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Abstract: Congenital heart defects (CHDs) occur with such a frequency that they constitute
a significant cause of morbidity and mortality in both children and adults. A significant portion
of CHDs can be attributed to aberrant development of the cardiac outflow tract (OFT), and of one
of its cellular progenitors known as the cardiac neural crest cells (NCCs). The gene regulatory
networks that identify cardiac NCCs as a distinct NCC population are not completely understood.
Heart and neural crest derivatives (HAND) bHLH transcription factors play essential roles in NCC
morphogenesis. The Hand1PA/OFT enhancer is dependent upon bone morphogenic protein (BMP)
signaling in both cranial and cardiac NCCs. The Hand1PA/OFT enhancer is directly repressed by
the endothelin-induced transcription factors DLX5 and DLX6 in cranial but not cardiac NCCs.
This transcriptional distinction offers the unique opportunity to interrogate NCC specification, and to
understand why, despite similarities, cranial NCC fate determination is so diverse. We generated
a conditionally active transgene that can ectopically express DLX5 within the developing mouse
embryo in a Cre-recombinase-dependent manner. Ectopic DLX5 expression represses cranial NCC
Hand1PA/OFT-lacZ reporter expression more effectively than cardiac NCC reporter expression. Ectopic
DLX5 expression induces broad domains of NCC cell death within the cranial pharyngeal arches, but
minimal cell death in cardiac NCC populations. This study shows that transcription control of NCC
gene regulatory programs is influenced by their initial specification at the dorsal neural tube.

Keywords: HAND1; DLX5; BMPs; transcriptional regulation; neural crest; craniofacial defects;
cardiac defects

1. Introduction

Congenital heart defects (CHDs) afflict roughly 1% of newborns and ultimately affect the quality
of life of more than 1 million adults in the United States [1]. Many CHDs affect the cardiac outflow tract
(OFT) [2]. A significant portion of CHDs can, therefore, be attributed to developmental dysfunction
of one of the main developmental progenitors of the OFT, known as the neural crest cells (NCCs).
NCCs migrate from the dorsal neural tube throughout the developing embryo [2]. Different NCC
subpopulations differentiate into distinct tissue types. The cardiac NCCs differentiate into smooth
muscle and connective tissue to form portions of the aorta, pulmonary artery, and nascent ventricular
septum. Although NCC have been well studied, the gene regulatory networks that drive NCCs cells to
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delaminate from the neural tube, migrate to their destinations, and differentiate into their specified cell
type identity are still not completely understood.

The bHLH transcription factors HAND1 and HAND2 are expressed in both cranial and
cardiac NCCs and loss of function studies establish them as critical players in craniofacial and
OFT development [3–6]. Hand1 NCC expression is observed post-NCC migration and resides within
the ventral most cap of the pharyngeal arches that contribute to craniofacial structures as well as
components of the OFT [7–9]. Hand2 expression is also observed post-NCC migration. However,
Hand2 expression projects more dorsally and demarcates the entire ventral domain [6,8]. Hand1 NCC
expression directly depends on HAND2 and BMP-signaling mediated transcriptional activity [8,10,11].
Hand2 NCC expression is dependent on the Endothelin-1 induced transcription factors DLX5 and
DLX6, whose expression, with the exception of the Hand1 expression-marked ventral cap domain,
overlaps with that of Hand2 [8]. HAND2 exhibits negative feedback upon Dlx5 and Dlx6, excluding
Dlx5/6 expression from the ventral cap [6]. When Hand2 expression is deleted from NCCs, Dlx5/6
expression expands into the ventral cap, where it actively represses Hand1 expression [8]. Collectively,
these findings are consistent with a complex regulatory mechanism that allows for sub specialization
of NCC within the pharyngeal arches critical for craniofacial and OFT morphogenesis.

Single-cell NCC analyses have proposed a cardiac NCC differentiation cascade in which Dlx6 is
transiently upregulated, followed by activation of Msx2 and Hand2, and then activation of downstream
cardiac markers including Hand1 and Gata6 [12]. However, this gene expression profile describes
both the cardiac NCCs and the distal cap cranial NCCs. In this study, we utilize a novel conditional
gain-of-function Dlx5 allele to ectopically and persistently express DLX5 specifically within cranial
NCCs. Using the NCC Cre driver, Wnt1-Cre, we demonstrate that, in cranial NCC populations, Hand1
expression is repressed, whereas cardiac NCC Hand1 expression is not directly affected. Significant
amounts of cell death are observed in cranial NCC populations. However, cardiac NCCs exhibit less
extensive apoptosis. This work advances our understanding of the unique transcriptional pathways at
work within NCCs contributing to cranial and OFT tissues where gene expression within all NCC is
interpreted differentially within specified NCC populations.

2. Materials and Methods

2.1. Transgenic Mice

The Indiana University Transgenic and Knock-Out Mouse Core generated the CAG-CAT-FLAGDlx5
transgenic mouse line (denoted henceforth as CAG-CAT-Dlx5) on a C3HeB/FeJ background. Genotyping
for this allele is performed via PCR using the forward primer Dlx5(F) 5′-CGGGACGCTTTATTAGATGG-3′

and the reverse primer Dlx5(R) 5′-TTGCATTGTTGGATTTCTGG-3′, which produces a 465 bp control
band and the reverse primer SV40pA(R) 5′-CCCCCTGAACCTGAAACATA-3′, which produces a 295 bp
amplicon that detects the presence of the transgene. After a 5 min incubation at 95 ◦C, the PCR conditions
run are 95 ◦C 30 s, 55 ◦C 60 s, and 72 ◦C 60 s for 36 cycles. Use and genotyping of Wnt1-Cre and
Gt(ROSA)26Sortm1Sor alleles are previously reported [13,14]. Embryos were not selected for sex and
were evaluated blindly for all analyses. Mice and other reagents are available from the authors
upon request.

2.2. Cloning

The generated Cre-activatable transgene CAG-CAT-Dlx5 was constructed by replacing the
Myc-Twist1 cDNA of CAG-CAT-Twist construct [15] with the murine FLAGDlx5 cDNA.

2.3. Bone and Cartilage Staining, X-Gal Staining and Histology

Bone and cartilage staining was performed using Alizarin Red and Alcian Blue as previously
described [6]. X-gal staining was performed as previously described [9,16–18].
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2.4. Lysotracker and TUNEL

Cell death analysis on control and mutant embryos was performed as described [18,19]. Lysotracker
(Life Technologies) was incubated with embryos as per the manufacturer’s instructions. Embryos were
imaged in a well slide on a Leica DM5000 B compound florescent microscope. TUNEL analyses were
performed upon sectioned embryos using the ApopTag Plus Fluorescein in situ Apoptosis detection kit
(S7111 Chemicon International) as per the manufacturer’s instructions.

2.5. Immunohistochemistry

Immunohistochemistry was performed as previously described [17] using an antibody against
TUBULIN β3 (β-TUBB3, Abcam). Images were collected on a Leica DM5000 B microscope and Leica
Application Suite software.

2.6. In Situ Hybridization

Section in situ hybridizations were performed on 10-µm paraffin sections as described [20,21].
Antisense digoxygenin-labeled riboprobes were synthesized using T7, T3, or SP6 polymerases (Promega)
and DIG-Labeling Mix (Roche) using the following plasmid templates: Dlx5, Dlx6, Hand2, Sox9
(provided by Benoit De Crombrugghe), and Ret (provided by Jean-Francois Brunet).

2.7. Quantitative RT-PCR

Total RNA was isolated from E11.5 mandibular pharyngeal arches using the High Pure RNA
Isolation Kit (Roche). This RNA was then used to synthesize cDNA using the High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems). For qRT-PCR, cDNA was amplified using TaqMan
Probe-Based Gene Expression Assays (Applied Biosystems) and the QuantStudio 3 Real-Time PCR
System (ThermoFisher). Normalization to Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)was
used to determine relative gene expression and statistical analysis automatically applied by the
instrumental software. Significance of qRT-PCR results were determined by a two-tailed students
t-test followed by post hoc Benjamini-Hochberg FDR correction as automatically calculated by the
QuantStudio 3 qRT-PCR thermal cycler software analysis package.

3. Results

3.1. NCC Expression of CAG-CAT-Dlx5 Results in Midface Clefting

To test the hypothesis that mis-expression of a Dlx5 within NCCs would result in craniofacial and
cardiac NCC phenotypes, we generated a conditional Dlx5-gain-of-function mouse line (CAG-CAT-Dlx5,
Figure 1A). We employed an NCC-specific Cre driver (Wnt1-Cre; [22]) to ectopically drive Dlx5 expression
within all NCCs (Wnt1-Cre;CAG-CAT-Dlx5 (Dlx5 NCC oe). In order to determine if persistent NCC
expression of Dlx5 causes a NCC phenotype, we first looked at craniofacial structures at E16.5 (Figure 1).
Compared with Cre-negative littermates (Figure 1B), the upper jaw (uj) of Dlx5 NCC oe embryos is
underdeveloped and split along the midline, which results in a severe midfacial cleft that allows
visualization of the tongue (t, Figure 1C). The mandible (md) is also hypoplastic and misshaped
(Figure 1D, E). This phenotype is similar to what is observed in HAND1 dimer mutant mice [9] but is
far more severe than observed in embryos recently reported in which a Dlx5 cDNA was inserted into
the ROSA26 locus and then activated in NCCs (NCCDlx5) [23].
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of the CAG-CAT-Dlx5 transgene. The CAG promoter drives expression of the Chloramphenicol acetyl 
transferase (CAT) gene that is flanked by loxP elements (triangles). Removal of Chloramphenicol 
Acetal transferase (CAT) via Cre-recombinase allows for persistent expression of Dlx5. (B, C). 
Anterior and ventral whole mount views, respectively, of E16.5 heads from Control (CAG-CAT-Dlx5) 
(B) and Wnt1-Cre; CAG-CAT-Dlx5 (Dlx5 NCC oe) (C) embryos. Compared to control embryos, the 
midface of Dlx5 NCC oe embryos contain a large cleft separating the upper jaw (uj) into left and right 
sides and exposing the tongue (t). The lower jaw (lj) also appears misshapen and a coloboma (arrow) 
is present. (D-I.) E18.5 control (B, D, F, H) and Dlx5 NCC oe (C, E, G, I) embryos stained with Alizarin 
Red and Alcian Blue to visualize bone and cartilage, respectively. (D, E) Lateral views of skulls. In 
control embryos, the parietal (p) and frontal (f) are observed, which abut the squamosal (sq) bone (D). 
In the jaw region, the nasal (n), premaxilla (pmx), and maxilla (m) bones are observed, with the 
zygomatic process of the maxilla abutting the jugal (j) bone of the zygomatic arch. The tympanic ring 
(ty) bone is also observed. In Dlx5 NCC oe mice, the parietal, frontal bones are hypoplastic, as is the 
tympanic ring and squamosal bones (E). The premaxilla, maxilla, and jugal bones are dysmorphic, 
though the mandible appears relatively normal. (F, G) Ventral view of skulls with the mandible 

Figure 1. Neural crest cell (NCC)-specific Dlx5 overexpression results in midface clefting. (A) Diagram
of the CAG-CAT-Dlx5 transgene. The CAG promoter drives expression of the Chloramphenicol acetyl
transferase (CAT) gene that is flanked by loxP elements (triangles). Removal of Chloramphenicol
Acetal transferase (CAT) via Cre-recombinase allows for persistent expression of Dlx5. (B,C). Anterior
and ventral whole mount views, respectively, of E16.5 heads from Control (CAG-CAT-Dlx5) (B) and
Wnt1-Cre; CAG-CAT-Dlx5 (Dlx5 NCC oe) (C) embryos. Compared to control embryos, the midface of
Dlx5 NCC oe embryos contain a large cleft separating the upper jaw (uj) into left and right sides and
exposing the tongue (t). The lower jaw (lj) also appears misshapen and a coloboma (arrow) is present.
(D–I). E18.5 control (B,D,F,H) and Dlx5 NCC oe (C,E,G,I) embryos stained with Alizarin Red and Alcian
Blue to visualize bone and cartilage, respectively. (D,E) Lateral views of skulls. In control embryos, the
parietal (p) and frontal (f) are observed, which abut the squamosal (sq) bone (D). In the jaw region, the
nasal (n), premaxilla (pmx), and maxilla (m) bones are observed, with the zygomatic process of the
maxilla abutting the jugal (j) bone of the zygomatic arch. The tympanic ring (ty) bone is also observed.
In Dlx5 NCC oe mice, the parietal, frontal bones are hypoplastic, as is the tympanic ring and squamosal
bones (E). The premaxilla, maxilla, and jugal bones are dysmorphic, though the mandible appears
relatively normal. (F,G) Ventral view of skulls with the mandible removed. In contrast to control
embryos (F), most skull base bones in Dlx5 NCC oe embryos are hypoplastic, including the basisphenoid
(bs), pterygoids (pt), and alisphenoids (al). The palatine (p) bones fuse along the midline but are also
hypoplastic, as are the tympanic rings (G). The dysmorphology of the maxilla along the midline is also
apparent, along with the large midline cleft that now exists (*). (H,I) Lateral (intra-oral) view of the
left mandible (md). The coronoid (cp), condylar (cdp), and angular (ap) processes of the mandible are
present in both control (H) and Dlx5 NCC oe (I) embryos, as are the incisors (i). bo, basisoccipital bone;
e, eye; hy, hyoid bone.
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To determine how these changes were reflected in near term embryos, E18.5 Dlx5 NCC oe and
Control (Cre-negative CAG-CAT-Dlx5 littermates) embryos were stained with Alizarin Red and Alcian
Blue to visualize bone and cartilage, respectively. Compared to control embryos (Figure 1C,E), the
NCC-derived bones of the skull vault (frontal, f) and nasal, n) and skull base bone (basisphenoid
(bs), alisphenoid (al), and palatine (p) bones) are hypoplastic or absent in Dlx5 NCC oe embryos
(Figure 1D,F). In addition, there is a large midfacial cleft in which the two halves of the premaxilla
(pmx) fail to meet at the midline. This cleft extends back through the palatal processes of the maxilla
(mx) but does not affect fusion of the palatine bones. The maxilla bones are quite dysmorphic, which
makes it impossible to determine if they represent a homeotic transformation into more a mandible-like
shape as observed in the NCCDlx5 mice [23]. However, these changes are similar to those observed
when an Endothelin-1 (Edn1) cDNA is driven in NCCs using Wnt1-Cre mice [24,25]. In one Chicken
b-actin (CBA)-Edn1;Wnt1-Cre line, embryos have a classic homeotic transformation of the maxilla into
a mandible-like structure while embryos from another line have a large midfacial cleft. Since there
is not a significant difference in mature EDN1 by Enzyme-Linked ImmunoSorbent Assay (ELISA)
between the two lines, the differences likely reflect insertion site dynamics, with the varying phenotypic
outcome reflecting a range of EDN1 action in NCCs. Overall, the phenotype of Dlx5 NCC oe embryos
indicates that DLX5 has several unrecognized functions during early NCC patterning. A more detailed
analysis of this is being reported elsewhere.

3.2. NCC Expression of CAG-CAT-Dlx5 Down Regulates Hand1 Ventral Cap Expression

DLX5 regulates gene expression in post-migration cranial NCCs and, although expressed in
cardiac NCCs, is not required for OFT morphogenesis, as heart defects are not reported in Dlx5;Dlx6
double knockout mice [12,23–27]. DLX5 negatively regulates Hand1 expression [8] and positively
regulates Hand2 expression [6,28] in cranial NCCs. To ensure that the Cre-activated transgene is
functional, we first intercrossed CAG-CAT-Dlx5 mice with the Hand2-Cre driver (Figure 2) [3]. E10.5
whole mount in situ hybridization of Dlx5 shows normal robust dorsal expression where the yellow line
demarks its ventral most expression and the white line shows the ventral most cap of the arch of control
embryos (Figure 2A). Cre-activation of the CAG-CAT-Dlx5 allele reveals a noticeable expansion of Dlx5
expression ventrally such that the space between the yellow and white lined marked boundaries is
noticeably reduced, which indicates the efficacy of the Cre-inducible CAG-CAT-Dlx5 allele (Figure 2B).
We next intercrossed CAG-CAT-Dlx5 mice with our Hand1PA/OFT-lacZ reporter line, which we have
previously shown is sensitive to DLX5 negative regulation [8]. At E11.5, control embryos show
expected cranial and cardiac NCC expression as well as the second heart field derived myocardium of
the myocardial cuff (Figure 2C). Most notably, the ventral most NCC of the mandibular arch strongly
expresses the Hand1PA/OFT-lacZ reporter (1, arrowhead, Figure 2C, n = 4). When Hand1PA/OFT-lacZ
reporter expression is combined with the Wnt1-Cre; CAG-CAT-Dlx5 alleles, significantly reduced
β-galactosidase staining is observed within the ventral cap domain of arch 1 (Figure 2D arrowhead,
n = 4). Transverse sections through the cardiac OFT reveal robust β-galactosidase staining within
the NCC mesenchyme and OFT myocardium (Figure 2E arrow). In Dlx5 NCC oe; Hand1PA/OFT -lacZ
mice, the β-galactosidase staining intensity is unchanged. However, the ventral boundary of the
β-galactosidase positive NCCs is more dorsal (Figure 2F arrow).
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domain is observed. (E) Transverse section through the cardiac OFT of Hand1PA/OFT mice stained for 
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Figure 2. NCC-specific Dlx5 overexpression represses Hand1PA/OFT expression. (A) E10.5 wholemount
in situ hybridization of Dlx5 in Control and Hand2-Cre; CAG-CAT-Dlx5 embryos. The yellow dotted
line marks the ventral most domain of expression and the white dotted line marks the ventral most
aspect of the first mandibular arch (1). (B) Hand2-Cre-activated Dlx5 transgene expression reveal
a measurable ventral extension of Dlx5 expression into the ventral arch (reduced space between
yellow and white lines). (C) Wholemount β-galactosidase staining from the Hand1PA/OFT transgene.
The arrowhead marks distal cap expression. (D) Hand1PA/OFT-lacZ transgene expression on Dlx5 NCC
oe (Wnt1-Cre; CAG-CAT-Dlx5) alleles. Visibly reduced β-galactosidase staining within the distal arch
domain is observed. (E) Transverse section through the cardiac OFT of Hand1PA/OFT mice stained
for β-galactosidase. Staining is robustly observed within cardiac NCC (arrow) and myocardial cuff.
(F) Hand1PA/OFT-LacZ transgene expression on Dlx5 NCC oe alleles. Staining is similar in intensity
to control embryos. However, the ventral extension of β-galactosidase positive NCC is moved
dorsally (arrow).
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3.3. Dlx5 NCC oe OFTs Present Persistent Truncus Arteriosus (PTA)

Disruption of Hand factor expression causes cardiac defects within the OFT [4,28]. To determine
whether persistent Dlx5 expression within cardiac NCCs alters OFT morphogenesis and to assay Hand1
OFT expression, we looked at E16.5 hearts (Figure 3). In control (CAG-CAT-Dlx5; Hand1PA/OFT-lacZ)
E16.5 hearts, OFT formation appears normal, wherein the pulmonary artery (PT) directly connects with
the right ventricle (RV) and the aorta (Ao) directly connects with the left ventricle (LV, Figure 3A–C).
Hand1PA/OFT-lacZ expression, visualized by β-galactosidase staining, is detectable within the smooth
muscle wall of the aorta and within myocardial cuff cardiomyocytes. In contrast, Dlx5 NCC oe mutants
present with either a single OFT vessel, which is a condition termed persistent truncus arteriosus (PTA,
Figure 3D and E, n = 6/10), or with a double outlet right ventricle (DORV), wherein the Ao connects
directly with both right ventricle (RV) and left ventricle (LV) (Figure 3F–H, n = 3/10). Hand1PA/OFT-lacZ
expression is observed within the aortic smooth muscle and cuff myocardium. Summary of the
encountered phenotypes is presented in Table 1.
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Figure 3. Phenotypic analysis of Dlx5 NCC oe hearts at E16.5. Whole mount (A) and frontal sections (B,C)
of control (CAG-CAT-Dlx5;Hand1PA/OFT-lacZ) heart showing patent septation and proper alignment of
the pulmonary trunk (PT) and aorta (Ao) with the right (RV) and left (LV) ventricles. Wholemount Dlx5
NCC oe hearts at E16.5 reveal persistent truncus arteriosus (PTA, D,E) or double outlet right ventricle
(F–H) wherein the aorta is connected to both RV: right ventricle and LV; left ventricle, RA: right atria,
LA: left atria.
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Table 1. Outflow tract (OFT) defects observed in Dlx5 neural crest cell (NCC) oe mutants.

Genotype n PTA + VSD DORV + VSD Phenotypically Normal

Wnt1-Cre 1 0 (0%) 0 (0%) 1 (100%)
CAG-CAT-Dlx5 3 0 (0%) 0 (0%) 3 (100%)
CAG-CAT-Dlx5;

Wnt1-Cre 10 6 (60%) 3 (30%) 1 (10%)

DORV, double outlet right ventricle, PTA, persistent truncus arteriosus, and VSD, ventricular septal defect.

3.4. NCC Migration into the OFT Is Limited in Dlx5 NCC oe Mice

The PTA and DORV observed in Dlx5 NCC oe mutants could be due to do altered NCC
morphogenesis, increased NCC cell death, or lack of normal NCC migration. To determine what
mechanisms are involved, we first performed a Wnt1-Cre lineage analysis between E9.5 and E11.5 to
look for migration of Wnt1-Cre lineage cells within the OFT (Figure 4). In both E9.5 (28 and 29 somite)
and E10.5 (36 somite) embryos, both the first and second pharyngeal arches are robustly positive
for Wnt1-Cre marked NCCs (Figure 4A,C, arrows). Cardiac NCCs are also robustly present dorsal
to the OFT (bracket) and can be seen entering the OFT (arrowhead, Figure 4A,C). In Dlx5 NCC oe
mutants, Wnt1-Cre marked NCCs are also observed. However, β-galactosidase staining is less robust
(Figure 4B,D). First and second phalangeal arches are smaller (Figure 4B,D, arrows). The population
of cardiac NCCs dorsal to the OFT is smaller (Figure 4B,D, bracket) and the Wnt1-Cre marked NCCs
visible within the OFT are clearly diminished (Figure 4B,D, arrowheads).
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Figure 4. NCC lineage analysis of Dlx5 NCC oe E9.5 and E10.5 embryos. (A) E9.5 Wnt1-Cre; R26RlacZ/+

embryo stained for β-galactosidase activity. Blue stained cells represent NCC migration through the
embryo. Cranial NCCs populating the first and second pharyngeal arches are noted by arrows. Cardiac
NCCs occupying the caudal pharyngeal arches are denoted by brackets. NCCs within the outflow
tract (OFT) are denoted by arrowheads. (B) NCC lineage analysis in Dlx5 NCC oe embryos shows
reduced first and second pharyngeal arch size (arrows) and reduced cardiac NCC number dorsal to and
within the OFT. (C) Control and (D) Dlx5 NCC oe embryo NCC lineage analysis at E10.5 demonstrate
that the cranial arches are hypoplastic in Dlx5 NCC oe embryos when compared to control embryos
(arrows). Reduced numbers of cardiac NCCs (brackets) and NCCs within the OFT (arrowheads) are
also observed.



J. Cardiovasc. Dev. Dis. 2020, 7, 13 9 of 16

3.5. Dlx5 NCC oe Embryos Exhibit NCC Cell Death Within the Neural Tube, Pharyngeal Arches but Minimally
Within the OFT

To determine whether Wnt1-Cre marked NCC reduction within the pharyngeal arches reflects
solely migration defects and not NCC cell death, we performed lysotracker staining to assess cell
death in E9.5 and E10.5 Dlx5 NCC oe embryos. In E9.5 controls, developmentally normal cell death is
observed with regions of the head as well as tissues located dorsally to the OFT (Figure 5A, bracket).
Cell death within the pharyngeal arches is minimal (arrow Figure 5A, n = 4). In contrast, significant cell
death is observed at the dorsal neural tube (arrowheads) and within the first and second pharyngeal
arches (arrow robust positive staining within the arches, Figure 5B, n = 4). Cell death in the caudal
pharyngeal arches was not appreciably affected in E9.5 Dlx5 NCC oe embryos (Figure 5A,B, brackets,
n = 4). No significant cell death is observed within the heart. At E10.5, control (CAG-CAT-Dlx5)
embryos displayed domains of lysotracker-positive cells within the proximal rostral pharyngeal arches
(Figure 5C, white arrows). Although the pharyngeal arches are now hypoplastic at this stage, the
lysotracker-positive cells of proximal rostral pharyngeal arches of Dlx5 NCC oe littermates are not
observed (Figure 5D, white arrows). Continued cell death along the dorsal neural tube is still evident
(arrowheads, Figure 5D). To characterize this aberrant cell death in closer detail, we performed TUNEL
analyses upon embryonic sections at E10.5. (Figure 5E–H). Compared to control embryos, extensive
cell death in the dorsal neural tube is visible in the Dlx5 NCC oe embryos at E10.5 (compare Figure 5E,F,
arrowheads, n = 5). The cranial pharyngeal arches are also clearly hypoplastic in E10.5 Dlx5 NCC oe
embryos. No significant changes in cell death are observed in E10.5 OFT of Dlx5 NCC oe embryos
when compared to control embryos. Together, this data shows that decreased NCC contribution to
the pharyngeal arches and OFTs of Dlx5 NCC oe embryos is mechanistically likely the result of the
increased NCC death observed during NCC migration that initiates at their point of origin within the
dorsal neural tube.

To determine whether gene expression is altered in the Dlx5 NCC oe NCCs that contribute to the
OFT, we looked at the expression of the cardiac NCC and OFT myocardium marker Hand2 [28,29] and the
NCC marker Sox9 [30,31] (Figure 6). Expression of Hand2 is modest within the ventricular myocardium
of the RV and LV and more robust within the endocardium, the myocardial cuff myocardium, and
cardiac NCC (arrow) of control E10.5 hearts (Figure 6A). In Dlx5 NCC oe hearts, expression within the
endocardium, ventricles, and myocardial cuff is similar to that of control hearts. However, expression
within the cardiac NCC is diminished (arrow, Figure 6B). Robust Sox9 expression is observed within
control OFT NCCs (arrow, Figure 6C), whereas Sox9 expression with Dlx5 NCC oe OFT NCCs is
significantly reduced, which results from decreased expression and / or less Sox9-expressing NCCs
(arrow, Figure 6D).

3.6. Persistent Dlx5 Expression Does Not Induce NCCs to Adopt a Neuronal Cell Fate

Loss of TWIST1 function induces NCCs to differentiate along a neuronal cell fate [13]. Within the
OFT, Twist1-null cardiac NCCs organize into ganglia-like structures and express a number of neuronal
genes [13]. Additionally, these trans-differentiating cardiac NCCs express Hand1 [13]. Crossing
the Hand1PA/OFT-lacZ reporter onto a Twist1–/fx, Wnt1-Cre(+) background (Twist1 NCC CKO) reveals
that these NCCs are specifically marked by Hand1PA/OFT enhancer activity (Figure 7B, arrowheads).
Intriguingly, these ganglia-like structures also express Dlx5 (Figure 7D, arrowhead, n = 3), which is
not detectable in the cardiac NCCs of control OFTs (Figure 7C). To determine whether persistent Dlx5
expression within the NCCs promotes cardiac NCC populations to differentiate along a neuronal path,
we looked at the expression of the pan-neuronal marker Class III β-TUBULIN (TUBB3) [32] and the
receptor tyrosine kinase Ret, which marks NCC-derived neurons [33]. TUBB3 immunostaining of E11.5
embryos on the Hand1PA/OFT-lacZ reporter background revealed no detectable TUBB3 protein within
OFT NCCs of either control or Dlx5 NCC oe embryos (Figure 7E,F, n = 2). Ret in situ hybridization of
E10.5 embryos yielded similar findings (Figure 7G,H, n = 4). These results show that, although Dlx5
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expression is induced in ectopic neurons within Twist1-null cardiac NCCs, ectopic Dlx5 expression
within the cardiac NCCs is not sufficient to induce neurogenesis.
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Figure 5. Lysotracker and Terminal deoxynucleotidyl transferase. dUTP nick end labeling (TUNEL)
staining of Dlx5 NCC oe embryos. (A) E.9.5 control embryo showing normal cell death within the head
and tissues dorsal to the OFT (brackets). No significant apoptosis is observed within the first and
second pharyngeal arches (arrow). (B) E9.5 Dlx5 NCC oe embryo showing visible cell death within the
neural tube (arrowheads) and, most notably, within the first and second pharyngeal arches (arrow).
(C) E10.5 control embryo showing normal cell death. Arrows denote cell death within the proximal
rostral pharyngeal domain of the first and second pharyngeal arches. (D) E10.5 Dlx5 NCC oe embryo
showing persistent dorsal neural tube cell death, whereas first and second pharyngeal arches show less
apoptosis than controls. (E) and (F) E10.5 TUNEL stained control and Dlx5 NCC oe embryos. Elevated
cell death within the neural tube of Dlx5 NCC oe embryos is clearly visible (arrowhead), as are the
hypoplastic first and second pharyngeal arches. (G,H) more caudal sections showing minimal cell
death within the cardiac OFT in control and Dlx5 NCC oe embryos. Scale bars = 200 µm.



J. Cardiovasc. Dev. Dis. 2020, 7, 13 11 of 16

J. Cardiovasc. Dev. Dis. 2020, 7, x FOR PEER REVIEW 11 of 17 

 

showing persistent dorsal neural tube cell death, whereas first and second pharyngeal arches show 
less apoptosis than controls. (E) and (F) E10.5 TUNEL stained control and Dlx5 NCC oe embryos. 
Elevated cell death within the neural tube of Dlx5 NCC oe embryos is clearly visible (arrowhead), as 
are the hypoplastic first and second pharyngeal arches. (G) and (H) more caudal sections showing 
minimal cell death within the cardiac OFT in control and Dlx5 NCC oe embryos. Scale bars = 200 µm. 

To determine whether gene expression is altered in the Dlx5 NCC oe NCCs that contribute to the 
OFT, we looked at the expression of the cardiac NCC and OFT myocardium marker Hand2 [28,29] 
and the NCC marker Sox9 [30,31] (Figure 6). Expression of Hand2 is modest within the ventricular 
myocardium of the RV and LV and more robust within the endocardium, the myocardial cuff 
myocardium, and cardiac NCC (arrow) of control E10.5 hearts (Figure 6A). In Dlx5 NCC oe hearts, 
expression within the endocardium, ventricles, and myocardial cuff is similar to that of control hearts. 
However, expression within the cardiac NCC is diminished (arrow, Figure 6B). Robust Sox9 
expression is observed within control OFT NCCs (arrow, Figure 6C), whereas Sox9 expression with 
Dlx5 NCC oe OFT NCCs is significantly reduced, which results from decreased expression and / or 
less Sox9-expressing NCCs (arrow, Figure 6D). 

 
Figure 6. Expression of the OFT markers Hand2 and Sox9 is reduced within Dlx5 NCC oe embryos. (A, 
B) In situ hybridization showing expression of Hand2 within control (A) and Dlx5 NCC oe (B) E10.5 
embryo hearts. (C, D) E10.5 control (C) and Dlx5 NCC oe (D) embryos showing Sox9 mRNA 
expression. Arrows denote cardiac NCC. Scale bars = 250 µm. 

3.6. Persistent Dlx5 Expression Does Not Induce NCCs to Adopt a Neuronal Cell Fate 

Loss of TWIST1 function induces NCCs to differentiate along a neuronal cell fate [13]. Within 
the OFT, Twist1-null cardiac NCCs organize into ganglia-like structures and express a number of 
neuronal genes [13]. Additionally, these trans-differentiating cardiac NCCs express Hand1 [13]. 
Crossing the Hand1PA/OFT-lacZ reporter onto a Twist1–/fx, Wnt1-Cre(+) background (Twist1 NCC CKO) 
reveals that these NCCs are specifically marked by Hand1PA/OFT enhancer activity (Figure 7B, 
arrowheads). Intriguingly, these ganglia-like structures also express Dlx5 (Figure 7D, arrowhead, n = 
3), which is not detectable in the cardiac NCCs of control OFTs (Figure 7C). To determine whether 
persistent Dlx5 expression within the NCCs promotes cardiac NCC populations to differentiate along 
a neuronal path, we looked at the expression of the pan-neuronal marker Class III β-TUBULIN 
(TUBB3) [32] and the receptor tyrosine kinase Ret, which marks NCC-derived neurons [33]. TUBB3 

Figure 6. Expression of the OFT markers Hand2 and Sox9 is reduced within Dlx5 NCC oe embryos.
(A,B) In situ hybridization showing expression of Hand2 within control (A) and Dlx5 NCC oe (B) E10.5
embryo hearts. (C,D) E10.5 control (C) and Dlx5 NCC oe (D) embryos showing Sox9 mRNA expression.
Arrows denote cardiac NCC. Scale bars = 250 µm.
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Figure 7. Ectopic Dlx5 expression within the NCC is not sufficient to induce neurogenesis.
(A,B) E11.5 Hand1PA/OFT-lacZ stained control (A) and Wnt1-Cre(+); Twist1–/fx mutant (B) embryos
showing transgene-positive ectopic ganglia within the cardiac NCCs occupying the OFT. (C,D) In
situ hybridization to detect Dlx5 mRNA shows no expression in control OFTs (C) but does show
robust expression within the trans-differentiated cardiac NCCs of Twist1 conditional knockouts (D).
Immunohistochemistry of pan-neuronal TUBB3 in both control (E) and Dlx5 NCC oe (F) sections reveals
no ectopic neuronal staining in the E11.5 OFT. In situ hybridization to detect Ret mRNA similarly reveals
no neuronal cells within the OFTs of E10.5 control (G) or Dlx5 NCC oe (H) embryos. Scale bars = 100 µm.
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3.7. Persistent Dlx5 Expression within NCCs Downregulates Dlx6 Expression

Signaling from the Endothelin receptor type A (EDNRA) induces Dlx5 expression in the pharyngeal
arches [34]. In order to see whether DLX5 overexpression had regulatory effects upon other Endothelin
1-induced genes, we looked at expression of Hand2 and the related homeobox transcription factor Dlx6
in the pharyngeal arches of the E10.5 control and Dlx5 NCC oe embryos (Figure 8). In situ hybridization
of Hand2 mRNA revealed that Hand2 expression appears unchanged within the first pharyngeal arch (1)
in Dlx5 NCC oe embryos (Figure 8A,B, n = 3). This is confirmed quantitatively by qRT-PCR (Figure 8E,
n = 6). In contrast, Dlx6 expression is robust within the first pharyngeal arch of control embryos but
is significantly reduced in in Dlx5 NCC oe embryos (Figure 8C,D,E). Hand1, which is known to be
negatively regulated by DLX5 [8], is also significantly downregulated (Figure 8E).
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Figure 8. Dlx5 NCC overexpression downregulates Dlx6 within the first pharyngeal arch. (A, B) Hand2
in situ hybridization showing normal first arch expression in both control (A) and Dlx5 NCC oe E10.5
embryos. Dlx6 in situ hybridization showing altered first arch expression when comparing control
(C) and Dlx5 NCC oe embryos (D). (E) qRT-PCR analyses of Hand1, Dlx6, and Hand2 expression from
E10.5 first pharyngeal arches. Significant decreases in Hand1 (# p ≤ 0.01) and Dlx6 (* p ≤ 0.05) are
observed. No significant changes in the Hand2 message are detected. Scale bars = 250 µm.

4. Discussion

NCCs are a dynamic and multipotent cell population that, during embryogenesis, migrate
ventrally from the neural tube to contribute to organ morphogenesis [35]. Major components of the
cardiac OFT and nearly the entire vertebrate facial complex are NCC-derived. Dysregulation of these
NCC populations result in the majority of congenital abnormalities encountered in humans. In this
study, we set out to interrogate how NCC gene regulatory networks that include HAND transcription
factors facilitate NCC specialization into specific tissue fates. Hand1 and Hand2 mark both cranial
and cardiac NCC populations [36,37], exhibit genetic interactions that, when disrupted, result in a
phenotype [4,19,21,38], and set up tissue boundaries that are essential normal tissue morphogenesis
within the post migration NCCs occupying the pharyngeal arches [6,8].

The cranial transcriptional enhancers that drive Hand1 and Hand2 within NCC as well as the
cardiac NCC transcriptional enhancer for Hand1 are established [2,5,39]. Analysis of these enhancers
has revealed transcriptional inputs from both Endothelin Receptor A EDNRA (through DLX5 and
DLX6) and BMP signaling (through SMADs 1/5/8) as well as direct and required regulation of Hand1
by HAND2 and DLX5/6 [8,10,39]. Given the spatial changes in Hand1 expression that result from
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BMP gain-of-function and HAND2 loss-of-function, ectopic expression of DLX5 within all NCC was
performed to look at the effects on cranio-facial and OFT formation.

The first observation that is noted is that Dlx5 NCC oe mice exhibit severe midface clefting (Figure 1).
We speculate that mechanistically this is likely the result of increased cranial NCC apoptosis (Figure 4).
Hand1 phospho mutant conditional knock-in mice exhibit a similar craniofacial phenotype [9]. Although
Hand1 NCC loss-of-function mice exhibit no observable phenotypes [4], it is clear that Hand1 is down
regulated within Dlx5 NCC oe mice (Figures 2 and 8). If other potential HAND1 bHLH partners are also
transcriptionally regulated, the combination of these changes to the bHLH gene regulatory networks
via alteration of the bHLH dimer pool available to form transcriptional dimer complexes could account
for the similar phenotypes. Of note, a similar study employing a Rosa locus Dlx5 knockin was recently
reported [12,23–26] and showed short snout, open eyelids, misaligned vibrissae, and a cleft palate with
no clear signs of palatine rugae. In our study, using a traditional transgenic insertion increases severity
and is likely the result of increased Dlx5 expression in our model.

The Hand1PA/OFT enhancer drives expression in both cranial and cardiac NCCs, and DLX5 and
DLX6 directly repress Hand1PA/OFT enhancer activity [8]. However, Dlx5 and Dlx6 are not robustly
expressed within cardiac NCC populations and Dlx5/Dlx6 loss-of-function or gain-of-function mutants
display no observable cardiac phenotypes [12,23–26]. Moreover, cardiac NCC expression of Dlx5 was
observed in chicken [12,23–26] where differences between mammals were observed [35]. When DLX5 is
expressed with cardiac NCC, although significant OFT abnormalities like PTA and DORV are observed,
the expression of the Hand1PA/OFT enhancer is not clearly downregulated. This suggests that, although
DLX5 is a dominate repressor in cranial NCC populations, its presence in cardiac NCCs does not
impact Hand1PA/OFT enhancer activity, which suggests that DLX5 may not be sufficient for Hand1
transcriptional repression and that additional factors are required. Along these lines, it is important
to note that HAND2 is necessary for Hand1 expression within cranial but not cardiac NCC. This also
suggests that HAND2 must act with additional factors to regulate Hand1 within the cardiac NCCs.
GATA transcription factors are also required for Hand1PA/OFT transcriptional activity [8]. In E10.5
reporter embryos in which GATA cis-regulatory elements in the Hand1PA/OFT enhancer have been
mutagenized, cranial Hand1PA/OFT expression is ablated whereas cardiac NCC expression, although
slightly reduced, persists [8]. Thus, factors required for enhancer activation in one NCC population
(DLX5, SMAD, HAND2, GATA) do not significantly alter expression within another NCC population.
Cranial NCC subpopulations share prepatterned chromatin states that are poised to respond to distinct
local signaling cues depending upon where in the head they ultimately reside [40]. We propose that
distinctions between cranial and cardiac NCC chromatin states enable these populations to respond to
identical transcriptional inputs within the same cis-regulatory element in unique manners.

Given that there are observed OFT phenotypes, it is clear that ectopic DLX5 activity alters cardiac
NCC gene expression. There is clear reduction in Hand2 expression within cardiac NCCs at E10.5 as well
as a reduction of Sox9 expressing cells (Figure 6). Changes in the cardiac NCC gene regulatory network
combined with reductions in NCC numbers are the likely causes of the PTA and DORV observed in
Dlx5 NCC oe embryos. To assess potential NCC trans-differentiation, we looked at the neuronal markers
TUBB3 and Ret, and found that, even though Dlx5 expression is highly upregulated in Twist1-null
cardiac NCCs, upregulation of DLX5 alone is insufficient to cause trans-differentiation (Figure 7).

Lastly, it is clear that Dlx gene dosage is modulated in Dlx5 NCC oe mice. The highly related
Dlx6, which is co-expressed with Dlx5 in cranial NCC, is significantly downregulated within the
first and second pharyngeal arches of Dlx5 NCC oe embryos (Figure 8). A precise balance of specific
transcription factors within subpopulations of NCCs appears necessary for these cells to migrate and
differentiate to the correct tissue type and structures. NCC specification is thought to be governed
from the rostral-caudal origin of delaminating NCCs from the neural tube. However, post migratory
trans-differentiation is possible [13], which reflects the necessity for both positional and gene expression
modulation. The data from this study reflects that altering the gene regulatory networks by transcription
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factor gain-of-function analysis can be used to reveal sensitive and insensitive actions of a single factor
on a single enhancer in two separately fated populations of NCCs.
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