
Squeeze-and-Excitation SqueezeNext: An Efficient
DNN for Hardware Deployment

Ravi Teja N.V.S Chappa
Electrical and Computer Engineering

Purdue School of Engineering and Technology
Indianapolis, USA
nagchapp@iupui.edu

Mohamed El-Sharkawy
Electrical and Computer Engineering

Purdue School of Engineering and Technology
Indianapolis, USA
melshark@iupui.edu

emergence of macro architectures such as SqueezeNet,
SqueezeNext and MobileNet, DNNs can be implemented on
embedded systems [16]. SqueezeNet uses the fire module’s
squeeze and expand layer approach to design a smaller and
shallow CNN architecture but it comes at a cost of model
accuracy which is about 78%. Though, SqueezeNext
achieves better results but it still can be improved as
suggested by the author of this architecture with further
hyperparameter tuning and modifications. This paper
proposes an efficient network architecture in order to a build
very small, efficient DNN model that is the proposed
Squeeze-and-Excitation SqueezeNext architecture. Structure
of the paper is as follows. In section II, we discuss about the
foundation and existing architectures i.e., SqueezeNet and
SqueezeNext. Followed by section III describes the proposed
Squeeze-and-Excitation architecture. Section IV explains the
hardware and software used to train and test the proposed
architecture. Section V shows the experimental results
obtained after training and validating the proposed neural
network using CIFAR-10 dataset. Finally, the paper
conclusion is made in section VI that demonstrates the
wholesome overview of the paper.

II. PREVIOUS WORK
A. SqueezeNet Architecture

This section reviews the SqueezeNet architecture [3]
which achieves a better model performance than AlexNet
with 50x fewer parameters when trained on ImageNet. A
SGD optimizer is used with a small learning rate where
there is no proper scheduling of learning rate included.
When 1x1 kernels are used it lead to the model depth
reduction as a result lead to computation reduction of the
3x3 filters. Deploying this model on a real time embedded
system is easy as it has a model size less than 5MB. The
parameter count is reduced greatly because of the lack of
Fully Connected(FCC) layer. Instead, the class classification
scores are calculated using softmax function and an average
pooling layer. The foundation modules for this CNN
architecture are fire modules. Due to these modules, it
achieved a very small model size with better model accuracy.
Further, SqueezeNet version 1.1 was introduced later which
further reduced the parameter count by reducing the number

Abstract—Convolution neural network is being used in field 
of autonomous driving vehicles or driver assistance systems 
(ADAS), and has achieved great success. Before the convolution 
neural network, traditional machine learning algorithms helped 
the driver assistance systems. Currently, there is a great 
exploration being done in architectures like MobileNet, 
SqueezeNext & SqueezeNet. It improved the CNN architectures 
and made it more suitable to implement on real-time embedded 
systems. This paper proposes an efficient and a compact CNN 
to ameliorate the performance of existing CNN architectures. 
The intuition behind this proposed architecture is to supplant 
convolution layers with a more sophisticated block module and 
to develop a compact architecture with a competitive accuracy. 
Further, explores the bottleneck module and squeezenext basic 
block structure. The state-of-the-art squeezenext baseline 
architecture is used as a foundation to recreate and propose a 
high performance squeezenext architecture. The proposed 
architecture is further trained on the CIFAR-10 dataset from 
scratch. All the training and testing results are visualized with 
live loss and accuracy graphs. Focus of this paper is to make 
an adaptable and a flexible model for efficient CNN 
performance which can perform better with the minimum 
tradeoff between model accuracy, size, and speed. Having a 
model size of 0.595MB along with accuracy of 92.60% and with 
a satisfactory training and validating speed of 9 seconds, this 
model can be deployed on real-time autonomous system 
platform such as Bluebox 2.0 by NXP.
Index Terms—Squeeze-and-Excitation SqueezeNext 

architecture(SE-SqueezeNext), Convolution Neural Networks 
(CNN), Deep Neural Networks (DNN), SqueezeNext, SqueezeNet, 
CIFAR-10, Pytorch.

I. INTRODUCTION

Most of the applications in real-time such as computer
vision, robotics, image recognition and classification [10],
autonomous vehicles and ADAS have been transformed with
help of Deep Neural Networks. This has been made possible
by undergoing deep research in this field over the past
decade with the availability of more training data, and for
training and validation having faster hardware. But not great
amount of work is done in aspects of model size and speed.
There is a down side to DNNs that it require more budget of
resources that refers to more computation and memory
resources. Most recently, DNN attained a bewildering
benchmark of accuracy at 99% with GPipe [19]. With the

_______________________________________________

This is the author's manuscript of the article published in final edited form as:

Chappa, R. T. N. V. S., & El-Sharkawy, M. (2020). Squeeze-and-Excitation SqueezeNext: An Efficient DNN for Hardware 
Deployment. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), 0691–0697. 
https://doi.org/10.1109/CCWC47524.2020.9031119

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/395674850?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/CCWC47524.2020.9031119


of kernels and kernel sizes. The result of this reduction is
2.4 times better than the baseline SqueezeNet v1.0 with no
affect on the accuracy of the model. Motivation from the
incredibly small macro architecture of SqueezeNet helped in
some modifications of the proposed architecture.

Fig. 2: Baseline architecture of SqueezeNext.

Squeezenext baseline architecture comprises of bottleneck
modules with four stage implementation, batch normalization
layers, Relu and Relu (in-place) nonlinear activations, max,
and average pool layers, Xavier uniform initialization, a
spatial resolution layer and a fully connected layer in the last
with this [6,6,8,1] four stage block configuration. In fact, a
better model accuracy and size is attained in comparison to
squeezenet baseline architecture. The squeezenext baseline

[6,6,8,1] architecture configuration shown in Fig. 2 that
illustrates the squeezenext baseline architecture implemented
on the CIFAR-10 dataset with input size 32x32 and 3 input
channels. This is the input for the first convolution, the white
block. Now, the output of the first convolution is the input
for a max pooling layer after the first convolution, not shown
in Figure 3, but shown in Figure 6. The consecutive different
colored blocks that are dark blue, blue, orange and yellow
blocks after the first convolution and max-pooling represents
the four-stage configuration implementation followed by a
green block, representing the spatial resolution layer and the
average pooling layer. Finally, followed by one black block
that is a fully connected layer. The color change in the four
stage implementation configuration blocks that are dark blue,
blue, orange and yellow blocks depict a change in the input
feature maps resolution.

III. SQUEEZE-AND-EXCITATION SQUEEZENEXT
ARCHITECTURE

The proposed Squeeze-and-Excitation SqueezeNext is a
CNN model. Motivation for this architecture is through
SqueezeNet, Mobilenet [5] and SqueezeNext architectures.
This contains basic blocks organized in 4-stage configuration
called bottleneck modules, a squeeze-and-excitation(SE)
block [6], average pooling layer, fully connected layer and a
spatial resolution layer. Nestrov [9], decay and momentum
are implemented with SGD optimizer. We implemented
learning rate schedule which is exponentially decaying by
updating learning rate in four stages: 1st after 60 epochs,
2nd after 120 epochs, 3rd after 150 epochs and last after 180
epochs. As shown in Fig. 6, the bottleneck module contains
a basic block with 1x1 convolution, another basic block with
1x1 convolution, basic block with 3x1 convolution, basic
block with 1x3 convolution, last basic block with 1x1
convolution and finally a se block. From Fig.3, basic block
contains convolution layer followed by BN layer [8] &
ReLu-in-place. Here basic blocks line up convolutions
enclosed by bottleneck modules which are grouped and
organized in the 4-stage implementation configuration along
with a spatial layer, dropout layer [11], se block, average
pool layer and a fully connected layer are shown in Fig. 5.
To reduce the parameter count, spatial layer can be
eliminated in the small sized models of the proposed
architecture.
The descriptions of two parameters which helped in

shrinking the model are given as follows along with the
squeeze-and-excitation(SE) block. The [1,2,4,1] 4-stage
configuration of the SE-SqueezeNext architecture is
illustrated in Fig. 7. The Squeeze-and-Excitation
SqueezeNext bottleneck module containing basic blocks with
SE blocks included are illustrated in Fig. 6. Table V presents
the SE-SqueezeNext table with [1,2,4,1] 4-stage
configuration, spatial resolution, dropout layer, SE block and
FC convolution. In comparison with SqueezeNext baseline
architecture, different basic block is being used by the

ResNet architecture.
An element-wise addition skip connection similar to3)
size;
1x1 branch after the squeeze module to reduce the model
3x3 separable convolutions, and remove the additional2)
parameters used with the 3x3;
2-stage squeeze module, further reducing number of
More aggressive channel reduction by introducing a1)

following strategies:
squeezenet baseline as its foundation and consists of the
advent of the squeezenet architecture. Squeezenext uses
Squeezenext baseline architecture [4] emerged after the
for this CNN architecture is the bottleneck module.
31x fewer parameters than VGG-19. The foundation module
ImageNet. It is also able to match VGG-19 accuracy with
AlexNet with 112x fewer parameters when trained on
This architecture matches the model performance of

SqueezeNext ArchitectureB.

SqueezeNext.
Fig. 1: Fire module of SqueezeNet and bottleneck module of



Fig. 3: Basic block of SqueezeNext baseline, Basic block of
SE-SqueezeNext and SE block.

bottleneck module in this architecture which is shown in Fig.
3.

A. Squeeze-and-Excitation block

The structure of the SE block is depicted in Fig. 4. For
any given transformation Ftr mapping the input X to the
feature maps U where U ∈ �H×W×C , e.g. a convolution,
we can construct a corresponding SE block to perform
feature recalibration. A squeeze operation is done through
which the features U are first passed, then by aggregating
feature maps across their spatial dimensions H×W a channel
descriptor is produced. This descriptor primarily generates an
embedding of the global distribution of channel-wise feature
responses which allows all its layers to use the information
from the global receptive field of the network. After the
aggregation is performed, a simple self-gating mechanism
where a collection of per-channel modulation weights are
produced by taking the embedding as an input. This is the
excitation operation. The above obtained weights are used to
produce the output of the SE block by applying to the
feature maps. This can be loaded into subsequent layers of
the network.

C. Resolution Multiplier
To reduce the cost of computation of a neural network,

this multiplier is used. Resolution multiplier ultimately
reduces the internal representation of each layer and is
applied to input image. Generally, value of the input
resolution is set absolutely. Reduced DNN models/
architectures are generated if the value is less than 1. The
cost of computation is reduced by the square of this
parameter. In this paper, we used the values of 6, 7, 8, 10,
11, 12, 14, 16, 21 & 23.

D. Width Multiplier
To design smaller and less computationally expensive

models, width multiplier is used. At each layer, this also
helps for making a unvarying thin CNN. Default or general
values for width multiplier are 0.25, 0.5, 0.75 and 1. It is the
key element for decreasing the cost of computation and
parameter count. Mathematically, it is quadratically reduces
it by two times the power of width multiplier.

SqueezeNext architecture.
Fig. 5: Illustration of Basic Block (left) and Squeeze-and-Excite

performance of DNN/CNN.
approach to reduce overfitting in a CNN and improve the
errors due to the problem of over fitting. This is a simple
in poor performance and increase generalization problem or
(lack of data) can result in overfitting problem which results
network. A DNN or a deep CNN trained on a small dataset
weight from large set of weights in a CNN or neural
method for approximation and dropping some random
existing in CNNs or neural networks. This is a regularization
This layer is used to improvise the overfitting problem

Dropout layerB.

Fig. 4: Structure of SE block

• Netscope (SqueezeNext baseline visualization).
• Livelossplot (Loss and accuracy visualization).
• Pytorch version 1.0.
• Spyder version 3.6.
• Python version 3.6.7.
• Nvidia Geforce GTX 1080Ti GPU.
• Aorus Geforce RTX 2080Ti GPU.

IV. HARDWARE AND SOFTWARE REQUIREMENTS

module
Fig. 6: Illustration of Squeeze-and-Excitation SqueezeNext’sbottleneck



method, each model is validated on CIFAR-10 from the
scratch. Deployment on a real-time system having memory
constraints is the major advantage of this architecture. The
accuracy of this architecture is enhanced by dropout layer.
The format for SE-SqueezeNext in all the tables illustrates
SE-SqueezeNext with resolution multiplier along with width
multiplier.
From the results presented in Table I, it is observed that SE-

SqueezeNext with dropout layer along with appropriate use
of multipliers and a large difference is made by bottleneck
module. Different dropout layer probabilities results of SE-
SqueezeNext are presented in Table IV. Different accuracies
for various models are shown in Table V.

TABLE I: Results comparison with SqueezeNet &
SqueezeNext

Name of Model Accuracy% Size of model(MB) Speed of model(seconds)
SqueezeNet-v1.0 79.59 3.01 4
SqueezeNet-v1.1 77.55 2.96 4

SqueezeNext-23-1x-v1 87.15 2.57 19
SqueezeNext-23-1x-v5 87.95 2.57 19
SqueezeNext-23-2x-v1 90.51 9.53 22
SqueezeNext-23-2x-v5 90.50 9.53 28

SE-SqueezeNext-10-1.0x-v1 90.48 1.81 13
SE-SqueezeNext-10-2.0x-v1 92.60 6.59 21

Name of Model Resolution Accuracy% Size of Model(MB) Speed of Model(seconds)
SE-SqueezeNext-06-1x-v1 1111 87.84 1.22 9
SE-SqueezeNext-10-1x-v1 1241 90.48 1.81 13
SE-SqueezeNext-12-1x-v1 1261 90.50 2.16 15
SE-SqueezeNext-14-1x-v1 1281 89.93 2.52 16
SE-SqueezeNext-22-1x-v1 12161 80.69 3.94 25
SE-SqueezeNext-23-1x-v1 22161 81.41 3.97 26

Name of Model Width Accuracy% Size of Model(MB) Speed of Model(seconds)
SE-SqueezeNext-10-0.5x-v1 0.5x 86.71 0.595 10
SE-SqueezeNext-10-0.6x-v1 0.6x 88.18 0.760 11
SE-SqueezeNext-10-0.7x-v1 0.7x 89.39 0.968 12
SE-SqueezeNext-10-0.8x-v1 0.8x 90.33 1.21 12
SE-SqueezeNext-10-0.9x-v1 0.9x 89.79 1.48 13
SE-SqueezeNext-10-1.0x-v1 1.0x 90.48 1.81 13
SE-SqueezeNext-10-1.2x-v1 1.2x 91.04 2.48 15
SE-SqueezeNext-10-1.5x-v1 1.5x 92.07 3.81 16
SE-SqueezeNext-10-1.7x-v1 1.7x 92.10 4.78 18
SE-SqueezeNext-10-2.0x-v1 2.0x 92.60 6.59 21

Name of Model dropout (p) Accuracy% Size of Model(MB) Speed of Model(seconds)
SE-SqueezeNext-10-1x-v1 0.1 91.06 2.16 15
SE-SqueezeNext-10-1x-v1 0.2 90.33 2.16 15
SE-SqueezeNext-10-1x-v1 0.3 90.46 2.16 14
SE-SqueezeNext-10-1x-v1 0.4 90.06 2.16 14
SE-SqueezeNext-10-1x-v1 0.5 90.22 2.16 13
SE-SqueezeNext-10-1x-v1 0.6 90.53 2.16 13

resolution multipliers. Without using the transfer learning
extra max pooling layers using a SE block, width and
in-place operations such as Relu-in-place and eliminating the
made more efficient, flexible and compact by implementing
compact than SqueezeNext-23-1x-v1. This architecture is
width multipliers. Therefore, SE-SqueezeNext-10-0.5 is 16X
deployable on real time embedded devices are resolution and
Useful modifications to produce small DNNs and

selection of excitation operator is important.
This propounds that for the SE block to be efficient, careful
SE-SqueezeNext to drop below the baseline of SqueezeNext.
emphatically worse and causes the performance of
slightly worsens the performance, where LeakyRelu is
non-linearities. By interchanging the sigmoid with Tanh
experiment with replacing the sigmoid with these alterantive
options: LeakyReLU and Tanh are considered, and
the excitation mechanism is assessed here. Two further
2) Excitation Operator:: The option for non-linearity in

specific aggregation operator.
performance of SE blocks is fairly robust to the choice of
selecting average pooling. However, we note that the
effective. The basis of squeeze operation is justified by
performance than max pooling, even though both are
operator is examined. Average pooling [21] achieves better
average pooling over global max pooling as our squeeze
1) Squeeze Operator:: The significance of using global
excitation operators in SE block are as follows:
than BN layer. The detailed description of squeeze and
From the observations, dropout layer performance is finer
of model size are various resolution and width multipliers.
size of 0.595MB. Few major factors leading to this reduction
proposed SE-Squeezenext architecture has a reduced model
to baseline Squeezenext’s model size i.e., 9.531MB, the
0.595MB to 6.59MB as shown in Table III. When compared
as SE-SqueezeNext having a model sizes ranging from
modifications in the proposed architecture, which is tangible
Efficient CNN architectures are generated due to the

Squeeze-and-Excitation SqueezeNext ResultsA.

ESULTSV.R

SqueezeNext architecture.
Fig. 7: 4-stage [1,2,4,1] configuration of the Squeeze-and-Excitation

Squeeze-and-Excitation SqueezeNext
TABLE IV: Different dropout layer probabilities results of

and-Excitation SqueezeNext
TABLE III: Different width multipliers results of Squeeze-

∗Results obtained are 3 average runs with LR, SGD as 0.1

resolution multipliers
TABLE II: Squeeze-and-Excitation SqueezeNext Results withdifferent

∗All results are 3 average runs with SGD, LR is 0.1



(a) SqueezeNet accuracy (b) SqueezeNext accuracy

(c) Squeeze-and-Excitation SqueezeNext accuracy

Fig. 8: Accuracy plots comparison with baseline architectures

VI. CONCLUSION

It is evident from the results that there is a tradeoff
between model’s size, accuracy and speed for different
resolution and width multipliers. We can also observe that
there is no change in the accuracy of model upon reducing
the depth of model. Selection of hyperparmeters such as
width and resolution multipliers are the primary factors in
loss minimization, obtaining a good size and an accurate
model. From the results, the performance of SGD optimizer
along with nestrov, decay and momentum are observed to be
better than other terms. Proposed architecture was trained
and validated on CIFAR-10 with a better model size of
0.595 MB which is 6x better than SqueezeNet Baseline &
16x better than SqueezeNext baseline. A best model speed of
9 sec which is 10 sec better than SqueezeNext baseline and
at the same time similar to SqueezeNet baseline. As an
extension to this work, for increasing the performance of this
architecture transfer learning and data augmentation [12],
[22] can be used.

REFERENCES

[1] J. K. Duggal and M. El-Sharkawy, ”Shallow SqueezeNext: An Efficient
& Shallow DNN,” 2019 IEEE International Conference of Vehicular
Electronics and Safety (ICVES), Cairo, Egypt, 2019, pp. 1-6. doi:
10.1109/ICVES.2019.8906416

[2] Duggal, Jayan Kant, 2019. Design Space Exploration of DNNs for
Autonomous Systems (MSECE Thesis, Purdue University, Indianapolis).

[3] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. and
Keutzer, K., (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and ¡ 0.5MB model size.arXiv preprint arXiv:1602.07360.

[4] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,Xiangyu Yue,
Peter Jin, Sicheng Zhao, Kurt Keutzer, (2018). SqueezeNext: Hardware-
Aware Neural Network Design. arXiv preprint arXiv: 1803.10615

[5] Howard, Andrew G., et al. ”Mobilenets: Efficient convolutional
neural networks for mobile vision applications.” arXiv preprint
arXiv:1704.04861 (2017).

[6] J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, ”Squeeze-and-Excitation
Networks,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence. doi: 10.1109/TPAMI.2019.2913372

[7] Ashraf, Khalid, et al. ”Shallow networks for high-accuracy road object-
detection.” arXiv preprint arXiv:1606.01561 (2016).

[8] Ioffe, Sergey, and Christian Szegedy. ”Batch normalization: Accelerating
deep network training by reducing internal covariate shift.” arXiv
preprint arXiv:1502.03167 (2015).

[9] Aleksandar Botev, Guy Lever, David Barber (2016). Nesterovs
Accelerated Gradient and Momentum as approximations to Regularised
Update Descent. arXiv preprint arXiv :1607.01981

[10] Simonyan, Karen, and Andrew Zisserman. ”Very deep convolutional
networks for large-scale image recognition.” arXiv preprint
arXiv:1409.1556 (2014).

[11] Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural
networks from overfitting.” The Journal of Machine Learning Research
15.1 (2014): 1929-1958.

[12] Stanley, Kenneth O., and Risto Miikkulainen. ”Evolving neural networks
through augmenting topologies.” Evolutionary computation 10.2 (2002):
99-127.

[13] B. Wu, A. Wan, X. Yue, and K. Keutzer. Squeezeseg: Convolutional



neural nets with recurrent crf for real-time road-object segmentation
from 3d lidar p

[14] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object
detection for autonomous driving. arXiv preprint arXiv:1612.01051,
2016.

[15] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, et al. Speed/accuracy trade-offs for
modern convolutional object detectors. arXiv preprint arXiv:1611.10012,
2016. preprint arXiv:1609.07061, 2016.

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[17] V. Sindhwani, T. Sainath, and S. Kumar. Structured transforms for small-
footprint deep learning. In Advances in Neural Information Processing
Systems, pages 30883096, 2015.

[18] Krizhevsky, Alex, Vinod Nair, and Geoffrey Hinton. ”Cifar-10 (canadian
institute for advanced research).” URL http://www. cs. toronto.
edu/kriz/cifar. html (2010).

[19] Huang, Yanping, et al. ”Gpipe: Efficient training of giant neural networks
using pipeline parallelism.” arXiv preprint arXiv:1811.06965 (2018).

[20] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 9199, 2015.

[21] T. Hsiao, Y. Chang and C. Chiu, ”Filter-based Deep-Compression
with Global Average Pooling for Convolutional Networks,” 2018 IEEE
International Workshop on Signal Processing Systems (SiPS), Cape
Town, 2018, pp. 247-251.

[22] Barret Zoph, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon
Shlens, Quoc V (2019). Le. Learning Data Augmentation Strategies for
Object Detection. arXiv preprint arXiv : 1906.11172

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. arXiv preprint
arXiv:1512.00567, 2015.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE.

[25] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015

[26] Ludermir, Teresa B., Akio Yamazaki, and Cleber Zanchettin. ”An
optimization methodology for neural network weights and architectures.”
IEEE Transactions on Neural Networks 17.6 (2006): 1452-1459.

[27] Zeiler, Matthew D., and Rob Fergus. ”Visualizing and understanding
convolutional networks.” European conference on computer vision.
Springer, Cham, 2014.

[28] Guo, Yiwen, Anbang Yao, and Yurong Chen. ”Dynamic network surgery
for efficient dnns.” Advances In Neural Information Processing Systems.
2016.

[29] Denton, Emily L., et al. ”Exploiting linear structure within convolutional
networks for efficient evaluation.” Advances in neural information
processing systems. 2014.

[30] Chetlur, Sharan, et al. ”cudnn: Efficient primitives for deep learning.”
arXiv preprint arXiv:1410.0759 (2014).

[31] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energyefficient
convolutional neural networks using energyaware pruning. arXiv
preprint, 2017.



TABLE V: Squeeze-and-Excitation SqueezeNext architecture [1,2,4,1] four stage configuration

Layer Name Input Size Padding Stride Filter size Output size Repeat Parameters
Wi × Hi × Ci Pw × Ph Kw × Kh W0 × H0 × C0

Convolution 1 32x32x3 0x0 1 3x3 30x30x64 1 1792
Convolution 2 30x30x64 0x0 1 1x1 30x30x16 1 1040
Convolution 3 30x30x16 0x0 1 1x1 30x30x8 1 136
Convolution 4 30x30x8 0x1 1 1x3 30x30x16 1 400
Convolution 5 30x30x16 1x0 1 3x1 30x30x16 1 784
Convolution 6 30x30x16 0x0 1 1x1 30x30x32 1 544

SE Layer 27 30x30x32 - - - 30x30x32 1 -
Convolution 32 30x30x32 0x0 2 1x1 30x30x32 1 1056
Convolution 33 15x15x32 0x0 1 1x1 15x15x16 1 528
Convolution 34 15x15x16 0x1 1 1x3 15x15x32 1 1568
Convolution 35 15x15x32 1x0 1 3x1 15x15x32 1 3104
Convolution 36 15x15x32 0x0 1 1x1 15x15x64 1 2112

Convolution 37 15x15x64 0x0 1 1x1 15x15x32 1 2080
Convolution 38 15x15x32 0x0 1 1x1 15x15x16 1 528
Convolution 39 15x15x16 1x0 1 3x1 15x15x32 1 1568
Convolution 40 15x15x32 0x1 1 1x3 15x15x32 1 3104
Convolution 41 15x15x32 0x0 1 1x1 15x15x64 1 2112

SE Layer 52 15x15x64 - - - 15x15x64 1 -
Convolution 62 15x15x64 0x0 2 1x1 15x15x64 1 4160
Convolution 63 8x8x64 0x0 1 1x1 8x8x32 1 2080
Convolution 64 8x8x32 1x0 1 3x1 8x8x64 1 6208
Convolution 65 8x8x64 0x1 1 1x3 8x8x64 1 12352
Convolution 66 8x8x64 0x0 1 1x1 8x8x128 1 8320

Convolution 67 8x8x128 0x0 1 1x1 8x8x64 7 57792
Convolution 68 8x8x64 0x0 1 1x1 8x8x32 7 14560
Convolution 69 8x8x32 1x0 1 3x1 8x8x64 7 43456
Convolution 70 8x8x64 0x1 1 1x3 8x8x64 7 86464
Convolution 71 8x8x64 0x0 1 1x1 8x8x128 7 58240
SE Layer 75 8x8x64 - - - 8x8x64 1 -

Convolution 102 8x8x128 0x0 2 1x1 8x8x128 1 16512
Convolution 103 4x4x128 0x0 1 1x1 4x4x64 1 8256
Convolution 104 4x4x64 0x1 1 1x3 4x4x128 1 24704
Convolution 105 4x4x128 1x0 1 3x1 4x4x128 1 49280
Convolution 106 4x4x256 0x0 1 1x1 4x4x256 1 65792
Convolution 107 4x4x256 0x0 1 1x1 4x4x128 1 32896
SE Layer 123 8x8x256 - - - 8x8x256 1 -
Dropout (p=0.6) 4x4x256 - - - 4x4x256 1 -

Average Pool 4x4x256 - - - 4x4x256 1 -

Fully Connected Convolution 1x1x128 0x0 1 1x1 1x1x10 1 1290
∗ Wi, Hi, Ci refer to input width, height and number of channels, Pw, Ph refer to padding width and height, Kw, Kh refer
to filter or kernel width and height, W0, H0, C0 refer to output width, output height and output number of channels


