists of the following key strategies (1) A
more aggressive channel reduction by incorporating a
two-stage squeeze module, significantly reducing the total
number of parameters used with the 3x3 convolutions. (2)
Separable 3x3 convolutions to further reduce the model size,
and remove the additional 1x1 branch after the squeeze
module. (3) An element-wise addition skip connection
similar to that of ResNet architecture. SqueezeNext baseline
architecture comprises of bottleneck modules with four stage
implementation, batch normalization layers, Relu and
Relu(in-place) nonlinear activations, max, and average pool
layers, Xavier uniform initialization, spatial resolution layer,
and lastly, a fully connected layer is used with [1,2,8,1] four
stage block configuration. The bottleneck module, shown in
Fig. 1 (right hand side), is the backbone of the SqueezeNext
architecture as it significantly reduces the number of
parameters without reducing the model accuracy. The
SqueezeNext baseline architecture achieves better model
accuracy and size in comparison to SqueezeNet baseline
architecture because of the use of bottleneck modules and
the width multiplier.

The architecture comprises of the following layers in a
sequence: first convolution layer, second max pooling layer,
shown in Fig. 2, then a four-stage configuration with a
kernel size 3, spatial resolution layer and average pooling
layer, finally, followed by a fully connected layer. The
SqueezeNext baseline architecture is trained from scratch on
the CIFAR-10 dataset with input size 32x32 and 3 input
channels with 10 target classes for the fair comparison with

Fig. 2: SqueezeNext baseline architecture for CIFAR-10.

the proposed architecture with Pytorch Implementation of it.
For implementation purpose, we used batch normalization
layer and removed scale in place layers in the basic block
for SqueezeNext baseline without use of transfer learning. It
was trained and tested from scratch on CIFAR-10 dataset. As
the original squeezenext baseline was trained and tested for
ImageNet only and CNN model was a Caffe based model.

III. SHALLOW SQUEEZENEXT ARCHITECTURE

The proposed Shallow SqueezeNext architecture is a CNN
architecture. It is inspired from SqueezeNext [2], SqueezeNet
[1] and Mobilenet [3] architectures. It is based on the
SqueezeNext architecture and a shallower architecture. It
comprises of bottleneck modules [2] which are further made
up of basic blocks arranged in a four stage configuration
followed by a spatial resolution layer, average pooling layer
and a fully connected layer. The architecture implements
SGD optimizer with momentum, decay and nestrov terms are
used for the optimizer. It also makes use of a step decay
with exponential based learning rate schedule with four LR
update that first LR change after 60 epochs, second after 120
epochs, third after 150 epochs and fourth after 180 epochs.
Further, the bottleneck module, shown in Fig. 5, comprises
of a 1x1 convolution, second 1x1 convolution, 3x1
convolution, 1x3 convolution and then a 1x1 convolution.
These convolutions are basic block (Fig 4) consists of a
convolution layer, ELU in place, and batch normalization
layer. These basic blocks form convolutions within
bottleneck modules which further, are put together and
arranged in the four stage implementation configuration
along with a spatial layer, dropout layer, average pooling and
a FC layer are shown in Fig. 4. The spatial layer (green
block) can be removed in the proposed shallower versions or
proposed architecture’s small sized models to reduce the
parameter count with the CNN. The trained checkpoint file
is saved using the model stat dictionary method of Pytorch
avoiding the optimizer state dictionary or other parameters to
again reduce the model size and improve the model speed.

It is concluded with the descriptions of the two model
shrinking hyper parameters such as the width multiplier and
resolution multiplier in the following subsections. The right
side of Fig. 3 illustrates the proposed architecture with
[1,2,8,1] four stage configuration. Fig. 4 illustrates the
Shallow SqueezeNext bottleneck module comprising of
Shallow SqueezeNext basic blocks. Table II presents the
proposed architecture table with [1,2,8,1] four stage

Fig. 3: SqueezeNext baseline block and Proposed Shallow
SqueezeNext Basic Block.

configuration, spatial resolution, dropout layer and fully
connected convolution. The bottle neck module used in the
proposed architecture uses a different basic block (Fig. 2) in
comparison to squeezenext baseline architecture.

A. Dropout layer

Dropout is a technique used to improve over fit on neural
networks. It is a regularization method that approximates
training a large number of neural networks with different
parallel architectures. Large neural nets trained on relatively
small datasets can over fit the training data. This has the
effect of the model learning the statistical noise in the
training data, which results in poor performance and increase
generalization errors due to over fitting. The approach to
reduce over fitting is to fit all possible different neural
networks on the same dataset and to average the predictions
from each model. In the proposed architecture, the dropout
layer is used before the spatial resolution layer followed by
the average pooling layer. It is observed during the
experiments conducted that the dropout layer performs better
than an additional batch normalization layer.

B. Resolution Multiplier

This hyper-parameter, resolution multiplier, is used to
reduce the computational cost of a neural network. It is
applied s, width multiplier, and resolution multiplier reduce
the cost and parameters.

C. Width Multiplier

Width multiplier is used in order to construct these smaller
and less computationally expensive models. The role of the
width multiplier is to thin a network uniformly at each layer.
The typical settings of width multiplier are 1, 0.75, 0.5 and
0.25. Width multiplier has the effect of reducing computational
cost and the number of parameters quadratically by roughly
twice the power of the width multiplier term. Width multiplier
can be applied to any model structure to define a new smaller
model with a reasonable accuracy and size trade off. It is used
to define a new reduced structure that needs to be trained from
scratch.

IV. HARDWARE AND SOFTWARE USED

• Intel i9 9th generation processor with 32 GB RAM.
• Required memory for dataset and results: 4GB.
• Aorus Geforce RTX 2080Ti GPU.

Fig. 4: Illustration of Basic Block (left) and Shallow
SqueezeNext architectures.

Fig. 5: Illustration of Shallow SqueezeNext’s bottleneck
module

• Nvidia Geforce GTX 1080Ti GPU.
• Python version 3.6.7.
• Spyder version 3.6.
• Pytorch version 1.0.
• Livelossplot (Loss and accuracy visualization).
• Netscope (SqueezeNext baseline visualization)

V. RESULTS

A. Shallow SqueezeNext Results

It can be observed that leveraging architectural
modifications led to the generation of even more efficient
network architectures, as evident by the Shallow
SqueezeNext having model sizes range from 4.2MB to just
0.115MB shown in Table III. A better reduced model size is
achieved from baseline SqueezeNext’s model size, 9.525MB
to the reduced model size of the proposed Shallow
SqueezeNext architecture, 0.115MB. Few major factors

Fig. 6: Illustration of Four stage [1,2,8,1] configuration of the
Shallow SqueezeNext architectures.

Fig. 7: 1: SqueezeNet accuracy, 2: SqueezeNext accuracy, 3: Shallow SqueezeNext accuracy

responsible for this model size reduction are different
resolution and width multipliers. The ability to not only
achieve very small model sizes but also fast runtime speeds
has great benefits when used in resource-starved
environments with limited computational, memory, and
energy requirements. The width and resolution multipliers
are useful modifications for producing very small deep
neural network architectures that are well-suited for
embedded device scenarios without the need for compression
or quantization. Therefore, Shallow SqueezeNext-06-0.125 is
22X smaller than SqueezeNext-23-1x-v1 (or 26X smaller
than SqueezeNext v1.0). Implementation of in place
operations such as ELU in place, Relu in place and
elimination of the extra max pooling layers along with a
suitable resolution and width multiplier makes this
architecture more compact, efficient and flexible. With a
change in resolution and width multiplier this architecture
can be deployed with better accuracy with a trade off with
the large memory size . Each model is trained from scratch
on CIFAR-10 without the use of transfer learning method.
The network parameters for each model is saved and loaded
from a checkpoint file for training and testing using pytorch
save and load method for saving and loading a neural
network checkpoint model file. Most important factor of this
architecture is that it can be readily implemented on real
time systems with memory constraints. The dropout layer
further, improved the accuracy of the architecture. The
format for Shallow SqueezeNext in all the tables in section
VI illustrates the Shallow SqueezeNext architecture with
resolution multiplier followed by a width multiplier and the
version number. From the results of Table I, it is observed
that bottleneck module makes a large difference along with
appropriate use of multipliers makes the Shallow
SqueezeNext with dropout layer more efficient. Table IV
illustrates results attained for different values of dropout
layer probabilities implemented with the proposed Shallow
SqueezeNext architecture. It shows the efficient results
attained for the experiments and justifies the reason to
choose the dropout probability p with value equal to 0.3. In
the last, 5 illustrates the accuracies for the various models
trained on CIFAR-10 dataset.

TABLE I: Results comparison with SqueezeNet &
SqueezeNext trained from scratch on CIFAR-10

Model Accuracy% Model Size(MB) Model speed (sec)
SqueezeNet-v1.0 79.59 3.013 4
SqueezeNet-v1.1 77.55 2.961 4

SqueezeNext-23-1x-v1 87.15 2.586 19
SqueezeNext-23-1x-v5 87.96 2.586 19
SqueezeNext-23-2x-v1 90.48 9.525 22
SqueezeNext-23-2x-v5 90.48 9.525 28

Shallow SqueezeNext-v1 82.44 0.370 7
Shallow SqueezeNext-v1 82.86 1.24 8
∗All results are 3 average runs with SGD, LR is 0.1

TABLE II: Shallow SqueezeNext Results with different
resolution multipliers

Model Resolution Accuracy% Model Size(MB) Model speed (sec)
Shallow SqueezeNext-06-2x-v1 1111 89.35 4.21 21
Shallow SqueezeNext-06-2x-v1 1111 89.35 4.21 21
Shallow SqueezeNext-08-1x-v1 1221 77.48 2.96 4
Shallow SqueezeNext-10-1x-v1 1331 87.63 2.5863 23
Shallow SqueezeNext-12-1x-v1 1441 87.63 2.5863 23
Shallow SqueezeNext-14-1x-v1 1551 82.44 0.370 7
Shallow SqueezeNext-16-1x-v1 1661 82.86 1.24 8
∗All results are 3 average runs with SGD, LR is 0.1

TABLE III: Shallow SqueezeNext Results with different width
multipliers

Model Width Accuracy% Model Size(MB) Model speed (sec)
Shallow SqueezeNext-06-0.125x-v1 0.125x 66.40 0.115 7
Shallow SqueezeNext-06-0.2x-v1 0.2x 72.16 0.141 8
Shallow SqueezeNext-06-0.2x-v1 0.2x 82.47 0.296 13
Shallow SqueezeNext-06-0.3x-v1 0.3x 77.87 0.196 8
Shallow SqueezeNext-12-0.4x-v1 0.4x 87.27 0.485 13
Shallow SqueezeNext-14-0.5x-v1 0.5x 88.96 0.772 15
Shallow SqueezeNext-06-0.6x-v1 0.6x 84.63 0.48 10
Shallow SqueezeNext-07-0.7x-v1 0.7x 88.10 0.704 12
Shallow SqueezeNext-06-0.8x-v1 0.8x 87.71 0.774 12
Shallow SqueezeNext-06-0.9x-v1 0.9x 86.25 0.950 12
Shallow SqueezeNext-12-1.0x-v1 1.0x 88.28 0.557 19
Shallow SqueezeNext-06-1.5x-v1 1.5x 82.44 2.44 17
Shallow SqueezeNext-06-2.0x-v1 2.0x 89.35 4.20 21

TABLE IV: Shallow SqueezeNext Results with different
dropout layer probabilities

Model dropout p Accuracy% Model Size(MB) Model speed (sec)
Shallow SqueezeNext-06-0.1x-v1 0.1 80.82 0.273 4
Shallow SqueezeNext-06-0.2x-v1 0.2 81.44 0.273 4
Shallow SqueezeNext-06-0.3x-v1 0.3 81.87 0.273 4
Shallow SqueezeNext-06-0.4x-v1 0.4 81.86 0.273 4
Shallow SqueezeNext-06-0.5x-v1 0.5 81.70 0.273 4

TABLE V: Shallow SqueezeNext Results

Model Width, Resolution Accuracy% Model Size(MB) Model speed (sec)
Shallow SqueezeNext-14-1 5x-v1 1 5x, 1281 91.41 8.72 22
Shallow SqueezeNext-21-0.2x-v1 0.2x, 22141 90.27 1.814 27

Shallow SqueezeNext-06-0.575x-v1 0 575x, 1111 81.80 0.449 6
Shallow SqueezeNext-06-0.4x-v1 0.4x, 1111 81.97 0.2717 9
Shallow SqueezeNext-09-0 5x-v1 0 5x, 1141 87.73 0.531 11

VI. CONCLUSION AND DISCUSSIONS

The results clearly shows the tradeoff between model’s
speed, size and accuracy for different resolution and width
multipliers. Reducing the depth of the model did not
necessary decrease the model accuracy. Replacing ReLU
with ELU-in-place has a good impact on learning and
accuracy of the model. Choice of hyperparameters,
resolution, and width multipliers are the key in reducing the
losses, attaining a better model size, and model accuracy. In
the results, SGD optimizer with momentum, decay and
nestrov terms performed better as compared to other counter
parts. The use of average pooling instead of max pooling
layer along with the use of drop out layer, increased the
model accuracy with a model speed tradeoff without
affecting the model size. The proposed architecture with
different resolution and width multiplier combinations can be
used to create an efficient and flexible CNN model
depending on the user-end application. Proposed Shallow
SqueezeNext was trained and tested from scratch on
CIFAR-10 with a best model size of 196 KB (15x better
than SqueezeNet & 13x better than SqueezeNext baseline
architectures). It also attains a best model speed (training
and testing on GPU) of 4 seconds/ epoch (15 seconds better
than Squeezenext and equivalent to SqueezeNet baseline). As
the experiments were conducted without data augmentation
or transfer learning techniques, using data augmentation and
transfer learning will increase the performance of the
proposed architecture.

REFERENCES

[1] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. and
Keutzer, K., (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and ¡ 0.5MB model size.arXiv preprint arXiv:1602.07360.

[2] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,Xiangyu Yue,
Peter Jin, Sicheng Zhao, Kurt Keutzer, (2018). SqueezeNext: Hardware-
Aware Neural Network Design. arXiv preprint arXiv: 1803.10615

[3] Howard, Andrew G., et al. ”Mobilenets: Efficient convolutional
neural networks for mobile vision applications.” arXiv preprint
arXiv:1704.04861 (2017).

[4] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energyefficient
convolutional neural networks using energyaware pruning. arXiv
preprint, 2017.

[5] Ashraf, Khalid, et al. ”Shallow networks for high-accuracy road object-
detection.” arXiv preprint arXiv:1606.01561 (2016).

[6] Chetlur, Sharan, et al. ”cudnn: Efficient primitives for deep learning.”
arXiv preprint arXiv:1410.0759 (2014).

[7] Denton, Emily L., et al. ”Exploiting linear structure within convolutional
networks for efficient evaluation.” Advances in neural information
processing systems. 2014.

[8] Guo, Yiwen, Anbang Yao, and Yurong Chen. ”Dynamic network surgery
for efficient dnns.” Advances In Neural Information Processing Systems.
2016.

[9] He, Kaiming, and Jian Sun. ”Convolutional neural networks at
constrained time cost.” Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015.

[10] Zeiler, Matthew D., and Rob Fergus. ”Visualizing and understanding
convolutional networks.” European conference on computer vision.
Springer, Cham, 2014.

[11] Ioffe, Sergey, and Christian Szegedy. ”Batch normalization: Accelerating
deep network training by reducing internal covariate shift.” arXiv
preprint arXiv:1502.03167 (2015).

[12] Ludermir, Teresa B., Akio Yamazaki, and Cleber Zanchettin. ”An
optimization methodology for neural network weights and architectures.”
IEEE Transactions on Neural Networks 17.6 (2006): 1452-1459.

[13] Simonyan, Karen, and Andrew Zisserman. ”Very deep convolutional
networks for large-scale image recognition.” arXiv preprint
arXiv:1409.1556 (2014).

[14] Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural
networks from overfitting.” The Journal of Machine Learning Research
15.1 (2014): 1929-1958.

[15] Stanley, Kenneth O., and Risto Miikkulainen. ”Evolving neural networks
through augmenting topologies.” Evolutionary computation 10.2 (2002):
99-127.

[16] B. Wu, A. Wan, X. Yue, and K. Keutzer. Squeezeseg: Convolutional
neural nets with recurrent crf for real-time road-object segmentation
from 3d lidar p

[17] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object
detection for autonomous driving. arXiv preprint arXiv:1612.01051,
2016.

[18] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y.
Chen. Compressing neural networks with the hashing trick. CoRR,
abs/1504.04788, 2015.

[19] M. Courbariaux, J.-P. David, and Y. Bengio. Training deep
neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024, 2014.

[20] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding.
CoRR, abs/1510.00149, 2, 2015.

[21] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015

[22] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, et al. Speed/accuracy trade-offs for
modern convolutional object detectors. arXiv preprint arXiv:1611.10012,
2016.

[23] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio.
Quantized neural networks: Training neural networks with low precision
weights and activations. arXiv preprint arXiv:1609.07061, 2016.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[25] J. Jin, A. Dundar, and E. Culurciello. Flattened convolutional neural
networks for feedforward acceleration. arXiv preprint arXiv:1412.5474,
2014.

[26] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-
decomposition. arXiv preprint arXiv:1412.6553, 2014.

[27] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 9199, 2015.

[28] V. Sindhwani, T. Sainath, and S. Kumar. Structured transforms for small-
footprint deep learning. In Advances in Neural Information Processing
Systems, pages 30883096, 2015.

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 19, 2015.

[30] Krizhevsky, Alex, Vinod Nair, and Geoffrey Hinton. ”Cifar-10 (canadian
institute for advanced research).” URL http://www. cs. toronto.
edu/kriz/cifar. html (2010).

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. arXiv preprint
arXiv:1512.00567, 2015.

[32] Huang, Yanping, et al. ”Gpipe: Efficient training of giant neural networks
using pipeline parallelism.” arXiv preprint arXiv:1811.06965 (2018).

TABLE VI: Shallow SqueezeNext architecture [1,2,8,1] four stage configuration

Layer Name Input Size Padding Stride Filter size Output size Repeat Parameters
Wi X Hi X Ci Pw X Ph Kw X Kh W0 X H0 X C0

Convolution 1 32x32x3 0x0 1 3x3 30x30x64 1 1792
Convolution 2 30x30x64 0x0 1 1x1 30x30x16 1 1040
Convolution 3 30x30x16 0x0 1 1x1 30x30x8 1 136
Convolution 4 30x30x8 0x1 1 1x3 30x30x16 1 400
Convolution 5 30x30x16 1x0 1 3x1 30x30x16 1 784
Convolution 6 30x30x16 0x0 1 1x1 30x30x32 1 544

Convolution 32 30x30x32 0x0 2 1x1 30x30x32 1 1056
Convolution 33 15x15x32 0x0 1 1x1 15x15x16 1 528
Convolution 34 15x15x16 0x1 1 1x3 15x15x32 1 1568
Convolution 35 15x15x32 1x0 1 3x1 15x15x32 1 3104
Convolution 36 15x15x32 0x0 1 1x1 15x15x64 1 2112

Convolution 37 15x15x64 0x0 1 1x1 15x15x32 1 2080
Convolution 38 15x15x32 0x0 1 1x1 15x15x16 1 528
Convolution 39 15x15x16 1x0 1 3x1 15x15x32 1 1568
Convolution 40 15x15x32 0x1 1 1x3 15x15x32 1 3104
Convolution 41 15x15x32 0x0 1 1x1 15x15x64 1 2112

Convolution 62 15x15x64 0x0 2 1x1 15x15x64 1 4160
Convolution 63 8x8x64 0x0 1 1x1 8x8x32 1 2080
Convolution 64 8x8x32 1x0 1 3x1 8x8x64 1 6208
Convolution 65 8x8x64 0x1 1 1x3 8x8x64 1 12352
Convolution 66 8x8x64 0x0 1 1x1 8x8x128 1 8320

Convolution 67 8x8x128 0x0 1 1x1 8x8x64 7 57792
Convolution 68 8x8x64 0x0 1 1x1 8x8x32 7 14560
Convolution 69 8x8x32 1x0 1 3x1 8x8x64 7 43456
Convolution 70 8x8x64 0x1 1 1x3 8x8x64 7 86464
Convolution 71 8x8x64 0x0 1 1x1 8x8x128 7 58240

Convolution 102 8x8x128 0x0 2 1x1 8x8x128 1 16512
Convolution 103 4x4x128 0x0 1 1x1 4x4x64 1 8256
Convolution 104 4x4x64 0x1 1 1x3 4x4x128 1 24704
Convolution 105 4x4x128 1x0 1 3x1 4x4x128 1 49280
Convolution 106 4x4x256 0x0 1 1x1 4x4x256 1 65792
Convolution 107 4x4x256 0x0 1 1x1 4x4x128 1 32896
Spatial Resolution

Dropout (p=0.5) 4x4x256 - - - 4x4x256 1 -

Average Pool 4x4x256 - - - 4x4x256 1 -

Fully Connected Convolution 1x1x128 0x0 1 1x1 1x1x10 1 1290
∗ Wi, Hi, Ci refer to input width, height and number of channels, Pw, Ph refer to padding width and height, Kw, Kh refer
to filter or kernel width and height, W0, H0, C0 refer to output width, output height and output number of channels

