

Geographical distribution and determining factors of different
invasive ranks of alien species across China
Quanlai Zhou ^{1, 2} , Yongcui Wang ^{1, 2} , Xuehua, Li ¹ , Zhimin Liu ¹ , Jing Wu ³ , Ala Musa ¹ , Qu Ma ^{1,2} ,
Haibin Yu ¹ , Xue Cui ⁴ , Lixin Wang ^{5*}
¹ CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese
Academy of Sciences, Shenyang 110016, China
² Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016,
China
³ Taizhou university, Zhejiang Province, Taizhou, 384000, China
⁴ Station of Forest and Grassland Pest Control and Quarantine, Liaoning Province, Shenyang
110804, China
⁵ Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI),
Indianapolis, Indiana 46202, USA
*Corresponding author: Lixin Wang
Department of Earth Sciences
Indiana University-Purdue University Indianapolis
723 W. Michigan Street SL118 Indianapolis, IN 46202
Phone: (317) 274 7464
Fax: (317) 274 7966
Email: <u>lxwang@iupui.edu</u>

This is the author's manuscript of the article published in final edited form as:

Zhou, Q., Wang, Y., Li, X., Liu, Z., Wu, J., Musa, A., Ma, Q., Yu, H., Cui, X., & Wang, L. (2020). Geographical distribution and determining factors of different invasive ranks of alien species across China. Science of The Total Environment, 722, 137929. https://doi.org/10.1016/j.scitotenv.2020.137929

23 Authors' contributions

LW, SD, and QZ conceived the ideas and designed the methodology; SD and LW contributed to the ideas on the writing and edited the manuscripts; XL and XC collected the data; YW and ZL analyzed the data; and QZ led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication. The authors declare no conflicts of interest.

The species density of alien species increased from the northwest to the southeast regions of China.

Climatic and social factors affecting species density distribution were determined

Life-form spectra traits of various invasive alien species were found

1 Geographical distribution and determining factors of different

2 invasive ranks of alien species across China

3

4 Abstract

Determination of the geographical distribution and life-form spectra of alien species 5 with different invasive abilities are essential to understand the process of invasion and 6 to develop measures to manage alien species. Based on six classifications of Chinese 7 alien species, environmental and social data, species density, life-form spectrum of 8 alien species, and the relationship between species density of alien species and 9 climatic or social factors were determined. The species density of alien species 10 increased from the northwest to the southeast regions of China for all the six ranks. 11 12 The boundary line between low and high species density of alien species was consistent with the dividing line of population density (the "Hu Line"). Mean annual 13 precipitation was the most important factor for species density in malignant invaders, 14 15 serious invaders, local invaders, and species requiring further observation (Ranks I, II, III, and V, respectively). Gross domestic product per square kilometer and annual 16 minimum temperature were the most important factors in mild invaders and cultivated 17 aliens (Ranks IV and VI, respectively). Annual and biennial herbs made up 52.9% to 18 71.2% of total species in Ranks I to IV; shrubs and trees 3.7% to 14.7%. The annual 19 and biennial herbs were 35.5% and 32.6%, and the shrubs and trees were 25.3% and 20 31.6% in Ranks IV and VI. Results implied that precipitation was the most important 21 factor on species density for the invasive alien species. However, social factors and 22

temperature were the most important factors for the non-invasive alien species. The invasive alien species had a high proportion of annual and biennial herbs and non-invasive alien had a high proportion of shrubs and trees. It is important to understand the geographical distribution and life-form spectra of various invasive alien species for alien species controls.

Key-words: classification; climatic factors; "Hu Line"; invasive ranks; life-form
spectra; social factors

31 **1. Introduction**

32

33 Noxious alien invasive plants have attracted extensive attention owing to their significant threats to biodiversity, environment, and economies at local, regional, and 34 global scales (Celik and Gulersoy, 2014; Feng and Zhu, 2010; Liu et al., 2006; Liu et 35 al., 2005; Majewska et al., 2018; Smith, 2016; Thapa et al., 2018; Thuiller et al., 2005; 36 Xie et al., 2001). Alien species in China are those with origins outside China and that 37 have been introduced into China either intentionally or accidentally (Jiang et al., 38 2011). China has a long history of accidental or deliberate introduction of exotic plant 39 species via international trade (Liu et al., 2005). The country has a huge territory area 40 (more than 9.6 million km^2), spanning 52° in longitude and 50° in latitude, which 41 42 supplies favorable habitats for alien species (Feng and Zhu, 2010). Alien species have more opportunities to naturalize, establish stable populations, expand their living 43 space, and to compete for resources with native species (Jiang et al., 2011; Milbau 44 45 and Stout, 2008). Therefore, studying the regional distribution and life-form spectra of alien species is essential to understand the process of invasion and to develop 46 management measures. 47

Some alien invasive species have caused huge ecological and economic losses worldwide; however, not all alien species are noxious (Xie et al., 2001). According to *The Checklist of the Chinese Invasive Plants* (Ma and Li, 2018), 562 alien species have been recorded in China. Ma et al. (2018) classified Chinese alien species into the following six invasive ranks: malignant invaders, serious invaders, local invaders,

mild invaders, species requiring further observation, and cultivated aliens based on 53 their harm to the ecological environment and economic development, biological 54 55 characteristics, and geographical distribution range (Ma and Li, 2018). Although previous studies have been conducted on the geographical distribution of several 56 reported invasive species (Chen et al., 2017; Feng et al., 2011; Feng and Zhu, 2010; 57 Liu et al., 2005; Pan et al., 2015) or a single species (Liu et al., 2016; Wang et al., 58 2016b), these studies have failed to show the complete characteristics of alien species 59 distribution by considering a difference in their invasive ranks. In addition, even 60 61 though relationships between natural and social factors and distribution patterns have been reported (Chen et al., 2017; Liu et al., 2005; Pan et al., 2015), factors that are the 62 most important in influencing the distribution of different ranks of invasive alien 63 64 species have not been fully examined.

A plant life-form is characterized by the adaptation of plants to their 65 environmental conditions (Batalha and Martins, 2002; Weber et al., 2008). Whether a 66 naturalized alien plant can adapt to a new environment largely depends on its 67 life-form type (Weber et al., 2008). A life-form spectrum is the simplest and most 68 conclusive classification scheme for characterizing adaptations of a group of plants in 69 favorable seasons (Batalha and Martins, 2004; Weber et al., 2008). Therefore, the 70 life-form spectra of alien species in different invasive ranks may reflect the 71 characteristics of their adaptation to a new environment (Chen et al., 2017; Weber et 72 73 al., 2008). However, whether different ranks of invasive plants have various life-form spectra and the characteristics of the spectra remain unclear. 74

75	In the present study, we used checklist data of Chinese alien species and invasive
76	ranks of alien species to determine the distribution of alien species, the relationship
77	between the distribution density and social or natural factors, and the life-form spectra
78	of different invasive ranks. Our objectives were to determine: 1) How the distribution
79	characteristics of alien species differed among different invasive ranks, and 2) How
80	social or natural factors affect the distribution of alien species.

- 82
- 83

84 2.1 Data collection of alien species

2. Materials and methods

85

86 We collected data of alien species and their distribution from The Checklist of the Chinese Invasive Plants (Ma and Li, 2018). The alien species included 562 species, 87 belonging to 80 families and 325 genera that were distributed in 23 provinces, 5 88 autonomous regions, 4 municipalities, and 2 special administrative regions in China. 89 According to the Flora of China, these species were classified into five life-forms, i.e., 90 annual herb, biennial herb, perennial herb, shrubs, and trees (Huang et al., 2009; Jiang 91 92 et al., 2011; Weber and Li, 2008). 93 2.2 Definition of invasive ranks of alien species 94

95

96 Table 1 here

98	Based on the academic literature (up to December 2012), field investigation,
99	specimen records, and taxonomic research, The Checklist of the Chinese Invasive
100	Plants was published in cooperation with experts from all over China (Ma and Li,
101	2018). In this book, the alien species in China have been defined into six ranks (Table
102	1) based on their biological and ecological characteristics, invading distribution, and
103	influence on ecological environments and the national economy (Ding et al., 2008;
104	Ma and Li, 2018). Rank I, malignant invaders (37 species), have not only caused
105	enormous economical and ecological loss but have invaded more than one physical
106	geographical region at the national scale. Rank II, serious invaders (50 species), have
107	caused huge economical and ecological loss and a worse influence on society, and
108	have invaded at least one physical geographical region at national level. Rank III,
109	local invaders (73 species), have caused huge economical and ecological loss at the
110	local scale and are distributed in at least one physical geographical region. Rank IV,
111	mild invaders (79 species), have caused low economical and ecological loss at the
112	local or national levels; however, they cannot invade into new geographical regions
113	owing to their biological characteristics. Rank V, species requiring further observation
114	(225 species), refers to those species that have been in a naturalized state but have not
115	invaded into other regions, or their invasion features have not been determined. Rank
116	VI, cultivated aliens (98 species), have been reported as an invasive species, but have
117	been in a state of cultivation for a long period or are unable to establish a stable
118	population even if they occasionally escape into the natural environment (Ma and Li,

119 2018; Yan et al., 2014).

120

121 2.3 Definition of alien species density in different invasive ranks

122

We used alien species density, i.e., the ratio of invasive alien species richness to 123 the area of an administrative region, to reduce bias resulting from different areas of 124 administrative regions (Wang et al., 2017). For some municipalities and special 125 administrative regions, the number of alien species is often higher than that of small 126 cities or villages. Considering the small territories of those special administrative 127 regions, we incorporated Beijing and Tianjin into Hebei province, Hong Kong and 128 Macao into Guangdong province, and Chongqing into Sichuan province (Feng and 129 130 Zhu, 2010; Wang et al., 2017) to reduce the bias of alien species density owing to small area. 131

132

133 *2.4 Selection of factors and data collection*

134

As the world's third largest country, China covers five climatic zones (cold-temperate, temperate, warm-temperate, subtropical, and tropical) (Wang et al., 2016a; Xie et al., 2001, Yin et al., 2016). Influenced by the continental monsoon, the country spans four precipitation areas (humid, semi humid, semiarid, and arid). Therefore, temperature and precipitation may be closely linked to alien species density. Four climatic factors, annual maximum temperature (AMAT), annual minimum temperature (AMIT), mean annual precipitation (MAP), and mean annual
temperature (MAT), were selected to examine the relationship between climatic
factors and alien species density (statistically significant at the 95% level). These
monthly data were obtained from a dataset of 825 ground weather stations in China
from 1981 to 2010 (http://data.cma.cn/).

Two social variables, gross domestic product (GDP) and population density (PD), 146 were collected from the Statistical database of China's economic and social 147 development in a big data platform for economic and social research of China 148 (http://data.cnki.net/) from 2010 to 2019. According to GDP, PD, and area of the 149 administrative region, we defined GDP per capita (GPC) as the ratio of GDP to 150 population, and ground GDP (GDP per square kilometer) as the ratio of GDP to area 151 152 of administrative region (Zeng and Chen, 2018). In the past, many alien species had been introduced either accidentally or deliberately into China by international sea 153 trade. Therefore, distance from port (DFP) might be an important factor influencing 154 155 alien species density. DFP is defined as a straight-line distance from an administrative capital city to the nearest harbor. 156

157

158 2.5 Data analysis

159

Redundancy analysis was conducted using Canoco 5.0 (ver. 5.0, Microcomputer Power) (Šmilauer and Lepš, 2003) to analyze the relationship between natural or social factors and alien species density to compute the total effect of all factors on alien species density variation and to plot the ordination graph of the relationships.

164	The forward method was used to analyze the explanatory power of individual factors
165	to alien species density variation (statistical significance at $p < 0.05$). A histogram of
166	the life-form spectra was drawn using SigmaPlot version 10.0 (Systat Software, Inc.).
167	A distribution map of alien species density was drawn using ArcGIS Desktop 8.3
168	(Esri Inc.).
169	
170	3. Results
171	
172	3.1 Geographical distribution of species density of alien species
173	
174	Fig. 1. here
175	
176	Species density of alien species in total and in the six ranks increased from the
177	northwest inland to the southeast coastal areas of China (Fig. 1). The boundary line
178	between the low and high density of alien species was consistent with the "Hu Line"
179	(Qi et al., 2016). The "Hu Line" was discovered as a dividing line for the Chinese
180	population density, revealing a spatial relationship between human activity and the
181	natural environment (Chen et al., 2016; Hu et al., 2016). For total species density, the
182	species density of alien species was more than 2 species/km ² in the regions east of the
183	line, whereas it was less than 1 species/km ² in those west of the line. From Ranks I to
184	VI, the species density of alien species was greater than 1 species/km ² in most of the
185	regions east of the line, whereas it was less than 1 species/km ² in those west of the

186 line (Fig. 1).

187

3.2 Relationship between species density of alien species and social or climate factors

190 Fig. 2. here

191

The AMAT, AMIT, MAT, GDP, GPC, Ground GDP, MAP, and PD had positive 192 relationships with species density in the total and six ranks of alien species; however, 193 the DFP had a negative relationship (Fig. 2). All social and climatic factors explained 194 from 78.5% to 89.5% (p = 0.02) of the variation in species density of the different 195 invasive ranks (Table 2). The MAP was the most important factor on species density 196 197 in the total and in Ranks I, II, III, and V of alien species, and explained from 45.9% to 48.1% of the variation. The ground GDP and AMIT were the most important factors 198 for Ranks IV and VI, explaining 54.3% and 48.6% of the variation, respectively. The 199 ground GDP explained 10.2% of the variation in species density in Ranks II and IV 200 and the AMIT from 3.9% to 12.8% of the variation in the total and in Ranks I, II, IV, 201 and V. The GPC, PD, and GDP were important significant social factors in the total 202 and in Ranks I to VI (p < 0.05), explaining 7.0% to 20.4% of the variation in species 203 density. 204

205

206 Table 2 here

210	Fig.	3.	here
-----	------	----	------

211

212	In total alien species, annual and biennial herbs (260 species) accounted for
213	46.1%, perennial herbs (196 species) for 34.7%, shrubs (73 species) for 12.9%, and
214	trees (35 species) for 6.2% (Fig. 3). In Ranks I to IV, the annual and biennial herbs
215	changed from 52.9% to 71.2%, perennial herbs from 25% to 35.1%, shrubs and trees
216	from 3.7% to 14.7%. However, in Ranks V to Rank VI, the annual and biennial herbs
217	changed from 32.6% to 35.6%, perennial herbs from 35.7% to 39.1%, shrubs and
218	trees from 25.3% to 31.6% (Fig. 3).
219	
220	4. Discussion
221	
222	4.1 Distribution characteristics of alien species in various invasive ranks
223	

Alien species density in various ranks increased from the northwest to the southeast regions of China. The results were consistent with previous studies on the geographical distribution of invasive species (Chen et al., 2017; Qi et al., 2004; Weber et al., 2008). Furthermore, we found that a boundary line between low and high alien species density was the "Hu Line." The line is regarded as a boundary of geographical structure, climate, and economic and social development (Chen et al.,

230	2016; Hu et al., 2016; Liu et al., 2017; Qi et al., 2016). Therefore, our results showed
231	that the distribution of alien species was correlated with social and climatic factors
232	that influence the distribution and invasion of alien species.

4.2 Characteristics of life-form spectra in various ranks of alien species

235

The life-form of alien species may be a good indicator for predicting invasions in 236 the regional distribution (Chen et al., 2017; Pheloung et al., 1999). Annual, biennial, 237 238 and perennial herbs, shrubs, and trees are the most frequently analyzed traits of life-form spectra (Chen et al., 2017; Lloret et al., 2004). In the present study, the 239 spectra of Ranks I, II, III, and IV were annuals and biennial herbs, followed by 240 241 perennial herbs, shrubs, and trees from high to low, which was a similar spectrum to that of the total alien species (Fig. 2). This is the general life-form spectra of the 242 naturalized taxa in China (Jiang et al., 2011; Lambdon et al., 2008; Ma and Li, 2018; 243 Weber et al., 2008). The high proportion of annual and biennial herbs in the life-form 244 spectra might be due to their short juvenile period, rapid population growth, and small 245 seed mass facilitating the invasion of disturbed land (Rejmanek and Richardson, 1996; 246 Weber et al., 2008). One possible reason for a high proportion of perennial herbs was 247 that their perennial life cycles, clonal growth ability, and vegetative propagation play 248 an important role during the invasion process (Huang et al., 2009; Liu et al., 2006; 249 Milbau and Stout, 2008). There were two possible reasons for relatively low rates of 250 shrubs and trees: first, the introduction history of trees in China is relatively short 251

(Zheng and Zhang, 2006), and, second, the time-lags of trees between introduction
and naturalization are always much longer than those of grasses or herbs (Jiang et al.,
2011).

However, Ranks V and VI had lower annual and biennial herbs and higher shrubs and trees than that of Ranks I to IV. One possible reason for this is that most shrubs and trees have low reproduction capacity and a long development time; therefore, they are classified as non-invasive aliens because their populations are easier to control (Zheng and Zhang, 2006).

260

261 *4.3 Relationship between climatic factors and alien species density*

262

263 Our findings showed that the MAP was the most important factor on species density in the total and Ranks I, II, III, and V of alien species. There are two possible 264 reasons for these findings. The first one is that the natural habitat of most alien species 265 266 is in pan tropic or temperate ecosystems (Wang et al., 2016a), and the species tend to live in the same or similar climates that have a high rate of precipitation in China. The 267 second reason is that the invasive species in the total and Ranks I, II, III, and V had a 268 relatively high proportion of annual and biennial herbs as their life-forms. These 269 species, with their high fecundity and multiple reproduction, can quickly occupy open 270 disturbed habitats under adequate precipitation (Fumanal et al., 2007). 271

Our results found that AMIT was the most important factor on the distribution density of alien species in Rank VI (cultivated aliens). The species in Rank VI might

have a longer history of being introduced into China and most of the species were cultivated from agriculture and horticulture (Chen et al., 2017). During long-term agricultural and horticultural production, the distribution of species is relatively stable and strictly restricted by temperature, especially the AMIT (Kriticos et al., 2003). For these invasive species, their distribution area was ever-expanding; therefore, the temperature had a low relationship with their distribution (Table 2).

280

281 *4.4 Relationship between social factors and alien species density*

282

Our results showed that social factors (GPC, ground GDP, PD, and GDP) had a 283 significant effect on alien species density (explained from 25.9% to 74.7%). 284 285 Anthropogenic activities play an important role in the introduction of alien species, either intentionally or unintentionally (Chen et al., 2015; Ding et al., 2008; Guo et al., 286 2016; Jiang et al., 2011; Wang et al., 2016a). The higher density of human population 287 with frequent resource exchanges has made it easy to introduce alien species (Feng 288 and Zhu, 2010; Jiang et al., 2011). It has been well documented that China's booming 289 economy has greatly increased international trade and changed patterns of plant 290 naturalization/invasion (Lin et al., 2007; Thuiller et al., 2005; Weber and Li, 2008). 291 Therefore, GPC, ground GDP, PD, and GDP are indispensable factors that influence 292 the distribution density of alien species. 293

In Ranks I, II, III, V, and VI, the effect of social factors was lower than that of climatic factors because these species might depend on their natural invasive capacity

to change their distribution density. In Rank IV, the species have a low capacity to 296 invade new geographical regions owing to the inability to adapt to new environment, 297 298 e.g. cold and arid conditions; thus, their distribution might largely depend on social factors. The ground GDP, an indicator reflecting a degree of economic development 299 and concentration, becomes the most important factor on their species density (Zeng 300 and Chen, 2018). DFP was not a significant factor on the distribution density of alien 301 species because geographical isolation was greatly decreased as there has been rapid 302 growth of infrastructure, such as airports, seaports, and railway and motorway stations, 303 304 and transportation networks in China (Ding et al., 2008).

305

5. Conclusions

307

The geographical distribution of six ranks of alien species increased from the 308 northwest to the southeast regions of China, reflecting a significant relationship with 309 climatic and social factors. Climatic factors, MAP and AMIT, were crucial factors in 310 the distribution of various ranks of invasive alien species. Social factors, GPC, ground 311 GDP, PD, and GDP, were important for the distribution, especially the ground GDP, 312 which was crucial for the distribution of species and requires further research. 313 Invasive alien species had a high proportion of annual and biennial herbs and a low 314 proportion of shrubs and trees. Non-invasive alien species had a low proportion of 315 annual and biennial herbs and a high proportion of shrubs and trees. Understanding 316 the geographical distribution and life-form spectra of various invasive alien species is 317

318	essential for Chinese policy maker to: 1) enact strict quarantine laws preventing
319	intentional and accidental introduction of alien species in economically developed
320	areas; 2) pay close attention to invasion of alien species in mild environment (e.g.
321	southeastern coastal areas in China); 3) focus on controlling introduction and invasion
322	of annual and biennial herbs.
323	
324	Acknowledgments
325	
326	We thank Yongming Luo and Hongmei Wang for assisting with data collection
327	and technical support in data entry. This study was supported by National Key
328	Research & Development Program of China (No. 2018YFC0507204) and National
329	Natural Science Foundation of China (41601588). We would also like to thank
330	Editage (www.editage.cn) for English language editing.
331	
332	References
333	
334	Batalha MA, Martins FR. Life-form spectra of Brazilian cerrado sites. Flora 2002;
335	197: 452-460.
336	Batalha MA, Martins FR. Floristic, frequency, and vegetation life-form spectra of a
337	cerrado site cerrado. Brazilian Journal of Biology 2004; 64: 201-209.
338	Chen C, Huang D, Wang K. Risk assessment and invasion characteristics of alien
339	plants in and around the agro-pastoral ecotone of northern China. Human and

Ecological Risk Assessment 2015; 21: 1766-1781.

- Chen C, Wang QH, Wu JY, Huang D, Zhang WH, Zhao N, et al. Historical
 introduction, geographical distribution, and biological characteristics of alien
 plants in China. Biodiversity and Conservation 2017; 26: 353-381.
- Chen MX, Gong YH, Li Y, Lu DD, Zhang H. Population distribution and urbanization
- on both sides of the Hu Huanyong Line: Answering the Premier's question.
 Journal of Geographical Sciences 2016; 26: 1593-1610.
- 347 Çelik NA, Gulersoy AE. Monitoring changes of vegetation cover in periods of
 348 16-days: mardin city case (2000-2010). Turkish Studies 2014; 9: 471-494.
- Ding J, Mack RN, Lu P, Ren M, Huang H. China's booming economy is sparking and
 accelerating biological invasions. Bioscience 2008; 58: 317-324.
- Feng J, Zhang Z, Nan R. The roles of climatic factors in spatial patterns of alien
 invasive plants from America into China. Biodiversity and Conservation 2011;
 20: 3385-3391.
- Feng J, Zhu Y. Alien invasive plants in China: risk assessment and spatial patterns.
 Biodiversity and Conservation 2010; 19: 3489-3497.
- Fumanal B, Chauvel B, Sabatier A, Bretagnolle F. Variability and cryptic
 heteromorphism of Ambrosia artemisiifolia seeds: What consequences for its
 invasion in France? Annals of Botany 2007; 100: 305-313.
- Guo X, Ren M, Ding J. Do the introductions by botanical gardens facilitate the
 invasion of Solidago canadensis (Asterceae) in China? Weed Research 2016;
 56: 442-451.

362	Hu ZC, Wang YL, Liu YS, Long HL, Peng J. Spatio-temporal patterns of urban-rural
363	development and transformation in east of the "hu huanyong line", China.
364	Isprs International Journal of Geo-Information 2016; 5: 178-187.
365	Huang QQ, Wu JM, Bai YY, Zhou L, Wang GX. Identifying the most noxious
366	invasive plants in China: role of geographical origin, life form and means of
367	introduction. Biodiversity and Conservation 2009; 18: 305-316.
368	Jiang H, Fan Q, Li JT, Shi S, Li SP, Liao WB, et al. Naturalization of alien plants in
369	China. Biodiversity and Conservation 2011; 20: 1545-1556.
370	Kriticos DJ, Sutherst RW, Brown JR, Adkins SW, Maywald GF. Climate change and
371	the potential distribution of an invasive alien plant: Acacia nilotica ssp indica
372	in Australia. Journal of Applied Ecology 2003; 40: 111-124.
373	Lambdon PW, Pysek P, Basnou C, Hejda M, Arianoutsou M, Essl F, et al. Alien flora
374	of Europe: species diversity, temporal trends, geographical patterns and
375	research needs. Preslia 2008; 80: 101-149.
376	Lin W, Zhou G, Cheng X, Xu R. Fast economic development accelerates biological
377	invasions in China. Plos One 2007; 2: e 1208.
378	Liu J, Dong M, Miao SL, Li Z, Song MH, Wang RQ. Invasive alien plants in China:
379	role of clonality and geographical origin. Biological Invasions 2006; 8:
380	1461-1470.
381	Liu J, Liang SC, Liu FH, Wang RQ, Dong M. Invasive alien plant species in China:
382	regional distribution patterns. Diversity and Distributions 2005; 11: 341-347.
383	Liu M, Yang MY, Song D, Zhang ZM, Ou XK. Invasive Acacia mearnsii De Wilde in

- kunming, yunnan province, china: a new biogeographic distribution that
 threatens airport safety. Neobiota 2016: 53-62.
- Liu X, Steele JC, Meng XZ. Usage, residue, and human health risk of antibiotics in
 Chinese aquaculture: A review. Environmental Pollution 2017; 223: 161-169.
- Lloret F, Medail F, Brundi G, Hulme PE. Local and regional abundance of exotic
- plant species on Mediterranean islands: are species traits important? Global
 Ecology and Biogeography 2004; 13: 37-45.
- Ma J, Li H. The checklist of the alien invasive plants in China. Beijing: Higher
 Education Press, 2018.
- Majewska ML, Rola K, Stefanowicz AM, Nobis M, Baszkowski J, Zubek S. Do the
 impacts of alien invasive plants differ from expansive native ones? An
 experimental study on arbuscular mycorrhizal fungi communities. Biology and
 Fertility of Soils 2018; 54: 631-643.
- Milbau A, Stout JC. Factors associated with alien plants transitioning from casual, to
 naturalized, to invasive. Conservation Biology 2008; 22: 308-317.
- Pan XB, Zhang JQ, Xu H, Zhang XL, Zhang W, Song HH, et al. Spatial similarity in
 the distribution of invasive alien plants and animals in China. Natural Hazards
 2015; 77: 1751-1764.
- Pheloung PC, Williams PA, Halloy SR. A weed risk assessment model for use as a
 biosecurity tool evaluating plant introductions. Journal of Environmental
- 405 Qi W, Liu SH, Zhao MF, Liu Z. China's different spatial patterns of population growth

Management 1999; 57: 239-251.

- 406 based on the "Hu Line". Journal of Geographical Sciences 2016; 26:407 1611-1625.
- 408 Qi Y, Zhao Y, Yin X. Ecological distribution of biological invasion in China. Ecology
 409 and Environment 2004; 13: 414-416.
- 410 Rejmanek M, Richardson DM. What attributes make some plant species more
 411 invasive? Ecology 1996; 77: 1655-1661.
- 412 Šmilauer P, Lepš J. Multivariate analysis of ecological data using Canoco 5:
 413 Cambridge University Press, 2003.
- Smith CL. The effects of climate change on the invasive alien plant Hypericum
 pseudohenryi in South Africa. South African Journal of Botany 2016; 103:
 350-350.
- Thapa S, Chitale V, Rijal SJ, Bisht N, Shrestha BB. Understanding the dynamics in
 distribution of invasive alien plant species under predicted climate change in
 Western Himalaya. Plos One 2018; 13: e0195752.
- Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M.
 Niche-based modelling as a tool for predicting the risk of alien plant invasions
 at a global scale. Global Change Biology 2005; 11: 2234-2250.
- Wang C, Liu J, Xiao H, Zhou J, Du D. Floristic characteristics of alien invasive seed
 plant species in China. Anais Da Academia Brasileira De Ciencias 2016a; 88:
 1791-1797.
- Wang G, Bai F, Sang W. Spatial distribution of invasive alien animal and plant species
 and its influencing factors in China. Plant Science Journal 2017; 35: 513-524.

 aliens in China - new records, and actual and potential distribution. Nordi Journal of Botany 2016b; 34: 349-354. Weber E, Li B. Plant invasions in China: What is to be expected in the wake of cconomic development? Bioscience 2008; 58: 437-444. Weber E, Sun SG, Li B. Invasive alien plants in China: diversity and ecological insights. Biological Invasions 2008; 10: 1411-1429. Xie Y, Li ZY, Gregg WP, Dianmo L. Invasive species in China - an overview Biodiversity and Conservation 2001; 10: 1317-1341. Yan X, Liu Q, Shou H, Zeng X, Zhang Y, Chen L, et al. The categorization an analysis on the geographic distribution patterns of Chinese alien invasiv plants. Biodiversity Science 2014; 22: 667-676. Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shift over naturally vegetated land under climate change in China. Scientiff Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14: 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	428	Wang ZQ, Guillot D, Ren MX, Lopez-Pujol J. Kalanchoe (Crassulaceae) as invasive
 Journal of Botany 2016b; 34: 349-354. Weber E, Li B. Plant invasions in China: What is to be expected in the wake of economic development? Bioscience 2008; 58: 437-444. Weber E, Sun SG, Li B. Invasive alien plants in China: diversity and ecological insights. Biological Invasions 2008; 10: 1411-1429. Xie Y, Li ZY, Gregg WP, Dianmo L. Invasive species in China - an overview Biodiversity and Conservation 2001; 10: 1317-1341. Yan X, Liu Q, Shou H, Zeng X, Zhang Y, Chen L, et al. The categorization an analysis on the geographic distribution patterns of Chinese alien invasive plants. Biodiversity Science 2014; 22: 667-676. Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shif over naturally vegetated land under climate change in China. Scientifi Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14: 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	429	aliens in China - new records, and actual and potential distribution. Nordic
 Weber E, Li B. Plant invasions in China: What is to be expected in the wake of economic development? Bioscience 2008; 58: 437-444. Weber E, Sun SG, Li B. Invasive alien plants in China: diversity and ecological insights. Biological Invasions 2008; 10: 1411-1429. Xie Y, Li ZY, Gregg WP, Dianmo L. Invasive species in China - an overview Biodiversity and Conservation 2001; 10: 1317-1341. Yan X, Liu Q, Shou H, Zeng X, Zhang Y, Chen L, et al. The categorization an analysis on the geographic distribution patterns of Chinese alien invasiv plants. Biodiversity Science 2014; 22: 667-676. Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shift over naturally vegetated land under climate change in China. Scientiff Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14: 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvac Sinicae 2006; 42: 114-122. 	430	Journal of Botany 2016b; 34: 349-354.
 432 economic development? Bioscience 2008; 58: 437-444. 433 Weber E, Sun SG, Li B. Invasive alien plants in China: diversity and ecologica 434 insights. Biological Invasions 2008; 10: 1411-1429. 435 Xie Y, Li ZY, Gregg WP, Dianmo L. Invasive species in China - an overview 436 Biodiversity and Conservation 2001; 10: 1317-1341. 437 Yan X, Liu Q, Shou H, Zeng X, Zhang Y, Chen L, et al. The categorization an 438 analysis on the geographic distribution patterns of Chinese alien invasiv 439 plants. Biodiversity Science 2014; 22: 667-676. 440 Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shift 441 over naturally vegetated land under climate change in China. Scientifi 442 Reports 2016; 6:20905. 443 Zeng C, Chen W. A forecasting model of urban underground space development 444 intensity. Chinese Journal of Underground Space and Engineering 2018; 14 445 1154-1160. 446 Zheng Y, Zhang C. Current status and progress of studies in biological invasion of 447 exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	431	Weber E, Li B. Plant invasions in China: What is to be expected in the wake of
 Weber E, Sun SG, Li B. Invasive alien plants in China: diversity and ecologica insights. Biological Invasions 2008; 10: 1411-1429. Xie Y, Li ZY, Gregg WP, Dianmo L. Invasive species in China - an overview Biodiversity and Conservation 2001; 10: 1317-1341. Yan X, Liu Q, Shou H, Zeng X, Zhang Y, Chen L, et al. The categorization an analysis on the geographic distribution patterns of Chinese alien invasiv plants. Biodiversity Science 2014; 22: 667-676. Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shif over naturally vegetated land under climate change in China. Scientifi Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	432	economic development? Bioscience 2008; 58: 437-444.
 insights. Biological Invasions 2008; 10: 1411-1429. Xie Y, Li ZY, Gregg WP, Dianmo L. Invasive species in China - an overview Biodiversity and Conservation 2001; 10: 1317-1341. Yan X, Liu Q, Shou H, Zeng X, Zhang Y, Chen L, et al. The categorization an analysis on the geographic distribution patterns of Chinese alien invasiv plants. Biodiversity Science 2014; 22: 667-676. Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shif over naturally vegetated land under climate change in China. Scientifi Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	433	Weber E, Sun SG, Li B. Invasive alien plants in China: diversity and ecological
 Xie Y, Li ZY, Gregg WP, Dianmo L. Invasive species in China - an overview Biodiversity and Conservation 2001; 10: 1317-1341. Yan X, Liu Q, Shou H, Zeng X, Zhang Y, Chen L, et al. The categorization an analysis on the geographic distribution patterns of Chinese alien invasiv plants. Biodiversity Science 2014; 22: 667-676. Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shift over naturally vegetated land under climate change in China. Scientifi Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	434	insights. Biological Invasions 2008; 10: 1411-1429.
 Biodiversity and Conservation 2001; 10: 1317-1341. Yan X, Liu Q, Shou H, Zeng X, Zhang Y, Chen L, et al. The categorization an analysis on the geographic distribution patterns of Chinese alien invasiv plants. Biodiversity Science 2014; 22: 667-676. Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shiff over naturally vegetated land under climate change in China. Scientific Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	435	Xie Y, Li ZY, Gregg WP, Dianmo L. Invasive species in China - an overview.
 Yan X, Liu Q, Shou H, Zeng X, Zhang Y, Chen L, et al. The categorization an analysis on the geographic distribution patterns of Chinese alien invasiv plants. Biodiversity Science 2014; 22: 667-676. Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shift over naturally vegetated land under climate change in China. Scientifi Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	436	Biodiversity and Conservation 2001; 10: 1317-1341.
 analysis on the geographic distribution patterns of Chinese alien invasiv plants. Biodiversity Science 2014; 22: 667-676. Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shift over naturally vegetated land under climate change in China. Scientifi Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	437	Yan X, Liu Q, Shou H, Zeng X, Zhang Y, Chen L, et al. The categorization and
 plants. Biodiversity Science 2014; 22: 667-676. Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shift over naturally vegetated land under climate change in China. Scientifi Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	438	analysis on the geographic distribution patterns of Chinese alien invasive
 Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shift over naturally vegetated land under climate change in China. Scientifi Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	439	plants. Biodiversity Science 2014; 22: 667-676.
 over naturally vegetated land under climate change in China. Scientifi Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	440	Yin Y, Tang Q, Wang L, Liu X. Risk and contributing factors of ecosystem shifts
 Reports 2016; 6:20905. Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	441	over naturally vegetated land under climate change in China. Scientific
 Zeng C, Chen W. A forecasting model of urban underground space development intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	442	Reports 2016; 6:20905.
 intensity. Chinese Journal of Underground Space and Engineering 2018; 14 1154-1160. Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	443	Zeng C, Chen W. A forecasting model of urban underground space development
 445 1154-1160. 446 Zheng Y, Zhang C. Current status and progress of studies in biological invasion of 447 exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 448 449 	444	intensity. Chinese Journal of Underground Space and Engineering 2018; 14:
 Zheng Y, Zhang C. Current status and progress of studies in biological invasion of exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 	445	1154-1160.
 exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122. 448 449 	446	Zheng Y, Zhang C. Current status and progress of studies in biological invasion of
448 449	447	exotic trees. Scientia Silvae Sinicae 2006; 42: 114-122.
449	448	
	449	

459

Fig. 1. Geographical distribution of species density of different ranks of alien species
in China. (T) Total; (I) Rank I, malignant invaders; (II) Rank II, serious invaders; (III)
Rank III, local invaders; (IV) Rank IV, mild invaders; (V) Rank V, species requiring
further observation; (VI) Rank VI, cultivated aliens.
Fig. 2. Relationship between species density of different invasive ranks of alien
species and environmental factors. Climate and social factors: (AMAT) Annual

460 precipitation; (MAT) Mean annual temperature; (PD) Population density; (GPC) GDP

maximum temperature; (AMIT) Annual minimum temperature; (MAP) Mean annual

461 per capita; (ground GDP) GDP per square kilometer; (DFP) Distance from port.

462 Species density: (T) Total species; (I) Rank I, malignant invaders; (II) Rank II, serious

invaders; (III) Rank III, local invaders; (IV) Rank IV, mild invaders; (V) Rank V,
species requiring further observation; (VI) Rank VI, cultivated aliens. Red hollow
arrows represent environmental factors; blue solid arrows represent species density of
alien species.

Fig. 3. Life-form spectra of alien species in different invasive ranks. Life forms: (A+B)
annual and biennial herbs, (P) perennial herbs, (S) shrubs, (T) trees. Species density:
(T) Total species; (I) Rank I, malignant invaders; (II) Rank II, serious invaders; (III)
Rank III, local invaders; (IV) Rank IV, mild invaders; (V) Rank V, species requiring

472 further observation; (VI) Rank VI, cultivated aliens.

Table 1

Rank	Number	Ratio to	Number	Ratio to	Number	Ratio to
	of family	total (%)	of genus	total (%)	of species	total (%)
Rank I [*]	12	15.0	29	8.9	37	6.4
Rank II	18	22.5	38	11.7	50	9.0
Rank III	28	35.0	56	17.2	73	13.3
Rank IV	30	37.5	61	18.8	79	14.2
Rank V	49	61.2	149	45.8	225	39.8
Rank VI	42	52.5	87	26.8	98	17.3
Total	80	100	325	100	562	100

Characteristics of different invasive ranks of alien species in China.

*Rank I, malignant invaders; Rank II, serious invaders; Rank III, local invaders; Rank IV, mild

invaders; Rank V, species requiring further observation; Rank VI, cultivated aliens.

Table 2

Variation of geographical distribution of species density explained by social and

1.	<u> </u>	•	C1 ·
alimata	tootorg	111	(hino
	TACIOIS		China
•••••••	100010		U 111100

Invasive rank	Total explain (%)	Significant	Explains	Pseudo-F	р
		factors			
Total	85.6	MAP	47.4	23.4	0.002
		GPC	12.5	7.8	0.014
		PD	11.7	12.7	0.006
		GDP	7.0	5.1	0.046
		AMIT	3.9	5.0	0.048
Rank I	83.8	MAP	46.8	22.8	0.002
		PD	12.3	12.4	0.006
		GPC	9.7	5.6	0.034
		GDP	8.4	5.7	0.04
		AMIT	4.2	5.0	0.05
Rank II	86.7	MAP	45.9	22.1	0.002
		GPC	12.9	7.8	0.002
		Ground	10.2	10.6	0.01
		GDP			
		GDP	8.8	6.5	0.03
		AMIT	6.4	9.0	0.004
		MAT	5.8	7.8	0.018

Rank III	82.2	MAP	47.6	23.6	0.002
		PD	9.4	8.8	0.014
		GPC	9.4	5.5	0.03
		GDP	9.1	6.4	0.034
Rank IV	86.4	Ground	54.3	20.2	0.002
		GDP			
		GDP	20.4	20.2	0.004
		AMIT	12.8	24.9	0.002
Rank V	89.5	MAP	48.1	24.1	0.002
		GPC	14.8	10.0	0.002
		Ground	10.2	12.0	0.004
		GDP			
		GDP	7.2	5.8	0.036
		AMIT	4.7	7.0	0.014
Rank VI	78.5	AMIT	48.4	24.4	0.002
		GPC	9.8	12.5	0.03
		PD	8.3	7.4	0.018
		GDP	7.8	5.5	0.044

Figure 2 Click here to download high resolution image

