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Cycle-to-cycle variations of maximum pressure in a diesel engine are studied by using the methods
of recurrence plots and recurrence quantification analysis. The pressure variations are found to exhibit
strong periodicities in low frequency bands and intermittent oscillations at higher frequencies. The

results are confirmed by wavelet analysis.
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1. Introduction

In a spark ignition engine, cycle-to-cycle variations
in the process variables pressure and heat release have
been identified as harmful features which limit the
overall power output of the engine [1—7]. There are
several factors that contribute to pressure and heat
release variations. They include the compositions of
fresh fuel-air mixture and burned gases, and engine
aerodynamics [8 — 12]. These factors lead to nonlinear
dynamics in the combustion process and may result in
chaotic oscillations of the process variables [4—6, 13 —
17]. Recently, nonlinear phenomena have also been ob-
served in diesel [18, 19], LPG-fueled [20] and natural
gas [21] engines.

The nonlinear dynamics in a combustion process
can be detected from the statistical properties of the
measured signals. In a spark ignition engine, time ir-
reversibility of the heat release fluctuations has been
demonstrated by several authors [10, 14,22]. In a nat-
ural gas engine, Li and Yao [21] observed a transition
from stochastic to nonlinear deterministic behaviour in
pressure variations by changing the equivalence ratio
from near-stoichiometric to very lean conditions. Wen-
deker et al. [12], Litak et al. [23], and Sen et al. [24]
have proposed an intermittent mechanism leading to
chaotic pressure oscillations in a spark ignition engine.
In addition, Sen et al. [19] have observed nonlinear os-
cillations in pressure in a diesel engine. In the present

paper, we continue our research on the analysis of pres-
sure fluctuations in a diesel engine and present further
results on their dynamical behaviour using the meth-
ods of recurrence plots (RPs) and recurrence quantifi-
cation analysis (RQA); we confirm these results by the
wavelet analysis. The main advantage of using RPs and
RQA is that these approaches do not need very long
time series. Apart from the steady state it is also pos-
sible to identify a transient behaviour. Particularly this
property could be used in a more efficient real time en-
gine control.

Our presentation is organized as follows. In Section
2 we describe the experimental setup and present the
pressure time series. The time series are analyzed in
Section 3 using the methods of RPs and RQA. We also
perform a wavelet analysis of the time series and con-
firm some of the results obtained by RPs and RQA.
Finally, in Section 4, a few concluding remarks are
given.

2. Experimental Setup and Cyclic Peak Pressure
Variations

Figure la shows a schematic diagram of the ex-
perimental stand. The diesel engine is fueled by stan-
dard diesel fuel and the in-cylinder pressure is mea-
sured under steady-state conditions, using a piezoelec-
tric pressure sensor (8). From the sensor the signal is
transferred through connecting wires to a charge am-
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Fig. 1. (a) Experimental stand: 1, engine; 2, crankshaft;
3, brake; 4, brake control; 5, computer with data acquisition
card; 6, signal generator; 7, amplifier; 8, piezoelectric pres-
sure sensor. (b) The first 10 cycles of measured internal pres-
sure versus crankshaft rotation angle ¢. Here Q = 1200 rpm
and there are 1024 measurement points per cycle.

plifier (7), and then decoded by a computer with a data
acquisition card (5).

The loading of the engine is controlled by an eddy-
current brake coupled to the crankshaft. Pressure data
are collected over 978 cycles for six different rotational
speeds of the crankshaft: Q = 1000, 1200, 1400, 1600,
1800 and 2000 rpm under full loading. Measurements
are made with a sampling frequency of 1024 times per
combustion cycle.

An example of the measured pressure time series for
Q = 1200 rpm is shown in Figure 1b. In order to study
the cycle-to-cycle variability, it is convenient to use the
peak values of the pressure [25,26]. Accordingly, we
have identified the peak pressure in each cycle from the
time series shown in Fig. 1b, forming a peak-pressure
time series; this is depicted in Fig. 2 for Q = 1200 rpm.
This figure also shows the peak pressure time series
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Fig. 2. Time series of cyclic peak pressure values pmax (i) for
six different speeds of the crankshaft: Q = 1000, 1200, 1400,
1600, 1800 and 2000 rpm (starting from the bottom).

for the other five speeds of the crankshaft considered
here.

3. Analysis of the Peak Pressure Time Series

Analyzing Fig. 2 one can see that in case of Q =
2000 strongly periodic components of the signal are
observable while for other speeds Q = 1000, 1200,
1400, 1600, 1800 one cannot see any noticeable pe-
riodics. For better clarity we have performed RP and
RQA. It should be noted that originally the RP method
was invented to present signal data as patterns on a
two-dimensional (time versus time) figure [27,28]. Af-
ter supplementing by the method of results quantifica-
tion (RQA) it became an alternative to standard fre-
quency analysis [29—33].

3.1. Recurrence Plots and Recurrence Quantification
Analysis

We now use the methods of RPs and RQA to ex-
amine the peak pressure time series for each of the
six crankshaft speeds of © = 1000, 1200, 1400, 1600,
1800 and 2000 rpm. For this purpose we embed each
time series in a high-dimensional space using time-
delay coordinates. Following Takens [34] we write

pmax(i) = [pmax(i)vpmax(i_ 5i)»pmax(i_26i)v (1)
"'7pmax(i_ (m_ 1)61)}7

where m is the embedding dimension and &i is the time
delay. For each time series we estimate the values of m
and Oi by calculating the average mutual information
and the fraction of false nearest neighbours [35—38].
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Fig. 3. Recurrence plots of the peak pressure time series for various speeds Q of the crankshaft: (a) 1000 rpm; (b) 1200 rpm;
(c) 1400 rpm; (d) 1600 rpm; (e) 1800 rpm; (f) 2000 rpm. The embedding dimension m = 5, delay 6/ = 10 and a Theiler
window w = 1 have been used. For all cases the recurrence rate RR is 0.15.

For subsequent analysis we use the smallest value of
6i, 6i = 10, and the largest value of m, m = 5, for all
the time series.

The RP is constructed from the matrix R™# with its
elements R};® given by [12,33,27-33]

R;’;’E = O(& — ||pmax (1) — Pmax (/) |])- )

The elements 0 and 1 are translated into the RP as
an empty space and a black dot, respectively, and € is
a threshold value. By examining the patterns of diago-
nal, vertical and horizontal lines in an RP one can clas-
sify the dynamics of the system in a more quantitative
fashion [31].

This is done by defining several parameters as de-
scribed below.

The recurrence rate RR is defined as

L& e
RR=— Y R}, for
ij=1

li—j| > w. 3)

This quantity determines the fraction of black dots in
an RP. Here w denotes the Theiler window used to ex-
clude identical and neighbouring points from the above
summation.

Using the distributions P(/) and P(v) of the lengths
of diagonal and vertical lines, respectively, we now de-
fine parameters such as determinism (DET), laminar-
ity (LAM) and trapping time (7'7):

N N
DET = Y, 1P() | Y 1P(D),
=1

1=lnin

N N
LaM = ¥ oP() [/ L or0) 4)

‘;Vmin "
TT= Y )/ Y PO
V=Vmin V=Vmin

In the above formulae /), = vinin = 2 are the minimal
length lines to be taken into account in the statistical
analysis; see [31] for details.

These parameters describe various aspects of an RP
and thus provide information about the different types
of behaviour of the time series under consideration.
The parameter DET is a measure of the proportion of
recurrence points forming diagonal line segments and
reveals the existence of deterministic structures in the
time series. LAM is a similar parameter as DET, but is
based on vertical line segments; it represents the extent
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Table 1. RQA results for the peak pressure time series for
various speeds Q of the crankshaft. In all cases the embed-
ding dimension m = 5, delay &i = 10, and a Theiler window
w = 1 have been used, and RR = 0.15.

Q DET LAM TT
1000 0.8010 0.8644 6.019
1200 0.7172 0.8055 4.914
1400 0.7569 0.8246 5.094
1600 0.8267 0.8773 7.225
1800 0.6116 0.7266 3.634
2000 0.9260 0.9558 12.41

of laminar phase or intermittency, and 7T describes
how long the system remains in a laminar phase.

Figures 3a—f present the RPs for the six peak pres-
sure time series shown in Figure 2. Note that Fig. 3f
(€2 = 2000 rpm) consists mainly of diagonal lines in-
dicating periodic oscillations. The period is given by
the distance between the lines and is approximately 90.
Periodic behaviour is also observed in Fig. 3b (Q =
1200 rpm) and Fig. 3e (€2 = 1800 rpm). On the other
hand, there are extensive white regions on the upper-
left and lower-right corners in Fig. 3a (2 = 1000 rpm),
Fig. 3¢ (© = 1400 rpm) and Fig. 3d (Q = 1600 rpm).
These white regions indicate the presence of a trend or
other nonstationarity in the time series [31]. Further-
more, Fig. 3c ( = 1400 rpm) indicates modulations
of much larger period, but to confirm such a conclu-
sion one has to examine longer time series [39].

Next we discuss the results of RQA which are pre-
sented in Table 1. In all cases considered here we used
the same fixed recurrence rate RR = 0.15. Let us first
examine the case of Q = 2000 rpm. Note that the val-
ues of DET and LAM, in this case, are the largest
among all the cases. These parameters affirm the de-
terministic nature of the periodic oscillations.

Interestingly the other periodic cases Q = 1200 rpm
and Q = 1800 rpm are characterized by smaller values
of DET and LAM, which indicate less regular dynam-
ics. This could be also related to the effect of a curved
structure [40]. Curved structures in RPs can appear if
the amplitude and/or frequency are modulated.

3.2. Wavelet Analysis

For comparison we have also examined the various
peak pressure-time series using wavelet analysis. In
particular, we have used a continuous wavelet trans-
form (CWT) [19,24,41] and computed the wavelet
power spectra (WPS); these are shown in Figs. 4a—f.

Several dynamical features can be discerned from
these figures. For instance, Fig. 4f, which applies for
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Q = 2000 rpm, clearly shows the presence of periodic
oscillations with an approximate period of 90. This is
consistent with the results shown in the RP of Fig-
ure 3f. Furthermore, oscillations with larger periods
are observed in Figs. 4b and 4e. Some modulations of
the period appear in Fig. 4e, as seen earlier in the RP
of Figure 3e. In addition to these periodic structures,
the wavelet spectra reveal oscillations of much shorter
periods that appear intermittently. The intermittency
is also reflected in the RQA parameters. Note that in
all the cases LAM is larger than DET which implies
a robust vertical structure (Figs. 3a—f) and is closely
related to the appearance of laminarity and intermit-
tency [42].

4. Concluding Remarks

Using RPs and RQA we have analyzed the cycle-to-
cycle variations of the peak pressure in a diesel engine
for six rotational speeds of the crankshaft. Our results
indicate that depending on the engine speed, the pres-
sure variations in the cylinder exhibit different types of
behaviour ranging from periodic oscillations to inter-
mittent fluctuations. These results have been verified
by performing a wavelet analysis of the pressure-time
series.

The above methods can be used for effective en-
gine monitoring and for developing efficient strategies
of engine control [43]. In particular, the RQA param-
eters can be used to quantify the maximum pressure
variations that are represented by relatively short time
series.

On the other hand, the trapping time parameter 7T
is strictly related to the existence of short laminar
phases in pressure fluctuations. Such laminar phases
can be detected by both RPs and wavelet analysis. The
trapping time associated with intermittent fluctuations
is important for engine diagnostics. The desired situ-
ation would be to control combustion fluctuations in
the engine, but an efficient feedback control requires
predictability of cycle-to-cycle dynamics, at least in a
short time range. The trapping time provides important
information about the time scale of an engine response
and about an optimal time delay needed in a control
procedure [43].

Comparing the TT parameter in cases of Q = 1800
and 2000 rpm, we see that it reaches the maximum for
Q = 2000 and minimum for Q = 1800. Thus T'T could
be also used for estimation of the proper working con-
ditions.
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Fig. 4. Wavelet power spectra of the peak pressure-time series for various speeds Q of the crankshaft: (a) 1000 rpm;

(b) 1200 rpm; (c) 1400 rpm; (d) 1600 rpm; (e) 1800 rpm; (f) 2000 rpm. In these figures, the dark contours represent the 5%
significance level, and the thin U-shaped curve denotes the cone of influence [39].
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The large changes in DET, LAM and TT in two
neighbouring cases, = 1800 and 2000 rpm (Table 1),
could imply a bifurcation. The wavelet results (Figs. 4e
and 4f denoted by contour lines) show that in the case
of Q = 1800 rpm there are two important periods,
128 and 64, while for Q = 2000 rpm there is a sin-
gle period of about 64 engine cycles. Note, that it is
consistent with a period doubling bifurcation. Such a
bifurcation could be also visible in Fig. 2 as the addi-
tional modulation and in the RP (Figs. 3e and 3f) as the
smearing thickness of lines with an increasing distance
between them.
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